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ABSTRACT

Test-Time Scaling (TTS) improves large language models (LLMs) by allocating
additional computation during inference, typically through parallel, sequential,
or hybrid scaling. However, prior studies often assume fixed collaboration ar-
chitectures (e.g., topologies) and single-model usage, overlooking that optimal
architectures and model combinations can vary across tasks. Therefore, we study
the novel problem of searching for compute-optimal model combinations and archi-
tectures in TTS under a fixed budget. We formalize it as a multi-LLM collaboration
graph, where nodes encode roles and LLM model assignments, and edges capture
information flow. This problem is challenging because (i) the combinatorial search
space is prohibitively large, and (ii) task-specific requirements demand tailored
designs. To address these, we reformulate the problem as probabilistic graph opti-
mization and, through pilot experiments, derive three empirical insights into TTS
collaboration graphs. Guided by these insights, we propose Agent-REINFORCE,
an LLM-agent-augmented framework that mirrors the REINFORCE pipeline by
mapping sampling–gradient–update to sampling–feedback–update, where feed-
back serves as a textual gradient to update the probabilistic graph and efficiently
search for optimal multi-LLM collaboration graphs. Experiments show that Agent-
REINFORCE outperforms both traditional and LLM-based baselines in sample
efficiency and search performance, and effectively identifies optimal graphs under
joint objectives of accuracy and inference latency. Our code is available at link.

1 INTRODUCTION

Test-time scaling (TTS) aims to enhance large language models (LLMs) by allocating additional
computational resources during inference (Brown et al., 2024; Snell et al., 2025). Prior studies
have primarily investigated two architectures: (i) parallel scaling (Wang et al., 2023; Brown et al.,
2024), which samples multiple outputs independently to increase solution diversity and aggregates
them, making it suitable for tasks with uncertain or diverse solution paths; and (ii) sequential scaling
(Madaan et al., 2023; Snell et al., 2025), which iteratively refines a single output and is well-suited
for tasks that require step-by-step reasoning (see Fig. 7 (a)(b) in Appendix). Fusing the two, hybrid
architectures have also been proposed, using predefined hybrid structures to combine the advantages
of both (Besta et al., 2024; Snell et al., 2025) (see Fig. 7 (c) in Appendix). Despite their effectiveness,
we identify two key limitations of existing TTS architectures. First, TTS architectures are typically
predefined and static, with fixed topologies across tasks. However, our analysis shows that different
tasks exhibit distinct preferences for architectural patterns, e.g., MATH favors hybrid structures,
while MMLU performs better with pure parallel ones (Fig. 1(a)(c)). This suggests that architectures
should adapt to task demands. Second, existing TTS methods usually employ a single LLM for all
inference steps. In contrast, multi-LLM ensembles are preferable to leverage heterogeneous LLM
skills across tasks (Jiang et al., 2023; Wang et al., 2025c). Preliminary results show that MATH
benefits from mixtures of 1B–3B, whereas MMLU favors a single 8B (Fig. 1(b)(d)), underscoring
the need for adaptive model selection. Overall, test-time compute-optimal scaling aims to maximize
performance within the inference budget (Wu et al., 2025), but these findings reveal that adaptive
TTS architectures and model combinations are fundamental challenges for existing methods.
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Figure 1: Accuracy across different topologies and model combinations on MATH and MMLU.
LLaMA-3 models are used by default. Detailed data is in Appendix A.3.

Motivated by these observations, we study a novel problem: searching for the compute-optimal
architecture and model combination in test-time scaling for a given task. Formally, given a
task, a set of models, and a compute budget, the goal is to find the best configuration that jointly
determines architecture and model assignment. Leveraging the inherent graph structure of TTS, we
formulate dynamic test-time scaling as constructing a multi-LLM collaboration graph, where where
nodes represent the chosen LLM model with assigned roles (fuser for parallel aggregation, assistant
for sequential refinement), and edges denote information flow. A terminal node aggregates outputs
into the final answer (see Fig. 7(d), Appendix A.1). This graph view offers a systematic foundation
for dynamic optimization. However, two major challenges arise: (i) The search space is large due to
the combinatorial choices of models and topologies, and grows rapidly with the budget. For example,
with 12 nodes, the number of possible graphs ranges from 1018 to 1026 depending on model diversity
(derivation in Appendix A.4). Since evaluating each candidate requires costly inference, brute-force
search is infeasible. (ii) Tailored design requires linking task requirements to optimal TTS search
patterns, which relies on an understanding of TTS behaviors. Prior work shows that performance
does not grow monotonically with used budget, implying that optimal allocations are often below
the maximum. These insights are key to guiding task-specific searches toward compute-optimal
collaboration graphs. To address them, we conducted pilot experiments on TTS behavior analysis,
which yielded three empirical insights: (1) Effective collaboration exhibits clear preferences for
specific model combinations: tasks favor replication of the strongest model family, and ensembles of
small models are preferred when incremental gains are substantial; (2) Both width and depth have
task-dependent optima; beyond these points, extra computation will yield negative returns; (3) Graph
width and depths are interdependent: growth in one dimension shifting the optimal point of the other.

We operationalize these insights by formulating the search as a probabilistic optimization prob-
lem: Learning a distribution over collaboration graphs that jointly determines edges, roles, and
model assignments under a fixed budget to maximize task-specific performance. The REIN-
FORCE algorithm (Williams, 1992), a gradient-based optimization method, addresses this via
a sample–gradient–update pipeline that iteratively samples candidates, computes gradients, updates
the distribution, and repeats. However, it risks local optima and its inability to incorporate empirical
insights. Recent work (Liu et al., 2024a; Zhang et al., 2024a) shows that LLM-based agents are
effective planners for hyperparameter optimization, with the unique advantage of leveraging external
knowledge. Building on these, we propose Agent-REINFORCE, an LLM-agent-augmented frame-
work for searching optimal multi-LLM collaboration graphs. Building on REINFORCE, it employs
an LLM-based agent to incorporate empirical insights for candidate initialization and distribution up-
dates, following a sample–feedback–update pipeline in which feedback serves as textual gradients in
REINFORCE. The framework comprises three components: the Agent, Archive, and Environment.
The Agent initializes promising model families and sizes guided by Insight 1 and fixes the best com-
bination within the distribution. In subsequent stages, the new trials are sampled, the Environment
evaluates them and returns feedback (serving as textual gradients), the Archive records the results,
and the Agent updates the distribution guided by Insights 2 and 3 until convergence. By leveraging
LLM-based optimization, our method efficiently identifies graphs that optimize performance alone
and graphs that balance performance with inference latency under joint objectives.

Our main contributions are: (i) We study the novel problem of the search for the optimal multi-LLM
collaboration graph for TTS. (ii) From three identified empirical insights in multi-LLM collaboration,
we develop Agent-REINFORCE, an efficient LLM-guided framework for budget-constrained graph
search. (iii) Experiments show that Agent-REINFORCE surpasses traditional and LLM-based
baselines in search efficiency and accuracy, and effectively identifies optimal graphs under joint
accuracy–latency objectives.
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2 RELATED WORK

Test-time Scaling and Compute-optimal Strategy. Allocating additional compute during inference,
known as Test-Time Scaling (TTS), can significantly improve LLM performance (Wei et al., 2022;
Wang et al., 2023; Brown et al., 2024; Wu et al., 2025). TTS methods fall into two main paradigms:
sequential scaling, which refines outputs iteratively but risks error accumulation, and parallel scaling,
which aggregates multiple candidates but lacks depth. Hybrid approaches (Snell et al., 2025; Wu
et al., 2025) combine both but typically rely on fixed trees and a single model, limiting adaptability.
Compute-optimal TTS seeks to allocate inference compute most effectively, revealing that small
models with optimal strategies might outperform larger ones (Brown et al., 2024; Wu et al., 2025;
Liu et al., 2025a; Yue et al., 2025; Snell et al., 2025; Wang et al., 2025a). Moreover, ensembles of
heterogeneous models improve diversity and output quality (Jiang et al., 2023; Ashiga et al., 2025),
yet remain underexplored in TTS. Motivated by this gap, we address a novel problem: unifying TTS
under a graph structure that enables adaptive topologies and model combinations, and searching for
compute-optimal collaboration graphs. Further discussion is provided in Appendix A.16.

LLMs for Optimization. LLMs, with their rich prior knowledge of machine learning and strong
planning ability, have opened new opportunities for practical optimization (Zhang et al., 2025c;
Guo et al., 2024). Existing research mainly falls into two categories: black-box optimization and
hybrid approaches with gradient-based methods. In the black-box setting, LLMs generate and refine
candidates using feedback from small training sets (Yang et al., 2024; Liu et al., 2024a; Zheng et al.,
2023). Representative methods include OPRO (Yang et al., 2024), AgentHPO (Liu et al., 2024a), and
GENIUS (Zheng et al., 2023), which leverage task descriptions and prior solution performance for
iterative search. LLMs are particularly valuable for initialization, producing high-quality, knowledge-
informed solutions that narrow the search space (Jawahar et al., 2024; Nana Teukam et al., 2025;
De Zarzà et al., 2023). However, when gradient information is available, black-box approaches
become inefficient due to costly evaluations. LLM-based methods address this by interleaving
gradient-based training with LLM-guided exploration (Guo et al., 2024) or by generating textual
guidelines as backpropagation signals (Yuksekgonul et al., 2024). Building on these advances, we
extend such approaches to compute-optimal test-time scaling by optimizing a probabilistic graph
with LLMs for initialization and textual parameter updates. More details are given in Appendix A.16.

3 PRELIMINARIES AND PROBLEM FORMULATION

Test-time Scaling Paradigms and Their Primitives Test-time scaling can be broadly categorized
into parallel scaling and sequential scaling. Given a query q and a language modelM with parameters
θ, parallel scaling samples k outputs and aggregates them via a fusion function:

o = ffuse(S,M), S = {si | 1 ≤ i ≤ k}, si ∼M(s | q, θ). (1)

Sequential scaling instead performs k rounds of self-refinement:

o = ok, oi = f irefine(o
i−1,M), o0 = q. (2)

where ffuse(·) and f irefine(·) are both executed by the LLM M , using fusion and refinement prompts,
respectively. As shown in Fig. 8, both paradigms can be decomposed into three primitives: repeated
sampling, fusion, and self-refinement. Parallel scaling is repeated sampling followed by fusion;
sequential scaling is iterative self-refinement. Hybrids recombines these primitives–for example, Tree-
of-Thoughts (Yao et al., 2023) uses multi-layer repeated sampling, and Graph-of-Thoughts (Besta
et al., 2024) integrates all three primitives in a graph.

Input
Direct/ 
refined output

Fused
output

output
refine
fuse

Node with an 
assigned model

Various 
models

Figure 2: Generalize TTS as a graph.

Multi-LLM Collaboration Graph for TTS
Given the task-specific preference for flexible
TTS paradigms beyond the predefined ones, we
generalize them into a multi-LLM collaboration
graph G = (V, E ,R,M), where each node
vi ∈ V, i ∈ [1, n], represents an LLM primitive
with an assigned role and model, with an exam-
ple in Fig. 2. Role assignments are denoted by
R = [r1, r2, . . . , rn], ri ∈ R, and model assign-
ments are denoted by M = [M1,M2, . . . ,Mn],Mi ∈ M. Thus, each node is characterized by a
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role ri, which specifies how it processes inputs from its predecessors, and a model Mi, which means
which LLM is invoked. Directed edges eij ∈ E represent the flow of information from node vi to
node vj . We consider two rolesR = {assistant, fuser}, as illustrated in Fig. 2: (i) Assistant, which
refines the outputs of its predecessors (orange nodes); and (ii) Fuser, which aggregates multiple
predecessor outputs (green nodes). The collaboration graph G is a directed acyclic graph (DAG) with
a designated input node (yellow) that initiates information propagation. Message passing proceeds
forward along edges until it reaches a sink node (a node without outgoing edges), whose output
serves as the final prediction of the graph.

Inference on Multi-LLM Collaboration Graph As illustrated in Algo. 2 in Appendix A.2,
inference over a multi-LLM collaboration graph G proceeds in topological order. The process begins
by identifying the successor nodes of the input node. These nodes process the query to generate
initial outputs that are propagated to their successors, reducing the in-degree of their successors by
one accordingly. The newly activated nodes (with zero in-degree) are then executed based on their
assigned roles and models. A fuser aggregates the outputs of its predecessors, whereas an assistant
refines them. This procedure continues iteratively until all nodes in G have been executed. The output
of a unique sink node–node with no outgoing edges, is the final output of the graph.

Budget Definition To enable comparative computation across models and topologies, we define the
budget using a concrete compute metric, e.g., FLOPs or dollar cost. Let the computational cost of a
collaboration graph G be fcost(G,T ). The budget is defined as B = fcost(G,T )/fcost(Gsmallest,T ), where
Gsmallest is the single-node graph (excluding the input node) using the smallest model, corresponding
to one budget unit. Thus, a multi-LLM graph with budget B is equivalent to running B single-node
inferences on the smallest model. A detailed introduction to the budget definition is in Appendix A.8.

Formally, we report computational cost in FLOPs, which we adopt as our primary cost metric.
Proposition 1 (FLOPs Cost Function). For each node vi, the cost depends on the size of the model
and its effective input/output lengths, leading to a dependence on the node in-degree d(vi). Adding up
to all nodes, the total cost can be expressed as fcost(G,T ) =

∑
vi∈V

[
αi d(vi)

2 + βi d(vi) + γi
]
,

where the coefficients αi, βi, γi capture the contributions of the model dimension, depth, and average
task input/output lengths. Detailed derivations of αi, βi, γi are provided in Appendix A.7.

Problem Definition The goal of test-time compute-optimal scaling is to allocate inference compute
most effectively under a fixed budget. We formalize this as searching for the task-specific compute-
optimal multi-LLM collaboration graph. Given training data Dtrain, test data Dtest, a model pool
M = {M1, . . . ,Mn}, and a budget B, the objective is to identify a collaboration graph that specifies
role and model assignments for nodes, together with the cooperation topology, so as to maximize
task performance under the budget constraint. Therefore, our research problem is defined as follows:
Definition 1 (Test-time Compute-optimal Multi-LLM Collaboration Graph for a Specific Task).
Given the training set Dtrain for a given task T , the model poolM, and a fixed computational budget,
B, the goal is to identify the best collaboration graph that optimizes the performance on Dtrain, i.e.,

G⋆ = arg max
G∈G(M,B)

uT (G;Dtrain) (3)

where G(M, B) = {G | fbudget(G,T ) ≤ B} is the set of feasible multi-LLM collaboration graphs
from M under budget B. Each G = (V, E ,R,M) is a DAG, with node vi assigned role ri ∈
{assistant, fuser} and model Mi ∈M, and edge eij denoting information flow. The utility function
uT (G;Dtrain) measures the performance of G on Dtrain, while G⋆ is finally evaluated on Dtest.

4 INSIGHTS OF MULTI-LLM COLLABORATION GRAPH FOR TTS

Searching for the optimal multi-LLM collaboration graph for test-time scaling faces two challenges:
(i) the search space grows combinatorially with the increased budget, making exhaustive enumeration
infeasible; and (ii) the task-specific requirements are highly specific, demanding tailored designs.
We therefore conduct pilot experiments to uncover cross-task TTS patterns, which pave the way to
design an efficient search method for compute-optimal collaboration graphs.

Experimental Setting. We conduct preliminary experiments on three tasks: MATH (Hendrycks
et al., 2021b) (arithmetic reasoning), MMLU (Hendrycks et al., 2021a) (general reasoning), and
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Figure 3: Performance on MATH and MMLU across model family and size. LLaMA by default.

HumanEval (Chen et al., 2021) (code generation), evaluated by accuracy (MATH, MMLU) and
pass@1 (HumanEval). The model pool includes LLaMA-3 [1B, 3B, 8B] (Grattafiori et al., 2024) and
Gemma [1B, 2B, 7B] (Team, 2025). Dataset, model, and metric details are in Appendix A.5.

Empirical Insights on Model Selection, Parallel and Sequential Scaling. We examine TTS
behavior under increasing compute budgets and different model selections, and guide the search for
the optimal multi-LLM collaboration graph in Sec.5. Fig. 3 and 4 illustrate how model selection,
parallel and sequential scaling, and graph width-depth configuration influence TTS.

Insight 1: Task-specific preferences for model family and size combinations. We conduct
preliminary tests on MATH and MMLU to examine task-specific model preferences. Results in
Fig. 3(a–b) show that replicating the strongest model family is generally more effective than mixing
families: for example, LLaMA consistently outperforms Gemma in the 3B space on MMLU, so
using LLaMA×2 yields higher accuracy than LLaMA+Gemma or Gemma×2. Results in Fig. 3(c–d)
show that within a fixed budget, reasoning tasks (MATH) benefit from ensembles of smaller models,
while knowledge tasks (MMLU) prefer larger ones. These trends reflect differences in task demands
and difficulty: reasoning tasks leverage multiple smaller models for iterative refinement, whereas
knowledge tasks require the broader coverage of large models. A more detailed discussion is provided
in Appendix A.6. Consequently, tasks favor replication of the strongest model family, with
small-model ensembles preferred only when their incremental gains are substantial.

Insight 2: Parallel and sequential scaling saturate and decline beyond an optimal budget.
Fig. 4(a–b) shows that both parallel (width) and sequential (depth) scaling follow a non-monotonic
trend: performance improves up to a task-dependent optimum, then plateaus or declines. On MATH,
for example, peak accuracy occurs at 8 parallel or 8 sequential nodes. Beyond these points, added
width yields diminishing gains due to long-context limits, while added depth amplifies propagated
errors. A more detailed discussion is provided in Appendix A.6. In summary, both width and depth
exhibit task-dependent optima, beyond which extra computation provides negative returns.
This insight is consistent with existing works (Wang et al., 2025b; Tang et al., 2025; Brown et al.,
2024; Li et al., 2024).
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Figure 4: (a–b) Performance with Parallel and Sequential Scaling on various datasets. (c) Heatmap of
performance under various Width-Depth collaboration graphs on MATH. Model is LLaMA-3 1B.

Insight 3: Interdependence between graph width and depth. Fig. 4(c) shows MATH performance
under varying width (w) and depth (d) with wd ≤ 24 using LLaMA-1B. Accuracy rises then falls
as either dimension grows, confirming non-monotonic trends. Moreover, width and depth interact:
larger widths reduce the optimal depth (e.g., 8 at w=1 vs. 4 at w=3), while deeper refinement shifts
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the optimal width forward. A more detailed discussion is in Appendix A.6. Thus, graph width and
depth are interdependent, with growth in one dimension altering the optimum of the other.

5 THE PROPOSED FRAMEWORK – AGENT-REINFORCE

Guided by the insights in Sec. 4, we introduce Agent-REINFORCE, an LLM-Agent-augmented
REINFORCE algorithm that follows a sample–feedback–update loop to find the compute-optimal
multi-LLM collaboration graph under a fixed budget. The LLM agent samples candidates and updates
graphs using textual feedback (serving the textual gradient in REINFORCE) while integrating task-
specific model preferences, budget allocation strategies, and width–depth interactions. We next
formalize the probabilistic graph optimization problem and describe our Agent-REINFORCE.

5.1 PROBABILISTIC GRAPH OPTIMIZATION PROBLEM

Optimization Problem One way to find the optimal collaboration graph is black-box search, either
through enumeration (Bergstra & Bengio, 2012) (e.g., grid or random search) or Bayesian optimiza-
tion (Shahriari et al., 2015), which fits a surrogate model to the objective and selects queries via an
acquisition function. Yet enumeration is infeasible as the graph space grows exponentially, while
standard BO is designed for low-dimensional continuous domains and becomes sample-inefficient in
large, discrete spaces. We therefore reformulate the task as a graph optimization problem, leveraging
policy-gradient methods for efficient exploration, guided sampling, and budget-aware control. Given
a task T and its utility function uT , let G ∼ Pθ,π,ψ denote a sampled multi-LLM collaboration graph.
The distribution Pθ,π,ψ is parameterized by three components: θ = {θij}, where σ(θij) ∈ [0, 1]

represents the probability that edge eij is present; π = {πi}, where softmax(πi) ∈ [0, 1]|R| denotes
the probability of node vi selecting a role r ∈ R; and ψ = {ψi}, where softmax(ψi) ∈ [0, 1]|M|

denotes the probability of node vi choosing a modelM ∈M. The optimization problem is to identify

θ⋆, π⋆, ψ⋆ = arg max
θ,π,ψ

EG∼Pθ,π,ψ
[
uT (G,Dtrain)

]
s.t. fbudget(G,T ) ≤ B. (4)

5.2 AGENT-REINFORCE
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Figure 5: Overview of Agent-REINFORCE for
Optimizing Collaboration Graph.

The REINFORCE algorithm (Williams, 1992)
can optimize Eq.(4) via gradient ascent through
iterative sample–gradient–update (sampling
candidates, estimating gradients from their util-
ity, and updating parameters; see Appendix A.11
for details). However, its step-by-step updates
often lead to slow progress, local optima, and
difficulty in incorporating prior insights or se-
mantic knowledge. To overcome these limi-
tations, we propose Agent-REINFORCE, an
LLM-agent-augmented framework which builds
on REINFORCE but replaces gradients with
feedback-conditioned updates. Each iteration
follows a sample–feedback–update loop: guided
by empirical insights, the agent samples candi-
date graphs, receives feedback as textual gra-
dients, and updates the distribution iteratively
until convergence. As shown in Fig. 5(b–d), the
framework comprises three components: Agent,
Archive, and Environment. The Agent first
generates candidate trials of the model family
and size combinations (guided by Insight 1).
Feedback from the Environment selects the
best model assignments and initializes the probabilistic graph distribution. In subsequent itera-
tions, the Agent samples new trials from the updated distribution Pθ,π,ψ , the Environment evaluates
them, and the Archive records results. The Agent then updates the distribution based on feedback
and history, and this loop continues until convergence. The full procedure is given in Algo. 1.
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Algorithm 1 Agent-REINFORCE: Compute-Optimal Collaboration Graph Optimization

Require: Task T , model setM, agent A, environment E , budget B
Ensure: Optimized collaboration graph G

1: Initialize archive L ← ∅
2: Stage 1: C ← A.select_family_size(T,M, B); S ← E .execute(C) (Init. Stage 1)
3: Stage 2: C ← A.select_instance(T,M,S, B); S ← E .execute(C) (Init. Stage 2)
4: Initialize nodes in G̃ with the best model family, size, and instance count (Insight 1)
5: while stopping criterion not met do (Subsequent stages)
6: Update archive L ← L ∪ {(C,S, G̃)}
7: Sample new trials C ← A.sampling(G̃, B)
8: Get feedback (textual gradient) S ← E .execute(C)
9: Update graph G̃← A.update(C,S,L, G̃) (Insights 2,3)

10: end while
11: return Graph G by deterministic decoding from G̃

Agent component. The LLM-base Agent, in Fig. 5 (b), initializes model assignments, samples new
trials, and updates the probabilistic graph. Since LLMs lack prior knowledge of test-time scaling,
which is relatively new, we incorporate Insight 1 to guide the initialization of model assignments,
and Insights 2 and 3 to inform subsequent updates. Insight 1 shows that tasks prefer replicating the
strongest family, with small-model ensembles chosen when their gains are high. Hence, initialization
focuses on task-specific model assignments (family, size, and instances) to guide optimization and
reduce wasted exploration. We initialize the family-size and instance counts in two stages.

First, the Agent identifies family and size preferences using each model’s meta-information from Hug-
gingFace (hug), including prior performance and the task description. Prior performance guides family
selection; when unavailable, initial trials pre-test each model’s prior performance to infer family prefer-
ences. For size selection, the incremental gains from ensembling one versus two small models relative
to a single large model inform size preference, motivating trials that explore both small ensembles
and large models. Therefore, the agent initializes candidates asA.select_family_size(T,M, B),
retaining only those within budget B, and obtains performance scores from the Environment as
feedback S to identify the preferred family and size (Algo. 1, Line 2).

Second, using feedback S , the Agent generates diverse candidate model combinations within budget
B via A.select_instance(T,M,S, B), prioritizing the selected family and size while varying
instance counts. For each candidate, graph topologies and role assignments are randomly sampled
(Algo. 1, Line 3). Feedback is averaged, and the best configuration, covering family, size, and
instances, initializes the graph (Algo. 1, Line 4). In subsequent stages, nodes retain the model assign-
ments, while edges and roles are sampled from the probabilistic graph G̃ via A.sampling(G̃, B).

Insight 2 shows that width and depth have task-specific optima: performance improves with more
nodes up to a point, then degrades. We incorporate this into the update prompt (A.update,
Algo. Line 9), guiding the Agent to “identify the optimization direction for finding the optimal
width and depth” by leveraging feedback from current and past trials to adjust the probabilistic graph
toward the optimal width–depth balance and accelerate convergence.

Insight 3 highlights the interdependence between width and depth: under a fixed budget, improving
one often requires reducing the other. To manage this, we embed an instruction into the update prompt
(A.update, Algo. Line 9) that directs the Agent to exploit the LLM’s planning ability to explore
these trade-offs between width and depth and adaptively identify critical graphs within budget.

The instructions derived from the insights are applied continuously during the optimization process.
Based on the feedback, the Agent updates the probabilistic graph (Algo. Line 9), which is then used
to sample the next batch of trials (Algo. Line 7). The prompt design is provided in Appendix A.12.

Environment & Archive Components. Environment converts candidate graphs from the Agent
into executable scripts, runs them in the actual task platform on a small training batch, and returns
performance feedback (Fig. 5c; Algo. 1, Lines 2–3,8). Archive stores the probabilistic graph,
sampled trials, and corresponding feedback (Fig. 5d; Algo. 1, Lines 1,6), tracking the optimization
process across iterations and providing historical traces for the Agent to refine future updates.
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Table 1: Performance across MATH, MMLU, and HumanEval at 80 budget. Acc (↑) means Accuracy
(%, higher is better), Sear. (↓) means total search time in seconds (lower is better), and Inf. (↓) means
average inference time in seconds per test query (lower is better). Best in each column is bolded.

Method MATH MMLU HumanEval Average
Acc Sear. Inf. Acc Sear. Inf. P@1 Sear. Inf. Sco. Sear. Inf.

Single Model 49 - - 64 - - 60 - - 58 - -
Random 39 2852 28.5 44 658 6.6 63 1560 47.3 49 1690 27.5
BO 42 3076 30.8 36.8 ± 5.2 2150 21.5 33 2588 78.4 38 2605 43.6
GPTSwarm 40 943 9.4 42 463 4.6 55 804 24.4 46 737 12.8
MaaO 34 1440 14.4 41 738 7.4 42 860 26.1 39 1013 16.0
TextGrad 41 3687 36.9 39.9 ± 3.6 2276 22.8 42 2842 86.1 43 2935 48.6
Ours 56 804 8.0 61.5 ± 5.1 493 4.9 73 300 9.1 61 532 7.3

6 EXPERIMENTS

This section evaluates Agent-REINFORCE for compute-optimal collaboration graphs in TTS, cover-
ing ablations, varying budgets, joint objectives, alternative budget metrics, and visualizations.

Experimental Setup. We experiment on MATH, MMLU, and HumanEval using LLaMA models
(1B-8B) (Grattafiori et al., 2024) and Gemma models (1B-7B) (Team, 2025) (details in Appendix A.5).
Baselines fall into three groups: (i) traditional: Bayesian Optimization (BO) (Jones et al., 1998;
Shahriari et al., 2015) and random search; (ii) gradient-based: GPTSwarm (Zhuge et al., 2024), a
REINFORCE framework with gradient updates, and MaaO (Guo et al., 2024), combining gradient
training with LLM guidance; and (iii) LLM-based: TextGrad (Yuksekgonul et al., 2024), which relies
solely on textual guidelines. As these methods are not tailored to our setting, we adapt them for
test-time compute-optimal graph search (details in Appendix A.13). All methods are run for up to 30
search iterations on the training data and use the validation set to determine convergence. Search is
stopped if the average validation performance does not improve for 10 iterations. The final searched
graph is evaluated on the test set. We use DeepSeek-R1 (Guo et al., 2025) as the LLM search agent.

Main Results. Tab. 1 reports test performance and convergence time, and Fig. 9 in the Appendix
shows training trajectories. We observe: (1) Our method achieves the highest average test-set score
(higher accuracy or Pass@1) while converging substantially faster (lower search time). This is
enabled by Insights 2–3, which guide the search toward promising regions, and Insight 1, which
provides a strong initialization and avoids wasted trials. (2) Compared with the LLM-based TextGrad,
our method is much more efficient by pruning high-latency candidates early. Among the methods,
TextGrad yields the highest inference latency in the searched graphs, reflecting its tendency to favor
dense connections or larger node counts that drive full-budget utilization. Such usage often produces
high-overhead graphs and consequently slower convergence. (3) The gradient-based GPTSwarm
and MaaO converge quickly but often produce graphs inferior even to random search, due to their
vulnerability to local optima. This underscores the importance of combining global exploration with
local refinement. (4) The traditional Bayesian optimization method also suffers from local optima
and slow updates due to a lack of task-specific guidance. Random search shows some robustness and
can occasionally find competitive solutions, but it remains inefficient and unstable.

Table 2: Ablation study of Agent-REINFORCE on
MATH and MMLU w/o insights and role setting.

Methods MATH MMLU
Acc Sear. Acc Sear.

Agent-REINFORCE 56 804 54 493
w/o Insight 1 45 1946 42 1293
w/o Insight 2 49 2208 47 896
w/o Insight 3 48 1436 54 487
w/o Role 52 785 54 677

Ablation Studies. We evaluate the contribution
of each insight through ablation, comparing the
full method with variants: w/o Insight 1 uses
random initialization instead of task- and model-
informed initialization, while w/o Insight 2/3
removes prompt components for budget optima
and width–depth dependencies. Tab. 2 shows
that removing any insight slows convergence by
generating inefficient graphs; w/o Insight 1
enlarges the candidate space, and w/o Insight 2/3 biases exploration toward high-budget graphs.
Performance drops most under w/o Insight 1, as random initialization yields suboptimal starts
that limit later search. Excluding Insight 2 or 3 also reduces accuracy by losing guidance on budget
and width–depth trade-offs. We also perform an ablation by removing role setting, letting all nodes
process predecessors’ outputs and generate new answers, which degrades graph performance on
MATH. This highlights the importance of the fuser–assistant role division in test-time scaling. We
note that MMLU performance remains stable without Insight 3 or role settings, as it favors larger
models with fewer nodes, reducing the impact of width–depth trade-offs and roles.
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Table 3: MATH Acc, Sear, and Inf under various FLOPs and price budget.

Method Price ≤ $5E-4 FLOPs Budget 42 FLOPs Budget 18
Acc Sear. Inf. Acc Sear. Inf. Acc Sear. Inf.

Random 35 2546 52.5 33 1706 56.9 39 1440 16.0
BO 36 2372 56.6 45 2724 49.5 38 1634 23.1
GPTSwarm 43 832 20.5 44 858 31.2 44 1028 29.1
MaaO 47 1104 20.0 46 889 50.9 44 836 14.6
TextGrad 22 3062 57.9 45 2661 48.6 40 2553 16.8
Ours 56 648 18.1 50 726 11.5 47 771 16.7

Performance Under Various Budget Settings. We evaluate search performance on the MATH
dataset under FLOPs budgets of 18 and 42, accommodating 1×8B and [2, 3]×8B models, respectively.
As shown in Tab. 3, our method consistently delivers superior efficiency and accuracy, demonstrating
strong generalization. Notably, some baselines perform better at smaller budgets (e.g., MaaO: 44 at
budget 18 vs. 34 at 80) because they overlook that the optimal budget is often below the maximum.
As noted in Insight 2, computation beyond the optimum yields negative returns, whereas smaller
budgets closer to the budget optimum can bring these methods nearer to peak performance.

Latency-aware Joint Optimization Objective. To demonstrate our method’s ability to handle
joint optimization objectives, we optimize both performance and latency through multidimensional
feedback, achieving a balance between accuracy and efficiency. The details of the optimization with a
joint objective are in Appendix A.9. On MATH with a 42 FLOPs budget, the searched graph achieves
an average latency of 3.1 seconds per test query, which is much lower than the 11.5 seconds under
a performance-only objective, thereby validating its effectiveness for multi-objective optimization,
even though performance decreases slightly from 50 to 46.

Figure 6: Optimal graph on MATH.

Generalization to the Dollar Cost as Budget. Beyond
FLOPs, end-users often care about the monetary cost of API
calls. We introduce price as an additional budget metric,
directly measured in currency units. As shown in Tab. 5
(Appendix A.10) , cost scales with input and output to-
kens, so fbudget(G,T ) is redefined as input length times
per-token input price plus output length times per-token
output price. Under a fixed API budget $5E-4 per query
(from 4×8B to 6×8B models), the results in Tab. 3 show
Agent-REINFORCE excels in both accuracy and efficiency,
showing strong generalization across cost metrics.

Visualization Fig. 6 visualizes the optimal collaboration
graph within the budget 80 for the MATH task. The result indicates a clear preference for small-
model ensembles, as the relatively low task difficulty enables small models to meet performance
requirements, while additional instances further enhance their effectiveness. The structure favors a
hybrid scaling biased toward sequential refinement (width 3, depth 4), since multi-step math reasoning
benefits from iterative self-refinement, which sequential structures are better suited to support.

7 CONCLUSION

We study a novel problem of searching task-specific, compute-optimal test-time scaling over multi-
LLM collaboration graphs under a fixed budget, with an exponentially large design space in model
choices and nodes. From pilot analysis, we gain three empirical insights: (1) tasks replicate the
strongest model family, with small-model ensembles favored when incremental gains are high; (2)
width and depth admit task-specific optima, beyond which additional compute degrades performance;
and (3) width and depth interact, with growth in one shifting the optimum of the other. Based on
these findings, we propose Agent-REINFORCE, an LLM-agent framework that conducts budget-
aware, feedback-driven search on collaboration graphs. Experiments show that our proposed method
outperforms traditional and LLM-based baselines in search efficiency and performance, while also
showing the ability to find optimal graphs under a joint performance-latency objective.
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or personally identifiable information. We ensured fairness, avoided bias, and upheld transparency
and integrity throughout the research.

REPRODUCIBILITY STATEMENT

We provide an anonymous code package and configures at link to ensure reproducibility of all
experiments; Training/inference details are provided in Section 6; The datasets we used are public
datasets, with sources, task setups and pre-processing steps provided in Appendix A.5; The prompt
design in AGENT-REINFORCE is detailed in Appendix A.12, and the method internals are given in
Appendix A.2 and Appendix A.11. Any additional insights and related works are summarized in
Appendix A.6 and Appendix A.16.
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A APPENDIX

A.1 TEST-TIME SCALING: MODES AND BUILDING BLOCKS

(a) Parallel 
Scaling

(b) Sequential 
Scaling

(c) Hybrid 
Scaling

Input Direct/ 
refined output Fused output

(d) Scaling with
Various Models

output
refine
fuse
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Node with an 
assigned model

Various 
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Figure 7: Test-Time Scaling Paradigms: (a–c) Fixed topologies with single-model assignments, and
(d) dynamic scaling with diverse models.

Sequential 
Scaling

Parallel 
Scaling Answer Answer

Self-refinement

Initial 
candidats

Input Direct/refined output

Refined output

Direct output Repeated sampling Fusion

output refine fuseFused output

… … … … …

…

Figure 8: Test-time scaling primitives.

Fig. 7 shows four paradigms: (a) parallel via repeated sampling + aggregation; (b) sequential via
iterative self-refinement; (c) fixed hybrids that fuse both; and (d) our dynamic setting that searches
architectures and assigns heterogeneous models under a compute budget. Fig. 8 reduces these to three
primitives—repeated sampling, fusion, self-refinement, and frames dynamic TTS as a multi-LLM
collaboration graph with role-assigned nodes (e.g., fuser, assistant), directed information flow, and a
terminal aggregator.

A.2 INFERENCE ON MULTI-LLM COLLABORATION GRAPH FOR TTS ALGORITHM

Algo 2 executes the collaboration graphG in topological order: Successors of the input node generate
initial outputs; nodes activate when in-degree reaches zero and run by role—fuser (aggregate) or
assistant (refine)—propagating results forward. The unique sink node produces the final answer.

A.3 PILOT EXPERIMENTS FOR EXISTING TTS

Table 4 summarizes the task-specific preferences for topologies and model combinations. In MATH,
the hybrid graph topology combined with a mixture of 3B models yields the best accuracy. In contrast,
MMLU shows a clear preference for pure parallel graph topologies and the use of a single 8B model.
These results indicate that different tasks exhibit distinct preferences for architectural patterns and
model configurations.
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Algorithm 2 Inference on Multi-LLM Collaboration Graph for TTS

Require: Query q, graph G = (V, E ,R,M) (DAG with a unique sink vsink)
Ensure: Final output o

1: Initialize din(v), dout(v) and buffers O(v)← ∅ for all v ∈ V
2: Q ← { v ∈ V | din(v) = 0 } ▷ topological frontier
3: while Q ≠ ∅ do
4: Remove a node v from Q
5: C ←

⋃
u∈pred(v)O(u)

6: if rv = fuser then
7: O(v)← ffuse(q, C,Mv)
8: else ▷ rv = assistant
9: O(v)← frefine(q, C,Mv)

10: end if
11: for all w ∈ succ(v) do
12: din(w)← din(w)− 1; if din(w) = 0 then add w to Q
13: end for
14: end while
15: return o← O(vsink) ▷ unique sink with dout(vsink) = 0

Table 4: Accuracy (ACC, %) across different topologies and model combinations on MATH and
MMLU. LLaMA-3 models are used by default. Results are averaged over 10 random graphs.

Dataset Model Comb. Sequential Parallel Hybrid

MATH
1B Mix 37 41 44
3B Mix 58 56 59
8B×1 49 49 49

MMLU
1B Mix 35 43 30
3B Mix 49 51 41
8B×1 64 64 64

A.4 CALCULATION OF THE NUMBER OF DAGS

Given n nodes, the spectrum of possible configurations ranges from totally indistinguishable nodes
to totally distinguishable nodes. The number of directed acyclic graphs (DAGs) lies within this range:
the indistinguishable case corresponds to counting the number of non-isomorphic DAGs (where
isomorphic topologies are counted only once), while the distinguishable case corresponds to counting
the number of labeled DAGs.

Indistinguishable nodes: Number of non-isomorphic DAGs. A closed-form characterization can
be derived from the fact that every DAG admits at least one topological ordering. If we fix the order
1 < 2 < · · · < n, then only edges of the form i→ j with i < j are permitted. This yields n(n−1)

2

possible edges, and thus 2(
n
2) candidate adjacency matrices, all acyclic by construction. However,

many of these candidates are isomorphic. To correctly count non-isomorphic DAGs, each candidate
graph is reduced to a canonical labeling, and graphs with the same canonical form are merged. To
reduce the cost of considering all permutations, nodes are grouped by their in-degree and out-degree,
and permutations are applied only within these groups, which substantially reduces computational
complexity. The Python implementation in Listing 1 computes the number of non-isomorphic DAGs.

Distinguishable nodes: Number of labeled DAGs. When nodes are labeled, the total num-
ber of DAGs can be computed using a well-known recurrence relation: A(0) = 1, A(n) =∑n
k=1(−1)k+1

(
n
k

)
2k(n−k)A(n− k). Here, A(n) denotes the number of labeled DAGs on n nodes.

This formulation accounts for all possible edge configurations under node labeling and ensures that
only acyclic structures are counted. The corresponding Python implementation is provided in the
Listing 2.
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import itertools as it

def upper_adj_bitmasks(n, bits):
rows = [0]*n
for i in range(n):

for j in range(i+1, n):
if bits & 1: rows[i] |= (1<<j)
bits >>= 1

return rows

def indegree_outdegree(rows):
n = len(rows)
outdeg = [r.bit_count () for r in rows]
indeg = [0]*n
for i,r in enumerate(rows):

while r:
j = (r&-r).bit_length () -1
indeg[j] += 1
r &= r-1

return tuple(zip(outdeg , indeg))

def permute_rows(rows , perm):
inv = [0]* len(perm)
for i,p in enumerate(perm): inv[p]=i
return [sum(1<<inv[j] for j in range(len(rows)) if (rows[perm[i]]>>j)&1) for i in range(

len(rows))]

def canonical_form_rows(rows):
degs = indegree_outdegree(rows)
groups = {}
for i,deg in enumerate(degs): groups.setdefault(deg ,[]).append(i)
perms = [it.permutations(g) for g in groups.values ()]
best = None
for p in it.product (*perms):

perm = [x for part in p for x in part]
newrows = permute_rows(rows , perm)
key = ’’.join(’1’ if (newrows[i]>>j)&1 else ’0’ for i in range(len(rows)) for j in

range(len(rows)))
if best is None or key < best: best = key

return best

def count_unlabeled_dags(n):
m = n*(n-1)//2
return len({ canonical_form_rows(upper_adj_bitmasks(n,b)) for b in range(1<<m)})

for n in range (1,8): print(n, count_unlabeled_dags(n))

# Results (number of non -isomorphic DAGs)
# n=1: 1
# n=2: 2
# n=3: 8
# n=4: 54
# n=5: 762
# n=6: 21,542
# n=7: 1,259,209

Listing 1: Python code computes the number of non-isomorphic DAGs

import math
from functools import lru_cache

@lru_cache(None)
def labeled_dags(n):

if n==0:
return 1

s=0
for k in range(1,n+1):

s += (-1)**(k+1) * math.comb(n,k) * (2**(k*(n-k))) * labeled_dags(n-k)
return s

for n in range (1,9):
print(n, labeled_dags(n))

# n=8: 783 ,702 ,329 ,343

Listing 2: Python code computes the number of labeled DAGs
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A.5 TASKS, DATASETS, AND MODELS

MATH dataset (Hendrycks et al., 2021b) The MATH dataset is used for arithmetic reasoning
evaluation tasks, consisting of 12,500 competition-level problems from high school contests. Each
problem is accompanied by a step-by-step solution, which supports evaluation of final-answer
accuracy as the primary metric. Serving as a rigorous benchmark for symbolic manipulation and
multi-step mathematical reasoning, MATH is widely used to test the limits of language models. In
our experiments, we sample 750 problems for training and 100 for testing, with average prompt and
generation lengths of 202 and 275 tokens, respectively.

MMLU dataset (Hendrycks et al., 2021a) The Massive Multitask Language Understanding
(MMLU) dataset is a comprehensive benchmark for evaluating knowledge and general reason-
ing tasks across 57 tasks spanning humanities, social sciences, STEM, and professional fields, with
questions ranging from elementary to advanced difficulty. Each task is presented in a multiple choice
format and precision is used as a standard evaluation metric. MMLU has become a widely adopted
benchmark for assessing the general knowledge and cross-domain adaptability of large language
models. In our experiments, we randomly sampled 285 questions for training and 100 for testing,
with average prompt and generation lengths of 213 and 230 tokens, respectively.

HumanEval dataset (Chen et al., 2021) The HumanEval dataset is a benchmark designed to assess
code generation and synthesis capabilities of language models. It contains 164 Python programming
problems, each consisting of a function signature, natural language docstring, and unit tests for
automatic evaluation. The primary metric is passk, which measures the probability that at least one
of k generated solutions passes all hidden test cases. HumanEval has become a standard benchmark
for evaluating the ability of models to translate natural language descriptions into correct, executable
code. In our experiments, we randomly sample 128 instances for training and others for testing, with
average prompt and generation lengths of 181 and 104 tokens, respectively.

Language models adopted We evaluate our method using language models of varying scales from
the LLaMA-3 family (Grattafiori et al., 2024) and Gemma family Team (2025). To promote diversity
in generations and enhance coverage during parallel sampling, we set the decoding temperature to
0.9 while retaining all other hyperparameters at their default values. All experiments are conducted
on an NVIDIA A800 GPU with 80GB HBM3 memory to ensure a consistent runtime environment.

A.6 DETAILED INSIGHTS

Insight 1: Task-specific preferences for model family and size combinations. We conduct
preliminary tests across various combinations of model families and sizes on the MATH and MMLU
datasets to explore the task-specific model preferences. Fig. 3(a–b) compares performance with
various family combinations. The results show that allocating the budget to multiple instances of
the strongest model is more effective than mixing families. For example, within the 3B space of
LLaMA and Gemma on MMLU, LLaMA outperforms Gemma; thus, LLaMA×2 surpasses both
Gemma+LLaMA and Gemma×2. This is because test-time scaling effectiveness is driven by the
capability of base models, favoring replication of stronger ones. Fig. 3 (c–d) reports 10-run average
performance with 90% confidence intervals under the same limited FLOPs budget, considering
LLaMA 1B, 3B, and 8B, to explore whether limited budgets should be allocated to more small
models or fewer large models (noting that with an unlimited budget, large models are always optimal).
Reasoning tasks (MATH) favor mixtures of smaller models (3B×3), while knowledge tasks (MMLU)
prefer larger models (8B×1). The trade-off depends on marginal performance gains: on MATH,
LLaMA 3B improves by 7 points (from 39% to 46%) when scaled from one to two instances, showing
the potential to surpass a single 8B (49%) with more instances, thus favoring small-model mixtures;
on MMLU, the gain (41% to 45%) is modest, making larger models (8B×1 with 64%) preferred.
These are attributed to (i) task demands: reasoning tasks benefit from smaller-models ensembles
because multiple models provide more opportunities to refine the answers with multi-step reasoning,
whereas knowledge tasks need broad parametric knowledge coverage, better supported by large
models; and (ii) task difficulty: easier tasks yield larger gains from small models, as they can already
solve such tasks well and scaling further improves performance, whereas harder tasks are challenging
for small models and demand large ones. Consequently, tasks favor replication of the strongest
model family, with small-model ensembles preferred only when their incremental gains are
substantial.
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Insight 2: Parallel and sequential scaling saturate and decline beyond an optimal budget. Fig. 4
(a–b) shows that both parallel and sequential scaling on various datasets follow a non-monotonic
pattern. Increasing the number of parallel nodes (width) or sequential nodes (depth) initially improves
performance, but beyond a task-specific optimal point, performance plateaus and eventually declines.
For example, peak performance is achieved at 8 parallel nodes or 8 sequential nodes on MATH, after
which additional nodes yield no consistent gains. This performance degradation arises from different
sources. In parallel scaling, performance converges once a sufficient width ensures dominance of
correct answers, so additional nodes provide little benefit. Excessive outputs from preceding nodes
lengthen input contexts, straining long-context capacity and degrading performance. In sequential
scaling, performance improves while refinement benefits exceed potential propagated errors; once
the refinement capacity is reached, additional steps mainly propagate and amplify errors, leading
to performance degradation. In summary, both width and depth exhibit task-dependent optima,
beyond which extra computation provides negative returns.

Insight 3: Interdependence between graph width and depth. Fig. 4 (c) shows MATH perfor-
mance under varying width (parallel nodes) and depth (sequential nodes) combinations. We adopt
a fixed architecture that first performs parallel sampling of w nodes from the input node, followed
by sequential self-refinement of d nodes for each sampled branch, using the LLaMA-1B model
uniformly across all nodes. To examine the trade-off between width and depth, we impose the
constraint wd ≤ 24. We observe: (i) accuracy at the optimal depth rises then falls as width increases
(e.g., 38 at width 1, 47 at width 3, 45 at width 4), consistent with Insight 2; (ii) the optimal depth
decreases with larger widths (e.g., 8 at width 1 vs. 4 at width 3), as initially wider structures enhance
refinement capacity and accelerate convergence. Increasing depth yields the same pattern on width:
accuracy follows a non-monotonic trend, and the optimal width decreases because deeper refinement
allows correct answers to dominate earlier, shifting the optimal width point forward. In summary,
graph width and depth are interdependent, with growth in one dimension shifting the optimal
point of the other.

A.7 fCOST(G,T ) WITH THE FLOPS COMPUTE METRIC

We adopt a simplified but standard FLOPs accounting scheme, where one multiply-add counts as
2 FLOPs, and causal self-attention reuses cached keys/values during decoding. Consider a model
at node v with non-embedding model parameters M , hidden size D, and layers L. Let Np and Nd
denote the input (prefill) and output (decode) lengths for node v on task T = (N̄T

p , N̄
T
d ) where N̄T

p

and N̄T
d are the average length of input and output, respectively.

Token-wise projection/MLP FLOPs. Each non-embedding weight is applied once per token
through a matrix multiplication followed by addition, yielding approximately 2M FLOPs per token.
Aggregating across sequence lengths, we obtain 2MNp for prefill, 2MNd for decode.

Attention FLOPs. For a single layer and a single head, the number of attention score dot-products
(queries × keys) is:

• Prefill (length Np): causal masking yields a triangular count
Np∑
i=1

i =
Np(Np+1)

2 .

• Decode (length Nd): token t attends to Np + t tokens, giving
Nd∑
t=1

(
Np + t

)
= NdNp +

Nd(Nd+1)
2 =

Nd(2Np+Nd+1)
2 .

Since each attention requires both query-key dot products and value applications, the total multiply-
adds are 4LD FLOPs per token. Summing across D hidden size and L layers gives

FLOPsattn, prefill = 2LDNp(Np + 1), FLOPsattn, decode = 2LDNd(2Np +Nd + 1).

These formulas combine constant factors from scoring, softmax, and value multiplication, while
preserving quadratic and linear scaling in Np and Nd.
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Node-level cost. Summing the projection/MLP and attention costs yields

fcost_prefill(Np,M) = 2MNp + 2LDNp(Np + 1),

fcost_decode(Np, Nd,M) = 2MNd + 2LDNd(2Np +Nd + 1),

so that
fcost(Np, Nd,M) = fcost_prefill(Np,M) + fcost_decode(Np, Nd,M).

Effective input length in a collaboration graph. In a multi-LLM collaboration graph G =
(V, E ,R,M), the effective prefill length for node vi depends on the task average input and the
number of predecessor outputs concatenated to its input. With T = (N̄T

p , N̄
T
d ) and in-degree d(vi),

we set
Nvi
p = N̄T

p + d(vi) N̄
T
d , Nvi

d = N̄T
d .

Graph-level cost. Summing node costs across the graph,

fcost(G,T ) =
∑
vi∈V

[
fcost_prefill

(
Nvi
p ,Mi

)
+ fcost_decode

(
Nvi
p , N

vi
d ,Mi

)]
.

Substituting node-level cost formulas,

fcost(G,T ) =
∑
vi∈V

[
2MiN

vi
p + 2LiDiN

vi
p (Nvi

p + 1) + 2MiN
vi
d + 2LiDiN

vi
d

(
2Nvi

p +Nvi
d + 1

)]
.

Simplified form. Let A = N̄T
p , B = N̄T

d , and di = d(vi). Then

fcost(G,T ) =
∑
vi∈V

[
2Mi(A+diB)+2LiDi(A+diB)(A+diB+1)+2MiB+2LiDiB

(
2(A+diB)+B+1

)]
.

Expanding and grouping by di yields a quadratic form

fcost(G,T ) =
∑
vi∈V

[
αi d

2
i + βi di + γi

]
,

with coefficients

αi = 2LiDiB
2, βi = 2MiB+2LiDiB(2A+2B+1), γi = 2(Mi+LiDi)(A+B)+2LiDi(A+B)2.

Please remark that

(i) Verifier/top-k filtering. If a fuser applies top-k selection on predecessor outputs, replace
d(vi) by min{d(vi), k} in Nvi

p .
(ii) Alternative metrics. For monetary cost, replace FLOPs-based node terms with calibrated

surrogates {fcost_prefill, fcost_decode} per model; graph aggregation remains identical.
(iii) Budget normalization. With unit budget defined as one inference of the smallest model,

the normalized budget is

B = fbudget(G,T ), fcost(G,T ) = B · fcost(Gsmallest, T ).

A.8 DETAILED BUDGET DEFINITION

Different model sizes and graph topologies incur substantially different computational costs: larger
models introduce higher inference overhead, while denser topologies require more interactions. These
differences make it challenging to establish a unified metric for budget measurement. To address
this, we propose a standardized budget definition that enables comparability across model scales and
topology complexities. For example, this framework allows us to equate the budget cost of “more
sequential/parallel nodes with smaller models” to that of “fewer nodes with larger models.”

Formally, let the average input and output lengths of a task be denoted by T = (N̄T
p , N̄

T
d ). The

total computational cost of a collaboration graph G on task T is defined as fcost(G,T ), and the
corresponding normalized budget is B = fbudget(G,T ). The cost function fcost can be instantiated
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according to user preference to reflect different measures, such as FLOPs, wall-clock runtime, or
monetary cost. To establish a common unit of comparison, we define the budget of executing one full
inference with the smallest model in the pool as a single unit, i.e.,

fbudget(Gsmallest, T ) = 1,

where Gsmallest denotes a graph consisting of only one node of the smallest model. Consequently, the
budget value of any graph G is equivalent to the number of unit costs required, namely,

B =
fcost(G,T )

fcost(Gsmallest, T )
.

where it means TTS graph with budget B is equal to run B-time single-node inference.

We define the computation cost of a multi-LLM collaboration graph G on a task T = (N̄T
p , N̄

T
d ) in

terms of FLOPs, which we adopt as the primary cost metric in this work. The corresponding cost
function is stated in the theory below. The proof is in Appendix A.7.

FLOPs Cost Function: For each node vi ∈ G, the cost depends on the model size and its effective
input/output lengths, leading to a quadratic dependence on the node in-degree d(vi). Summing across
all nodes, the total cost can be expressed as

fcost(G,T ) =
∑
vi∈V

[
αi d(vi)

2 + βi d(vi) + γi
]
,

where coefficients αi, βi, γi capture the contributions of model dimension, depth, and average task
input/output lengths. Detailed derivations of αi, βi, γi are provided in Appendix A.7.

A.9 DETAILED OPTIMIZATION WITH JOINT OBJECTIVE

Our optimization objective is not limited to single-performance criteria; in many cases, it is necessary
to identify graph structures that satisfy composite objectives, such as achieving both low latency
and high accuracy. To this end, the proposed Agent-REINFORCE framework incorporates diverse
feedback mechanisms obtained from the Environment to accommodate different optimization goals.
For instance, under the joint objective of low latency and high performance, we incorporate the
inference time of each candidate graph as an additional feedback signal to the Agent. Moreover,
we can explicitly provide the Agent with prior knowledge through instructions that describe the
relationship between graph structures and latency, for example, that latency is more sensitive to the
number of nodes and the graph width, thereby accelerating the search for composite-optimal graphs.
All feedback, including inference time, is stored in the Archive, enabling the LLM to leverage
historical information to assess the marginal effect of latency reduction on performance, and thus
achieve a principled trade-off between efficiency and accuracy.

A.10 DETAILED DOLLAR COST-BASED BUDGET

Table 5 is the API cost information for each model from Together AI and Compare Ai Models. We
do not convert it in the same manner as above, as the dollar serves as a natural unit of price. Note that
LLaMA-3.2 1B, Gemma-3 1B, and Gemma-1.1 2B are not quoted in Together AI or Compare Ai
Models; for convenient consistency in our comparison, we adopt estimated reference values of 0.02,
0.02, and 0.06, respectively, for these models.

Table 5: Inference costs per 1M tokens for models from Together AI and Compare Ai Models.

Model Name Parameters Inference Cost (per 1M tokens)
LLaMA-3.1 70B 70B $0.88
LLaMA-3.1 8B 8B $0.18
LLaMA-3.2 3B 3B $0.06
Gemma-1.1 7B 7B $0.27
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A.11 DETAILED REINFORCE ALGORITHM

A gradient-based algorithm can be employed to solve the optimization problem. Since the search space
of collaboration graphs is prohibitively large, exhaustive enumeration of all possible configurations is
infeasible. Instead, we parameterize the distribution of graphs as G̃ = Pθ,π,ψ, where θ encodes the
probabilities of edge existence, π encodes the probabilities of role assignments, and ψ encodes the
probabilities of model selections.

Given a budget B, we set the number of nodes n to the maximum number of smallest models that the
budget can cover. A straightforward approach to defining a parameterized distribution over DAGs
with fixed n nodes, edges, models, and roles is as follows. We introduce real-valued parameters:
θ = [θij ], pθ(θij) = σ(θij) for edge probabilities; π = [π1, π2, . . . , πn] with role probabilities
pπ(ri) = softmax(πi); and ψ = [ψ1, ψ2, . . . , ψn] with model probabilities pψ(mi) = softmax(ψi).
By iteratively refining this distribution, the algorithm progressively biases sampling toward low-loss
collaboration graphs.

During training, we adopt the REINFORCE algorithm (Williams, 1992), a classical policy-gradient
method that provides unbiased estimates of the utility gradient. It follows a sampling–gradient–update
pipeline: candidates are sampled from the distribution, gradients are computed by evaluating on the
training set, and parameters are updated via gradient ascent.

Monte Carlo Sampling. The probability of sampling a graph G ∼ Pθ,π,ψ is decomposed as

Pθ,π,ψ = p(ψ) · p(θ | ψ) · p(π | θ, ψ) = p(ψ) · p(θ | ψ) · p(π | θ),

where

p(ψ) =

n∏
i=1

pψ(ψi),

p(θ | ψ) =

{∏
i,j pθ(θij), if the resulting graph is a DAG and fbudget(G,T ) ≤ B,

0, otherwise,
,

p(π | θ) =
n∏
i=1

pπ(α
|d(vi)|πi), α ∈ [1, 1.1],

where α is a constant that encourages the fusion role when the in-degree of vi is high. This
formulation provides a principled probabilistic parameterization of collaboration graphs, enabling
efficient sampling and optimization within the REINFORCE framework.

Gradient Estimation. The gradient is calculated by:

∇θ,π,ψ EG′∼Pθ,π,ψ
[
uT (G

′)
]
= EG′∼Pθ,π,ψ

[
uT (G

′)∇θ,π,ψ log pθ,π,ψ(G
′)
]

≈ 1

N

N∑
i=1

uT (G
(i))∇θ,π,ψ log pθ,π,ψ(G

(i)),
(5)

where G(i) is the i-th candidate graph independently sampled from Pθ,π,ψ, and N is the number of
Monte Carlo samples.

Parameter Updates. The distribution parameters are then updated with gradient ascent:

θ ← θ + ℓ
N

N∑
i=1

uT (G
(i))∇θ log pθ(G(i)),

π ← π + ℓ
N

N∑
i=1

uT (G
(i))∇π log pπ(G(i)),

ψ ← ψ + ℓ
N

N∑
i=1

uT (G
(i))∇ψ log pψ(G

(i)),

(6)

where ℓ is the learning rate.
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Algorithm 3 REINFORCE: Optimization of the Task-Specific Multi-LLM Collaboration Graph

Require: Task T , training data Dtrain, budget B, learning rate ℓ, batch size N
Ensure: Optimized distribution Pθ,π,ψ and final graph G∗

1: Initialize parameters θ (edge logits), π (role logits), ψ (model logits)
2: Define distributions: pθ(eij) = σ(θij), pπ(ri) = softmax(πi), pψ(Mi) = softmax(ψi)
3: while stopping criterion is not met do
4: B ← ∅ ▷ initialize mini-batch of sampled graphs
5: for i = 1 to N do
6: G(i) ∼ Pθ,π,ψ ▷ sample edges, roles, and models
7: if fbudget(G

(i), T ) > B then
8: continue ▷ reject graph if budget exceeded
9: end if

10: ui ← uT (G
(i), Dtrain) ▷ evaluate utility

11: B ← B ∪ {(G(i), ui)}
12: end for
13: gθ ← 1

|B|
∑

(G,u)∈B
u∇θ log pθ(G)

14: gπ ← 1
|B|

∑
(G,u)∈B

u∇π log pπ(G)

15: gψ ← 1
|B|

∑
(G,u)∈B

u∇ψ log pψ(G)

16: θ ← θ + ℓ gθ; π ← π + ℓ gπ; ψ ← ψ + ℓ gψ ▷ gradient ascent updates
17: end while
18: Construct G∗ by MAP decoding: include edge eij if pθ(eij) ≥ τe; set role ri ←

argmaxr pπ(ri=r); set model Mi ← argmaxm pψ(Mi=m) ▷ deterministic final graph
19: Ensure fbudget(G

∗, T ) ≤ B (greedy prune if needed)
20: return Pθ,π,ψ and G∗

Optimization loop. REINFORCE alternates between three phases: (i) sampling, where candidate
graphs G(i) are drawn from the current distribution; (ii) evaluation, where utilities uT (G(i)) are
computed on the training set; and (iii) update, where parameters θ, π, ψ are refined by gradient ascent.
This process repeats until convergence or when the budget is exhausted.

Final graph selection. After optimization, the learned distribution Pθ,π,ψ is used to construct a
deterministic collaboration graph G∗. Specifically, we decode by maximum a posteriori (MAP):
edges are included if pθ(eij) ≥ τe, roles are assigned as ri = argmaxr pπ(ri=r), and models
are chosen as Mi = argmaxm pψ(Mi=m). The final graph is pruned if necessary to ensure
fbudget(G

∗, T ) ≤ B. The complete optimization procedure is summarized in Algorithm 3.

A.12 PROMPT DESIGN IN AGENT-REINFORCE

We design structured prompts to guide the LLM search agent in initializing and updating the
collaboration graph. Each prompt provides task context, distilled insights, and design constraints
to support systematic reasoning and planning. For model family and size initialization, the agent
ranks candidate families and sizes under budget constraints, guided by single-model performance and
preliminary evaluations. This establishes a principled starting point for subsequent exploration. For
model instance count initialization, the agent specifies concrete model combinations with family, size,
and instance counts. These candidates are then tested in the environment, and the feedback highlights
the most promising allocations. For graph updates, the agent leverages Insight 2, Insight 3, and
feedback from the previous round to refine edge distributions, adjust connectivity, and balance budget
allocation, thereby improving the overall structure and moving toward compute-optimal performance.
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LLM Prompt for Model Family and Size Preference Initialization

Your current task is model family and size initialization: you must provide the model
family and size preferences for a test-time collaboration graph that will later be optimized
into a DAG. An edge indicates that the previous model’s output is the next agent’s input.

================ TASK =================
1. Examine the candidate model combinations listed at the end of this message.
2. Return a JSON dictionary of model family and size ranking.
No extra text, explanations, or formatting—just the dictionary.

=============== INSIGHTS ===============
(1) Different tasks exhibit a clear preference for specific model combinations. Under budget
constraints, it is necessary to identify the preferred model family and model size for each
task.

=============== DATA ===================
Single-model accuracy on {task} (higher is better):
{model_profile} or {pre_test_accuracy}
Random-graph pre-experiment results (including small models running once or twice and
large models running once):
{combinations_accuracy}

=============== CANDIDATES =============
Choose only one from this list (each already fits the budget):
{model_combinations}

=========================================
Respond with the dictionary only. Example format:

LLM Prompt for Model Instance Counts Initialization

Your current task is model instance count initialization: you must provide the model
instances for a test-time collaboration graph that will later be optimized into a DAG. We will
test them in the Environment and select the best one according to the feedback. An edge
indicates that the previous model’s output is the next agent’s input.

================ TASK =================
1. Examine the model family and size preferences listed at the end of this message.
2. Return a JSON dictionary of model combinations with model family, size, and instance
counts.
No extra text, explanations, or formatting—just the dictionary.

=============== INSIGHTS ===============
(1) Different tasks exhibit a clear preference for specific model combinations. Under budget
constraints, it is necessary to identify the preferred model family and size for each task.

=============== PREFERENCE =============
Model family and size preferences:
{model_family_size_preference}

=============== DATA ===================
Single-model accuracy on {task} (higher is better):
{model_profile} or {pre_test_accuracy}

=========================================
Respond with the dictionary only. Example format:
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LLM Prompt for Graph Updates

You are a professional Multi-LLM system optimizer. Your task is an iterative self-RL
refinement of a multi-LLM system that solves the {task} dataset.

TASK CONTEXT
• A Multi-LLM system is represented as a directed acyclic graph (DAG). Each node = one
language-model agent. Each directed edge = “the source agent’s output is appended to the
destination agent’s context”.
• For the current budget, we have a fixed model-selection requirement: {model_selection}
• You will see the last-round graph, its batch accuracy, and the full table of edge-selection
probabilities.
• Your job: propose the next-round graph and the updated probability table, applying RL-style
probability nudges.
• The graph you receive in this iteration has been expanded outward from the FinalDecision
node, gradually increasing in both depth and breadth. The edge probabilities start with all
edge probabilities set to zero, and through multiple sampling rounds, probabilities are raised
only for edges that prove useful.

HISTORICAL SNAPSHOT
Last-round accuracy ({task}-dev batch): {accuracy}
Last-round graph: {prev_graph}
Last-round edge-probabilities: {edge_probs}

OPTIMIZATION RULES
R-1 Model counts must exactly match model selection after you assign models to all nodes.
R-2 A node’s role is either "assistant" (generates a new answer) or "fuser" (reviews & picks
the best).
R-3 Increase an edge probability only if it was sampled in the last-round graph AND proved
useful. Always start expansion from FinalDecision’s incoming edges, then its parents’
incoming edges, and so on. Increase edges used by high-accuracy graphs, decrease edges
from poor graphs.
R-4 Keep the graph acyclic; avoid too much in-degree to prevent context explosion; avoid
very deep chains to prevent “answer corruption”.

DATA AND INSIGHT
• Model accuracy on {task} (single-agent): {model_profile}
• The optimal depth is conditioned by current width, and vice-versa: wider graphs shift the
depth sweet-spot downward, while deeper graphs reduce the optimal width.
• You should expand the architecture outward from the FinalDecision node, gradually adding
depth and width.
• Different tasks favor different graph topologies; optimize toward the topology style that this
task prefers.

WHAT TO RETURN
• graph — the next-round DAG, same schema as last-round graph.
• edge probs — the updated probability table, same schema and order as last-round edge-
probabilities.

Example output format (do NOT add comments):
Graph: {graph_example}
Edge-probabilities: {node_example}

Now think step-by-step with the rules and insights above, and return the Graph and Edge-
probabilities two blocks only.
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A.13 BASELINES

We compare three baseline categories: LLM-based (MaaO (Guo et al., 2024) and TextGrad (Yuk-
sekgonul et al., 2024)), gradient-based (GPTSwarm (Zhuge et al., 2024)), and traditional methods
(Bayesian Optimization (Shahriari et al., 2015) and Random Search). Then, we detail their adaptation.

TextGrad (Yuksekgonul et al., 2024) performs automatic “differentiation” through text, where an
LLM generates a natural language “gradient” that guides updates to optimizable variables based on
predictions and loss values. In the context of compute-optimal collaboration graph optimization for
TTS, the probabilistic graph serves as the optimizable variable. Candidate graphs are sampled from
the current distribution and evaluated on a batch of training data to compute the loss; the LLM then
provides textual guidelines indicating how the graph should be refined given the observed loss and
inputs. This process is repeated iteratively until convergence or a predefined stopping criterion is
met. During initialization, TextGrad selects the maximal model combination that encompasses all
potential candidates (i.e., allocating nodes to every feasible mixture of available models within the
budget). Compared with our method, TextGrad lacks task-specific initialization and test-time scaling
knowledge, making it a less efficient and less effective baseline.

MaaO (Guo et al., 2024). is a hybrid approach that integrates gradient-based optimization with
LLM-guided optimization, leveraging the complementary strengths of both. Gradient-based methods
provide precise directional updates in the parameter space but are prone to local optima, while LLM
optimizers offer high-level heuristic guidance yet often lack stability. To address this, MaaO alternates
between the two optimization strategies. In our problem setting of optimizing probabilistic graphs,
we adopt REINFORCE to compute numerical gradients and use an LLM to generate textual updates,
alternating between them during training. Concretely, the probabilistic graph is first initialized with
a uniform distribution (same as described above), from which candidate graphs are sampled and
evaluated on a training batch to compute predictions and loss values. Gradients derived from the loss
are then used to update the probabilistic graph (see Appendix A.11). Subsequently, new candidates
are sampled, and their losses are used by the LLM to provide textual updates on how the graph
should be modified. This alternating process of gradient updates and LLM guidance continues until
convergence or a stopping criterion is met.

GPTSwarm (Zhuge et al., 2024) generalizes LLM-based agent architecture search into a com-
putational graph and optimizes it using gradient-based REINFORCE. In our problem setting, we
adapt this approach as follows: a probabilistic graph is first initialized, from which candidate graphs
are sampled and evaluated on a batch of training data to compute predictions and loss values. The
loss gradients are then used to update the probabilistic graph, and this process is iterated until a
stopping criterion is reached. The detailed REINFORCE optimization procedure is in Appendix A.11.
However, as a purely gradient-based approach, GPTSwarm is relatively inefficient, as each update
makes only incremental progress, and the method is susceptible to convergence at suboptimal local
minima, thereby limiting both convergence speed and global search capability.

Bayesian Optimization (BO) (Shahriari et al., 2015) is a model-based framework for black-box
optimization and has been widely applied to hyperparameter tuning. For optimizing collaboration
graphs in test-time scaling, the graph is parameterized by θ, π, ψ, from which a concrete graph G is
sampled and evaluated on a training batch to obtain its performance f(G). Accordingly, BO treats
θ, π, ψ as input variables, with the objective function defined as F (θ, π, ψ) = EG∼Pθ,π,ψ [f(G)].
Specifically, BO constructs a surrogate model, such as a Gaussian process, to approximate F (θ, π, ψ),
and employs an acquisition function (e.g., Expected Improvement, EI) to guide the selection of
promising candidates. Each selected (θ, π, ψ) is evaluated by sampling multiple graphs to estimate
average performance. Under budget constraints, the cost function fbudget(G) can be incorporated via
constrained acquisition (e.g., constrained EI). This iterative process of surrogate modeling, candidate
selection, and evaluation continues until a stopping criterion is reached, at which point BO returns
the optimal parameter set (θ⋆, π⋆, ψ⋆) and its corresponding high-performing probabilistic graph.

Random Search is a simple but widely adopted baseline in hyperparameter optimization. For
compute-optimal collaboration graph search in test-time scaling, it generates candidate graphs
uniformly at random under the budget constraint, without leveraging prior knowledge or performance
history. While its simplicity makes it robust to irregular or non-smooth search landscapes and
occasionally capable of identifying strong candidates, the absence of guidance typically leads to
inferior search efficiency and performance compared with more structured or informed methods.
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A.14 CONVERGENCE AND EFFICIENCY ON MATH DATASET

As shown in Fig. 9, our method achieves the best accuracy and fastest convergence via strong
initialization and guided by empirical insights. TextGrad tends to overuse the budget and slows down,
while GPTSwarm/MaaO converges quickly but gets stuck in local optima.
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Figure 9: Training trajectories on MATH across LLM-based methods over 20 iterations. X-axis:
iteration; Y-axis: the validation accuracy.

A.15 A QUALITATIVE EXAMPLE OF TTS GRAPH AND ITS OUTPUT

Figure 10: A qualitative example of TTS graph.

We present a quantitative example in Fig. 10 using an instance from the MATH dataset. The graph
contains five nodes: one input node, one output node, two Assistant nodes, and one Fuser node.
The topology consists of two Assistant nodes feeding into the Fuser node, which then connects to
the output node. We provide the prompts and outputs for each node in the text boxes below. As
shown, one Assistant node produces the correct answer while the other produces an incorrect one; the
Fuser successfully selects the correct output. The output node receives input from a single node and
therefore simply copies that node’s output (details omitted for brevity).

Input Node

System Message: You are an expert mathematician. Help the user to solve this problem. Answer the following mathematics question. Provide your
reasoning by showing your work before your answer. At the end of your response, output your final answer in the format: ’The answer is: [answer]’.
You must provide the separator ’The answer is: ’ before your final answer. Make sure to put the answer (and only the answer) inside \boxed{}.

User Message: If f(x) =
a

x + 2
, solve for the value of a so that f(0) = f−1(3a).
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Assistant 1 Node Output

To find the inverse function f−1(x), we swap x and y in f(x) = a
x+2

and solve: x = a
y+2

⇒ x(y + 2) = a ⇒ xy + 2x = a ⇒ y =

a−2x
x

, so f−1(x) = a−2x
x

.

We are given f(0) = f−1(3a). Compute f(0) = a
2

. Next, f−1(3a) = a−6a
3a

= − 5
3

.

Set them equal: a
2

= − 5
3

. Multiply by 6: 3a = −10, so a = − 10
3

.

The answer is: \boxed{− 10
3

}.

Assistant 2 Node Output

To find the inverse function f−1(x), we swap x and y in y = a
x+2

. After swapping, we get x = a
y+2

, which simplifies to xy + 2x = a, then

xy = a − 2x, and finally y = a−2x
x

. Thus, f−1(x) = a−2x
x

.

We now solve for a such that f(0) = f−1(3a). Since f(x) = a
x+2

, we have f(0) = a
2

. Next, compute f−1(3a) = a−6a
3a

= − 5a
3a

=

− 5
3

.

Setting them equal: a
2

= − 5
3

. Cancelling a ̸= 0 gives 1
2

= − 5
3

, which is impossible, so no real value of a satisfies the equation.

Fuser Node Prompt and Output

System Message:

You are a fusion agent in a multi-agent system. Your role is to review, condense, and synthesize the reasoning and answers
produced by previous agents.

User Message:

According to the previous agents’ answers for the problem:

Question: If f(x) = a
x+2

, solve for a so that f(0) = f−1(3a).

As the fusion agent, synthesize a high-quality final answer by extracting correct reasoning, removing redundancy, ensuring
mathematical rigor, and producing a clear justification. The final answer must be wrapped in \boxed{}.

Previous Answers:
1. Previous Agent (Version 1):

Correctly computed f−1(x) = a−2x
x

, f(0) = a
2

, and f−1(3a) = − 5
3

.

Correctly solved a
2

= − 5
3

⇒ 3a = −10 ⇒ a = − 10
3

.

2. Previous Agent (Version 2):

Derived f−1(x) by swapping x, y in y = a
x+2

, leading to x = a
y+2

, then xy + 2x = a, xy = a − 2x, and

y = a−2x
x

. Thus f−1(x) = a−2x
x

.

Computed f(0) = a
2

and f−1(3a) = a−6a
3a

= − 5
3

.

Equating gave a
2

= − 5
3

, but incorrectly concluded no solution due to cancelling a incorrectly.

Fuser Output:

Synthesis of the Solution. Both previous agents correctly derived the inverse function f−1(x) = a−2x
x

. Agent 2

provided the cleanest evaluation of f(0) and f−1(3a).
Step 1: f(0) = a

2
.

Step 2: f−1(3a) = − 5
3

.

Step 3: Set a
2

= − 5
3

. Multiply both sides by 6 to clear denominators: 3a = −10, so a = − 10
3

.
Step 4: Substitution verifies correctness.
Final Answer: \boxed{− 10

3
}.

A.16 DETAILED RELATED WORK

Test-time Scaling and Compute-optimal Strategy. Inspired by the human tendency to allocate
additional cognitive effort for deeper and more deliberate reasoning, recent studies have proposed
distributing extra computational resources during inference to improve model performance on various
tasks (Wei et al., 2022; Wang et al., 2023). In parallel, other works (Brown et al., 2024; Wu et al.,
2025) have observed that increasing inference-time computation follows a scaling law analogous
to that of training, where additional computation consistently enhances task performance. This
phenomenon is commonly referred to as Test-Time Scaling (TTS). Existing TTS techniques can
be broadly categorized into two paradigms: sequential scaling and parallel scaling. In sequential
scaling, the model enhances its reasoning ability by progressively extending a reasoning chain. A
common approach is self-refinement, in which the model first generates an initial response and then
iteratively revises it based on self-assessment (Madaan et al., 2023; Gou et al., 2024; Snell et al.,
2025; Chen et al., 2024c; 2025). Because this strategy depends heavily on the quality of the initial
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output, it tends to be more effective on relatively simple tasks (Snell et al., 2025). By contrast, parallel
scaling improves inference by generating multiple independent candidate solutions simultaneously
and aggregating them into a final answer. Representative aggregation strategies include majority
voting (Liu et al., 2025b; Wang et al., 2023), which selects the most frequent output among N
candidates, and Best-of-N (Brown et al., 2024; Sun et al., 2024; Gui et al., 2024), which samples
N solutions and uses a verifier to select the best one (Setlur et al., 2025). Other approaches employ
LLMs themselves as fusers to integrate multiple candidates into a single output, thereby providing
stronger generalization and flexibility (Jiang et al., 2023; Li et al., 2025b; Saad-Falcon et al., 2024).
Despite these successes, both paradigms exhibit limitations. Sequential scaling suffers from poor
scalability, as extending the reasoning chain increases the risk of corrupting previously correct
intermediate results (Zeng et al., 2025). Parallel scaling, while improving diversity, often lacks the
depth of reasoning required for more complex tasks (Misaki et al., 2025). To address these issues,
hybrid approaches have been explored. For instance, Snell et al. (2025) propose adaptively switching
between sequential and parallel scaling depending on task difficulty, using sequential scaling for
simpler tasks and parallel scaling for more complex ones. Other methods leverage tree-structured
search to combine the two paradigms at the step or output level, employing process-level reward
models to expand top-K intermediate steps and refine them further. Typical examples include beam
search (Yu et al., 2024; Xie et al., 2023) and Monte Carlo Tree Search (MCTS) (Wu et al., 2025; Snell
et al., 2025; Hao et al., 2023; Wan et al., 2024; Chen et al., 2024a; Zhang et al., 2023). Nevertheless,
most existing hybrid methods assume a fixed inference structure (e.g., fixed width or depth), limiting
their flexibility. Recent studies have begun to relax these assumptions. For example, Adaptive Parallel
Reasoning (Pan et al., 2025) dynamically switches between sequential and parallel computation
using spawn and join operations, while Adaptive Branching MCTS unifies both paradigms within a
tree-search framework, deciding at each node whether to parallelize candidate generation or continue
sequential refinement. In addition, prior work has noted that sampling across multiple models
naturally falls within the scope of test-time scaling, since ensembles improve diversity and output
quality (Zhang et al., 2025b; Ashiga et al., 2025; Jiang et al., 2023), yet this dimension remains
underexplored in test-time scaling.

The configuration of allocating computation at inference time is central to the effectiveness of
test-time scaling (TTS), giving rise to the compute-optimal test-time scaling strategy. A growing
body of work (Brown et al., 2024; Wu et al., 2025; Liu et al., 2025a; Yue et al., 2025; Snell et al.,
2025; Wang et al., 2025a) highlights that model size and scaling configuration must be carefully
balanced: in certain scenarios, smaller models can achieve superior accuracy compared to large
models when constrained by the same compute budget. This line of research explores both model
selection, deciding when to employ small versus large models, and method selection, choosing
between alternative scaling paradigms to maximize utility. For instance, Snell et al. (2025) show
that the optimal scaling strategy varies with task difficulty: moderately challenging tasks favor
parallel exploration with small models, whereas simpler tasks are better addressed through sequential
refinement with large models. They further introduce a difficulty predictor to adaptively switch
strategies. Other studies extend these ideas in different directions: Liu et al. (2025a) emphasize the
sensitivity of scaling strategies to reward design, Yue et al. (2025) develop a linear model to capture
key determinants of scaling within retrieval-augmented generation (RAG), and Wu et al. (2025)
propose Reward Balanced Search (REBASE), a tree-search algorithm that achieves a Pareto-efficient
balance between accuracy and inference cost through weighted voting. Despite these advances,
existing approaches remain limited to fixed inference structures, overlooking the richer TTS patterns
that arise in general graph topologies. Motivated by these gaps, we address a novel problem: unifying
test-time scaling under a graph-based framework that incorporates heterogeneous model combinations,
and searching for the compute-optimal collaboration graph.

Multi-agent Collaboration Graph. With the emergence of LLMs and the rapid development of
LLM-based agents (Cohen et al., 2023; Zhuge et al., 2024), researchers have increasingly recognized
that interactions among multiple agents can be naturally represented from a graph-based perspec-
tive (Chen et al., 2024b; Zhuge et al., 2024; Qian et al., 2025; Liu et al., 2024c). Graphs provide
a principled abstraction for capturing communication patterns, role assignments, and coordination
strategies in multi-agent systems, making them well-suited for reasoning about collaborative intelli-
gence. Recent systems such as G-Designer (Zhang et al., 2025a), ARG-Designer (Li et al., 2025a),
Heterogeneous Swarms (Feng et al., 2025), DyLAN (Liu et al., 2024c), AgentNet (Yang et al., 2025),
GPTSwarm (Zhuge et al., 2024), and MacNet (Qian et al., 2025) have explicitly employed graph
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structures to organize and optimize multi-agent interactions. These approaches primarily focus on
structural optimization over a predefined set of agents, selecting the structure that maximizes task
performance, which can be partially applied to our problem setting. However, they overlook the
distinctive patterns of test-time scaling, resulting in inefficient architecture search.

LLMs for Optimization Optimization is fundamental to computational models and is often cus-
tomized for individual tasks to address the challenges of complex decision spaces and performance
landscapes. Large Language Models (LLMs), with their rich prior knowledge and reasoning capabili-
ties, have opened new avenues for solving practical optimization problems (Zhang et al., 2025c; Guo
et al., 2024). Existing research primarily employs LLMs in two paradigms: as black-box optimizers
and in conjunction with gradient-based white-box optimization. The distinction lies in whether
gradient information is available. In the black-box setting, LLMs are used to generate candidate
solutions and iteratively refine them by leveraging their planning ability and extensive machine
learning knowledge. Prior work has demonstrated the effectiveness of this approach in small-scale
mathematical optimization (Yang et al., 2024; Zhang et al., 2024b; Huang et al., 2025), hyperpa-
rameter tuning (Liu et al., 2024a;b), and neural architecture search (Zheng et al., 2023; Nasir et al.,
2024; Ji et al., 2025). For instance, OPRO (Yang et al., 2024) proposed “optimization by prompting,”
where tasks are described in natural language and LLMs iteratively generate new solutions based on
meta-prompts and prior evaluations. AgentHPO (Liu et al., 2024a) empowers LLMs to autonomously
search hyperparameter configurations by processing task descriptions, conducting experiments, and
refining search quality from accumulated trials. GENIUS (Zheng et al., 2023) explored the potential
of GPT-4 for neural architecture search, employing its generative ability as a black-box optimizer
to efficiently navigate the search space and refine promising architectures. LLMs are particularly
valuable during initialization, as they can generate high-quality solutions that embed prior knowledge,
narrowing the search space and establishing a stronger foundation for subsequent iterations. This
capability has also been applied to NAS initialization (Jawahar et al., 2024), genetic algorithms in
bioengineering (Nana Teukam et al., 2025), and financial planning (De Zarzà et al., 2023).

These studies demonstrate that LLMs can serve as general-purpose black-box optimizers. However,
when gradient information is available—typically in data-rich scenarios—black-box optimization
becomes inefficient, as each candidate must be evaluated on the full training set, leading to prohibitive
search costs. To address this, recent work has combined gradient-based optimization with LLM-
guided search to exploit their complementary strengths (Guo et al., 2024; Yuksekgonul et al., 2024).
For example, MaaO (Guo et al., 2024) interleaves gradient-based training with LLM-guided opti-
mization, integrating the data efficiency and precise updates of gradient methods with the exploratory
diversity of LLMs. TextGrad (Yuksekgonul et al., 2024) generalizes this idea by transforming AI
systems into computational graphs and using LLMs to generate textual updates that serve as a form
of backpropagation. This framework provides natural language critiques of system components,
such as neurons, prompts, molecules, or code segments, and guides their updates. Building on this
line of work, we extend the complementary use of LLMs and gradient methods to compute-optimal
test-time scaling by optimizing a gradient-available probabilistic graph. This approach enables us
to combine the data efficiency of gradient-based optimization with the semantic task-awareness of
LLMs, particularly for critical initialization and text-form parameter updates, thereby improving both
search effectiveness and efficiency.

B LLM USAGE

Large Language Models (LLMs) were used solely for language refinement, including rephrasing,
grammar checking, and improving readability. They were not involved in ideation, methodology,
experiments, or data analysis. All research concepts and results are the authors’ own, and the authors
take full responsibility for the manuscript, ensuring that LLM-assisted text complies with ethical
standards and avoids plagiarism or misconduct.
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