

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 AGENT-REINFORCE: SEARCHING COMPUTE- OPTIMAL MULTI-LLM COLLABORATION GRAPH FOR TEST-TIME SCALING

006
007 **Anonymous authors**
008 Paper under double-blind review

010 011 ABSTRACT 012

013 Test-Time Scaling (TTS) improves large language models (LLMs) by allocating
014 additional computation during inference, typically through parallel, sequential,
015 or hybrid scaling. However, prior studies often assume fixed collaboration ar-
016 chitectures (e.g., topologies) and single-model usage, overlooking that optimal
017 architectures and model combinations can vary across tasks. Therefore, we study
018 the novel problem of *searching for compute-optimal model combinations and archi-*
019 *ttectures in TTS under a fixed budget*. We formalize it as a multi-LLM collaboration
020 graph, where nodes encode roles and LLM model assignments, and edges capture
021 information flow. This problem is challenging because (i) the combinatorial search
022 space is prohibitively large, and (ii) task-specific requirements demand tailored
023 designs. To address these, we reformulate the problem as probabilistic graph opti-
024 mization and, through pilot experiments, derive three empirical insights into TTS
025 collaboration graphs. Guided by these insights, we propose Agent-REINFORCE,
026 an LLM-agent-augmented framework that mirrors the REINFORCE pipeline by
027 mapping *sampling-gradient-update* to *sampling-feedback-update*, where feed-
028 back serves as a textual gradient to update the probabilistic graph and efficiently
029 search for optimal multi-LLM collaboration graphs. Experiments show that Agent-
030 REINFORCE outperforms both traditional and LLM-based baselines in sample
031 efficiency and search performance, and effectively identifies optimal graphs under
032 joint objectives of accuracy and inference latency. Our code is available at [link](#).
033

034 1 INTRODUCTION 035

036 Test-time scaling (TTS) aims to enhance large language models (LLMs) by allocating additional
037 computational resources during inference (Brown et al., 2024; Snell et al., 2025). Prior studies
038 have primarily investigated two architectures: (i) *parallel scaling* (Wang et al., 2023; Brown et al.,
039 2024), which samples multiple outputs independently to increase solution diversity and aggregates
040 them, making it suitable for tasks with uncertain or diverse solution paths; and (ii) *sequential scaling*
041 (Madaan et al., 2023; Snell et al., 2025), which iteratively refines a single output and is well-suited
042 for tasks that require step-by-step reasoning (see Fig. 7 (a)(b) in Appendix). Fusing the two, hybrid
043 architectures have also been proposed, using predefined hybrid structures to combine the advantages
044 of both (Besta et al., 2024; Snell et al., 2025) (see Fig. 7 (c) in Appendix). Despite their effectiveness,
045 we identify two key limitations of existing TTS architectures. **First, TTS architectures are typically**
046 **predefined and static, with fixed topologies across tasks.** However, our analysis shows that different
047 tasks exhibit distinct preferences for architectural patterns, e.g., MATH favors hybrid structures,
048 while MMLU performs better with pure parallel ones (Fig. 1(a)(c)). This suggests that architectures
049 should adapt to task demands. **Second, existing TTS methods usually employ a single LLM for all**
050 **inference steps.** In contrast, multi-LLM ensembles are preferable to leverage heterogeneous LLM
051 skills across tasks (Jiang et al., 2023; Wang et al., 2025c). Preliminary results show that MATH
052 benefits from mixtures of 1B–3B, whereas MMLU favors a single 8B (Fig. 1(b)(d)), underscoring
053 the need for adaptive model selection. Overall, *test-time compute-optimal scaling* aims to maximize
054 performance within the inference budget (Wu et al., 2025), but these findings reveal that *adaptive*
055 *TTS architectures and model combinations are fundamental challenges for existing methods.*

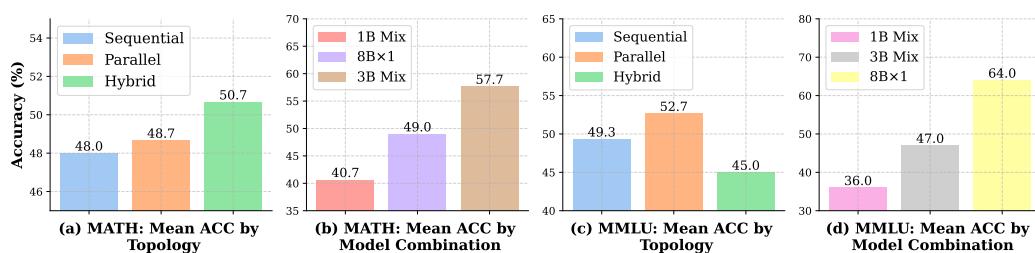


Figure 1: Accuracy across different topologies and model combinations on MATH and MMLU. LLaMA-3 models are used by default. Detailed data is in Appendix A.3.

Motivated by these observations, we study a novel problem: **searching for the compute-optimal architecture and model combination in test-time scaling for a given task**. Formally, given a task, a set of models, and a compute budget, the goal is to find the best configuration that jointly determines architecture and model assignment. Leveraging the inherent graph structure of TTS, we formulate dynamic test-time scaling as constructing a *multi-LLM collaboration graph*, where nodes represent the chosen LLM model with assigned roles (*fuser* for parallel aggregation, *assistant* for sequential refinement), and edges denote information flow. A terminal node aggregates outputs into the final answer (see Fig. 7(d), Appendix A.1). This graph view offers a systematic foundation for dynamic optimization. However, two major challenges arise: (i) The search space is large due to the combinatorial choices of models and topologies, and grows rapidly with the budget. For example, with 12 nodes, the number of possible graphs ranges from 10^{18} to 10^{26} depending on model diversity (derivation in Appendix A.4). Since evaluating each candidate requires costly inference, brute-force search is infeasible. (ii) Tailored design requires linking task requirements to optimal TTS search patterns, which relies on an understanding of TTS behaviors. Prior work shows that performance does not grow monotonically with used budget, implying that optimal allocations are often below the maximum. These insights are key to guiding task-specific searches toward compute-optimal collaboration graphs. To address them, we conducted pilot experiments on TTS behavior analysis, which yielded three empirical insights: (1) Effective collaboration exhibits clear preferences for specific model combinations: tasks favor replication of the strongest model family, and ensembles of small models are preferred when incremental gains are substantial; (2) Both width and depth have task-dependent optima; beyond these points, extra computation will yield negative returns; (3) Graph width and depths are interdependent: growth in one dimension shifting the optimal point of the other.

We operationalize these insights by formulating the search as a probabilistic optimization problem: Learning a distribution over collaboration graphs that jointly determines edges, roles, and model assignments under a fixed budget to maximize task-specific performance. The REINFORCE algorithm (Williams, 1992), a gradient-based optimization method, addresses this via a *sample-gradient-update* pipeline that iteratively samples candidates, computes gradients, updates the distribution, and repeats. However, it risks local optima and its inability to incorporate empirical insights. Recent work (Liu et al., 2024a; Zhang et al., 2024a) shows that LLM-based agents are effective planners for hyperparameter optimization, with the unique advantage of leveraging external knowledge. Building on these, we propose **Agent-REINFORCE**, an LLM-agent-augmented framework for searching optimal multi-LLM collaboration graphs. Building on REINFORCE, it employs an LLM-based agent to incorporate empirical insights for candidate initialization and distribution updates, following a *sample-feedback-update* pipeline in which feedback serves as textual gradients in REINFORCE. The framework comprises three components: the Agent, Archive, and Environment. The Agent initializes promising model families and sizes guided by Insight 1 and fixes the best combination within the distribution. In subsequent stages, the new trials are sampled, the Environment evaluates them and returns feedback (serving as textual gradients), the Archive records the results, and the Agent updates the distribution guided by Insights 2 and 3 until convergence. By leveraging LLM-based optimization, our method efficiently identifies graphs that optimize performance alone and graphs that balance performance with inference latency under joint objectives.

Our **main contributions** are: (i) We study the novel problem of *the search for the optimal multi-LLM collaboration graph for TTS*. (ii) From three identified empirical insights in multi-LLM collaboration, we develop **Agent-REINFORCE**, an efficient LLM-guided framework for budget-constrained graph search. (iii) Experiments show that Agent-REINFORCE surpasses traditional and LLM-based baselines in search efficiency and accuracy, and effectively identifies optimal graphs under joint accuracy-latency objectives.

108 **2 RELATED WORK**

110 **Test-time Scaling and Compute-optimal Strategy.** Allocating additional compute during inference,
 111 known as *Test-Time Scaling (TTS)*, can significantly improve LLM performance (Wei et al., 2022;
 112 Wang et al., 2023; Brown et al., 2024; Wu et al., 2025). TTS methods fall into two main paradigms:
 113 *sequential scaling*, which refines outputs iteratively but risks error accumulation, and *parallel scaling*,
 114 which aggregates multiple candidates but lacks depth. Hybrid approaches (Snell et al., 2025; Wu
 115 et al., 2025) combine both but typically rely on fixed trees and a single model, limiting adaptability.
 116 *Compute-optimal TTS* seeks to allocate inference compute most effectively, revealing that small
 117 models with optimal strategies might outperform larger ones (Brown et al., 2024; Wu et al., 2025;
 118 Liu et al., 2025a; Yue et al., 2025; Snell et al., 2025; Wang et al., 2025a). Moreover, ensembles of
 119 heterogeneous models improve diversity and output quality (Jiang et al., 2023; Ashiga et al., 2025),
 120 yet remain underexplored in TTS. Motivated by this gap, we address a novel problem: unifying TTS
 121 under a graph structure that enables adaptive topologies and model combinations, and searching for
 122 compute-optimal collaboration graphs. Further discussion is provided in Appendix A.16.

123 **LLMs for Optimization.** LLMs, with their rich prior knowledge of machine learning and strong
 124 planning ability, have opened new opportunities for practical optimization (Zhang et al., 2025c;
 125 Guo et al., 2024). Existing research mainly falls into two categories: black-box optimization and
 126 hybrid approaches with gradient-based methods. In the black-box setting, LLMs generate and refine
 127 candidates using feedback from small training sets (Yang et al., 2024; Liu et al., 2024a; Zheng et al.,
 128 2023). Representative methods include OPRO (Yang et al., 2024), AgentHPO (Liu et al., 2024a), and
 129 GENIUS (Zheng et al., 2023), which leverage task descriptions and prior solution performance for
 130 iterative search. LLMs are particularly valuable for initialization, producing high-quality, knowledge-
 131 informed solutions that narrow the search space (Jawahar et al., 2024; Nana Teukam et al., 2025;
 132 De Zarzà et al., 2023). However, when gradient information is available, black-box approaches
 133 become inefficient due to costly evaluations. LLM-based methods address this by interleaving
 134 gradient-based training with LLM-guided exploration (Guo et al., 2024) or by generating textual
 135 guidelines as backpropagation signals (Yuksekgonul et al., 2024). Building on these advances, we
 136 extend such approaches to compute-optimal test-time scaling by optimizing a probabilistic graph
 137 with LLMs for initialization and textual parameter updates. More details are given in Appendix A.16.

138 **3 PRELIMINARIES AND PROBLEM FORMULATION**

140 **Test-time Scaling Paradigms and Their Primitives** Test-time scaling can be broadly categorized
 141 into *parallel scaling* and *sequential scaling*. Given a query q and a language model M with parameters
 142 θ , parallel scaling samples k outputs and aggregates them via a fusion function:

$$o = f_{\text{fuse}}(\mathcal{S}, M), \quad \mathcal{S} = \{s_i \mid 1 \leq i \leq k\}, \quad s_i \sim M(s \mid q, \theta). \quad (1)$$

144 Sequential scaling instead performs k rounds of self-refinement:

$$o = o^k, \quad o^i = f_{\text{refine}}^i(o^{i-1}, M), \quad o^0 = q. \quad (2)$$

147 where $f_{\text{fuse}}(\cdot)$ and $f_{\text{refine}}^i(\cdot)$ are both executed by the LLM M , using fusion and refinement prompts,
 148 respectively. As shown in Fig. 8, both paradigms can be decomposed into three primitives: repeated
 149 sampling, fusion, and self-refinement. Parallel scaling is repeated sampling followed by fusion;
 150 sequential scaling is iterative self-refinement. Hybrids recombines these primitives—for example, *Tree-
 151 of-Thoughts* (Yao et al., 2023) uses multi-layer repeated sampling, and *Graph-of-Thoughts* (Besta
 152 et al., 2024) integrates all three primitives in a graph.

153 **Multi-LLM Collaboration Graph for TTS**

154 Given the task-specific preference for flexible
 155 TTS paradigms beyond the predefined ones, we
 156 generalize them into a *multi-LLM collaboration*
 157 $graph G = (\mathcal{V}, \mathcal{E}, \mathbf{R}, \mathbf{M})$, where each node
 158 $v_i \in \mathcal{V}, i \in [1, n]$, represents an LLM primitive
 159 with an assigned role and model, with an exam-
 160 ple in Fig. 2. Role assignments are denoted by
 161 $\mathbf{R} = [r_1, r_2, \dots, r_n], r_i \in \mathcal{R}$, and model assign-
 162 ments are denoted by $\mathbf{M} = [M_1, M_2, \dots, M_n], M_i \in \mathcal{M}$. Thus, each node is characterized by a

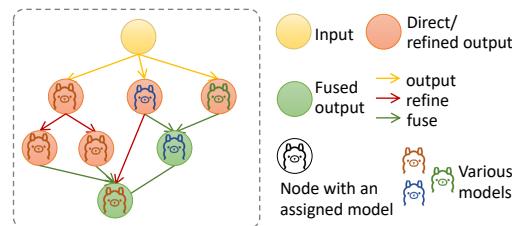


Figure 2: Generalize TTS as a graph.

162 role r_i , which specifies how it processes inputs from its predecessors, and a model M_i , which means
 163 which LLM is invoked. Directed edges $e_{ij} \in \mathcal{E}$ represent the flow of information from node v_i to
 164 node v_j . We consider two roles $\mathcal{R} = \{\text{assistant}, \text{fuser}\}$, as illustrated in Fig. 2: (i) **Assistant**, which
 165 refines the outputs of its predecessors (orange nodes); and (ii) **Fuser**, which aggregates multiple
 166 predecessor outputs (green nodes). The collaboration graph G is a directed acyclic graph (DAG) with
 167 a designated input node (yellow) that initiates information propagation. Message passing proceeds
 168 forward along edges until it reaches a sink node (a node without outgoing edges), whose output
 169 serves as the final prediction of the graph.

170 **Inference on Multi-LLM Collaboration Graph** As illustrated in Algo. 2 in Appendix A.2,
 171 inference over a multi-LLM collaboration graph G proceeds in topological order. The process begins
 172 by identifying the successor nodes of the input node. These nodes process the query to generate
 173 initial outputs that are propagated to their successors, reducing the in-degree of their successors by
 174 one accordingly. The newly activated nodes (with zero in-degree) are then executed based on their
 175 assigned roles and models. A *fuser* aggregates the outputs of its predecessors, whereas an *assistant*
 176 refines them. This procedure continues iteratively until all nodes in G have been executed. The output
 177 of a unique sink node–node with no outgoing edges, is the final output of the graph.

178 **Budget Definition** To enable comparative computation across models and topologies, we define the
 179 budget using a concrete compute metric, e.g., FLOPs or dollar cost. Let the computational cost of a
 180 collaboration graph G be $f_{\text{cost}}(G, T)$. The budget is defined as $B = f_{\text{cost}}(G, T)/f_{\text{cost}}(G_{\text{smallest}}, T)$, where
 181 G_{smallest} is the single-node graph (excluding the input node) using the smallest model, corresponding
 182 to one budget unit. Thus, a multi-LLM graph with budget B is equivalent to running B single-node
 183 inferences on the smallest model. A detailed introduction to the budget definition is in Appendix A.8.

184 Formally, we report computational cost in FLOPs, which we adopt as our primary cost metric.

185 **Proposition 1** (FLOPs Cost Function). *For each node v_i , the cost depends on the size of the model
 186 and its effective input/output lengths, leading to a dependence on the node in-degree $d(v_i)$. Adding up
 187 to all nodes, the total cost can be expressed as $f_{\text{cost}}(G, T) = \sum_{v_i \in \mathcal{V}} [\alpha_i d(v_i)^2 + \beta_i d(v_i) + \gamma_i]$,
 188 where the coefficients $\alpha_i, \beta_i, \gamma_i$ capture the contributions of the model dimension, depth, and average
 189 task input/output lengths. Detailed derivations of $\alpha_i, \beta_i, \gamma_i$ are provided in Appendix A.7.*

190 **Problem Definition** The goal of *test-time compute-optimal scaling* is to allocate inference compute
 191 most effectively under a fixed budget. We formalize this as *searching for the task-specific compute-
 192 optimal multi-LLM collaboration graph*. Given training data $\mathcal{D}_{\text{train}}$, test data $\mathcal{D}_{\text{test}}$, a model pool
 193 $\mathcal{M} = \{M_1, \dots, M_n\}$, and a budget B , the objective is to identify a collaboration graph that specifies
 194 role and model assignments for nodes, together with the cooperation topology, so as to maximize
 195 task performance under the budget constraint. Therefore, our research problem is defined as follows:

196 **Definition 1** (Test-time Compute-optimal Multi-LLM Collaboration Graph for a Specific Task).
 197 *Given the training set $\mathcal{D}_{\text{train}}$ for a given task T , the model pool \mathcal{M} , and a fixed computational budget,
 198 B , the goal is to identify the best collaboration graph that optimizes the performance on $\mathcal{D}_{\text{train}}$, i.e.,*

$$G^* = \arg \max_{G \in \mathcal{G}(\mathcal{M}, B)} u_T(G; \mathcal{D}_{\text{train}}) \quad (3)$$

202 where $\mathcal{G}(\mathcal{M}, B) = \{G \mid f_{\text{budget}}(G, T) \leq B\}$ is the set of feasible multi-LLM collaboration graphs
 203 from \mathcal{M} under budget B . Each $G = (\mathcal{V}, \mathcal{E}, \mathbf{R}, \mathbf{M})$ is a DAG, with node v_i assigned role $r_i \in$
 204 $\{\text{assistant}, \text{fuser}\}$ and model $M_i \in \mathcal{M}$, and edge e_{ij} denoting information flow. The utility function
 205 $u_T(G; \mathcal{D}_{\text{train}})$ measures the performance of G on $\mathcal{D}_{\text{train}}$, while G^* is finally evaluated on $\mathcal{D}_{\text{test}}$.

207 4 INSIGHTS OF MULTI-LLM COLLABORATION GRAPH FOR TTS

209 Searching for the optimal multi-LLM collaboration graph for test-time scaling faces two challenges:
 210 (i) the search space grows combinatorially with the increased budget, making exhaustive enumeration
 211 infeasible; and (ii) the task-specific requirements are highly specific, demanding tailored designs.
 212 We therefore conduct pilot experiments to uncover cross-task TTS patterns, which pave the way to
 213 design an efficient search method for compute-optimal collaboration graphs.

215 **Experimental Setting.** We conduct preliminary experiments on three tasks: **MATH** (Hendrycks
 et al., 2021b) (arithmetic reasoning), **MMLU** (Hendrycks et al., 2021a) (general reasoning), and

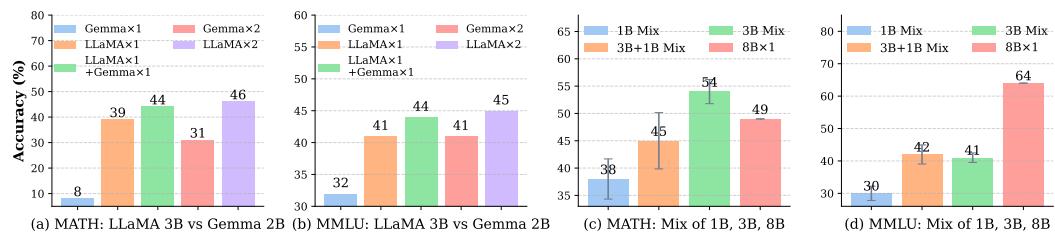


Figure 3: Performance on MATH and MMLU across model family and size. LLaMA by default.

HumanEval (Chen et al., 2021) (code generation), evaluated by accuracy (MATH, MMLU) and pass@1 (HumanEval). The model pool includes LLaMA-3 [1B, 3B, 8B] (Grattafiori et al., 2024) and Gemma [1B, 2B, 7B] (Team, 2025). Dataset, model, and metric details are in Appendix A.5.

Empirical Insights on Model Selection, Parallel and Sequential Scaling. We examine TTS behavior under increasing compute budgets and different model selections, and guide the search for the optimal multi-LLM collaboration graph in Sec.5. Fig. 3 and 4 illustrate how model selection, parallel and sequential scaling, and graph width-depth configuration influence TTS.

Insight 1: Task-specific preferences for model family and size combinations. We conduct preliminary tests on MATH and MMLU to examine task-specific model preferences. Results in Fig. 3(a–b) show that replicating the strongest model family is generally more effective than mixing families: for example, LLaMA consistently outperforms Gemma in the 3B space on MMLU, so using LLaMA×2 yields higher accuracy than LLaMA+Gemma or Gemma×2. Results in Fig. 3(c–d) show that within a fixed budget, reasoning tasks (MATH) benefit from ensembles of smaller models, while knowledge tasks (MMLU) prefer larger ones. These trends reflect differences in task demands and difficulty: reasoning tasks leverage multiple smaller models for iterative refinement, whereas knowledge tasks require the broader coverage of large models. A more detailed discussion is provided in Appendix A.6. Consequently, **tasks favor replication of the strongest model family, with small-model ensembles preferred only when their incremental gains are substantial**.

Insight 2: Parallel and sequential scaling saturate and decline beyond an optimal budget. Fig. 4(a–b) shows that both parallel (width) and sequential (depth) scaling follow a non-monotonic trend: performance improves up to a task-dependent optimum, then plateaus or declines. On MATH, for example, peak accuracy occurs at 8 parallel or 8 sequential nodes. Beyond these points, added width yields diminishing gains due to long-context limits, while added depth amplifies propagated errors. A more detailed discussion is provided in Appendix A.6. In summary, **both width and depth exhibit task-dependent optima, beyond which extra computation provides negative returns**. This insight is consistent with existing works (Wang et al., 2025b; Tang et al., 2025; Brown et al., 2024; Li et al., 2024).

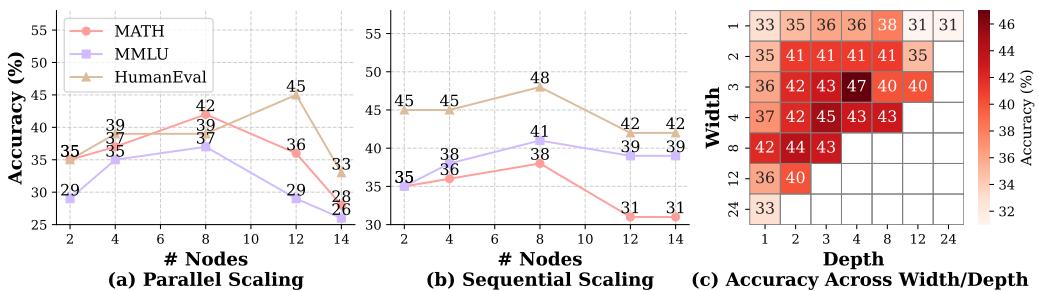


Figure 4: (a–b) Performance with Parallel and Sequential Scaling on various datasets. (c) Heatmap of performance under various Width-Depth collaboration graphs on MATH. Model is LLaMA-3 1B.

Insight 3: Interdependence between graph width and depth. Fig. 4(c) shows MATH performance under varying width (w) and depth (d) with $wd \leq 24$ using LLaMA-1B. Accuracy rises then falls as either dimension grows, confirming non-monotonic trends. Moreover, width and depth interact: larger widths reduce the optimal depth (e.g., 8 at $w=1$ vs. 4 at $w=3$), while deeper refinement shifts

270 the optimal width forward. A more detailed discussion is in Appendix A.6. Thus, **graph width and**
 271 **depth are interdependent, with growth in one dimension altering the optimum of the other.**
 272

273 5 THE PROPOSED FRAMEWORK – AGENT-REINFORCE

276 Guided by the insights in Sec. 4, we introduce **Agent-REINFORCE**, an LLM-Agent-augmented
 277 REINFORCE algorithm that follows a *sample–feedback–update* loop to find the compute-optimal
 278 multi-LLM collaboration graph under a fixed budget. The LLM agent samples candidates and updates
 279 graphs using textual feedback (serving the textual gradient in REINFORCE) while integrating task-
 280 specific model preferences, budget allocation strategies, and width–depth interactions. We next
 281 formalize the probabilistic graph optimization problem and describe our Agent-REINFORCE.
 282

283 5.1 PROBABILISTIC GRAPH OPTIMIZATION PROBLEM

284 **Optimization Problem** One way to find the optimal collaboration graph is black-box search, either
 285 through enumeration (Bergstra & Bengio, 2012) (e.g., grid or random search) or Bayesian optimization
 286 (Shahriari et al., 2015), which fits a surrogate model to the objective and selects queries via an
 287 acquisition function. Yet enumeration is infeasible as the graph space grows exponentially, while
 288 standard BO is designed for low-dimensional continuous domains and becomes sample-inefficient in
 289 large, discrete spaces. We therefore reformulate the task as a graph optimization problem, leveraging
 290 policy-gradient methods for efficient exploration, guided sampling, and budget-aware control. Given
 291 a task T and its utility function u_T , let $G \sim \mathbb{P}_{\theta, \pi, \psi}$ denote a sampled multi-LLM collaboration graph.
 292 The distribution $\mathbb{P}_{\theta, \pi, \psi}$ is parameterized by three components: $\theta = \{\theta_{ij}\}$, where $\sigma(\theta_{ij}) \in [0, 1]$
 293 represents the probability that edge e_{ij} is present; $\pi = \{\pi_i\}$, where $\text{softmax}(\pi_i) \in [0, 1]^{|\mathcal{R}|}$ denotes
 294 the probability of node v_i selecting a role $r \in \mathcal{R}$; and $\psi = \{\psi_i\}$, where $\text{softmax}(\psi_i) \in [0, 1]^{|\mathcal{M}|}$
 295 denotes the probability of node v_i choosing a model $M \in \mathcal{M}$. The optimization problem is to identify
 296

$$\theta^*, \pi^*, \psi^* = \arg \max_{\theta, \pi, \psi} \mathbb{E}_{G \sim \mathbb{P}_{\theta, \pi, \psi}} [u_T(G, D_{\text{train}})] \quad \text{s.t.} \quad f_{\text{budget}}(G, T) \leq B. \quad (4)$$

298 5.2 AGENT-REINFORCE

300 The REINFORCE algorithm (Williams, 1992)
 301 can optimize Eq.(4) via gradient ascent through
 302 iterative *sample–gradient–update* (sampling
 303 candidates, estimating gradients from their util-
 304 ity, and updating parameters; see Appendix A.11
 305 for details). However, its step-by-step updates
 306 often lead to slow progress, local optima, and
 307 difficulty in incorporating prior insights or se-
 308 mantic knowledge. To overcome these limita-
 309 tions, we propose **Agent-REINFORCE**, an
 310 LLM-agent-augmented framework which builds
 311 on REINFORCE but replaces gradients with
 312 feedback-conditioned updates. Each iteration
 313 follows a *sample–feedback–update* loop: guided
 314 by empirical insights, the agent samples candi-
 315 date graphs, receives feedback as textual gra-
 316 dients, and updates the distribution iteratively
 317 until convergence. As shown in Fig. 5(b–d), the
 318 framework comprises three components: Agent,
 319 Archive, and Environment. The Agent first
 320 generates candidate trials of the model family
 321 and size combinations (guided by Insight 1).
 322 Feedback from the Environment selects the
 323 best model assignments and initializes the proba-
 324 bility graph distribution. In subsequent iter-
 325 ations, the Agent samples new trials from the up-
 326 dated distribution $\mathbb{P}_{\theta, \pi, \psi}$, the Environment eval-
 327 uates them, and the Archive records results. The
 328 Agent then updates the distribution based on feed-
 329 back and history, and this loop continues until con-
 330 vergence. The full procedure is given in Algo. 1.

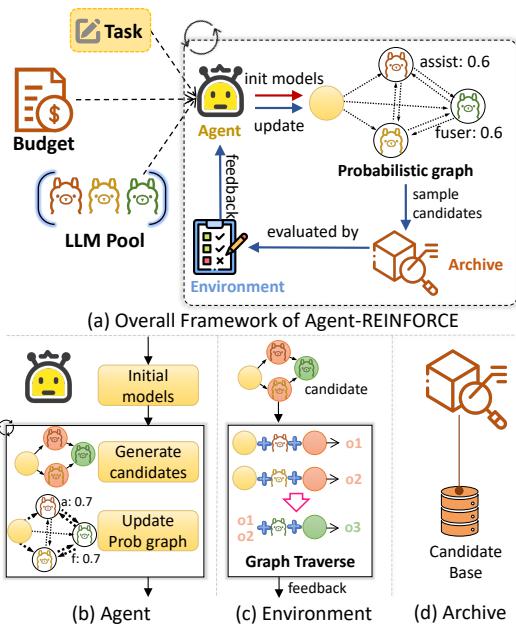


Figure 5: Overview of Agent-REINFORCE for Optimizing Collaboration Graph.

324 **Algorithm 1** Agent-REINFORCE: Compute-Optimal Collaboration Graph Optimization

325 **Require:** Task T , model set \mathcal{M} , agent \mathcal{A} , environment \mathcal{E} , budget B

326 **Ensure:** Optimized collaboration graph G

327 1: Initialize archive $\mathcal{L} \leftarrow \emptyset$

328 2: Stage 1: $\mathcal{C} \leftarrow \mathcal{A}.\text{select_family_size}(T, \mathcal{M}, B); \mathcal{S} \leftarrow \mathcal{E}.\text{execute}(\mathcal{C})$ (Init. Stage 1)

329 3: Stage 2: $\mathcal{C} \leftarrow \mathcal{A}.\text{select_instance}(T, \mathcal{M}, \mathcal{S}, B); \mathcal{S} \leftarrow \mathcal{E}.\text{execute}(\mathcal{C})$ (Init. Stage 2)

330 4: Initialize nodes in \tilde{G} with the best model family, size, and instance count (Insight 1)

331 5: **while** stopping criterion not met **do** (Subsequent stages)

332 6: Update archive $\mathcal{L} \leftarrow \mathcal{L} \cup \{(\mathcal{C}, \mathcal{S}, \tilde{G})\}$

333 7: Sample new trials $\mathcal{C} \leftarrow \mathcal{A}.\text{sampling}(\tilde{G}, B)$

334 8: Get feedback (textual gradient) $\mathcal{S} \leftarrow \mathcal{E}.\text{execute}(\mathcal{C})$

335 9: Update graph $\tilde{G} \leftarrow \mathcal{A}.\text{update}(\mathcal{C}, \mathcal{S}, \mathcal{L}, \tilde{G})$ (Insights 2,3)

336 10: **end while**

337 11: **return** Graph G by deterministic decoding from \tilde{G}

340

341 **Agent component.** The LLM-base Agent, in Fig. 5 (b), initializes model assignments, samples new

342 trials, and updates the probabilistic graph. Since LLMs lack prior knowledge of test-time scaling,

343 which is relatively new, we incorporate Insight 1 to guide the initialization of model assignments,

344 and Insights 2 and 3 to inform subsequent updates. *Insight 1* shows that tasks prefer replicating the

345 strongest family, with small-model ensembles chosen when their gains are high. Hence, initialization

346 focuses on task-specific model assignments (family, size, and instances) to guide optimization and

347 reduce wasted exploration. We initialize the family-size and instance counts in two stages.

348 First, the Agent identifies family and size preferences using each model’s meta-information from Hug-

349 gingFace (hug), including prior performance and the task description. Prior performance guides family

350 selection; when unavailable, initial trials pre-test each model’s prior performance to infer family prefer-

351 ences. For size selection, the incremental gains from ensembling one versus two small models relative

352 to a single large model inform size preference, motivating trials that explore both small ensembles

353 and large models. Therefore, the agent initializes candidates as $\mathcal{A}.\text{select_family_size}(T, \mathcal{M}, B)$,

354 retaining only those within budget B , and obtains performance scores from the Environment as

355 feedback \mathcal{S} to identify the preferred family and size (Algo. 1, Line 2).

356 Second, using feedback \mathcal{S} , the Agent generates diverse candidate model combinations within budget

357 B via $\mathcal{A}.\text{select_instance}(T, \mathcal{M}, \mathcal{S}, B)$, prioritizing the selected family and size while varying

358 instance counts. For each candidate, graph topologies and role assignments are randomly sampled

359 (Algo. 1, Line 3). Feedback is averaged, and the best configuration, covering family, size, and

360 instances, initializes the graph (Algo. 1, Line 4). In subsequent stages, nodes retain the model assign-

361 ments, while edges and roles are sampled from the probabilistic graph \tilde{G} via $\mathcal{A}.\text{sampling}(\tilde{G}, B)$.

362 *Insight 2* shows that width and depth have task-specific optima: performance improves with more

363 nodes up to a point, then degrades. We incorporate this into the update prompt ($\mathcal{A}.\text{update}$,

364 Algo. Line 9), guiding the Agent to “identify the optimization direction for finding the optimal

365 width and depth” by leveraging feedback from current and past trials to adjust the probabilistic graph

366 toward the optimal width–depth balance and accelerate convergence.

367 *Insight 3* highlights the interdependence between width and depth: under a fixed budget, improving

368 one often requires reducing the other. To manage this, we embed an instruction into the update prompt

369 ($\mathcal{A}.\text{update}$, Algo. Line 9) that directs the Agent to exploit the LLM’s planning ability to explore

370 these trade-offs between width and depth and adaptively identify critical graphs within budget.

371 The instructions derived from the insights are applied continuously during the optimization process.

372 Based on the feedback, the Agent updates the probabilistic graph (Algo. Line 9), which is then used

373 to sample the next batch of trials (Algo. Line 7). The prompt design is provided in Appendix A.12.

374 **Environment & Archive Components.** Environment converts candidate graphs from the Agent

375 into executable scripts, runs them in the actual task platform on a small training batch, and returns

376 performance feedback (Fig. 5c; Algo. 1, Lines 2–3,8). Archive stores the probabilistic graph,

377 sampled trials, and corresponding feedback (Fig. 5d; Algo. 1, Lines 1,6), tracking the optimization

378 process across iterations and providing historical traces for the Agent to refine future updates.

378
 379
 380
 Table 1: Performance across MATH, MMLU, and HumanEval at 80 budget. Acc (\uparrow) means Accuracy
 (%) higher is better), Sear. (\downarrow) means total search time in seconds (lower is better), and Inf. (\downarrow) means
 381 average inference time in seconds per test query (lower is better). Best in each column is bolded.

Method	MATH			MMLU			HumanEval			Average		
	Acc	Sear.	Inf.	Acc	Sear.	Inf.	P@1	Sear.	Inf.	Sco.	Sear.	Inf.
Single Model	49	-	-	64	-	-	60	-	-	58	-	-
Random	39	2852	28.5	44	658	6.6	63	1560	47.3	49	1690	27.5
BO	42	3076	30.8	36.8 \pm 5.2	2150	21.5	33	2588	78.4	38	2605	43.6
GPTSwarm	40	943	9.4	42	463	4.6	55	804	24.4	46	737	12.8
MaaO	34	1440	14.4	41	738	7.4	42	860	26.1	39	1013	16.0
TextGrad	41	3687	36.9	39.9 \pm 3.6	2276	22.8	42	2842	86.1	43	2935	48.6
Ours	56	804	8.0	61.5 \pm 5.1	493	4.9	73	300	9.1	61	532	7.3

6 EXPERIMENTS

This section evaluates Agent-REINFORCE for compute-optimal collaboration graphs in TTS, covering ablations, varying budgets, joint objectives, alternative budget metrics, and visualizations.

Experimental Setup. We experiment on MATH, MMLU, and HumanEval using LLaMA models (1B-8B) (Grattafiori et al., 2024) and Gemma models (1B-7B) (Team, 2025) (details in Appendix A.5). Baselines fall into three groups: (i) traditional: Bayesian Optimization (BO) (Jones et al., 1998; Shahriari et al., 2015) and random search; (ii) gradient-based: GPTSwarm (Zhuge et al., 2024), a REINFORCE framework with gradient updates, and MaaO (Guo et al., 2024), combining gradient training with LLM guidance; and (iii) LLM-based: TextGrad (Yuksekgonul et al., 2024), which relies solely on textual guidelines. As these methods are not tailored to our setting, we adapt them for test-time compute-optimal graph search (details in Appendix A.13). All methods are run for up to 30 search iterations on the training data and use the validation set to determine convergence. Search is stopped if the average validation performance does not improve for 10 iterations. The final searched graph is evaluated on the test set. We use DeepSeek-R1 (Guo et al., 2025) as the LLM search agent.

Main Results. Tab. 1 reports test performance and convergence time, and Fig. 9 in the Appendix shows training trajectories. We observe: (1) Our method achieves the highest average test-set score (higher accuracy or Pass@1) while converging substantially faster (lower search time). This is enabled by Insights 2–3, which guide the search toward promising regions, and Insight 1, which provides a strong initialization and avoids wasted trials. (2) Compared with the LLM-based TextGrad, our method is much more efficient by pruning high-latency candidates early. Among the methods, TextGrad yields the highest inference latency in the searched graphs, reflecting its tendency to favor dense connections or larger node counts that drive full-budget utilization. Such usage often produces high-overhead graphs and consequently slower convergence. (3) The gradient-based GPTSwarm and MaaO converge quickly but often produce graphs inferior even to random search, due to their vulnerability to local optima. This underscores the importance of combining global exploration with local refinement. (4) The traditional Bayesian optimization method also suffers from local optima and slow updates due to a lack of task-specific guidance. Random search shows some robustness and can occasionally find competitive solutions, but it remains inefficient and unstable.

Ablation Studies. We evaluate the contribution of each insight through ablation, comparing the full method with variants: w/o Insight 1 uses random initialization instead of task- and model-informed initialization, while w/o Insight 2/3 removes prompt components for budget optima and width-depth dependencies. Tab. 2 shows that removing any insight slows convergence by generating inefficient graphs; w/o Insight 1 enlarges the candidate space, and w/o Insight 2/3 biases exploration toward high-budget graphs. Performance drops most under w/o Insight 1, as random initialization yields suboptimal starts that limit later search. Excluding Insight 2 or 3 also reduces accuracy by losing guidance on budget and width-depth trade-offs. We also perform an ablation by removing role setting, letting all nodes process predecessors’ outputs and generate new answers, which degrades graph performance on MATH. This highlights the importance of the *fuser-assistant* role division in test-time scaling. We note that MMLU performance remains stable without Insight 3 or role settings, as it favors larger models with fewer nodes, reducing the impact of width-depth trade-offs and roles.

Table 2: Ablation study of Agent-REINFORCE on MATH and MMLU w/o insights and role setting.

Methods	MATH		MMLU	
	Acc	Sear.	Acc	Sear.
Agent-REINFORCE	56	804	54	493
w/o Insight 1	45	1946	42	1293
w/o Insight 2	49	2208	47	896
w/o Insight 3	48	1436	54	487
w/o Role	52	785	54	677

8

Table 3: MATH Acc, Sear, and Inf under various FLOPs and price budget.

Method	Price $\leq \$5E-4$			FLOPs Budget 42			FLOPs Budget 18		
	Acc	Sear.	Inf.	Acc	Sear.	Inf.	Acc	Sear.	Inf.
Random	35	2546	52.5	33	1706	56.9	39	1440	16.0
BO	36	2372	56.6	45	2724	49.5	38	1634	23.1
GPTSwarm	43	832	20.5	44	858	31.2	44	1028	29.1
MaaO	47	1104	20.0	46	889	50.9	44	836	14.6
TextGrad	22	3062	57.9	45	2661	48.6	40	2553	16.8
Ours	56	648	18.1	50	726	11.5	47	771	16.7

Performance Under Various Budget Settings. We evaluate search performance on the MATH dataset under FLOPs budgets of 18 and 42, accommodating $1 \times 8B$ and $[2, 3] \times 8B$ models, respectively. As shown in Tab. 3, our method consistently delivers superior efficiency and accuracy, demonstrating strong generalization. Notably, some baselines perform better at smaller budgets (e.g., MaaO: 44 at budget 18 vs. 34 at 80) because they overlook that the optimal budget is often below the maximum. As noted in Insight 2, computation beyond the optimum yields negative returns, whereas smaller budgets closer to the budget optimum can bring these methods nearer to peak performance.

Latency-aware Joint Optimization Objective. To demonstrate our method’s ability to handle joint optimization objectives, we optimize both performance and latency through multidimensional feedback, achieving a balance between accuracy and efficiency. The details of the optimization with a joint objective are in Appendix A.9. On MATH with a 42 FLOPs budget, the searched graph achieves an average latency of 3.1 seconds per test query, which is much lower than the 11.5 seconds under a performance-only objective, thereby validating its effectiveness for multi-objective optimization, even though performance decreases slightly from 50 to 46.

Generalization to the Dollar Cost as Budget. Beyond FLOPs, end-users often care about the monetary cost of API calls. We introduce price as an additional budget metric, directly measured in currency units. As shown in Tab. 5 (Appendix A.10), cost scales with input and output tokens, so $f_{\text{budget}}(G, T)$ is redefined as input length times per-token input price plus output length times per-token output price. Under a fixed API budget $\$5E-4$ per query (from $4 \times 8B$ to $6 \times 8B$ models), the results in Tab. 3 show Agent-REINFORCE excels in both accuracy and efficiency, showing strong generalization across cost metrics.

Visualization Fig. 6 visualizes the optimal collaboration graph within the budget 80 for the MATH task. The result indicates a clear preference for small-model ensembles, as the relatively low task difficulty enables small models to meet performance requirements, while additional instances further enhance their effectiveness. The structure favors a hybrid scaling biased toward sequential refinement (width 3, depth 4), since multi-step math reasoning benefits from iterative self-refinement, which sequential structures are better suited to support.

7 CONCLUSION

We study a novel problem of searching task-specific, compute-optimal test-time scaling over multi-LLM collaboration graphs under a fixed budget, with an exponentially large design space in model choices and nodes. From pilot analysis, we gain three empirical insights: (1) tasks replicate the strongest model family, with small-model ensembles favored when incremental gains are high; (2) width and depth admit task-specific optima, beyond which additional compute degrades performance; and (3) width and depth interact, with growth in one shifting the optimum of the other. Based on these findings, we propose **Agent-REINFORCE**, an LLM-agent framework that conducts budget-aware, feedback-driven search on collaboration graphs. Experiments show that our proposed method outperforms traditional and LLM-based baselines in search efficiency and performance, while also showing the ability to find optimal graphs under a joint performance-latency objective.

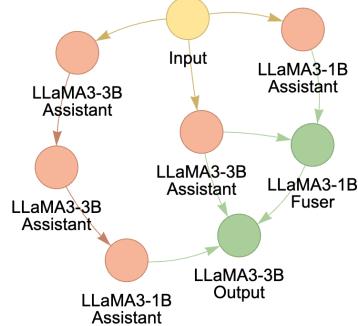


Figure 6: Optimal graph on MATH.

486 ETHICS STATEMENT
487488 This work adheres to the ICLR Code of Ethics. No human or animal subjects were involved. Datasets
489 (MATH, MMLU, HumanEval) were used in compliance with guidelines, with no privacy violations
490 or personally identifiable information. We ensured fairness, avoided bias, and upheld transparency
491 and integrity throughout the research.492
493 REPRODUCIBILITY STATEMENT
494495 We provide an anonymous code package and configures at link to ensure reproducibility of all
496 experiments: Training/inference details are provided in Section 6; The datasets we used are public
497 datasets, with sources, task setups and pre-processing steps provided in Appendix A.5; The prompt
498 design in AGENT-REINFORCE is detailed in Appendix A.12, and the method internals are given in
499 Appendix A.2 and Appendix A.11. Any additional insights and related works are summarized in
500 Appendix A.6 and Appendix A.16.501
502 REFERENCES
503504 Hugging face. <https://huggingface.co/>. Accessed: 2025-09-22.505 Mari Ashiga, Wei Jie, Fan Wu, Vardan Voskanyan, Fateme Dinmohammadi, Paul Brookes, Jingzhi
506 Gong, and Zheng Wang. Ensemble learning for large language models in text and code generation:
507 A survey. *arXiv preprint arXiv:2503.13505*, 2025.508 James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. *The journal
509 of machine learning research*, 13(1):281–305, 2012.510 Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
511 Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczek, et al. Graph of thoughts:
512 Solving elaborate problems with large language models. In *Proceedings of the AAAI conference
513 on artificial intelligence*, volume 38, pp. 17682–17690, 2024.514 Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
515 Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
516 *arXiv preprint arXiv:2407.21787*, 2024.517 Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: Process supervision
518 without process. In *The Thirty-eighth Annual Conference on Neural Information Processing
519 Systems*, 2024a. URL <https://openreview.net/forum?id=VaXnxQ3UKo>.520 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
521 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
522 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.523 Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
524 Yaxi Lu, Yi-Hsin Hung, Chen Qian, et al. Agentverse: Facilitating multi-agent collaboration and
525 exploring emergent behaviors. In *ICLR*, 2024b.526 Weizhe Chen, Sven Koenig, and Bistra Dilkina. Iterative deepening sampling for large language
527 models. *arXiv e-prints*, pp. arXiv–2502, 2025.528 Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
529 self-debug. In *The Twelfth International Conference on Learning Representations*, 2024c. URL
530 <https://openreview.net/forum?id=KuPixIqPiq>.531 Roi Cohen, May Hamri, Mor Geva, and Amir Globerson. LM vs LM: Detecting factual errors via
532 cross examination. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023
533 Conference on Empirical Methods in Natural Language Processing*, pp. 12621–12640, Singapore,
534 December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
535 778. URL <https://aclanthology.org/2023.emnlp-main.778/>.

540 I De Zarzà, J De Curtò, Gemma Roig, and Carlos T Calafate. Optimized financial planning:
 541 integrating individual and cooperative budgeting models with llm recommendations. *AI*, 5(1):
 542 91–114, 2023.

543

544 Shangbin Feng, Zifeng Wang, Palash Goyal, Yike Wang, Weijia Shi, Huang Xia, Hamid Palangi,
 545 Luke Zettlemoyer, Yulia Tsvetkov, Chen-Yu Lee, et al. Heterogeneous swarms: Jointly optimizing
 546 model roles and weights for multi-llm systems. *arXiv preprint arXiv:2502.04510*, 2025.

547 Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
 548 CRITIC: Large language models can self-correct with tool-interactive critiquing. In *The Twelfth
 549 International Conference on Learning Representations*, 2024. URL [https://openreview.net/
 550 forum?id=Sx038qxjek](https://openreview.net/forum?id=Sx038qxjek).

551

552 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 553 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 554 models. *arXiv preprint arXiv:2407.21783*, 2024.

555

556 Lin Gui, Cristina Garbacea, and Victor Veitch. BoNBon alignment for large language models and the
 557 sweetness of best-of-n sampling. In *The Thirty-eighth Annual Conference on Neural Information
 558 Processing Systems*, 2024. URL <https://openreview.net/forum?id=haSKM1rbX5>.

559

560 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 561 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 562 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

563

564 Zixian Guo, Ming Liu, Zhilong Ji, Jinfeng Bai, Yiwen Guo, and Wangmeng Zuo. Llm as a complemen-
 565 tary optimizer to gradient descent: A case study in prompt tuning. *arXiv preprint arXiv:2405.19732*,
 566 2024.

567

568 Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhitong Hu. Reasoning
 569 with language model is planning with world model. In *Proceedings of the 2023 Conference on
 570 Empirical Methods in Natural Language Processing*, pp. 8154–8173, 2023.

571

572 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 573 Steinhardt. Measuring massive multitask language understanding. In *International Conference on
 574 Learning Representations*, 2021a. URL <https://openreview.net/forum?id=d7KBjmI3GmQ>.

575

576 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 577 and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
 578 *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
 579 (Round 2)*, 2021b. URL <https://openreview.net/forum?id=7Bywt2mQsCe>.

580

581 Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao, and Benyou Wang. LLMs for mathematical
 582 modeling: Towards bridging the gap between natural and mathematical languages. In Luis Chiruzzo,
 583 Alan Ritter, and Lu Wang (eds.), *Findings of the Association for Computational Linguistics: NAACL
 584 2025*, pp. 2678–2710, Albuquerque, New Mexico, April 2025. Association for Computational
 585 Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.146. URL <https://aclanthology.org/2025.findings-naacl.146/>.

586

587 Ganesh Jawahar, Muhammad Abdul-Mageed, Laks Lakshmanan, and Dujian Ding. Llm perfor-
 588 mance predictors are good initializers for architecture search. In *Findings of the Association for
 589 Computational Linguistics ACL 2024*, pp. 10540–10560, 2024.

590

591 Zipeng Ji, Guanghui Zhu, Chunfeng Yuan, and Yihua Huang. RZ-NAS: Enhancing LLM-guided neu-
 592 ral architecture search via reflective zero-cost strategy. In *Forty-second International Conference
 593 on Machine Learning*, 2025. URL <https://openreview.net/forum?id=9UExQpH078>.

594

595 Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
 596 with pairwise ranking and generative fusion. In *Proceedings of the 61st Annual Meeting of the
 597 Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 14165–14178, 2023.

598

599 Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive
 600 black-box functions. *Journal of Global optimization*, 13:455–492, 1998.

594 Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More agents is all you need. *arXiv*
 595 *preprint arXiv:2402.05120*, 2024.
 596

597 Shiyuan Li, Yixin Liu, Qingsong Wen, Chengqi Zhang, and Shirui Pan. Assemble your crew:
 598 Automatic multi-agent communication topology design via autoregressive graph generation. *arXiv*
 599 *preprint arXiv:2507.18224*, 2025a.

600 Zichong Li, Xinyu Feng, Yuheng Cai, Zixuan Zhang, Tianyi Liu, Chen Liang, Weizhu Chen, Haoyu
 601 Wang, and Tuo Zhao. Llms can generate a better answer by aggregating their own responses. *arXiv*
 602 *preprint arXiv:2503.04104*, 2025b.

603 Runze Liu, Junqi Gao, Jian Zhao, Kaiyan Zhang, Xiu Li, Biqing Qi, Wanli Ouyang, and Bowen
 604 Zhou. Can 1b llm surpass 405b llm? rethinking compute-optimal test-time scaling. *arXiv preprint*
 605 *arXiv:2502.06703*, 2025a.

606

607 Siyi Liu, Chen Gao, and Yong Li. Large language model agent for hyper-parameter optimization.
 608 *arXiv preprint arXiv:2402.01881*, 2024a.

609 Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language
 610 models to enhance bayesian optimization. In *The Twelfth International Conference on Learning*
 611 *Representations*, 2024b. URL <https://openreview.net/forum?id=00xotBmG0l>.

612

613 Yexiang Liu, Zekun Li, Zhi Fang, Nan Xu, Ran He, and Tieniu Tan. Rethinking the role of prompting
 614 strategies in LLM test-time scaling: A perspective of probability theory. In Wanxiang Che, Joyce
 615 Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd*
 616 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 617 27962–27994, Vienna, Austria, July 2025b. Association for Computational Linguistics. ISBN
 618 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1356. URL <https://aclanthology.org/2025.acl-long.1356>.

619

620 Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic LLM-agent network:
 621 An LLM-agent collaboration framework with agent team optimization, 2024c. URL <https://openreview.net/forum?id=i43XCU54Br>.

622

623 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 624 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 625 with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.

626

627 Kou Misaki, Yuichi Inoue, Yuki Imajuku, So Kuroki, Taishi Nakamura, and Takuya Akiba. Wider or
 628 deeper? scaling LLM inference-time compute with adaptive branching tree search. In *ICLR 2025*
 629 *Workshop on Foundation Models in the Wild*, 2025. URL <https://openreview.net/forum?id=3HF6yogDEM>.

630

631 Yves Gaetan Nana Teukam, Federico Zipoli, Teodoro Laino, Emanuele Criscuolo, Francesca Grisoni,
 632 and Matteo Manica. Integrating genetic algorithms and language models for enhanced enzyme
 633 design. *Briefings in bioinformatics*, 26(1):bbae675, 2025.

634

635 Muhammad Umair Nasir, Sam Earle, Julian Togelius, Steven James, and Christopher Cleghorn.
 636 Llmatic: neural architecture search via large language models and quality diversity optimization.
 637 In *proceedings of the Genetic and Evolutionary Computation Conference*, pp. 1110–1118, 2024.

638

639 Jiayi Pan, Xiuyu Li, Long Lian, Charlie Victor Snell, Yifei Zhou, Adam Yala, Trevor Darrell,
 640 Kurt Keutzer, and Alane Suhr. Learning adaptive parallel reasoning with language models. In
 641 *Second Conference on Language Modeling*, 2025. URL <https://openreview.net/forum?id=YgwQ7sXPXU>.

642

643 Chen Qian, Zihao Xie, YiFei Wang, Wei Liu, Kunlun Zhu, Hanchen Xia, Yufan Dang, Zhuoyun Du,
 644 Weize Chen, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Scaling large language model-based
 645 multi-agent collaboration. In *The Thirteenth International Conference on Learning Representations*,
 646 2025. URL <https://openreview.net/forum?id=K3n5jPkrU6>.

647

648 Jon Saad-Falcon, Adrian Gamarra Lafuente, Shlok Natarajan, Nahum Maru, Hristo Todorov, Etash
 649 Guha, E Kelly Buchanan, Mayee Chen, Neel Guha, Christopher Ré, et al. Archon: An architecture
 650 search framework for inference-time techniques. *arXiv preprint arXiv:2409.15254*, 2024.

648 Amrit Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute
 649 without verification or RL is suboptimal. In *Forty-second International Conference on Machine*
 650 *Learning*, 2025. URL <https://openreview.net/forum?id=beeNgQEfe2>.

651

652 Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
 653 human out of the loop: A review of bayesian optimization. *Proceedings of the IEEE*, 104(1):
 654 148–175, 2015.

655 Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
 656 optimally can be more effective than scaling parameters for reasoning. In *The Thirteenth Interna-*
 657 *tional Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=4FWAwZtd2n>.

658

659 Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang,
 660 Peter Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. In *The*
 661 *Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=348hfcprUs>.

662

663

664 Yung-Chen Tang, Pin-Yu Chen, and Andrea Cavallaro. Carbon: Calibrated best-of-n sampling
 665 improves test-time reasoning. *arXiv preprint arXiv:2510.15674*, 2025.

666

667 Gemma Team. Gemma 3. 2025. URL <https://arxiv.org/abs/2503.19786>.

668

669 Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and
 670 Jun Wang. Alphazero-like tree-search can guide large language model decoding and training. In
 671 *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=C40pREezgj>.

672

673 Fali Wang, Hui Liu, Zhenwei Dai, Jingying Zeng, Zhiwei Zhang, Zongyu Wu, Chen Luo, Zhen Li,
 674 Xianfeng Tang, Qi He, et al. Agenttts: Large language model agent for test-time compute-optimal
 675 scaling strategy in complex tasks. *arXiv preprint arXiv:2508.00890*, 2025a.

676

677 Jian Wang, Boyan Zhu, Chak Tou Leong, Yongqi Li, and Wenjie Li. Scaling over scaling: Exploring
 678 test-time scaling pareto in large reasoning models. *arXiv preprint arXiv:2505.20522*, 2025b.

679

680 Tianchun Wang, Zichuan Liu, Yuanzhou Chen, Jonathan Light, Haifeng Chen, Xiang Zhang, and Wei
 681 Cheng. Diversified sampling improves scaling llm inference. *arXiv preprint arXiv:2502.11027*,
 682 2025c.

683

684 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
 685 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 686 models. In *The Eleventh International Conference on Learning Representations*, 2023. URL
 687 <https://openreview.net/forum?id=1PL1NIMMrw>.

688

689 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 690 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 691 *neural information processing systems*, 35:24824–24837, 2022.

692

693 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
 694 learning. *Machine learning*, 8(3):229–256, 1992.

695

696 Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
 697 An empirical analysis of compute-optimal inference for llm problem-solving. In *The Thirteenth*
 698 *International Conference on Learning Representations*, 2025.

699

700 Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael
 701 Xie. Self-evaluation guided beam search for reasoning. *Advances in Neural Information Processing*
 702 *Systems*, 36:41618–41650, 2023.

703

704 Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
 705 Chen. Large language models as optimizers. In *The Twelfth International Conference on Learning*
 706 *Representations*, 2024. URL <https://openreview.net/forum?id=Bb4VGOWELI>.

702 Yingxuan Yang, Huacan Chai, Shuai Shao, Yuanyi Song, Siyuan Qi, Renting Rui, and Weinan Zhang.
 703 Agentnet: Decentralized evolutionary coordination for lilm-based multi-agent systems. *arXiv*
 704 *preprint arXiv:2504.00587*, 2025.

705 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
 706 Tree of thoughts: Deliberate problem solving with large language models. *Advances in neural*
 707 *information processing systems*, 36:11809–11822, 2023.

708 Fei Yu, Anningzhe Gao, and Benyou Wang. Ovm, outcome-supervised value models for planning in
 709 mathematical reasoning. In *Findings of the Association for Computational Linguistics: NAACL*
 710 2024, pp. 858–875, 2024.

711 Zhenrui Yue, Honglei Zhuang, Aijun Bai, Kai Hui, Rolf Jagerman, Hansi Zeng, Zhen Qin, Dong
 712 Wang, Xuanhui Wang, and Michael Bendersky. Inference scaling for long-context retrieval
 713 augmented generation. In *The Thirteenth International Conference on Learning Representations*,
 714 2025. URL <https://openreview.net/forum?id=FSjIr0m1vz>.

715 Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
 716 James Zou. Textgrad: Automatic" differentiation" via text. *arXiv preprint arXiv:2406.07496*,
 717 2024.

718 Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Yunhua Zhou, and Xipeng Qiu. Revisiting the
 719 test-time scaling of o1-like models: Do they truly possess test-time scaling capabilities? *arXiv*
 720 *preprint arXiv:2502.12215*, 2025.

721 Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
 722 Tianlong Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication topologies
 723 via graph neural networks. In *Forty-second International Conference on Machine Learning*, 2025a.
 724 URL <https://openreview.net/forum?id=LpE54NUm0>.

725 Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. Mlcopilot: Unleashing the
 726 power of large language models in solving machine learning tasks. In *Proceedings of the 18th*
 727 *Conference of the European Chapter of the Association for Computational Linguistics (Volume 1:*
 728 *Long Papers)*, pp. 2931–2959, 2024a.

729 Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Zhihan Guo, Yufei Wang, Irwin
 730 King, Xue Liu, and Chen Ma. What, how, where, and how well? a survey on test-time scaling in
 731 large language models. *CoRR*, 2025b.

732 Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B. Tenenbaum, and Chuang Gan.
 733 Planning with large language models for code generation. In *The Eleventh International Conference*
 734 *on Learning Representations*, 2023. URL <https://openreview.net/forum?id=Lr8c00tYbfL>.

735 Tuo Zhang, Jinyue Yuan, and Salman Avestimehr. Revisiting OPRO: The limitations of small-scale
 736 LLMs as optimizers. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the*
 737 *Association for Computational Linguistics: ACL 2024*, pp. 1727–1735, Bangkok, Thailand, August
 738 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.100. URL
 739 <https://aclanthology.org/2024.findings-acl.100/>.

740 Yisong Zhang, Ran Cheng, Guoxing Yi, and Kay Chen Tan. A systematic survey on large language
 741 models for evolutionary optimization: From modeling to solving. *arXiv preprint arXiv:2509.08269*,
 742 2025c.

743 Mingkai Zheng, Xiu Su, Shan You, Fei Wang, Chen Qian, Chang Xu, and Samuel Albanie. Can
 744 gpt-4 perform neural architecture search? *arXiv preprint arXiv:2304.10970*, 2023.

745 Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbulin, and Jürgen
 746 Schmidhuber. Gptswarm: Language agents as optimizable graphs. In *Forty-first International*
 747 *Conference on Machine Learning*, 2024.

748

749

750

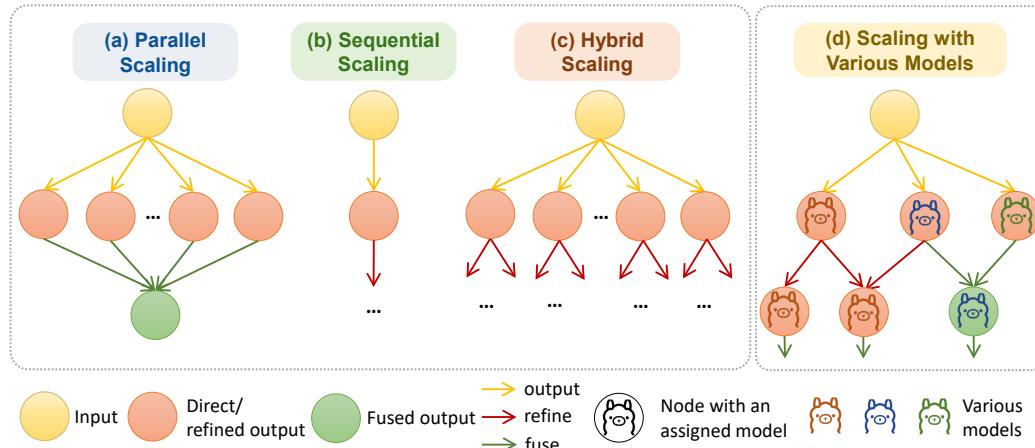
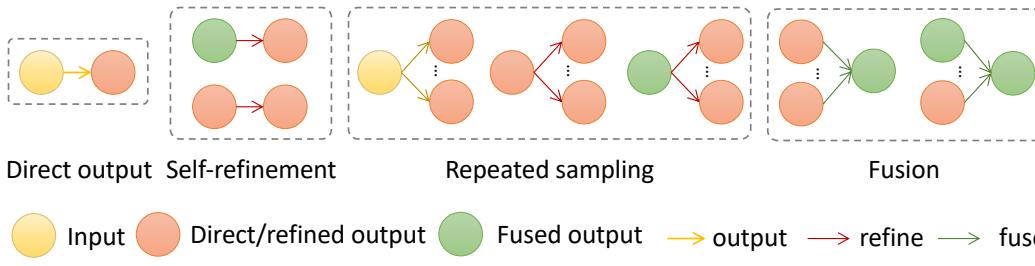
751

752

753

754

755

756 **A APPENDIX**757 **A.1 TEST-TIME SCALING: MODES AND BUILDING BLOCKS**773 Figure 7: Test-Time Scaling Paradigms: (a–c) Fixed topologies with single-model assignments, and
774 (d) dynamic scaling with diverse models.
775779 Figure 8: Test-time scaling primitives.
780

781 Fig. 7 shows four paradigms: (a) parallel via repeated sampling + aggregation; (b) sequential via
782 iterative self-refinement; (c) fixed hybrids that fuse both; and (d) our dynamic setting that searches
783 architectures and assigns heterogeneous models under a compute budget. Fig. 8 reduces these to three
784 primitives—repeated sampling, fusion, and self-refinement, and frames dynamic TTS as a multi-LLM
785 collaboration graph with role-assigned nodes (e.g., fuser, assistant), directed information flow, and a
786 terminal aggregator.

787 **A.2 INFERENCE ON MULTI-LLM COLLABORATION GRAPH FOR TTS ALGORITHM**

788 Algo 2 executes the collaboration graph G in topological order: Successors of the input node generate
789 initial outputs; nodes activate when in-degree reaches zero and run by role—*fuser* (aggregate) or
790 *assistant* (refine)—propagating results forward. The unique sink node produces the final answer.

801 **A.3 PILOT EXPERIMENTS FOR EXISTING TTS**

802 Table 4 summarizes the task-specific preferences for topologies and model combinations. In MATH,
803 the hybrid graph topology combined with a mixture of 3B models yields the best accuracy. In contrast,
804 MMLU shows a clear preference for pure parallel graph topologies and the use of a single 8B model.
805 These results indicate that different tasks exhibit distinct preferences for architectural patterns and
806 model configurations.

810	Algorithm 2 Inference on Multi-LLM Collaboration Graph for TTS
811	
812	Require: Query q , graph $G = (\mathcal{V}, \mathcal{E}, \mathbf{R}, \mathbf{M})$ (DAG with a unique sink v_{sink})
813	Ensure: Final output o
814	1: Initialize $d_{\text{in}}(v), d_{\text{out}}(v)$ and buffers $\mathcal{O}(v) \leftarrow \emptyset$ for all $v \in \mathcal{V}$
815	2: $\mathcal{Q} \leftarrow \{v \in \mathcal{V} \mid d_{\text{in}}(v) = 0\}$ ▷ topological frontier
816	3: while $\mathcal{Q} \neq \emptyset$ do
817	4: Remove a node v from \mathcal{Q}
818	5: $\mathcal{C} \leftarrow \bigcup_{u \in \text{pred}(v)} \mathcal{O}(u)$
819	6: if $r_v = \text{fuser}$ then
820	7: $\mathcal{O}(v) \leftarrow f_{\text{fuse}}(q, \mathcal{C}, M_v)$
821	8: else ▷ $r_v = \text{assistant}$
822	9: $\mathcal{O}(v) \leftarrow f_{\text{refine}}(q, \mathcal{C}, M_v)$
823	10: end if
824	11: for all $w \in \text{succ}(v)$ do
825	12: $d_{\text{in}}(w) \leftarrow d_{\text{in}}(w) - 1$; if $d_{\text{in}}(w) = 0$ then add w to \mathcal{Q}
826	13: end for
827	14: end while
828	15: return $o \leftarrow \mathcal{O}(v_{\text{sink}})$ ▷ unique sink with $d_{\text{out}}(v_{\text{sink}}) = 0$

Table 4: Accuracy (ACC, %) across different topologies and model combinations on MATH and MMLU. LLaMA-3 models are used by default. Results are averaged over 10 random graphs.

Dataset	Model Comb.	Sequential	Parallel	Hybrid
MATH	1B Mix	37	41	44
	3B Mix	58	56	59
	8B \times 1	49	49	49
MMLU	1B Mix	35	43	30
	3B Mix	49	51	41
	8B \times 1	64	64	64

A.4 CALCULATION OF THE NUMBER OF DAGS

Given n nodes, the spectrum of possible configurations ranges from *totally indistinguishable* nodes to *totally distinguishable* nodes. The number of directed acyclic graphs (DAGs) lies within this range: the indistinguishable case corresponds to counting the number of *non-isomorphic DAGs* (where isomorphic topologies are counted only once), while the distinguishable case corresponds to counting the number of *labeled DAGs*.

Indistinguishable nodes: Number of non-isomorphic DAGs. A closed-form characterization can be derived from the fact that every DAG admits at least one topological ordering. If we fix the order $1 < 2 < \dots < n$, then only edges of the form $i \rightarrow j$ with $i < j$ are permitted. This yields $\frac{n(n-1)}{2}$ possible edges, and thus $2^{\binom{n}{2}}$ candidate adjacency matrices, all acyclic by construction. However, many of these candidates are *isomorphic*. To correctly count non-isomorphic DAGs, each candidate graph is reduced to a *canonical labeling*, and graphs with the same canonical form are merged. To reduce the cost of considering all permutations, nodes are grouped by their in-degree and out-degree, and permutations are applied only within these groups, which substantially reduces computational complexity. The Python implementation in Listing 1 computes the number of non-isomorphic DAGs.

Distinguishable nodes: Number of labeled DAGs. When nodes are labeled, the total number of DAGs can be computed using a well-known recurrence relation: $A(0) = 1$, $A(n) = \sum_{k=1}^n (-1)^{k+1} \binom{n}{k} 2^{k(n-k)} A(n-k)$. Here, $A(n)$ denotes the number of labeled DAGs on n nodes. This formulation accounts for all possible edge configurations under node labeling and ensures that only acyclic structures are counted. The corresponding Python implementation is provided in the Listing 2.

```

864
865 import itertools as it
866
867 def upper_adj_bitmasks(n, bits):
868     rows = [0]*n
869     for i in range(n):
870         for j in range(i+1, n):
871             if bits & 1: rows[i] |= (1<<j)
872             bits >= 1
873     return rows
874
875 def indegree_outdegree(rows):
876     n = len(rows)
877     outdeg = [r.bit_count() for r in rows]
878     indeg = [0]*n
879     for i,r in enumerate(rows):
880         while r:
881             j = (r&-r).bit_length()-1
882             indeg[j] += 1
883             r &= r-1
884     return tuple(zip(outdeg, indeg))
885
886 def permute_rows(rows, perm):
887     inv = [0]*len(perm)
888     for i,p in enumerate(perm): inv[p]=i
889     return [sum(1<<inv[j] for j in range(len(rows)) if (rows[perm[i]]>>j)&1) for i in range(len(rows))]
890
891 def canonical_form_rows(rows):
892     degs = indegree_outdegree(rows)
893     groups = {}
894     for i,deg in enumerate(degs): groups.setdefault(deg,[]).append(i)
895     perms = [it.permutations(g) for g in groups.values()]
896     best = None
897     for p in it.product(*perms):
898         perm = [x for part in p for x in part]
899         newrows = permute_rows(rows, perm)
900         key = ''.join('1' if (newrows[i]>>j)&1 else '0' for i in range(len(rows)) for j in
901             range(len(rows)))
902         if best is None or key < best: best = key
903     return best
904
905 def count_unlabeled_dags(n):
906     m = n*(n-1)//2
907     return len({canonical_form_rows(upper_adj_bitmasks(n,b)) for b in range(1<<m)})
908
909 for n in range(1,8): print(n, count_unlabeled_dags(n))
910
911 # Results (number of non-isomorphic DAGs)
912 # n=1: 1
913 # n=2: 2
914 # n=3: 8
915 # n=4: 54
916 # n=5: 762
917 # n=6: 21,542
918 # n=7: 1,259,209
919
920

```

Listing 1: Python code computes the number of non-isomorphic DAGs

```

921
922
923 import math
924 from functools import lru_cache
925
926 @lru_cache(None)
927 def labeled_dags(n):
928     if n==0:
929         return 1
930     s=0
931     for k in range(1,n+1):
932         s += (-1)**(k+1) * math.comb(n,k) * (2**((k*(n-k))) * labeled_dags(n-k))
933     return s
934
935 for n in range(1,9):
936     print(n, labeled_dags(n))
937
938 # n=8: 783,702,329,343
939
940

```

Listing 2: Python code computes the number of labeled DAGs

918
919

A.5 TASKS, DATASETS, AND MODELS

920
921
922
923
924
925
926

MATH dataset (Hendrycks et al., 2021b) The MATH dataset is used for *arithmetic reasoning* evaluation tasks, consisting of 12,500 competition-level problems from high school contests. Each problem is accompanied by a step-by-step solution, which supports evaluation of final-answer *accuracy* as the primary metric. Serving as a rigorous benchmark for symbolic manipulation and multi-step mathematical reasoning, MATH is widely used to test the limits of language models. In our experiments, we sample 750 problems for training and 100 for testing, with average prompt and generation lengths of 202 and 275 tokens, respectively.

927
928
929
930
931
932
933
934

MMLU dataset (Hendrycks et al., 2021a) The Massive Multitask Language Understanding (MMLU) dataset is a comprehensive benchmark for evaluating *knowledge and general reasoning tasks* across 57 tasks spanning humanities, social sciences, STEM, and professional fields, with questions ranging from elementary to advanced difficulty. Each task is presented in a multiple choice format and *precision* is used as a standard evaluation metric. MMLU has become a widely adopted benchmark for assessing the general knowledge and cross-domain adaptability of large language models. In our experiments, we randomly sampled 285 questions for training and 100 for testing, with average prompt and generation lengths of 213 and 230 tokens, respectively.

935
936
937
938
939
940
941
942

HumanEval dataset (Chen et al., 2021) The HumanEval dataset is a benchmark designed to assess *code generation and synthesis* capabilities of language models. It contains 164 Python programming problems, each consisting of a function signature, natural language docstring, and unit tests for automatic evaluation. The primary metric is *passk*, which measures the probability that at least one of k generated solutions passes all hidden test cases. HumanEval has become a standard benchmark for evaluating the ability of models to translate natural language descriptions into correct, executable code. In our experiments, we randomly sample 128 instances for training and others for testing, with average prompt and generation lengths of 181 and 104 tokens, respectively.

943
944
945
946
947

Language models adopted We evaluate our method using language models of varying scales from the LLaMA-3 family (Grattafiori et al., 2024) and Gemma family Team (2025). To promote diversity in generations and enhance coverage during parallel sampling, we set the decoding temperature to 0.9 while retaining all other hyperparameters at their default values. All experiments are conducted on an NVIDIA A800 GPU with 80GB HBM3 memory to ensure a consistent runtime environment.

948
949

A.6 DETAILED INSIGHTS

950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Insight 1: Task-specific preferences for model family and size combinations. We conduct preliminary tests across various combinations of model families and sizes on the MATH and MMLU datasets to explore the task-specific model preferences. Fig. 3(a–b) compares performance with various family combinations. The results show that allocating the budget to multiple instances of the strongest model is more effective than mixing families. For example, within the 3B space of LLaMA and Gemma on MMLU, LLaMA outperforms Gemma; thus, LLaMA $\times 2$ surpasses both Gemma+LLaMA and Gemma $\times 2$. This is because test-time scaling effectiveness is driven by the capability of base models, favoring replication of stronger ones. Fig. 3 (c–d) reports 10-run average performance with 90% confidence intervals under the same limited FLOPs budget, considering LLaMA 1B, 3B, and 8B, to explore whether limited budgets should be allocated to more small models or fewer large models (noting that with an unlimited budget, large models are always optimal). Reasoning tasks (MATH) favor mixtures of smaller models (3B $\times 3$), while knowledge tasks (MMLU) prefer larger models (8B $\times 1$). The trade-off depends on marginal performance gains: on MATH, LLaMA 3B improves by 7 points (from 39% to 46%) when scaled from one to two instances, showing the potential to surpass a single 8B (49%) with more instances, thus favoring small-model mixtures; on MMLU, the gain (41% to 45%) is modest, making larger models (8B $\times 1$ with 64%) preferred. These are attributed to (i) task demands: reasoning tasks benefit from smaller-models ensembles because multiple models provide more opportunities to refine the answers with multi-step reasoning, whereas knowledge tasks need broad parametric knowledge coverage, better supported by large models; and (ii) task difficulty: easier tasks yield larger gains from small models, as they can already solve such tasks well and scaling further improves performance, whereas harder tasks are challenging for small models and demand large ones. Consequently, **tasks favor replication of the strongest model family, with small-model ensembles preferred only when their incremental gains are substantial.**

972 **Insight 2: Parallel and sequential scaling saturate and decline beyond an optimal budget.** Fig. 4
 973 (a–b) shows that both parallel and sequential scaling on various datasets follow a non-monotonic
 974 pattern. Increasing the number of parallel nodes (width) or sequential nodes (depth) initially improves
 975 performance, but beyond a task-specific optimal point, performance plateaus and eventually declines.
 976 For example, peak performance is achieved at 8 parallel nodes or 8 sequential nodes on MATH, after
 977 which additional nodes yield no consistent gains. This performance degradation arises from different
 978 sources. In parallel scaling, performance converges once a sufficient width ensures dominance of
 979 correct answers, so additional nodes provide little benefit. Excessive outputs from preceding nodes
 980 lengthen input contexts, straining long-context capacity and degrading performance. In sequential
 981 scaling, performance improves while refinement benefits exceed potential propagated errors; once
 982 the refinement capacity is reached, additional steps mainly propagate and amplify errors, leading
 983 to performance degradation. In summary, **both width and depth exhibit task-dependent optima,**
 984 **beyond which extra computation provides negative returns.**

985 **Insight 3: Interdependence between graph width and depth.** Fig. 4 (c) shows MATH perfor-
 986 mance under varying width (parallel nodes) and depth (sequential nodes) combinations. We adopt
 987 a fixed architecture that first performs parallel sampling of w nodes from the input node, followed
 988 by sequential self-refinement of d nodes for each sampled branch, using the LLaMA-1B model
 989 uniformly across all nodes. To examine the trade-off between width and depth, we impose the
 990 constraint $wd \leq 24$. We observe: (i) accuracy at the optimal depth rises then falls as width increases
 991 (e.g., 38 at width 1, 47 at width 3, 45 at width 4), consistent with Insight 2; (ii) the optimal depth
 992 decreases with larger widths (e.g., 8 at width 1 vs. 4 at width 3), as initially wider structures enhance
 993 refinement capacity and accelerate convergence. Increasing depth yields the same pattern on width:
 994 accuracy follows a non-monotonic trend, and the optimal width decreases because deeper refinement
 995 allows correct answers to dominate earlier, shifting the optimal width point forward. In summary,
 996 **graph width and depth are interdependent, with growth in one dimension shifting the optimal**
 997 **point of the other.**

998 A.7 $f_{\text{COST}}(G, T)$ WITH THE FLOPs COMPUTE METRIC

1000 We adopt a simplified but standard FLOPs accounting scheme, where one multiply-add counts as
 1001 2 FLOPs, and causal self-attention reuses cached keys/values during decoding. Consider a model
 1002 at node v with non-embedding model parameters M , hidden size D , and layers L . Let N_p and N_d
 1003 denote the input (prefill) and output (decode) lengths for node v on task $T = (\bar{N}_p^T, \bar{N}_d^T)$ where \bar{N}_p^T
 1004 and \bar{N}_d^T are the average length of input and output, respectively.

1006 **Token-wise projection/MLP FLOPs.** Each non-embedding weight is applied once per token
 1007 through a matrix multiplication followed by addition, yielding approximately $2M$ FLOPs per token.
 1008 Aggregating across sequence lengths, we obtain $2MN_p$ for prefill, $2MN_d$ for decode.

1009 **Attention FLOPs.** For a single layer and a single head, the number of attention score dot-products
 1010 (queries \times keys) is:

- 1012 • **Prefill (length N_p):** causal masking yields a triangular count

$$1014 \sum_{i=1}^{N_p} i = \frac{N_p(N_p+1)}{2}.$$

- 1017 • **Decode (length N_d):** token t attends to $N_p + t$ tokens, giving

$$1018 \sum_{t=1}^{N_d} (N_p + t) = N_d N_p + \frac{N_d(N_d+1)}{2} = \frac{N_d(2N_p + N_d + 1)}{2}.$$

1021 Since each attention requires both query-key dot products and value applications, the total multiply-
 1022 adds are $4LD$ FLOPs per token. Summing across D hidden size and L layers gives

$$1024 \text{FLOPs}_{\text{attn, prefill}} = 2LD N_p(N_p + 1), \quad \text{FLOPs}_{\text{attn, decode}} = 2LD N_d(2N_p + N_d + 1).$$

1025 These formulas combine constant factors from scoring, softmax, and value multiplication, while
 preserving quadratic and linear scaling in N_p and N_d .

1026 **Node-level cost.** Summing the projection/MLP and attention costs yields
 1027

$$f_{\text{cost_prefill}}(N_p, M) = 2MN_p + 2LD N_p(N_p + 1),$$

$$f_{\text{cost_decode}}(N_p, N_d, M) = 2MN_d + 2LD N_d(2N_p + N_d + 1),$$

1030 so that
 1031

$$f_{\text{cost}}(N_p, N_d, M) = f_{\text{cost_prefill}}(N_p, M) + f_{\text{cost_decode}}(N_p, N_d, M).$$

1033 **Effective input length in a collaboration graph.** In a multi-LLM collaboration graph $G =$
 1034 $(\mathcal{V}, \mathcal{E}, \mathbf{R}, \mathbf{M})$, the effective prefill length for node v_i depends on the task average input and the
 1035 number of predecessor outputs concatenated to its input. With $T = (\bar{N}_p^T, \bar{N}_d^T)$ and in-degree $d(v_i)$,
 1036 we set

$$N_p^{v_i} = \bar{N}_p^T + d(v_i) \bar{N}_d^T, \quad N_d^{v_i} = \bar{N}_d^T.$$

1039 **Graph-level cost.** Summing node costs across the graph,
 1040

$$f_{\text{cost}}(G, T) = \sum_{v_i \in \mathcal{V}} \left[f_{\text{cost_prefill}}(N_p^{v_i}, M_i) + f_{\text{cost_decode}}(N_p^{v_i}, N_d^{v_i}, M_i) \right].$$

1043 Substituting node-level cost formulas,
 1044

$$f_{\text{cost}}(G, T) = \sum_{v_i \in \mathcal{V}} \left[2M_i N_p^{v_i} + 2L_i D_i N_p^{v_i} (N_p^{v_i} + 1) + 2M_i N_d^{v_i} + 2L_i D_i N_d^{v_i} (2N_p^{v_i} + N_d^{v_i} + 1) \right].$$

1047 **Simplified form.** Let $A = \bar{N}_p^T$, $B = \bar{N}_d^T$, and $d_i = d(v_i)$. Then
 1048

$$f_{\text{cost}}(G, T) = \sum_{v_i \in \mathcal{V}} \left[2M_i(A+d_iB) + 2L_i D_i(A+d_iB)(A+d_iB+1) + 2M_i B + 2L_i D_i B (2(A+d_iB)+B+1) \right].$$

1052 Expanding and grouping by d_i yields a quadratic form
 1053

$$f_{\text{cost}}(G, T) = \sum_{v_i \in \mathcal{V}} [\alpha_i d_i^2 + \beta_i d_i + \gamma_i],$$

1056 with coefficients
 1057

$$\alpha_i = 2L_i D_i B^2, \quad \beta_i = 2M_i B + 2L_i D_i B (2A+2B+1), \quad \gamma_i = 2(M_i + L_i D_i)(A+B) + 2L_i D_i (A+B)^2.$$

1059 Please remark that
 1060

- 1061 (i) **Verifier/top- k filtering.** If a fuser applies top- k selection on predecessor outputs, replace
 1062 $d(v_i)$ by $\min\{d(v_i), k\}$ in $N_p^{v_i}$.
- 1063 (ii) **Alternative metrics.** For monetary cost, replace FLOPs-based node terms with calibrated
 1064 surrogates $\{f_{\text{cost_prefill}}, f_{\text{cost_decode}}\}$ per model; graph aggregation remains identical.
- 1065 (iii) **Budget normalization.** With unit budget defined as one inference of the smallest model,
 1066 the normalized budget is

$$B = f_{\text{budget}}(G, T), \quad f_{\text{cost}}(G, T) = B \cdot f_{\text{cost}}(G_{\text{smallest}}, T).$$

1070 A.8 DETAILED BUDGET DEFINITION

1071 Different model sizes and graph topologies incur substantially different computational costs: larger
 1072 models introduce higher inference overhead, while denser topologies require more interactions. These
 1073 differences make it challenging to establish a unified metric for budget measurement. To address
 1074 this, we propose a *standardized budget definition* that enables comparability across model scales and
 1075 topology complexities. For example, this framework allows us to equate the budget cost of “more
 1076 sequential/parallel nodes with smaller models” to that of “fewer nodes with larger models.”
 1077

1078 Formally, let the average input and output lengths of a task be denoted by $T = (\bar{N}_p^T, \bar{N}_d^T)$. The
 1079 total computational cost of a collaboration graph G on task T is defined as $f_{\text{cost}}(G, T)$, and the
 corresponding normalized budget is $B = f_{\text{budget}}(G, T)$. The cost function f_{cost} can be instantiated

according to user preference to reflect different measures, such as FLOPs, wall-clock runtime, or monetary cost. To establish a common unit of comparison, we define the budget of executing one full inference with the smallest model in the pool as a single unit, i.e.,

$$f_{\text{budget}}(G_{\text{smallest}}, T) = 1,$$

where G_{smallest} denotes a graph consisting of only one node of the smallest model. Consequently, the budget value of any graph G is equivalent to the number of unit costs required, namely,

$$B = \frac{f_{\text{cost}}(G, T)}{f_{\text{cost}}(G_{\text{smallest}}, T)}.$$

where it means TTS graph with budget B is equal to run B -time single-node inference.

We define the computation cost of a multi-LLM collaboration graph G on a task $T = (\bar{N}_p^T, \bar{N}_d^T)$ in terms of FLOPs, which we adopt as the primary cost metric in this work. The corresponding cost function is stated in the theory below. The proof is in Appendix A.7.

FLOPs Cost Function: For each node $v_i \in G$, the cost depends on the model size and its effective input/output lengths, leading to a quadratic dependence on the node in-degree $d(v_i)$. Summing across all nodes, the total cost can be expressed as

$$f_{\text{cost}}(G, T) = \sum_{v_i \in \mathcal{V}} [\alpha_i d(v_i)^2 + \beta_i d(v_i) + \gamma_i],$$

where coefficients $\alpha_i, \beta_i, \gamma_i$ capture the contributions of model dimension, depth, and average task input/output lengths. Detailed derivations of $\alpha_i, \beta_i, \gamma_i$ are provided in Appendix A.7.

A.9 DETAILED OPTIMIZATION WITH JOINT OBJECTIVE

Our optimization objective is not limited to single-performance criteria; in many cases, it is necessary to identify graph structures that satisfy composite objectives, such as achieving both low latency and high accuracy. To this end, the proposed **Agent-REINFORCE** framework incorporates diverse feedback mechanisms obtained from the Environment to accommodate different optimization goals. For instance, under the joint objective of low latency and high performance, we incorporate the inference time of each candidate graph as an additional feedback signal to the Agent. Moreover, we can explicitly provide the Agent with prior knowledge through instructions that describe the relationship between graph structures and latency, for example, that latency is more sensitive to the number of nodes and the graph width, thereby accelerating the search for composite-optimal graphs. All feedback, including inference time, is stored in the Archive, enabling the LLM to leverage historical information to assess the marginal effect of latency reduction on performance, and thus achieve a principled trade-off between efficiency and accuracy.

A.10 DETAILED DOLLAR COST-BASED BUDGET

Table 5 is the API cost information for each model from Together AI and Compare Ai Models. We do not convert it in the same manner as above, as the dollar serves as a natural unit of price. Note that LLaMA-3.2 1B, Gemma-3 1B, and Gemma-1.1 2B are not quoted in Together AI or Compare Ai Models; for convenient consistency in our comparison, we adopt estimated reference values of 0.02, 0.02, and 0.06, respectively, for these models.

Table 5: Inference costs per 1M tokens for models from Together AI and Compare Ai Models.

Model Name	Parameters	Inference Cost (per 1M tokens)
LLaMA-3.1 70B	70B	\$0.88
LLaMA-3.1 8B	8B	\$0.18
LLaMA-3.2 3B	3B	\$0.06
Gemma-1.1 7B	7B	\$0.27

1134
1135

A.11 DETAILED REINFORCE ALGORITHM

1136
1137
1138
1139
1140

A gradient-based algorithm can be employed to solve the optimization problem. Since the search space of collaboration graphs is prohibitively large, exhaustive enumeration of all possible configurations is infeasible. Instead, we parameterize the distribution of graphs as $\hat{\mathbf{G}} = \mathbb{P}_{\theta, \pi, \psi}$, where θ encodes the probabilities of edge existence, π encodes the probabilities of role assignments, and ψ encodes the probabilities of model selections.

1141
1142
1143
1144
1145
1146
1147

Given a budget B , we set the number of nodes n to the maximum number of smallest models that the budget can cover. A straightforward approach to defining a parameterized distribution over DAGs with fixed n nodes, edges, models, and roles is as follows. We introduce real-valued parameters: $\theta = [\theta_{ij}]$, $p_\theta(\theta_{ij}) = \sigma(\theta_{ij})$ for edge probabilities; $\pi = [\pi_1, \pi_2, \dots, \pi_n]$ with role probabilities $p_\pi(r_i) = \text{softmax}(\pi_i)$; and $\psi = [\psi_1, \psi_2, \dots, \psi_n]$ with model probabilities $p_\psi(m_i) = \text{softmax}(\psi_i)$. By iteratively refining this distribution, the algorithm progressively biases sampling toward low-loss collaboration graphs.

1148
1149
1150
1151

During training, we adopt the REINFORCE algorithm (Williams, 1992), a classical policy-gradient method that provides unbiased estimates of the utility gradient. It follows a sampling–gradient–update pipeline: candidates are sampled from the distribution, gradients are computed by evaluating on the training set, and parameters are updated via gradient ascent.

1152
1153

Monte Carlo Sampling. The probability of sampling a graph $G \sim \mathbb{P}_{\theta, \pi, \psi}$ is decomposed as

1154
1155
1156

$$p_{\theta, \pi, \psi} = p(\psi) \cdot p(\theta | \psi) \cdot p(\pi | \theta, \psi) = p(\psi) \cdot p(\theta | \psi) \cdot p(\pi | \theta),$$

where

1157
1158
1159

$$p(\psi) = \prod_{i=1}^n p_\psi(\psi_i),$$

1160
1161
1162

$$p(\theta | \psi) = \begin{cases} \prod_{i,j} p_\theta(\theta_{ij}), & \text{if the resulting graph is a DAG and } f_{\text{budget}}(G, T) \leq B, \\ 0, & \text{otherwise,} \end{cases},$$

1163
1164

$$p(\pi | \theta) = \prod_{i=1}^n p_\pi(\alpha^{|d(v_i)|} \pi_i), \quad \alpha \in [1, 1.1],$$

1165
1166
1167

where α is a constant that encourages the fusion role when the in-degree of v_i is high. This formulation provides a principled probabilistic parameterization of collaboration graphs, enabling efficient sampling and optimization within the REINFORCE framework.

1168
1169

Gradient Estimation. The gradient is calculated by:

1170
1171
1172
1173

$$\begin{aligned} \nabla_{\theta, \pi, \psi} \mathbb{E}_{G' \sim \mathbb{P}_{\theta, \pi, \psi}} [u_T(G')] &= \mathbb{E}_{G' \sim \mathbb{P}_{\theta, \pi, \psi}} [u_T(G') \nabla_{\theta, \pi, \psi} \log p_{\theta, \pi, \psi}(G')] \\ &\approx \frac{1}{N} \sum_{i=1}^N u_T(G^{(i)}) \nabla_{\theta, \pi, \psi} \log p_{\theta, \pi, \psi}(G^{(i)}), \end{aligned} \tag{5}$$

1174
1175
1176

where $G^{(i)}$ is the i -th candidate graph independently sampled from $\mathbb{P}_{\theta, \pi, \psi}$, and N is the number of Monte Carlo samples.

1177
1178

Parameter Updates. The distribution parameters are then updated with gradient ascent:

1179
1180
1181
1182
1183
1184
1185
1186
1187

$$\begin{aligned} \theta &\leftarrow \theta + \frac{\ell}{N} \sum_{i=1}^N u_T(G^{(i)}) \nabla_\theta \log p_\theta(G^{(i)}), \\ \pi &\leftarrow \pi + \frac{\ell}{N} \sum_{i=1}^N u_T(G^{(i)}) \nabla_\pi \log p_\pi(G^{(i)}), \\ \psi &\leftarrow \psi + \frac{\ell}{N} \sum_{i=1}^N u_T(G^{(i)}) \nabla_\psi \log p_\psi(G^{(i)}), \end{aligned} \tag{6}$$

where ℓ is the learning rate.

1188 **Algorithm 3** REINFORCE: Optimization of the Task-Specific Multi-LLM Collaboration Graph

1189 **Require:** Task T , training data D_{train} , budget B , learning rate ℓ , batch size N

1190 **Ensure:** Optimized distribution $\mathbb{P}_{\theta, \pi, \psi}$ and final graph G^*

1191 1: Initialize parameters θ (edge logits), π (role logits), ψ (model logits)

1192 2: Define distributions: $p_\theta(e_{ij}) = \sigma(\theta_{ij})$, $p_\pi(r_i) = \text{softmax}(\pi_i)$, $p_\psi(M_i) = \text{softmax}(\psi_i)$

1193 3: **while** stopping criterion is not met **do**

1194 4: $\mathcal{B} \leftarrow \emptyset$ ▷ initialize mini-batch of sampled graphs

1195 5: **for** $i = 1$ to N **do**

1196 6: $G^{(i)} \sim \mathbb{P}_{\theta, \pi, \psi}$ ▷ sample edges, roles, and models

1197 7: **if** $f_{\text{budget}}(G^{(i)}, T) > B$ **then**

1198 8: **continue** ▷ reject graph if budget exceeded

1199 9: **end if**

1200 10: $u_i \leftarrow u_T(G^{(i)}, D_{\text{train}})$ ▷ evaluate utility

1201 11: $\mathcal{B} \leftarrow \mathcal{B} \cup \{(G^{(i)}, u_i)\}$

1202 12: **end for**

1203 13: $g_\theta \leftarrow \frac{1}{|\mathcal{B}|} \sum_{(G, u) \in \mathcal{B}} u \nabla_\theta \log p_\theta(G)$

1204 14: $g_\pi \leftarrow \frac{1}{|\mathcal{B}|} \sum_{(G, u) \in \mathcal{B}} u \nabla_\pi \log p_\pi(G)$

1205 15: $g_\psi \leftarrow \frac{1}{|\mathcal{B}|} \sum_{(G, u) \in \mathcal{B}} u \nabla_\psi \log p_\psi(G)$

1206 16: $\theta \leftarrow \theta + \ell g_\theta; \quad \pi \leftarrow \pi + \ell g_\pi; \quad \psi \leftarrow \psi + \ell g_\psi$ ▷ gradient ascent updates

1207 17: **end while**

1208 18: Construct G^* by MAP decoding: include edge e_{ij} if $p_\theta(e_{ij}) \geq \tau_e$; set role $r_i \leftarrow \arg \max_r p_\pi(r_i=r)$; set model $M_i \leftarrow \arg \max_m p_\psi(M_i=m)$ ▷ deterministic final graph

1209 19: Ensure $f_{\text{budget}}(G^*, T) \leq B$ (greedy prune if needed)

1210 20: **return** $\mathbb{P}_{\theta, \pi, \psi}$ and G^*

1214

1215

1216

1217

1218 *Optimization loop.* REINFORCE alternates between three phases: (i) *sampling*, where candidate
1219 graphs $G^{(i)}$ are drawn from the current distribution; (ii) *evaluation*, where utilities $u_T(G^{(i)})$ are
1220 computed on the training set; and (iii) *update*, where parameters θ, π, ψ are refined by gradient ascent.
1221 This process repeats until convergence or when the budget is exhausted.

1222 *Final graph selection.* After optimization, the learned distribution $\mathbb{P}_{\theta, \pi, \psi}$ is used to construct a
1223 deterministic collaboration graph G^* . Specifically, we decode by maximum a posteriori (MAP):
1224 edges are included if $p_\theta(e_{ij}) \geq \tau_e$, roles are assigned as $r_i = \arg \max_r p_\pi(r_i=r)$, and models
1225 are chosen as $M_i = \arg \max_m p_\psi(M_i=m)$. The final graph is pruned if necessary to ensure
1226 $f_{\text{budget}}(G^*, T) \leq B$. The complete optimization procedure is summarized in Algorithm 3.

1227

1228

1229

1230 **A.12 PROMPT DESIGN IN AGENT-REINFORCE**

1231

1232

1233 We design structured prompts to guide the LLM search agent in initializing and updating the
1234 collaboration graph. Each prompt provides task context, distilled insights, and design constraints
1235 to support systematic reasoning and planning. For model family and size initialization, the agent
1236 ranks candidate families and sizes under budget constraints, guided by single-model performance and
1237 preliminary evaluations. This establishes a principled starting point for subsequent exploration. For
1238 model instance count initialization, the agent specifies concrete model combinations with family, size,
1239 and instance counts. These candidates are then tested in the environment, and the feedback highlights
1240 the most promising allocations. For graph updates, the agent leverages Insight 2, Insight 3, and
1241 feedback from the previous round to refine edge distributions, adjust connectivity, and balance budget
1242 allocation, thereby improving the overall structure and moving toward compute-optimal performance.

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

LLM Prompt for Model Family and Size Preference Initialization

Your current task is model family and size initialization: you must provide the model family and size preferences for a test-time collaboration graph that will later be optimized into a DAG. An edge indicates that the previous model's output is the next agent's input.

===== TASK =====

1. Examine the candidate model combinations listed at the end of this message.
2. Return a JSON dictionary of model family and size ranking.
No extra text, explanations, or formatting—just the dictionary.

===== INSIGHTS =====

(1) Different tasks exhibit a clear preference for specific model combinations. Under budget constraints, it is necessary to identify the preferred model family and model size for each task.

===== DATA =====

Single-model accuracy on {task} (higher is better):
{model_profile} or {pre_test_accuracy}

Random-graph pre-experiment results (including small models running once or twice and large models running once):
{combinations_accuracy}

===== CANDIDATES =====

Choose only one from this list (each already fits the budget):
{model_combinations}

=====

Respond with the dictionary only. Example format:

LLM Prompt for Model Instance Counts Initialization

Your current task is model instance count initialization: you must provide the model instances for a test-time collaboration graph that will later be optimized into a DAG. We will test them in the Environment and select the best one according to the feedback. An edge indicates that the previous model's output is the next agent's input.

===== TASK =====

1. Examine the model family and size preferences listed at the end of this message.
2. Return a JSON dictionary of model combinations with model family, size, and instance counts.
No extra text, explanations, or formatting—just the dictionary.

===== INSIGHTS =====

(1) Different tasks exhibit a clear preference for specific model combinations. Under budget constraints, it is necessary to identify the preferred model family and size for each task.

===== PREFERENCE =====

Model family and size preferences:
{model_family_size_preference}

===== DATA =====

Single-model accuracy on {task} (higher is better):
{model_profile} or {pre_test_accuracy}

=====

Respond with the dictionary only. Example format:

1296
1297

LLM Prompt for Graph Updates

1298
1299
1300

You are a professional Multi-LLM system optimizer. Your task is an iterative self-RL refinement of a multi-LLM system that solves the {task} dataset.

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313**TASK CONTEXT**

- A Multi-LLM system is represented as a directed acyclic graph (DAG). Each node = one language-model agent. Each directed edge = “the source agent’s output is appended to the destination agent’s context”.
- For the current budget, we have a fixed model-selection requirement: {model_selection}
- You will see the last-round graph, its batch accuracy, and the full table of edge-selection probabilities.
- Your job: propose the next-round graph and the updated probability table, applying RL-style probability nudges.
- The graph you receive in this iteration has been expanded outward from the FinalDecision node, gradually increasing in both depth and breadth. The edge probabilities start with all edge probabilities set to zero, and through multiple sampling rounds, probabilities are raised only for edges that prove useful.

1314
1315
1316
1317**HISTORICAL SNAPSHOT**

Last-round accuracy ({task}-dev batch): {accuracy}
 Last-round graph: {prev_graph}
 Last-round edge-probabilities: {edge_probs}

1318
1319
1320
1321
1322
1323
1324
1325
1326
1327**OPTIMIZATION RULES**

- R-1 Model counts must exactly match model selection after you assign models to all nodes.
- R-2 A node’s role is either “assistant” (generates a new answer) or “fuser” (reviews & picks the best).
- R-3 Increase an edge probability only if it was sampled in the last-round graph AND proved useful. Always start expansion from FinalDecision’s incoming edges, then its parents’ incoming edges, and so on. Increase edges used by high-accuracy graphs, decrease edges from poor graphs.
- R-4 Keep the graph acyclic; avoid too much in-degree to prevent context explosion; avoid very deep chains to prevent “answer corruption”.

1328
1329
1330
1331
1332
1333
1334
1335
1336**DATA AND INSIGHT**

- Model accuracy on {task} (single-agent): {model_profile}
- The optimal depth is conditioned by current width, and vice-versa: wider graphs shift the depth sweet-spot downward, while deeper graphs reduce the optimal width.
- You should expand the architecture outward from the FinalDecision node, gradually adding depth and width.
- Different tasks favor different graph topologies; optimize toward the topology style that this task prefers.

1337
1338
1339
1340
1341**WHAT TO RETURN**

- graph — the next-round DAG, same schema as last-round graph.
- edge probs — the updated probability table, same schema and order as last-round edge-probabilities.

1342
1343
1344
1345
1346
1347
1348
1349**Example output format (do NOT add comments):**

Graph: {graph_example}
 Edge-probabilities: {node_example}

Now think step-by-step with the rules and insights above, and return the Graph and Edge-probabilities two blocks only.

1350
1351

A.13 BASELINES

1352
1353
1354
1355

We compare three baseline categories: LLM-based (MaaO (Guo et al., 2024) and TextGrad (Yuksekgonul et al., 2024)), gradient-based (GPTSwarm (Zhuge et al., 2024)), and traditional methods (Bayesian Optimization (Shahriari et al., 2015) and Random Search). Then, we detail their adaptation.

1356
1357
1358
1359
1360
1361
1362
1363
1364
1365

TextGrad (Yuksekgonul et al., 2024) performs automatic “differentiation” through text, where an LLM generates a natural language “gradient” that guides updates to optimizable variables based on predictions and loss values. In the context of compute-optimal collaboration graph optimization for TTS, the probabilistic graph serves as the optimizable variable. Candidate graphs are sampled from the current distribution and evaluated on a batch of training data to compute the loss; the LLM then provides textual guidelines indicating how the graph should be refined given the observed loss and inputs. This process is repeated iteratively until convergence or a predefined stopping criterion is met. During initialization, TextGrad selects the maximal model combination that encompasses all potential candidates (i.e., allocating nodes to every feasible mixture of available models within the budget). Compared with our method, TextGrad lacks task-specific initialization and test-time scaling knowledge, making it a less efficient and less effective baseline.

1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378

MaaO (Guo et al., 2024). is a hybrid approach that integrates gradient-based optimization with LLM-guided optimization, leveraging the complementary strengths of both. Gradient-based methods provide precise directional updates in the parameter space but are prone to local optima, while LLM optimizers offer high-level heuristic guidance yet often lack stability. To address this, MaaO alternates between the two optimization strategies. In our problem setting of optimizing probabilistic graphs, we adopt REINFORCE to compute numerical gradients and use an LLM to generate textual updates, alternating between them during training. Concretely, the probabilistic graph is first initialized with a uniform distribution (same as described above), from which candidate graphs are sampled and evaluated on a training batch to compute predictions and loss values. Gradients derived from the loss are then used to update the probabilistic graph (see Appendix A.11). Subsequently, new candidates are sampled, and their losses are used by the LLM to provide textual updates on how the graph should be modified. This alternating process of gradient updates and LLM guidance continues until convergence or a stopping criterion is met.

1379
1380
1381
1382
1383
1384
1385
1386
1387

GPTSwarm (Zhuge et al., 2024) generalizes LLM-based agent architecture search into a computational graph and optimizes it using gradient-based REINFORCE. In our problem setting, we adapt this approach as follows: a probabilistic graph is first initialized, from which candidate graphs are sampled and evaluated on a batch of training data to compute predictions and loss values. The loss gradients are then used to update the probabilistic graph, and this process is iterated until a stopping criterion is reached. The detailed REINFORCE optimization procedure is in Appendix A.11. However, as a purely gradient-based approach, GPTSwarm is relatively inefficient, as each update makes only incremental progress, and the method is susceptible to convergence at suboptimal local minima, thereby limiting both convergence speed and global search capability.

1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398

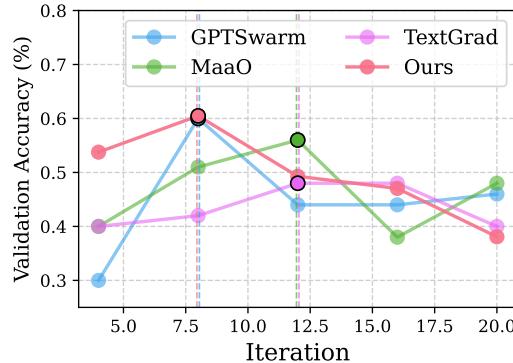
Bayesian Optimization (BO) (Shahriari et al., 2015) is a model-based framework for black-box optimization and has been widely applied to hyperparameter tuning. For optimizing collaboration graphs in test-time scaling, the graph is parameterized by θ, π, ψ , from which a concrete graph G is sampled and evaluated on a training batch to obtain its performance $f(G)$. Accordingly, BO treats θ, π, ψ as input variables, with the objective function defined as $F(\theta, \pi, \psi) = \mathbb{E}_{G \sim \mathcal{P}_{\theta, \pi, \psi}} [f(G)]$. Specifically, BO constructs a surrogate model, such as a Gaussian process, to approximate $F(\theta, \pi, \psi)$, and employs an acquisition function (e.g., Expected Improvement, EI) to guide the selection of promising candidates. Each selected (θ, π, ψ) is evaluated by sampling multiple graphs to estimate average performance. Under budget constraints, the cost function $f_{\text{budget}}(G)$ can be incorporated via constrained acquisition (e.g., constrained EI). This iterative process of surrogate modeling, candidate selection, and evaluation continues until a stopping criterion is reached, at which point BO returns the optimal parameter set $(\theta^*, \pi^*, \psi^*)$ and its corresponding high-performing probabilistic graph.

1399
1400
1401
1402
1403

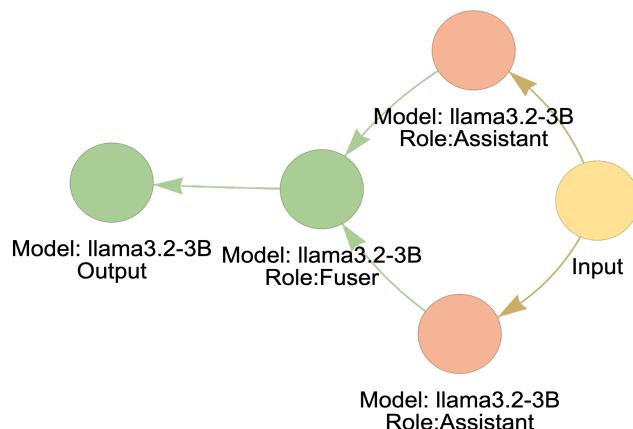
Random Search is a simple but widely adopted baseline in hyperparameter optimization. For compute-optimal collaboration graph search in test-time scaling, it generates candidate graphs uniformly at random under the budget constraint, without leveraging prior knowledge or performance history. While its simplicity makes it robust to irregular or non-smooth search landscapes and occasionally capable of identifying strong candidates, the absence of guidance typically leads to inferior search efficiency and performance compared with more structured or informed methods.

1404 A.14 CONVERGENCE AND EFFICIENCY ON MATH DATASET
1405

1406 As shown in Fig. 9, our method achieves the best accuracy and fastest convergence via strong
1407 initialization and guided by empirical insights. TextGrad tends to overuse the budget and slows down,
1408 while GPTSwarm/MaaO converges quickly but gets stuck in local optima.



1422 Figure 9: Training trajectories on MATH across LLM-based methods over 20 iterations. X-axis:
1423 iteration; Y-axis: the validation accuracy.
1424

1425 A.15 A QUALITATIVE EXAMPLE OF TTS GRAPH AND ITS OUTPUT
1426

1443 Figure 10: A qualitative example of TTS graph.
1444

1445 We present a quantitative example in Fig. 10 using an instance from the MATH dataset. The graph
1446 contains five nodes: one input node, one output node, two Assistant nodes, and one Fuser node.
1447 The topology consists of two Assistant nodes feeding into the Fuser node, which then connects to
1448 the output node. We provide the prompts and outputs for each node in the text boxes below. As
1449 shown, one Assistant node produces the correct answer while the other produces an incorrect one; the
1450 Fuser successfully selects the correct output. The output node receives input from a single node and
1451 therefore simply copies that node's output (details omitted for brevity).

1452 Input Node

1453 **System Message:** You are an expert mathematician. Help the user to solve this problem. Answer the following mathematics question. Provide your reasoning by showing your work before your answer. At the end of your response, output your final answer in the format: 'The answer is: [answer]'. You must provide the separator 'The answer is: ' before your final answer. Make sure to put the answer (and only the answer) inside `\boxed{}`.

1454 **User Message:** If $f(x) = \frac{a}{x+2}$, solve for the value of a so that $f(0) = f^{-1}(3a)$.
1455

1458
1459

Assistant 1 Node Output

1460
1461
1462
1463
1464

To find the inverse function $f^{-1}(x)$, we swap x and y in $f(x) = \frac{a}{x+2}$ and solve: $x = \frac{a}{y+2} \Rightarrow x(y+2) = a \Rightarrow xy + 2x = a \Rightarrow y = \frac{a-2x}{x}$, so $f^{-1}(x) = \frac{a-2x}{x}$.
 We are given $f(0) = f^{-1}(3a)$. Compute $f(0) = \frac{a}{2}$. Next, $f^{-1}(3a) = \frac{a-6a}{3a} = -\frac{5}{3}$.
 Set them equal: $\frac{a}{2} = -\frac{5}{3}$. Multiply by 6: $3a = -10$, so $a = -\frac{10}{3}$.
 The answer is: $\boxed{-\frac{10}{3}}$.

1465

1466

Assistant 2 Node Output

1467
1468
1469
1470
1471
1472

To find the inverse function $f^{-1}(x)$, we swap x and y in $y = \frac{a}{x+2}$. After swapping, we get $x = \frac{a}{y+2}$, which simplifies to $xy + 2x = a$, then $xy = a - 2x$, and finally $y = \frac{a-2x}{x}$. Thus, $f^{-1}(x) = \frac{a-2x}{x}$.
 We now solve for a such that $f(0) = f^{-1}(3a)$. Since $f(x) = \frac{a}{x+2}$, we have $f(0) = \frac{a}{2}$. Next, compute $f^{-1}(3a) = \frac{a-6a}{3a} = -\frac{5a}{3a} = -\frac{5}{3}$.
 Setting them equal: $\frac{a}{2} = -\frac{5}{3}$. Cancelling $a \neq 0$ gives $\frac{1}{2} = -\frac{5}{3}$, which is impossible, so no real value of a satisfies the equation.

1473
1474

Fuser Node Prompt and Output

1475
1476
1477

System Message:

You are a fusion agent in a multi-agent system. Your role is to review, condense, and synthesize the reasoning and answers produced by previous agents.

User Message:

According to the previous agents' answers for the problem:

1480
1481
1482

Question: If $f(x) = \frac{a}{x+2}$, solve for a so that $f(0) = f^{-1}(3a)$.

As the fusion agent, synthesize a high-quality final answer by extracting correct reasoning, removing redundancy, ensuring mathematical rigor, and producing a clear justification. The final answer must be wrapped in $\boxed{\cdot}$.

1483
1484

Previous Answers:

1. Previous Agent (Version 1):

Correctly computed $f^{-1}(x) = \frac{a-2x}{x}$, $f(0) = \frac{a}{2}$, and $f^{-1}(3a) = -\frac{5}{3}$.
 Correctly solved $\frac{a}{2} = -\frac{5}{3} \Rightarrow 3a = -10 \Rightarrow a = -\frac{10}{3}$.

2. Previous Agent (Version 2):

Derived $f^{-1}(x)$ by swapping x, y in $y = \frac{a}{x+2}$, leading to $x = \frac{a}{y+2}$, then $xy + 2x = a$, $xy = a - 2x$, and $y = \frac{a-2x}{x}$. Thus $f^{-1}(x) = \frac{a-2x}{x}$.
 Computed $f(0) = \frac{a}{2}$ and $f^{-1}(3a) = \frac{a-6a}{3a} = -\frac{5}{3}$.
 Equating gave $\frac{a}{2} = -\frac{5}{3}$, but incorrectly concluded no solution due to cancelling a incorrectly.

1491

Fuser Output:

1492
1493

Synthesis of the Solution. Both previous agents correctly derived the inverse function $f^{-1}(x) = \frac{a-2x}{x}$. Agent 2 provided the cleanest evaluation of $f(0)$ and $f^{-1}(3a)$.

Step 1: $f(0) = \frac{a}{2}$.

Step 2: $f^{-1}(3a) = -\frac{5}{3}$.

Step 3: Set $\frac{a}{2} = -\frac{5}{3}$. Multiply both sides by 6 to clear denominators: $3a = -10$, so $a = -\frac{10}{3}$.

Step 4: Substitution verifies correctness.

Final Answer: $\boxed{-\frac{10}{3}}$.

1498

1499

A.16 DETAILED RELATED WORK

1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Test-time Scaling and Compute-optimal Strategy. Inspired by the human tendency to allocate additional cognitive effort for deeper and more deliberate reasoning, recent studies have proposed distributing extra computational resources during inference to improve model performance on various tasks (Wei et al., 2022; Wang et al., 2023). In parallel, other works (Brown et al., 2024; Wu et al., 2025) have observed that increasing inference-time computation follows a scaling law analogous to that of training, where additional computation consistently enhances task performance. This phenomenon is commonly referred to as *Test-Time Scaling (TTS)*. Existing TTS techniques can be broadly categorized into two paradigms: *sequential scaling* and *parallel scaling*. In sequential scaling, the model enhances its reasoning ability by progressively extending a reasoning chain. A common approach is *self-refinement*, in which the model first generates an initial response and then iteratively revises it based on self-assessment (Madaan et al., 2023; Gou et al., 2024; Snell et al., 2025; Chen et al., 2024c; 2025). Because this strategy depends heavily on the quality of the initial

1512 output, it tends to be more effective on relatively simple tasks (Snell et al., 2025). By contrast, parallel
 1513 scaling improves inference by generating multiple independent candidate solutions simultaneously
 1514 and aggregating them into a final answer. Representative aggregation strategies include *majority*
 1515 *voting* (Liu et al., 2025b; Wang et al., 2023), which selects the most frequent output among N
 1516 candidates, and *Best-of- N* (Brown et al., 2024; Sun et al., 2024; Gui et al., 2024), which samples
 1517 N solutions and uses a verifier to select the best one (Setlur et al., 2025). Other approaches employ
 1518 LLMs themselves as fusers to integrate multiple candidates into a single output, thereby providing
 1519 stronger generalization and flexibility (Jiang et al., 2023; Li et al., 2025b; Saad-Falcon et al., 2024).
 1520 Despite these successes, both paradigms exhibit limitations. Sequential scaling suffers from poor
 1521 scalability, as extending the reasoning chain increases the risk of corrupting previously correct
 1522 intermediate results (Zeng et al., 2025). Parallel scaling, while improving diversity, often lacks the
 1523 depth of reasoning required for more complex tasks (Misaki et al., 2025). To address these issues,
 1524 hybrid approaches have been explored. For instance, Snell et al. (2025) propose adaptively switching
 1525 between sequential and parallel scaling depending on task difficulty, using sequential scaling for
 1526 simpler tasks and parallel scaling for more complex ones. Other methods leverage tree-structured
 1527 search to combine the two paradigms at the step or output level, employing process-level reward
 1528 models to expand top- K intermediate steps and refine them further. Typical examples include beam
 1529 search (Yu et al., 2024; Xie et al., 2023) and Monte Carlo Tree Search (MCTS) (Wu et al., 2025; Snell
 1530 et al., 2025; Hao et al., 2023; Wan et al., 2024; Chen et al., 2024a; Zhang et al., 2023). Nevertheless,
 1531 most existing hybrid methods assume a *fixed inference structure* (e.g., fixed width or depth), limiting
 1532 their flexibility. Recent studies have begun to relax these assumptions. For example, *Adaptive Parallel*
 1533 *Reasoning* (Pan et al., 2025) dynamically switches between sequential and parallel computation
 1534 using spawn and join operations, while *Adaptive Branching MCTS* unifies both paradigms within a
 1535 tree-search framework, deciding at each node whether to parallelize candidate generation or continue
 1536 sequential refinement. In addition, prior work has noted that sampling across multiple models
 1537 naturally falls within the scope of test-time scaling, since ensembles improve diversity and output
 1538 quality (Zhang et al., 2025b; Ashiga et al., 2025; Jiang et al., 2023), yet this dimension remains
 1539 underexplored in test-time scaling.

1540 The configuration of allocating computation at inference time is central to the effectiveness of
 1541 test-time scaling (TTS), giving rise to the *compute-optimal test-time scaling strategy*. A growing
 1542 body of work (Brown et al., 2024; Wu et al., 2025; Liu et al., 2025a; Yue et al., 2025; Snell et al.,
 1543 2025; Wang et al., 2025a) highlights that model size and scaling configuration must be carefully
 1544 balanced: in certain scenarios, smaller models can achieve superior accuracy compared to large
 1545 models when constrained by the same compute budget. This line of research explores both model
 1546 selection, deciding when to employ small versus large models, and method selection, choosing
 1547 between alternative scaling paradigms to maximize utility. For instance, Snell et al. (2025) show
 1548 that the optimal scaling strategy varies with task difficulty: moderately challenging tasks favor
 1549 parallel exploration with small models, whereas simpler tasks are better addressed through sequential
 1550 refinement with large models. They further introduce a difficulty predictor to adaptively switch
 1551 strategies. Other studies extend these ideas in different directions: Liu et al. (2025a) emphasize the
 1552 sensitivity of scaling strategies to reward design, Yue et al. (2025) develop a linear model to capture
 1553 key determinants of scaling within retrieval-augmented generation (RAG), and Wu et al. (2025)
 1554 propose Reward Balanced Search (REBASE), a tree-search algorithm that achieves a Pareto-efficient
 1555 balance between accuracy and inference cost through weighted voting. Despite these advances,
 1556 existing approaches remain limited to fixed inference structures, overlooking the richer TTS patterns
 1557 that arise in general graph topologies. Motivated by these gaps, we address a novel problem: unifying
 1558 test-time scaling under a graph-based framework that incorporates heterogeneous model combinations,
 1559 and searching for the compute-optimal collaboration graph.

1560 **Multi-agent Collaboration Graph.** With the emergence of LLMs and the rapid development of
 1561 LLM-based agents (Cohen et al., 2023; Zhuge et al., 2024), researchers have increasingly recognized
 1562 that interactions among multiple agents can be naturally represented from a graph-based perspec-
 1563 tive (Chen et al., 2024b; Zhuge et al., 2024; Qian et al., 2025; Liu et al., 2024c). Graphs provide
 1564 a principled abstraction for capturing communication patterns, role assignments, and coordination
 1565 strategies in multi-agent systems, making them well-suited for reasoning about collaborative intelli-
 1566 gence. Recent systems such as G-Designer (Zhang et al., 2025a), ARG-Designer (Li et al., 2025a),
 1567 Heterogeneous Swarms (Feng et al., 2025), DyLAN (Liu et al., 2024c), AgentNet (Yang et al., 2025),
 1568 GPTSwarm (Zhuge et al., 2024), and MacNet (Qian et al., 2025) have explicitly employed graph

1566 structures to organize and optimize multi-agent interactions. These approaches primarily focus on
 1567 structural optimization over a predefined set of agents, selecting the structure that maximizes task
 1568 performance, which can be partially applied to our problem setting. However, they overlook the
 1569 distinctive patterns of test-time scaling, resulting in inefficient architecture search.
 1570

1571 **LLMs for Optimization** Optimization is fundamental to computational models and is often cus-
 1572 tomized for individual tasks to address the challenges of complex decision spaces and performance
 1573 landscapes. Large Language Models (LLMs), with their rich prior knowledge and reasoning capabili-
 1574 ties, have opened new avenues for solving practical optimization problems (Zhang et al., 2025c; Guo
 1575 et al., 2024). Existing research primarily employs LLMs in two paradigms: as black-box optimizers
 1576 and in conjunction with gradient-based white-box optimization. The distinction lies in whether
 1577 gradient information is available. In the black-box setting, LLMs are used to generate candidate
 1578 solutions and iteratively refine them by leveraging their planning ability and extensive machine
 1579 learning knowledge. Prior work has demonstrated the effectiveness of this approach in small-scale
 1580 mathematical optimization (Yang et al., 2024; Zhang et al., 2024b; Huang et al., 2025), hyperpa-
 1581 rameter tuning (Liu et al., 2024a;b), and neural architecture search (Zheng et al., 2023; Nasir et al.,
 1582 2024; Ji et al., 2025). For instance, OPRO (Yang et al., 2024) proposed “optimization by prompting,”
 1583 where tasks are described in natural language and LLMs iteratively generate new solutions based on
 1584 meta-prompts and prior evaluations. AgentHPO (Liu et al., 2024a) empowers LLMs to autonomously
 1585 search hyperparameter configurations by processing task descriptions, conducting experiments, and
 1586 refining search quality from accumulated trials. GENIUS (Zheng et al., 2023) explored the potential
 1587 of GPT-4 for neural architecture search, employing its generative ability as a black-box optimizer
 1588 to efficiently navigate the search space and refine promising architectures. LLMs are particularly
 1589 valuable during initialization, as they can generate high-quality solutions that embed prior knowledge,
 1590 narrowing the search space and establishing a stronger foundation for subsequent iterations. This
 1591 capability has also been applied to NAS initialization (Jawahar et al., 2024), genetic algorithms in
 1592 bioengineering (Nana Teukam et al., 2025), and financial planning (De Zarzà et al., 2023).
 1593

1594 These studies demonstrate that LLMs can serve as general-purpose black-box optimizers. However,
 1595 when gradient information is available—typically in data-rich scenarios—black-box optimization
 1596 becomes inefficient, as each candidate must be evaluated on the full training set, leading to prohibitive
 1597 search costs. To address this, recent work has combined gradient-based optimization with LLM-
 1598 guided search to exploit their complementary strengths (Guo et al., 2024; Yuksekgonul et al., 2024).
 1599 For example, MaaO (Guo et al., 2024) interleaves gradient-based training with LLM-guided opti-
 1600 mization, integrating the data efficiency and precise updates of gradient methods with the exploratory
 1601 diversity of LLMs. TextGrad (Yuksekgonul et al., 2024) generalizes this idea by transforming AI
 1602 systems into computational graphs and using LLMs to generate textual updates that serve as a form
 1603 of backpropagation. This framework provides natural language critiques of system components,
 1604 such as neurons, prompts, molecules, or code segments, and guides their updates. Building on this
 1605 line of work, we extend the complementary use of LLMs and gradient methods to compute-optimal
 1606 test-time scaling by optimizing a gradient-available probabilistic graph. This approach enables us
 1607 to combine the data efficiency of gradient-based optimization with the semantic task-awareness of
 1608 LLMs, particularly for critical initialization and text-form parameter updates, thereby improving both
 1609 search effectiveness and efficiency.
 1610

1611 B LLM USAGE

1612 Large Language Models (LLMs) were used solely for language refinement, including rephrasing,
 1613 grammar checking, and improving readability. They were not involved in ideation, methodology,
 1614 experiments, or data analysis. All research concepts and results are the authors’ own, and the authors
 1615 take full responsibility for the manuscript, ensuring that LLM-assisted text complies with ethical
 1616 standards and avoids plagiarism or misconduct.
 1617
 1618
 1619