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Abstract

The development of robust and generalisable models for encoding the spatio-temporal dy-
namics of human brain activity is crucial for advancing neuroscientific discoveries. However,
significant individual variation in the organisation of the human cerebral cortex makes
it difficult to identify population-level trends in these signals. Recently, Surface Vision
Transformers (SiTs) have emerged as a promising approach for modelling cortical sig-
nals, yet they face some limitations in low-data scenarios due to the lack of inductive
biases in their architecture. To address these challenges, this paper proposes the sur-
face Masked AutoEncoder (sMAE) and video surface Masked AutoEncoder (vsMAE) - for
multivariate and spatio-temporal pre-training of cortical signals over regular icosahedral
grids. These models are trained to reconstruct cortical feature maps from masked ver-
sions of the input by learning strong latent representations of cortical structure and func-
tion. Such representations translate into better modelling of individual phenotypes and
enhanced performance in downstream tasks. The proposed approach was evaluated on cor-
tical phenotype regression using data from the young adult Human Connectome Project
(HCP) and developing HCP (dHCP). Results show that (v)sMAE pre-trained models im-
prove phenotyping prediction performance on multiple tasks by ≥ 26%, and offer faster
convergence relative to models trained from scratch. Finally, we show that pre-training
vision transformers on large datasets, such as the UK Biobank (UKB), supports transfer
learning to low-data regimes. Our code and pre-trained models are publicly available at
https://github.com/metrics-lab/surface-masked-autoencoders

Keywords: Vision Transformers, Cortical Analysis, fMRI Encoding, Geometric Deep
Learning

1. Introduction

The construction of robust and generalisable AI models of human brain function remains
a formidable challenge due to the high-dimensional, temporal fluctuations of human brain
activations (Vidaurre et al., 2017; Pervaiz et al., 2022). These patterns exhibit considerable
heterogeneity across individuals, making it difficult to learn latent representations that
generalise across individuals. Focusing specifically on the cerebral cortex, research has long
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shown that different areas perform different functions (Glasser et al., 2016), and that high-
order cognition arises from dynamic interactions between these regions (Owen et al., 2021).
For these reasons, several studies have chosen to model the brain as a graph (Bullmore
and Sporns, 2009) and study functional dynamics using graph neural networks or sequence
models (Dahan et al., 2021; Choi et al., 2023; Kim et al., 2023). One limitation with
this approach resides in the difficulty of delineating cortical functional areas from MRI.
Most studies assign regions from a population-average atlas (Kim et al., 2021); however,
this inserts noise and errors into the estimation of regional timeseries, since human brains
cannot be perfectly spatially normalised to a template through diffeomorphic registration
(Glasser et al., 2016). Other studies instead prefer to treat brain activity independently at
each voxel (Huth et al., 2016), but this ignores the spatial coherence of signals, both from
adjacent voxels that belong to the same region, as well as distantly connected areas whose
time series are correlated with that region. Pioneering work by Fischl et al. (1999), but
later advanced by the HCP (Glasser et al., 2013, 2016; Coalson et al., 2018), proved that
analysis of cortical fMRI is most precise when treated as functions on a surface mesh. This
suggests that encoding and decoding from fMRI might be improved by explicitly accounting
for long-range spatial-temporal interactions across the cortical surface.

Vision transformers (Dosovitskiy et al., 2020) (ViTs) have been established as a powerful
tool for studying long-range dependencies in natural images, leveraging the mechanisms
of self-attention to outperform CNNs across a range of image understanding tasks (Zong
et al., 2023; Liu et al., 2022). Unfortunately, such performance gains usually come at the
cost of requiring very large data sets, to compensate for the relative lack of constraints on
transformer architectures. To overcome this limitation, self-supervision frameworks have
been developed, that pre-train networks on simpler tasks (Bao et al., 2022; Caron et al.,
2021). One recent popular approach has been the development of auto-encoder frameworks
which seek to reconstruct whole images from inputs that have had the majority of the image
corrupted (Dosovitskiy et al., 2020) or had patches masked out (He et al., 2021).

Recently we translated the concept of ViTs to the cortical surface, by proposing a
surface patching scheme derived from tessellations of regular icosahedrons (Dahan et al.,
2022). Treating cortical modelling as a sequence-to-sequence learning problem was shown
to outperform surface convolutional approaches on a range of phenotype prediction tasks
(Zhao et al., 2019; Monti et al., 2016). In this paper, we integrate the concept of MAE self-
supervision (He et al., 2021) into this Surface Vision Transformer (SiT) framework. Results
show that the resulting (v)sMAEs learn robust and generalisable representations that signif-
icantly enhance phenotype prediction, support transfer-learning from large-open datasets
(to support learning in low data regimes) and most importantly support reconstruction of
cortical functional dynamics (with up to 75% missing data).

2. Related Works

This work extends from the Masked Autoencoder (MAE) (He et al., 2021), which learns
strong visual representations through modelling reconstruction of whole images from inputs
which have had the majority of their features masked out. For ViTs, images are represented
from a sequence of image patches (or tokens). The success of the MAE comes from its asym-
metric encoder-decoder architecture, in which the encoder processes only a fraction (ρ) of
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the input sequence - the unmasked tokens - while the decoder learns to reconstruct the image
at full resolution based solely on the embeddings learnt from these unmasked tokens. Such
self-supervision facilitates the learning of robust and generalisable representations, since
the complexity of the self-attention operation scales quadratically with the length of the
input sequence - thus, passing fewer tokens allows for the building of much deeper encoder
networks. As the objective is to use only the encoder for downstream tasks a light-weight
decoder is considered sufficient for reconstruction, ensuring that the full framework remains
computationally efficient. Extending this concept, VideoMAE models (Tong et al., 2022;
Feichtenhofer et al., 2022) have sought to address the unique challenges of reconstructing
spatio-temporal patches from successive video frames. The MAE framework has also been
applied to non-Euclidean domains such as point clouds, irregular meshes and graphs (Hou
et al., 2022; Liang et al., 2022). The MAE approach to self-supervision contrasts with the
masked patch prediction (MPP) model proposed by (Dosovitskiy et al., 2020), which instead
employs a symmetric encoder-decoder architecture that is trained to reconstruct the entire
image sequence after corrupting some of the input patches through masking or swapping.
This approach was adapted to the cortical surface domain in (Dahan et al., 2022). However,
since its inception the MPP has been shown to be repeatedly outperformed by the MAE,
which demonstrates better reconstruction, efficiency, and performance on fine-tuning tasks.

Figure 1: [A] (v)sMAE partitioning and learning pipelines; [B] Sequence Masking and [C]
Unmasking strategies.
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3. Methods

3.1. Surface Vision Transformer

Following Dahan et al. (2022), input cortical feature maps X ∈ R|V6|×C (C channels) are
represented on a 6th-order icospheric (ico6) tessellation: I6 = (V6, F6), with |V6| = 40962
vertices and |F6| = 81920 faces (Figure 1.A.1). Patching is achieved by tessellating ico6
with the faces of a low-resolution icosphere, typically ico3 (I3 = (V3, F3), |F3| = 1280 and
|V3| = 642, Figure 1.A.2). This partition leads to a sequence of non-overlapping triangular

patches: T3 = {t13, t23, ..t
|F3|
3 } (with ti3 ⊂ V6, |ti3| = 45 vertices in each patch). Imaging

features (e.g. myelin and curvature) from ico6 vertices that fall within each patch are then
concatenated across channels, flattened and projected with a trainable linear layer into a

set of D−dimensional input tokens {X(0)
i }Ni=1. Sine-cosine positional embeddings, Epos =

{Ei}Ni=1 are then added to each of the tokens to encode patch location within the sequence:

X (0) =
[
X

(0)
1 + E1, ..., X

(0)
N + EN

]
, where each Ei reflects a D−dimensional vector that

encodes location from a unique combination of sine and cosine functions (Vaswani et al.,
2017) (more details in Appendix A.4). Use of fixed positional embeddings, instead of the
trainable embeddings used in (Dahan et al., 2022), was found to speed up network training.
The initial sequence X (0) is then processed by L consecutive transformer encoder blocks of
Multi-Head Self-Attention (MHSA) and Feed Forward Network (FFN) layers, with residual
layers in-between:

Z(l) = MSHA(X (l)) + X (l)

X (l+1) = FFN (Z(l)) + Z(l)

=
[
X

(l+1)
1 , ..., X

(l+1)
N

]
∈ RN×D

(1)

Note, that sequence shape is preserved through each block. This Surface Vision Trans-
former (SiT) architecture forms the backbone for all (v)sMAE encoders and decoders. More
information on surface patching and architecture details can be found in Appendix A.2.

3.2. Surface Masked AutoEncoder

Implementation of the proposed sMAE parallels that of the original MAE architecture. First,
unmasked tokens are randomly selected from the set of all possible patches available from
an ico3 mesh (Fig 1.B.1 and 1.B.2), according to the masking ratio ρ. These are then
passed to an SiT encoder (Φenc) (Fig 1.A.4), constructed from an SiT-tiny with L = 12
transformer blocks and 3 attention heads per layer. Next, the latent (encoder) embeddings
learnt from the encoder are concatenated with a set of random (mask) embeddings - in
place of the original masked tokens - to return the sequence to its original resolution N (Fig
1.C.1). These are then unshuffled to restore the initial order of the sequence (Fig 1.C.2),
positional embeddings are added to encode spatial information (Fig 1.C.3) and the resultant
sequence Y ∈ RN×D is fed to an SiT decoder (Φdec) with L = 3 transformer blocks and 3
attention heads per layer. The last layer performs a linear projection to restore the input
patch resolution (C × |ti3|) from the sequence resolution D (Fig 1.A.7). Following He et al.
(2021), the network is optimised by calculating the mean square error (MSE) between the
masked input feature patches and their reconstructed versions only (Fig 1.A.8).
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Figure 2: (a) sMAE sulcal depth reconstruction results on a UKB test subject (ρ = 75%).
(b) vsMAE reconstruction (ρ = 50%) results with 3 7T HCP consecutive frames.

3.3. Video Surface Masked AutoEncoder

In the domain of video understanding, a range of spatiotemporal masking strategies have
been explored for self-supervision with videoMAE. These include spacetime agnostic mask-
ing strategies (Feichtenhofer et al., 2022), which randomly sample patches in a different
way for each and every frame; as well as tube-masking strategies (Tong et al., 2022; Wang
et al., 2023), which sample concurrent frames from the same mask. When translating such
concepts to the modelling of cortical functional dynamics it is important to acknowledge
that, relative to natural video, fMRI is much less structured, with far less temporal redun-
dancy. This is because fMRI is an indirect measure of cortical activity, characterised by low
temporal resolution and corruption from physiological noise.

Thus, while agnostic masking with high masking ratios (of up to 90%) (Feichtenhofer
et al., 2022) may work well for natural scenes, it cannot be easily made to work for fMRI
due to the noise. Nor can classic videoMAE implementations of tube-masking, since these
compress video cube patches of size T × 16× 16 with a single linear projection. This makes
sense for natural videos, for which successive frames from the same patch will probably
contain highly correlated features, but not for fMRI where two frames may present very
distinct patterns of activity (due to the low temporal resolution, see Figure 2.b). We address
these challenges in two ways: first, we account for noise through the use of a tube-masking
strategy with a reduced masking ratio (typically 50%, see Fig 2b); second, we change the
approach for spatio-temporal patch compression from one projection across block of frames,
to one projection per frame, followed by concatenation across frames. This design creates
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a spatiotemporal sequence of tokens and enables the vsMAE model to effectively compute
spacetime self-attention, enhancing the model’s capacity to capture and integrate complex
spatio-temporal dynamics between patches distant in both space and time.

4. Experimental Methods

To evaluate whether the proposed (v)sMAE can learn sufficiently rich encodings of cortical
functional dynamics a series of experiments was conducted: first, we validated whether the
model could robustly generalise to unseen subjects by assessing the quality of the generated
reconstructions; then, we investigated whether the encodings learned by our (v)sMAE mod-
els capture information relevant to phenotypic predictions and therefore may suggest an
alignment with neurobiological patterns. In parallel, we demonstrate that self-supervised
pre-training of (v)sMAEs on very large open-datasets, such as UK Biobank, can support
transfer-learning to data sets of much more limited size.

4.1. Datasets

dHCP Data consists of cortical surface meshes and metrics (sulcal depth, curvature,
cortical thickness and T1w/T2w myelination) derived from T1- and T2-weighted mag-
netic resonance images (MRI) from the developing Human Connectome Project (dHCP)
(Makropoulos et al., 2018). We use 580 scans from 419 term neonates (born after 37 weeks
gestation) and 111 preterm neonates (born prior to 37 weeks gestation). Preterm babies
were scanned either shortly after birth, at term equivalent age (TEA), or at both timepoints.

UKB Matched cortical metrics were derived from 4063 subjects (1896 biological females)
aged between 46 and 83 years in the UKB Biobank (UKB) dataset (Miller et al., 2016;
Alfaro-Almagro et al., 2018). These were used for the transfer learning experiment.

HCP fMRI data was obtained from the movie-watching experiment of the HCP 7T release
(Van Essen et al., 2013), from 174 participants who were scanned while watching a series of
movie clips. fMRI responses were projected from the volume to the cortical surface (Glasser
et al., 2013) and were aligned using multimodal cortical features (MSMAll) (Robinson et al.,
2014a, 2018a; Glasser et al., 2016). For these subjects, we also used Z-statistic contrast
maps derived from the N-back Working Memory (WM) task (Braver et al., 1997; Barch
et al., 2013a) from the 3T HCP release (Van Essen et al., 2013). More details about data
acquisition, processing and train/validation/test splits for all the datasets in Appendix A.1.

4.2. Implementation & Tasks

(v)sMAE pretraining All models were trained on a single RTX 3090 NVIDIA GPU with
Adam optimisation (LR = 3e−4 and cosine decay). A batch size of 16 was used by default
but adapted depending on ρ values. The impact of different masking ratios (ρ) was evaluated
by testing the quality of reconstructions (on all cortical features for sMAE and on 7T movie-
task data for vsMAE) and fine-tuning on phenotype regression tasks. The performance of
the vsMAE was similarly optimised over frame sampling rates τ ∈ {1, 3, 6, 8}.
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Encoder Pre-training Nb frames used for: Sex Classification
architecture method Pre-training/Finetuning Acc (%) ± std

None None / 3 58.1 ± 0.9
sMAE 1 / 1 67.1 ± 1.4

SiT-tiny vsMAE 3 / 3 75.8 ± 0.5
(ico3) vsMAE 6 / 3 73.2 ± 0.7

vsMAE 8 / 3 75.3 ± 0.3

Table 1: vsMAE fine-tuning results on 7T frames sex classification task at different pre-
training sampling rate τ . Finetuning was done with a maximum of 3 frames
(hardware limitations). Balanced accuracy and std averaged over 3 training runs.

Phenotyping Predictions Self-supervision with (v)sMAEs was validated by fine-tuning
the pre-trained weights from the SiT encoders on various phenotyping prediction tasks.
sMAE encoders, trained on multivariate dHCP cortical imaging features, were validated for
regression of post-menstrual age (PMA) at scan, and gestational age (GA) at birth. The GA
task aims to predict the degree of prematurity from scans acquired around TEA, while the
prediction of PMA was designed as a correlate for modelling healthy cortical maturation.
On fMRI data, we evaluated the performance of the vsMAE model on sex classification. Fine-
tuning was found to perform best when using SGD optimisation (momentum=0.9, warmup
scheduler) with LR = 1e−4 for sex classification, GA and PMA.

Transfer learning We evaluate the potential use of (v)sMAE encoders for transfer learn-
ing by first training sMAEs on multivariate (sulc, curvature, cortical thickness and myelin)
from UKB; the resulting encoder was then fine-tuned for dHCP PMA prediction. The
vsMAE, pretrained on fMRI data, was fine-tuned on fluid intelligence prediction using con-
trast maps extracted from the HCP 3T working memory task. We used SGD optimisation
(momentum=0.9, warmup scheduler) with LR = 1e−5 for fluid intelligence prediction.

5. Results & Discussion

Evaluating reconstruction of brain dynamics Results for the sMAE showed that
masking ratios of ρ = 50% and 75% yielded the strongest visual reconstruction, lowest
reconstruction error and highest performance on GA downstream tasks (Table 3, Appendix
B.1). For vsMAE pre-training on fMRI data, ρ = 50% provided the best trade-off between
reconstruction quality and frame sampling rate τ (Table 4, Appendix B.1).

Fine-tuning Results from PMA and GA experiments (Table 5, Appendix B.2.1) showed
that fine-tuning sMAE encoders on dHCP data consistently improves their performance rel-
ative to baselines including: training from scratch; fine-tuning from ViTs pre-trained on
ImageNet classification; and fine-tuning SiTs following MPP self-supervision (Dahan et al.,
2022), as well as various gDL models. Notably, performance improved by 26% relative to
training from scratch, which could not be achieved even with longer training times. Table 1
reports similar findings following pre-training on fMRI data, showing that sex classification
significantly improves following sMAE pre-training on single frames. Moreover, this result
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Figure 3: (a) Sex classification 7T HCP - comparing SiT models - trained from scratch
(with 3 frames) (grey), fine-tuned (with 1 frame) from sMAE (1 frame)(orange)
and fine-tuned (with 3 frames) from vsMAE (3 frames). (b) dHCP transfer learning
experiment from sMAE (UKB) pre-training against SiT-tiny trained from scratch

improves by a further 13% when the spatio-temporal dynamics of the sequence is more fully
taken into account by the vsMAE pre-training (Figure 3.a.). This suggests that modelling
spatio-temporal dynamics improves cortical phenotype prediction.

Transfer Learning Finally, to assess the potential of (v)sMAEs for transfer learning on
smaller datasets, we investigated fine-tuning, using subsets of the entire dHCP dataset
(10%, 20% or 50%) following training on all 4063 UKB datasets. Results in Figure 3.b.
show that, relative to training from scratch, transfer-learning improves cortical phenotype
prediction on dHCP for all data ratios (orange line). Finetuning the vsMAE encoder on
3T HCP contrast maps similarly yielded higher correlation scores on the challenging fluid
intelligence prediction task (0.39) Pearson correlation compared to training from scratch
(≤ 0.3), see Appendix B.3.1.

Discussion In this paper, we demonstrated that pre-training surface vision transformers
with (v)sMAEs is an effective way to learn strong representations of both static and dynamic
cortical maps. Training SiTs in this way leads to better performance on downstream phe-
notype prediction tasks irrespective of whether the self-supervision task is trained on the
same data set, or larger-open data sets such as UKB (even when the data set demograph-
ics strongly diverge). This offers significant potential for translating the benefits of SiTs
to much smaller clinical neuroimaging datasets (e.g. for psychosis (Demro et al., 2021)).
Moreover, the strong performance of vsMAE on reconstruction and phenotype prediction
from fMRI suggests these models can learn robust and generalisable models of dynamic
cortical function. This opens the door in future to novel applications in fMRI encoding and
decoding.
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Appendix A. Methods

A.1. Additional data information

A.1.1. dHCP dataset

We use 580 scans from 419 term neonates (born after 37 weeks gestation) and 111 preterm
neonates (born prior to 37 weeks gestation). 95 preterm neonates were scanned twice, once
shortly after birth, and once at term-equivalent age (TEA). For PMA prediction train-
ing data was drawn from the scans of term-born neonates and preterm neonates’ first
scans (26.71 to 44.71 weeks PMA). For GA, we use the scans at TEA. In both GA and
PMA cases, balanced distribution of examples from each age bin was ensured (Fawaz et al.,
2021).Train/validation/test splits were defined for the GA prediction task as 411/51/52, and
for the PMA prediction task as 423/53/54. For the transfer learning experiment on PMA
prediction, three subsets of the training data were generated with respectively 10%, 20%,
and 50% of the full dHCP training dataset. The distribution of scan age across the full train-
ing set was preserved while generating the subsets. Infants were recruited and imaged for
the developing Human Connectome Project (http://www.developingconnectome.org/),
approved by the National Research Ethics Committee (REC: 14/LO/1169).

A.1.2. UKB dataset & pre-processing

Cortical surfaces were extracted using T1w and T2w images to support accurate placement
of pial surface (Glasser et al., 2013). T1w/T2w ratio maps (Glasser and Van Essen, 2011)
were generated using HCP method (Glasser et al., 2013). Cortical thickness was corrected
for folding-related bias as previously described (Glasser and Van Essen, 2011; Glasser et al.,
2013; Sigalovsky et al., 2006). Registration of sphericalised cortical surfaces was performed
using Multimodal Surface Matching (Robinson et al., 2014b, 2018b), driven by sulcal depth
maps, with high regularisation (Robinson et al., 2014b, 2018b; Glasser et al., 2016). UKB
was partitioned into train/validation/test splits of 2865/588/610.

A.1.3. HCP

In the HCP 7T release (Van Essen et al., 2013), 184 participants were scanned, up to four
times in separate sessions. We used data from participants who had completed all four
acquisition runs (n = 174). HCP data was partitioned into train/validation/test splits of
124/25/25. On the 3T dataset, the fluid intelligence task corresponds to the number of
correct responses to the Penn Progressive Matrices (PMAT) task (Barch et al., 2013b) and
is known to be highly difficult to predict from medical imaging data. The same split of data
was used than for the 7T HCP dataset.

A.2. Network architecture details

In Table 2, we summarise the architecture of the (v)sMAE encoder and decoder networks
used in this study and based on the SiT architecture. Here, we only used a 3-layer trans-
former decoder network, as it yields good reconstruction results. On a standard 24G
NVIDIA GPU, the maximum batch size that can be used for vsMAE reconstruction with
ρ = 75% is {128, 128, 64, 2} for respectively τ ∈ {1, 3, 6, 8} frame-reconstruction. For the
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sMAE reconstruction task, a batch size of 128 is typically used, with 4 cortical input metrics.
This allows for a fast training of the (v)sMAE models.

Models Layers Heads Hidden size D MLP size Params.

(v)sMAE encoder 12 3 192 768 5.3M
(v)sMAE decoder 3 3 192 768 1.4M

Table 2: (v)sMAE encoder/decoder are based on the SiT architecture. All SiT models pre-
serve a hidden size of 64 per attention head. The entire encoder-decoder pipeline
has only 6.7M parameters.

In the present study, we patched the cortical surface using an ico3 tessellation grid. It
achieved good phenotyping performance and allow for higher-resolution patch representa-
tion, compared to ico2 sampling as in (Dahan et al., 2022), while preserving a manageable
computational cost (batch size of 128 vs 256 for ico2). With the ico3 patching, the cortical
surface is represented by 1280 patches of 45 vertices each, compared to 320 patches of 153
vertices for ico2.

A.3. Masked Patch Prediction

The sMAE methodology is compared to the Masked Patch Prediction (MPP) self-supervision
task, used previously in (Dahan et al., 2022), which in turn was adapted from (Dosovitskiy
et al., 2020; Devlin et al., 2019). It employs an autoencoder architecture that is trained to
reconstruct the entire image sequence while corrupting some of the input patches through
masking or swapping. Following (Dosovitskiy et al., 2020), we corrupt 50% of the input
patches randomly: by replacing the patches with a masked (empty) token (40%), using
another patch embedding from the sequence at random (5%), or preserving their original
embeddings (5%). In contrast to sMAE, the MPP methodology optimises reconstruction by
computing the MSE loss for all patches, and the MPP encoder processes the entire sequence
of patches, which reduces its efficiency and modelling power with long input sequences.

A.4. Positional embeddings

Compared to (Dahan et al., 2022), we use fixed positional embeddings, which accelerate
the training process compared to learned positional embeddings. Positional embeddings are
defined as follows:

Ei =
[
PE(i,j)

]D
j=1

(2)

where:

PE(i,j) = sin(i/10000k/D) if j = 2k

PE(i,j) = cos(i/10000k/D) if j = 2k + 1
(3)
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Masking
Ratio

Reconstruction
Error - sMAE

Gestational
Age

25% 0.78 ± 0.05 1.51 ± 0.1
50% 0.39 ± 0.03 1.35 ± 0.02
75% 0.49 ± 0.03 1.42 ± 0.04
90% 0.68 ± 0.05 1.44 ± 0.07

Table 3: Masking ratio selection. Reconstruction errors (MSE) on validation set for masked
patches only. For each masking ratio configuration, the sMAE encoder was fine-
tuned for GA prediction and 200 epochs. Validation prediction errors with stds
across three runs are reported.

Appendix B. Results

B.1. Masking ratio

We first evaluate the effect of the masking ratio hyperparameter of the sMAE framework.
sMAE networks were trained with different masking ratios (25%, 50%, 75% and 90%) on
dHCP data and evaluated for both reconstruction quality and prediction performance in a
downstream task (GA regression). Table 3 reports the best MSE reconstruction errors and
mean absolute error (referred to as prediction error in the following) on the validation set,
averaged across three fine-tuning runs. Figure 4 shows an example of the reconstruction
quality for the validation set for each sMAE masking ratio, indicating that sMAE models
capture individual cortical features even with high masking ratios, which suggests some

Figure 4: Sulcal depth reconstruction from sMAE pre-training at different masking ratio
(25%, 50%, 75%, 90%). Results are shown for the same validation subject.
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Masking
Ratio

Reconstruction Error - vsMAE
(3 frames)

50% 0.55 ± 0.03
75% 0.59 ± 0.01
90% 0.61 ± 0.03

Table 4: Average reconstruction error on masked patches for vsMAE models pre-trained on
3-frame reconstuction.

capabilities of self-attention to model complex dependencies between brain regions. Overall,
the 50% masking ratio offered the best quantitative validation and was used in all following
experiments. In table 4, we report the reconstruction error for vsMAE models pre-trained on
3-frame reconstructions. Loss is averaged across masked patches only. The masking raito
of 50% yield the best reconstruction error rates.

B.2. Phenotyping prediction results

B.2.1. dHCP phenotyping results

Results for the finetuning PMA and GA experiments of multivariate sMAE training are
presented in Table 5comparing training between scratch, fine-tuning from MPP weights and
fine-tuning from sMAE weights. Additionnaly, we compare the performance of the SiT models
against a range of surface CNNs benchmarked in Fawaz et al. (2021). Here, we report results
on the 5 most performing architectures benchmarked in Fawaz et al. (2021) on phenotyping
prediction and segmentation for neonatal data: Spherical UNet (Zhao et al., 2019), MoNet
(Monti et al., 2016), GConvNet (Kipf and Welling, 2017), ChebNet (Defferrard et al., 2017)
and S2CNN (Cohen et al., 2018), as well as a ResNet trained on 2D projection of the
spherical data. All surface CNNs were trained using the same data examples and splits as
reported here. Compared to Fawaz et al. (2021), here prediction errors are averaged across 3
training runs (rather than reporting the best performance only). Finetuning the SiT encoder
after sMAE pretraining outperforms all other models and training settings (Imagenet, MPP)
- except for the MoNet model on PMA prediction - with smaller variations across training
results (std).

1. (Cohen et al., 2018)
2. (Defferrard et al., 2017)
3. (Kipf and Welling, 2017)
4. (Zhao et al., 2019)
5. (Monti et al., 2016)
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Encoder Architecture Pre-training
Method

PMA at scan GA at birth

error ± std error ± std
Projected ResNet ✗ 0.97 ± 0.34 1.93 ± 0.49

S2CNN 1 ✗ 0.94 ± 0.25 2.35 ± 0.60
ChebNet 2 ✗ 1.21 ± 0.49 2.00 ± 0.36
GConvNet 3 ✗ 0.99 ± 0.26 2.85 ± 0.74
SUNet 4 ✗ 1.63 ± 0.51 2.41 ± 0.68
MoNet 5 ✗ 0.63 ± 0.05 1.68 ± 0.06

SiT-tiny ico3 ✗ 0.87 ± 0.08 1.65 ± 0.11
SiT-tiny ico3 ImageNet 0.70 ± 0.04 1.66 ± 0.05
SiT-tiny ico3 MPP 0.66 ± 0.03 1.53 ± 0.07
SiT-tiny ico3 sMAE 0.64 ± 0.02 1.22 ± 0.04

Table 5: Fine-tuning results of PMA and GA. We compare the results with various surface
CNN models and SiT training settings: from scratch, after MPP, after ImageNet
or after sMAE self-supervision. Each SiT-tiny encoder is finetuned three times,
averaged test prediction errors and stds are shown in the table.

B.2.2. Sex classification Results

Sex classification training curves and loss, comparing different training regimes in the fine-
tuning vsMAE experiment, are presented in Figure 5. vsMAE pre-training significantly boost
the performance on sex prediction from task fMRI frames.

Figure 5: Validation accuracy and loss curves for the sec classification task with (v)sMAE

models. (a) Three different training regimes are compared: training from scratch
(with 3 frames) (gray), fine-tuned (with 1 frame) from sMAE (1 frame) (orange)
and fine-tuned (with 3 frames) from vsMAE (3 frames). (b) validation loss curves
for the same three training schemes. Incorporating spatio-temporal information
via vsMAE pre-training and fine-tuning leads to the best results.
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B.3. Positional Embeddings

We evaluate the importance of positional embeddings, by comparing reconstructions with
and without the use of positional embeddings while training the sMAE model. Reconstruc-
tions are presented in Figure 6. Without positional embeddings, the masked tokens can not
be correctly reconstructed as no positional information of masked tokens is added to the
sequence.

Figure 6: Reconstruction results of sMAE pre-training with and without the use of positional
embeddings. Without positional embeddings, the model can not reconstruct the
mask tokens.
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B.3.1. Fluid intelligence results

Figure 7: Fluid intelligence prediction results. (a) prediction vs targets results for a vsMAE

model pre-trained on 7T frames and fine-tuned on 3T contrast maps. Correlation
score is 0.39 (b) prediction results for a SiT-tiny trained from scratch on 3T
contrast maps (correlation score of 0.3)

In Figure 7, we show the prediction results on test data of a vsMAE encoder fine-tuned on
3T contrasts maps for fluid intelligence, following a pre-training on 3-frame reconstruction
and compared with a SiT-tiny trained from scratch on 3T contrast maps.
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