
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AGENT-REINFORCE: SEARCHING COMPUTE-
OPTIMAL MULTI-LLM COLLABORATION GRAPH
FOR TEST-TIME SCALING

Anonymous authors
Paper under double-blind review

ABSTRACT

Test-Time Scaling (TTS) improves large language models (LLMs) by allocating
additional computation during inference, typically through parallel, sequential,
or hybrid scaling. However, prior studies often assume fixed collaboration ar-
chitectures (e.g., topologies) and single-model usage, overlooking that optimal
architectures and model combinations can vary across tasks. Therefore, we study
the novel problem of searching for compute-optimal model combinations and archi-
tectures in TTS under a fixed budget. We formalize it as a multi-LLM collaboration
graph, where nodes encode roles and LLM model assignments, and edges capture
information flow. This problem is challenging because (i) the combinatorial search
space is prohibitively large, and (ii) task-specific requirements demand tailored
designs. To address these, we reformulate the problem as probabilistic graph opti-
mization and, through pilot experiments, derive three empirical insights into TTS
collaboration graphs. Guided by these insights, we propose Agent-REINFORCE,
an LLM-agent-augmented framework that mirrors the REINFORCE pipeline by
mapping sampling–gradient–update to sampling–feedback–update, where feed-
back serves as a textual gradient to update the probabilistic graph and efficiently
search for optimal multi-LLM collaboration graphs. Experiments show that Agent-
REINFORCE outperforms both traditional and LLM-based baselines in sample
efficiency and search performance, and effectively identifies optimal graphs under
joint objectives of accuracy and inference latency. Our code is available at link.

1 INTRODUCTION

Test-time scaling (TTS) aims to enhance large language models (LLMs) by allocating additional
computational resources during inference (Brown et al., 2024; Snell et al., 2025). Prior studies
have primarily investigated two architectures: (i) parallel scaling (Wang et al., 2023; Brown et al.,
2024), which samples multiple outputs independently to increase solution diversity and aggregates
them, making it suitable for tasks with uncertain or diverse solution paths; and (ii) sequential scaling
(Madaan et al., 2023; Snell et al., 2025), which iteratively refines a single output and is well-suited
for tasks that require step-by-step reasoning (see Fig. 7 (a)(b) in Appendix). Fusing the two, hybrid
architectures have also been proposed, using predefined hybrid structures to combine the advantages
of both (Besta et al., 2024; Snell et al., 2025) (see Fig. 7 (c) in Appendix). Despite their effectiveness,
we identify two key limitations of existing TTS architectures. First, TTS architectures are typically
predefined and static, with fixed topologies across tasks. However, our analysis shows that different
tasks exhibit distinct preferences for architectural patterns, e.g., MATH favors hybrid structures,
while MMLU performs better with pure parallel ones (Fig. 1(a)(c)). This suggests that architectures
should adapt to task demands. Second, existing TTS methods usually employ a single LLM for all
inference steps. In contrast, multi-LLM ensembles are preferable to leverage heterogeneous LLM
skills across tasks (Jiang et al., 2023; Wang et al., 2025c). Preliminary results show that MATH
benefits from mixtures of 1B–3B, whereas MMLU favors a single 8B (Fig. 1(b)(d)), underscoring
the need for adaptive model selection. Overall, test-time compute-optimal scaling aims to maximize
performance within the inference budget (Wu et al., 2025), but these findings reveal that adaptive
TTS architectures and model combinations are fundamental challenges for existing methods.

1

https://anonymous.4open.science/r/AgentRE-0CF5/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) MATH: Mean ACC by
 Topology

46

48

50

52

54

A
cc

ur
ac

y
(%

)

48.0
48.7

50.7

Sequential
Parallel
Hybrid

(b) MATH: Mean ACC by
 Model Combination

35

40

45

50

55

60

65

70

40.7

49.0

57.7

1B Mix
8B×1
3B Mix

(c) MMLU: Mean ACC by
 Topology

40

45

50

55

60

65

49.3

52.7

45.0

Sequential
Parallel
Hybrid

(d) MMLU: Mean ACC by
 Model Combination

30

40

50

60

70

80

36.0

47.0

64.0

1B Mix
3B Mix
8B×1

Figure 1: Accuracy across different topologies and model combinations on MATH and MMLU.
LLaMA-3 models are used by default. Detailed data is in Appendix A.3.

Motivated by these observations, we study a novel problem: searching for the compute-optimal
architecture and model combination in test-time scaling for a given task. Formally, given a
task, a set of models, and a compute budget, the goal is to find the best configuration that jointly
determines architecture and model assignment. Leveraging the inherent graph structure of TTS, we
formulate dynamic test-time scaling as constructing a multi-LLM collaboration graph, where where
nodes represent the chosen LLM model with assigned roles (fuser for parallel aggregation, assistant
for sequential refinement), and edges denote information flow. A terminal node aggregates outputs
into the final answer (see Fig. 7(d), Appendix A.1). This graph view offers a systematic foundation
for dynamic optimization. However, two major challenges arise: (i) The search space is large due to
the combinatorial choices of models and topologies, and grows rapidly with the budget. For example,
with 12 nodes, the number of possible graphs ranges from 1018 to 1026 depending on model diversity
(derivation in Appendix A.4). Since evaluating each candidate requires costly inference, brute-force
search is infeasible. (ii) Tailored design requires linking task requirements to optimal TTS search
patterns, which relies on an understanding of TTS behaviors. Prior work shows that performance
does not grow monotonically with used budget, implying that optimal allocations are often below
the maximum. These insights are key to guiding task-specific searches toward compute-optimal
collaboration graphs. To address them, we conducted pilot experiments on TTS behavior analysis,
which yielded three empirical insights: (1) Effective collaboration exhibits clear preferences for
specific model combinations: tasks favor replication of the strongest model family, and ensembles of
small models are preferred when incremental gains are substantial; (2) Both width and depth have
task-dependent optima; beyond these points, extra computation will yield negative returns; (3) Graph
width and depths are interdependent: growth in one dimension shifting the optimal point of the other.

We operationalize these insights by formulating the search as a probabilistic optimization prob-
lem: Learning a distribution over collaboration graphs that jointly determines edges, roles, and
model assignments under a fixed budget to maximize task-specific performance. The REIN-
FORCE algorithm (Williams, 1992), a gradient-based optimization method, addresses this via
a sample–gradient–update pipeline that iteratively samples candidates, computes gradients, updates
the distribution, and repeats. However, it risks local optima and its inability to incorporate empirical
insights. Recent work (Liu et al., 2024a; Zhang et al., 2024a) shows that LLM-based agents are
effective planners for hyperparameter optimization, with the unique advantage of leveraging external
knowledge. Building on these, we propose Agent-REINFORCE, an LLM-agent-augmented frame-
work for searching optimal multi-LLM collaboration graphs. Building on REINFORCE, it employs
an LLM-based agent to incorporate empirical insights for candidate initialization and distribution up-
dates, following a sample–feedback–update pipeline in which feedback serves as textual gradients in
REINFORCE. The framework comprises three components: the Agent, Archive, and Environment.
The Agent initializes promising model families and sizes guided by Insight 1 and fixes the best com-
bination within the distribution. In subsequent stages, the new trials are sampled, the Environment
evaluates them and returns feedback (serving as textual gradients), the Archive records the results,
and the Agent updates the distribution guided by Insights 2 and 3 until convergence. By leveraging
LLM-based optimization, our method efficiently identifies graphs that optimize performance alone
and graphs that balance performance with inference latency under joint objectives.

Our main contributions are: (i) We study the novel problem of the search for the optimal multi-LLM
collaboration graph for TTS. (ii) From three identified empirical insights in multi-LLM collaboration,
we develop Agent-REINFORCE, an efficient LLM-guided framework for budget-constrained graph
search. (iii) Experiments show that Agent-REINFORCE surpasses traditional and LLM-based
baselines in search efficiency and accuracy, and effectively identifies optimal graphs under joint
accuracy–latency objectives.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Test-time Scaling and Compute-optimal Strategy. Allocating additional compute during inference,
known as Test-Time Scaling (TTS), can significantly improve LLM performance (Wei et al., 2022;
Wang et al., 2023; Brown et al., 2024; Wu et al., 2025). TTS methods fall into two main paradigms:
sequential scaling, which refines outputs iteratively but risks error accumulation, and parallel scaling,
which aggregates multiple candidates but lacks depth. Hybrid approaches (Snell et al., 2025; Wu
et al., 2025) combine both but typically rely on fixed trees and a single model, limiting adaptability.
Compute-optimal TTS seeks to allocate inference compute most effectively, revealing that small
models with optimal strategies might outperform larger ones (Brown et al., 2024; Wu et al., 2025;
Liu et al., 2025a; Yue et al., 2025; Snell et al., 2025; Wang et al., 2025a). Moreover, ensembles of
heterogeneous models improve diversity and output quality (Jiang et al., 2023; Ashiga et al., 2025),
yet remain underexplored in TTS. Motivated by this gap, we address a novel problem: unifying TTS
under a graph structure that enables adaptive topologies and model combinations, and searching for
compute-optimal collaboration graphs. Further discussion is provided in Appendix A.16.

LLMs for Optimization. LLMs, with their rich prior knowledge of machine learning and strong
planning ability, have opened new opportunities for practical optimization (Zhang et al., 2025c;
Guo et al., 2024). Existing research mainly falls into two categories: black-box optimization and
hybrid approaches with gradient-based methods. In the black-box setting, LLMs generate and refine
candidates using feedback from small training sets (Yang et al., 2024; Liu et al., 2024a; Zheng et al.,
2023). Representative methods include OPRO (Yang et al., 2024), AgentHPO (Liu et al., 2024a), and
GENIUS (Zheng et al., 2023), which leverage task descriptions and prior solution performance for
iterative search. LLMs are particularly valuable for initialization, producing high-quality, knowledge-
informed solutions that narrow the search space (Jawahar et al., 2024; Nana Teukam et al., 2025;
De Zarzà et al., 2023). However, when gradient information is available, black-box approaches
become inefficient due to costly evaluations. LLM-based methods address this by interleaving
gradient-based training with LLM-guided exploration (Guo et al., 2024) or by generating textual
guidelines as backpropagation signals (Yuksekgonul et al., 2024). Building on these advances, we
extend such approaches to compute-optimal test-time scaling by optimizing a probabilistic graph
with LLMs for initialization and textual parameter updates. More details are given in Appendix A.16.

3 PRELIMINARIES AND PROBLEM FORMULATION

Test-time Scaling Paradigms and Their Primitives Test-time scaling can be broadly categorized
into parallel scaling and sequential scaling. Given a query q and a language modelM with parameters
θ, parallel scaling samples k outputs and aggregates them via a fusion function:

o = ffuse(S,M), S = {si | 1 ≤ i ≤ k}, si ∼M(s | q, θ). (1)

Sequential scaling instead performs k rounds of self-refinement:

o = ok, oi = f irefine(o
i−1,M), o0 = q. (2)

where ffuse(·) and f irefine(·) are both executed by the LLM M , using fusion and refinement prompts,
respectively. As shown in Fig. 8, both paradigms can be decomposed into three primitives: repeated
sampling, fusion, and self-refinement. Parallel scaling is repeated sampling followed by fusion;
sequential scaling is iterative self-refinement. Hybrids recombines these primitives–for example, Tree-
of-Thoughts (Yao et al., 2023) uses multi-layer repeated sampling, and Graph-of-Thoughts (Besta
et al., 2024) integrates all three primitives in a graph.

Input
Direct/
refined output

Fused
output

output
refine
fuse

Node with an
assigned model

Various
models

Figure 2: Generalize TTS as a graph.

Multi-LLM Collaboration Graph for TTS
Given the task-specific preference for flexible
TTS paradigms beyond the predefined ones, we
generalize them into a multi-LLM collaboration
graph G = (V, E ,R,M), where each node
vi ∈ V, i ∈ [1, n], represents an LLM primitive
with an assigned role and model, with an exam-
ple in Fig. 2. Role assignments are denoted by
R = [r1, r2, . . . , rn], ri ∈ R, and model assign-
ments are denoted by M = [M1,M2, . . . ,Mn],Mi ∈ M. Thus, each node is characterized by a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

role ri, which specifies how it processes inputs from its predecessors, and a model Mi, which means
which LLM is invoked. Directed edges eij ∈ E represent the flow of information from node vi to
node vj . We consider two rolesR = {assistant, fuser}, as illustrated in Fig. 2: (i) Assistant, which
refines the outputs of its predecessors (orange nodes); and (ii) Fuser, which aggregates multiple
predecessor outputs (green nodes). The collaboration graph G is a directed acyclic graph (DAG) with
a designated input node (yellow) that initiates information propagation. Message passing proceeds
forward along edges until it reaches a sink node (a node without outgoing edges), whose output
serves as the final prediction of the graph.

Inference on Multi-LLM Collaboration Graph As illustrated in Algo. 2 in Appendix A.2,
inference over a multi-LLM collaboration graph G proceeds in topological order. The process begins
by identifying the successor nodes of the input node. These nodes process the query to generate
initial outputs that are propagated to their successors, reducing the in-degree of their successors by
one accordingly. The newly activated nodes (with zero in-degree) are then executed based on their
assigned roles and models. A fuser aggregates the outputs of its predecessors, whereas an assistant
refines them. This procedure continues iteratively until all nodes in G have been executed. The output
of a unique sink node–node with no outgoing edges, is the final output of the graph.

Budget Definition To enable comparative computation across models and topologies, we define the
budget using a concrete compute metric, e.g., FLOPs or dollar cost. Let the computational cost of a
collaboration graph G be fcost(G,T). The budget is defined as B = fcost(G,T)/fcost(Gsmallest,T), where
Gsmallest is the single-node graph (excluding the input node) using the smallest model, corresponding
to one budget unit. Thus, a multi-LLM graph with budget B is equivalent to running B single-node
inferences on the smallest model. A detailed introduction to the budget definition is in Appendix A.8.

Formally, we report computational cost in FLOPs, which we adopt as our primary cost metric.
Proposition 1 (FLOPs Cost Function). For each node vi, the cost depends on the size of the model
and its effective input/output lengths, leading to a dependence on the node in-degree d(vi). Adding up
to all nodes, the total cost can be expressed as fcost(G,T) =

∑
vi∈V

[
αi d(vi)

2 + βi d(vi) + γi
]
,

where the coefficients αi, βi, γi capture the contributions of the model dimension, depth, and average
task input/output lengths. Detailed derivations of αi, βi, γi are provided in Appendix A.7.

Problem Definition The goal of test-time compute-optimal scaling is to allocate inference compute
most effectively under a fixed budget. We formalize this as searching for the task-specific compute-
optimal multi-LLM collaboration graph. Given training data Dtrain, test data Dtest, a model pool
M = {M1, . . . ,Mn}, and a budget B, the objective is to identify a collaboration graph that specifies
role and model assignments for nodes, together with the cooperation topology, so as to maximize
task performance under the budget constraint. Therefore, our research problem is defined as follows:
Definition 1 (Test-time Compute-optimal Multi-LLM Collaboration Graph for a Specific Task).
Given the training set Dtrain for a given task T , the model poolM, and a fixed computational budget,
B, the goal is to identify the best collaboration graph that optimizes the performance on Dtrain, i.e.,

G⋆ = arg max
G∈G(M,B)

uT (G;Dtrain) (3)

where G(M, B) = {G | fbudget(G,T) ≤ B} is the set of feasible multi-LLM collaboration graphs
from M under budget B. Each G = (V, E ,R,M) is a DAG, with node vi assigned role ri ∈
{assistant, fuser} and model Mi ∈M, and edge eij denoting information flow. The utility function
uT (G;Dtrain) measures the performance of G on Dtrain, while G⋆ is finally evaluated on Dtest.

4 INSIGHTS OF MULTI-LLM COLLABORATION GRAPH FOR TTS

Searching for the optimal multi-LLM collaboration graph for test-time scaling faces two challenges:
(i) the search space grows combinatorially with the increased budget, making exhaustive enumeration
infeasible; and (ii) the task-specific requirements are highly specific, demanding tailored designs.
We therefore conduct pilot experiments to uncover cross-task TTS patterns, which pave the way to
design an efficient search method for compute-optimal collaboration graphs.

Experimental Setting. We conduct preliminary experiments on three tasks: MATH (Hendrycks
et al., 2021b) (arithmetic reasoning), MMLU (Hendrycks et al., 2021a) (general reasoning), and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) MATH: LLaMA 3B vs Gemma 2B

10

20

30

40

50

60

70

80

A
cc

ur
ac

y
(%

)

8

39
44

31

46

Gemma×1
LLaMA×1
LLaMA×1
+Gemma×1

Gemma×2
LLaMA×2

(b) MMLU: LLaMA 3B vs Gemma 2B
30

35

40

45

50

55

60

32

41
44

41

45

Gemma×1
LLaMA×1
LLaMA×1
+Gemma×1

Gemma×2
LLaMA×2

(c) MATH: Mix of 1B, 3B, 8B

35

40

45

50

55

60

65

38

45

54

49

1B Mix
3B+1B Mix

3B Mix
8B×1

(d) MMLU: Mix of 1B, 3B, 8B

30

40

50

60

70

80

30

42 41

64

1B Mix
3B+1B Mix

3B Mix
8B×1

Figure 3: Performance on MATH and MMLU across model family and size. LLaMA by default.

HumanEval (Chen et al., 2021) (code generation), evaluated by accuracy (MATH, MMLU) and
pass@1 (HumanEval). The model pool includes LLaMA-3 [1B, 3B, 8B] (Grattafiori et al., 2024) and
Gemma [1B, 2B, 7B] (Team, 2025). Dataset, model, and metric details are in Appendix A.5.

Empirical Insights on Model Selection, Parallel and Sequential Scaling. We examine TTS
behavior under increasing compute budgets and different model selections, and guide the search for
the optimal multi-LLM collaboration graph in Sec.5. Fig. 3 and 4 illustrate how model selection,
parallel and sequential scaling, and graph width-depth configuration influence TTS.

Insight 1: Task-specific preferences for model family and size combinations. We conduct
preliminary tests on MATH and MMLU to examine task-specific model preferences. Results in
Fig. 3(a–b) show that replicating the strongest model family is generally more effective than mixing
families: for example, LLaMA consistently outperforms Gemma in the 3B space on MMLU, so
using LLaMA×2 yields higher accuracy than LLaMA+Gemma or Gemma×2. Results in Fig. 3(c–d)
show that within a fixed budget, reasoning tasks (MATH) benefit from ensembles of smaller models,
while knowledge tasks (MMLU) prefer larger ones. These trends reflect differences in task demands
and difficulty: reasoning tasks leverage multiple smaller models for iterative refinement, whereas
knowledge tasks require the broader coverage of large models. A more detailed discussion is provided
in Appendix A.6. Consequently, tasks favor replication of the strongest model family, with
small-model ensembles preferred only when their incremental gains are substantial.

Insight 2: Parallel and sequential scaling saturate and decline beyond an optimal budget.
Fig. 4(a–b) shows that both parallel (width) and sequential (depth) scaling follow a non-monotonic
trend: performance improves up to a task-dependent optimum, then plateaus or declines. On MATH,
for example, peak accuracy occurs at 8 parallel or 8 sequential nodes. Beyond these points, added
width yields diminishing gains due to long-context limits, while added depth amplifies propagated
errors. A more detailed discussion is provided in Appendix A.6. In summary, both width and depth
exhibit task-dependent optima, beyond which extra computation provides negative returns.
This insight is consistent with existing works (Wang et al., 2025b; Tang et al., 2025; Brown et al.,
2024; Li et al., 2024).

2 4 6 8 10 12 14
Nodes

(a) Parallel Scaling

25

30

35

40

45

50

55

A
cc

ur
ac

y
(%

)

35
37

42

36

2829

35
37

29
26

35
39 39

45

33

MATH
MMLU
HumanEval

2 4 6 8 10 12 14
Nodes

(b) Sequential Scaling

30

35

40

45

50

55

35 36
38

31 31

35
38

41
39 39

45 45
48

42 42

1 2 3 4 8 12 24
Depth

 (c) Accuracy Across Width/Depth

1
2

3
4

8
12

24
W

id
th

33 35 36 36 38 31 31

35 41 41 41 41 35

36 42 43 47 40 40

37 42 45 43 43

42 44 43

36 40

33 32

34

36

38

40

42

44

46

Ac
cu

ra
cy

 (%
)

Figure 4: (a–b) Performance with Parallel and Sequential Scaling on various datasets. (c) Heatmap of
performance under various Width-Depth collaboration graphs on MATH. Model is LLaMA-3 1B.

Insight 3: Interdependence between graph width and depth. Fig. 4(c) shows MATH performance
under varying width (w) and depth (d) with wd ≤ 24 using LLaMA-1B. Accuracy rises then falls
as either dimension grows, confirming non-monotonic trends. Moreover, width and depth interact:
larger widths reduce the optimal depth (e.g., 8 at w=1 vs. 4 at w=3), while deeper refinement shifts

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the optimal width forward. A more detailed discussion is in Appendix A.6. Thus, graph width and
depth are interdependent, with growth in one dimension altering the optimum of the other.

5 THE PROPOSED FRAMEWORK – AGENT-REINFORCE

Guided by the insights in Sec. 4, we introduce Agent-REINFORCE, an LLM-Agent-augmented
REINFORCE algorithm that follows a sample–feedback–update loop to find the compute-optimal
multi-LLM collaboration graph under a fixed budget. The LLM agent samples candidates and updates
graphs using textual feedback (serving the textual gradient in REINFORCE) while integrating task-
specific model preferences, budget allocation strategies, and width–depth interactions. We next
formalize the probabilistic graph optimization problem and describe our Agent-REINFORCE.

5.1 PROBABILISTIC GRAPH OPTIMIZATION PROBLEM

Optimization Problem One way to find the optimal collaboration graph is black-box search, either
through enumeration (Bergstra & Bengio, 2012) (e.g., grid or random search) or Bayesian optimiza-
tion (Shahriari et al., 2015), which fits a surrogate model to the objective and selects queries via an
acquisition function. Yet enumeration is infeasible as the graph space grows exponentially, while
standard BO is designed for low-dimensional continuous domains and becomes sample-inefficient in
large, discrete spaces. We therefore reformulate the task as a graph optimization problem, leveraging
policy-gradient methods for efficient exploration, guided sampling, and budget-aware control. Given
a task T and its utility function uT , let G ∼ Pθ,π,ψ denote a sampled multi-LLM collaboration graph.
The distribution Pθ,π,ψ is parameterized by three components: θ = {θij}, where σ(θij) ∈ [0, 1]

represents the probability that edge eij is present; π = {πi}, where softmax(πi) ∈ [0, 1]|R| denotes
the probability of node vi selecting a role r ∈ R; and ψ = {ψi}, where softmax(ψi) ∈ [0, 1]|M|

denotes the probability of node vi choosing a modelM ∈M. The optimization problem is to identify

θ⋆, π⋆, ψ⋆ = arg max
θ,π,ψ

EG∼Pθ,π,ψ
[
uT (G,Dtrain)

]
s.t. fbudget(G,T) ≤ B. (4)

5.2 AGENT-REINFORCE

Archive

init models

Environment

feedback

update

(d) Archive

Task

LLM Pool

Agent

assist: 0.6

fuser: 0.6

Probabilistic graph
sample
candidates

evaluated by

(a) Overall Framework of Agent-REINFORCE

Initial
models

Generate
candidates

Update
Prob graph

candidate

a: 0.7

f: 0.7

o1

o2

o1
o2 o3

Graph Traverse
feedback

(b) Agent (c) Environment

Candidate
Base

Budget

Figure 5: Overview of Agent-REINFORCE for
Optimizing Collaboration Graph.

The REINFORCE algorithm (Williams, 1992)
can optimize Eq.(4) via gradient ascent through
iterative sample–gradient–update (sampling
candidates, estimating gradients from their util-
ity, and updating parameters; see Appendix A.11
for details). However, its step-by-step updates
often lead to slow progress, local optima, and
difficulty in incorporating prior insights or se-
mantic knowledge. To overcome these limi-
tations, we propose Agent-REINFORCE, an
LLM-agent-augmented framework which builds
on REINFORCE but replaces gradients with
feedback-conditioned updates. Each iteration
follows a sample–feedback–update loop: guided
by empirical insights, the agent samples candi-
date graphs, receives feedback as textual gra-
dients, and updates the distribution iteratively
until convergence. As shown in Fig. 5(b–d), the
framework comprises three components: Agent,
Archive, and Environment. The Agent first
generates candidate trials of the model family
and size combinations (guided by Insight 1).
Feedback from the Environment selects the
best model assignments and initializes the probabilistic graph distribution. In subsequent itera-
tions, the Agent samples new trials from the updated distribution Pθ,π,ψ , the Environment evaluates
them, and the Archive records results. The Agent then updates the distribution based on feedback
and history, and this loop continues until convergence. The full procedure is given in Algo. 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 Agent-REINFORCE: Compute-Optimal Collaboration Graph Optimization

Require: Task T , model setM, agent A, environment E , budget B
Ensure: Optimized collaboration graph G

1: Initialize archive L ← ∅
2: Stage 1: C ← A.select_family_size(T,M, B); S ← E .execute(C) (Init. Stage 1)
3: Stage 2: C ← A.select_instance(T,M,S, B); S ← E .execute(C) (Init. Stage 2)
4: Initialize nodes in G̃ with the best model family, size, and instance count (Insight 1)
5: while stopping criterion not met do (Subsequent stages)
6: Update archive L ← L ∪ {(C,S, G̃)}
7: Sample new trials C ← A.sampling(G̃, B)
8: Get feedback (textual gradient) S ← E .execute(C)
9: Update graph G̃← A.update(C,S,L, G̃) (Insights 2,3)

10: end while
11: return Graph G by deterministic decoding from G̃

Agent component. The LLM-base Agent, in Fig. 5 (b), initializes model assignments, samples new
trials, and updates the probabilistic graph. Since LLMs lack prior knowledge of test-time scaling,
which is relatively new, we incorporate Insight 1 to guide the initialization of model assignments,
and Insights 2 and 3 to inform subsequent updates. Insight 1 shows that tasks prefer replicating the
strongest family, with small-model ensembles chosen when their gains are high. Hence, initialization
focuses on task-specific model assignments (family, size, and instances) to guide optimization and
reduce wasted exploration. We initialize the family-size and instance counts in two stages.

First, the Agent identifies family and size preferences using each model’s meta-information from Hug-
gingFace (hug), including prior performance and the task description. Prior performance guides family
selection; when unavailable, initial trials pre-test each model’s prior performance to infer family prefer-
ences. For size selection, the incremental gains from ensembling one versus two small models relative
to a single large model inform size preference, motivating trials that explore both small ensembles
and large models. Therefore, the agent initializes candidates asA.select_family_size(T,M, B),
retaining only those within budget B, and obtains performance scores from the Environment as
feedback S to identify the preferred family and size (Algo. 1, Line 2).

Second, using feedback S , the Agent generates diverse candidate model combinations within budget
B via A.select_instance(T,M,S, B), prioritizing the selected family and size while varying
instance counts. For each candidate, graph topologies and role assignments are randomly sampled
(Algo. 1, Line 3). Feedback is averaged, and the best configuration, covering family, size, and
instances, initializes the graph (Algo. 1, Line 4). In subsequent stages, nodes retain the model assign-
ments, while edges and roles are sampled from the probabilistic graph G̃ via A.sampling(G̃, B).

Insight 2 shows that width and depth have task-specific optima: performance improves with more
nodes up to a point, then degrades. We incorporate this into the update prompt (A.update,
Algo. Line 9), guiding the Agent to “identify the optimization direction for finding the optimal
width and depth” by leveraging feedback from current and past trials to adjust the probabilistic graph
toward the optimal width–depth balance and accelerate convergence.

Insight 3 highlights the interdependence between width and depth: under a fixed budget, improving
one often requires reducing the other. To manage this, we embed an instruction into the update prompt
(A.update, Algo. Line 9) that directs the Agent to exploit the LLM’s planning ability to explore
these trade-offs between width and depth and adaptively identify critical graphs within budget.

The instructions derived from the insights are applied continuously during the optimization process.
Based on the feedback, the Agent updates the probabilistic graph (Algo. Line 9), which is then used
to sample the next batch of trials (Algo. Line 7). The prompt design is provided in Appendix A.12.

Environment & Archive Components. Environment converts candidate graphs from the Agent
into executable scripts, runs them in the actual task platform on a small training batch, and returns
performance feedback (Fig. 5c; Algo. 1, Lines 2–3,8). Archive stores the probabilistic graph,
sampled trials, and corresponding feedback (Fig. 5d; Algo. 1, Lines 1,6), tracking the optimization
process across iterations and providing historical traces for the Agent to refine future updates.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance across MATH, MMLU, and HumanEval at 80 budget. Acc (↑) means Accuracy
(%, higher is better), Sear. (↓) means total search time in seconds (lower is better), and Inf. (↓) means
average inference time in seconds per test query (lower is better). Best in each column is bolded.

Method MATH MMLU HumanEval Average
Acc Sear. Inf. Acc Sear. Inf. P@1 Sear. Inf. Sco. Sear. Inf.

Single Model 49 - - 64 - - 60 - - 58 - -
Random 39 2852 28.5 44 658 6.6 63 1560 47.3 49 1690 27.5
BO 42 3076 30.8 36.8 ± 5.2 2150 21.5 33 2588 78.4 38 2605 43.6
GPTSwarm 40 943 9.4 42 463 4.6 55 804 24.4 46 737 12.8
MaaO 34 1440 14.4 41 738 7.4 42 860 26.1 39 1013 16.0
TextGrad 41 3687 36.9 39.9 ± 3.6 2276 22.8 42 2842 86.1 43 2935 48.6
Ours 56 804 8.0 61.5 ± 5.1 493 4.9 73 300 9.1 61 532 7.3

6 EXPERIMENTS

This section evaluates Agent-REINFORCE for compute-optimal collaboration graphs in TTS, cover-
ing ablations, varying budgets, joint objectives, alternative budget metrics, and visualizations.

Experimental Setup. We experiment on MATH, MMLU, and HumanEval using LLaMA models
(1B-8B) (Grattafiori et al., 2024) and Gemma models (1B-7B) (Team, 2025) (details in Appendix A.5).
Baselines fall into three groups: (i) traditional: Bayesian Optimization (BO) (Jones et al., 1998;
Shahriari et al., 2015) and random search; (ii) gradient-based: GPTSwarm (Zhuge et al., 2024), a
REINFORCE framework with gradient updates, and MaaO (Guo et al., 2024), combining gradient
training with LLM guidance; and (iii) LLM-based: TextGrad (Yuksekgonul et al., 2024), which relies
solely on textual guidelines. As these methods are not tailored to our setting, we adapt them for
test-time compute-optimal graph search (details in Appendix A.13). All methods are run for up to 30
search iterations on the training data and use the validation set to determine convergence. Search is
stopped if the average validation performance does not improve for 10 iterations. The final searched
graph is evaluated on the test set. We use DeepSeek-R1 (Guo et al., 2025) as the LLM search agent.

Main Results. Tab. 1 reports test performance and convergence time, and Fig. 9 in the Appendix
shows training trajectories. We observe: (1) Our method achieves the highest average test-set score
(higher accuracy or Pass@1) while converging substantially faster (lower search time). This is
enabled by Insights 2–3, which guide the search toward promising regions, and Insight 1, which
provides a strong initialization and avoids wasted trials. (2) Compared with the LLM-based TextGrad,
our method is much more efficient by pruning high-latency candidates early. Among the methods,
TextGrad yields the highest inference latency in the searched graphs, reflecting its tendency to favor
dense connections or larger node counts that drive full-budget utilization. Such usage often produces
high-overhead graphs and consequently slower convergence. (3) The gradient-based GPTSwarm
and MaaO converge quickly but often produce graphs inferior even to random search, due to their
vulnerability to local optima. This underscores the importance of combining global exploration with
local refinement. (4) The traditional Bayesian optimization method also suffers from local optima
and slow updates due to a lack of task-specific guidance. Random search shows some robustness and
can occasionally find competitive solutions, but it remains inefficient and unstable.

Table 2: Ablation study of Agent-REINFORCE on
MATH and MMLU w/o insights and role setting.

Methods MATH MMLU
Acc Sear. Acc Sear.

Agent-REINFORCE 56 804 54 493
w/o Insight 1 45 1946 42 1293
w/o Insight 2 49 2208 47 896
w/o Insight 3 48 1436 54 487
w/o Role 52 785 54 677

Ablation Studies. We evaluate the contribution
of each insight through ablation, comparing the
full method with variants: w/o Insight 1 uses
random initialization instead of task- and model-
informed initialization, while w/o Insight 2/3
removes prompt components for budget optima
and width–depth dependencies. Tab. 2 shows
that removing any insight slows convergence by
generating inefficient graphs; w/o Insight 1
enlarges the candidate space, and w/o Insight 2/3 biases exploration toward high-budget graphs.
Performance drops most under w/o Insight 1, as random initialization yields suboptimal starts
that limit later search. Excluding Insight 2 or 3 also reduces accuracy by losing guidance on budget
and width–depth trade-offs. We also perform an ablation by removing role setting, letting all nodes
process predecessors’ outputs and generate new answers, which degrades graph performance on
MATH. This highlights the importance of the fuser–assistant role division in test-time scaling. We
note that MMLU performance remains stable without Insight 3 or role settings, as it favors larger
models with fewer nodes, reducing the impact of width–depth trade-offs and roles.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: MATH Acc, Sear, and Inf under various FLOPs and price budget.

Method Price ≤ $5E-4 FLOPs Budget 42 FLOPs Budget 18
Acc Sear. Inf. Acc Sear. Inf. Acc Sear. Inf.

Random 35 2546 52.5 33 1706 56.9 39 1440 16.0
BO 36 2372 56.6 45 2724 49.5 38 1634 23.1
GPTSwarm 43 832 20.5 44 858 31.2 44 1028 29.1
MaaO 47 1104 20.0 46 889 50.9 44 836 14.6
TextGrad 22 3062 57.9 45 2661 48.6 40 2553 16.8
Ours 56 648 18.1 50 726 11.5 47 771 16.7

Performance Under Various Budget Settings. We evaluate search performance on the MATH
dataset under FLOPs budgets of 18 and 42, accommodating 1×8B and [2, 3]×8B models, respectively.
As shown in Tab. 3, our method consistently delivers superior efficiency and accuracy, demonstrating
strong generalization. Notably, some baselines perform better at smaller budgets (e.g., MaaO: 44 at
budget 18 vs. 34 at 80) because they overlook that the optimal budget is often below the maximum.
As noted in Insight 2, computation beyond the optimum yields negative returns, whereas smaller
budgets closer to the budget optimum can bring these methods nearer to peak performance.

Latency-aware Joint Optimization Objective. To demonstrate our method’s ability to handle
joint optimization objectives, we optimize both performance and latency through multidimensional
feedback, achieving a balance between accuracy and efficiency. The details of the optimization with a
joint objective are in Appendix A.9. On MATH with a 42 FLOPs budget, the searched graph achieves
an average latency of 3.1 seconds per test query, which is much lower than the 11.5 seconds under
a performance-only objective, thereby validating its effectiveness for multi-objective optimization,
even though performance decreases slightly from 50 to 46.

Figure 6: Optimal graph on MATH.

Generalization to the Dollar Cost as Budget. Beyond
FLOPs, end-users often care about the monetary cost of API
calls. We introduce price as an additional budget metric,
directly measured in currency units. As shown in Tab. 5
(Appendix A.10) , cost scales with input and output to-
kens, so fbudget(G,T) is redefined as input length times
per-token input price plus output length times per-token
output price. Under a fixed API budget $5E-4 per query
(from 4×8B to 6×8B models), the results in Tab. 3 show
Agent-REINFORCE excels in both accuracy and efficiency,
showing strong generalization across cost metrics.

Visualization Fig. 6 visualizes the optimal collaboration
graph within the budget 80 for the MATH task. The result indicates a clear preference for small-
model ensembles, as the relatively low task difficulty enables small models to meet performance
requirements, while additional instances further enhance their effectiveness. The structure favors a
hybrid scaling biased toward sequential refinement (width 3, depth 4), since multi-step math reasoning
benefits from iterative self-refinement, which sequential structures are better suited to support.

7 CONCLUSION

We study a novel problem of searching task-specific, compute-optimal test-time scaling over multi-
LLM collaboration graphs under a fixed budget, with an exponentially large design space in model
choices and nodes. From pilot analysis, we gain three empirical insights: (1) tasks replicate the
strongest model family, with small-model ensembles favored when incremental gains are high; (2)
width and depth admit task-specific optima, beyond which additional compute degrades performance;
and (3) width and depth interact, with growth in one shifting the optimum of the other. Based on
these findings, we propose Agent-REINFORCE, an LLM-agent framework that conducts budget-
aware, feedback-driven search on collaboration graphs. Experiments show that our proposed method
outperforms traditional and LLM-based baselines in search efficiency and performance, while also
showing the ability to find optimal graphs under a joint performance-latency objective.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. No human or animal subjects were involved. Datasets
(MATH, MMLU, HumanEval) were used in compliance with guidelines, with no privacy violations
or personally identifiable information. We ensured fairness, avoided bias, and upheld transparency
and integrity throughout the research.

REPRODUCIBILITY STATEMENT

We provide an anonymous code package and configures at link to ensure reproducibility of all
experiments; Training/inference details are provided in Section 6; The datasets we used are public
datasets, with sources, task setups and pre-processing steps provided in Appendix A.5; The prompt
design in AGENT-REINFORCE is detailed in Appendix A.12, and the method internals are given in
Appendix A.2 and Appendix A.11. Any additional insights and related works are summarized in
Appendix A.6 and Appendix A.16.

REFERENCES

Hugging face. https://huggingface.co/. Accessed: 2025-09-22.

Mari Ashiga, Wei Jie, Fan Wu, Vardan Voskanyan, Fateme Dinmohammadi, Paul Brookes, Jingzhi
Gong, and Zheng Wang. Ensemble learning for large language models in text and code generation:
A survey. arXiv preprint arXiv:2503.13505, 2025.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. The journal
of machine learning research, 13(1):281–305, 2012.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts:
Solving elaborate problems with large language models. In Proceedings of the AAAI conference
on artificial intelligence, volume 38, pp. 17682–17690, 2024.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: Process supervision
without process. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024a. URL https://openreview.net/forum?id=VaXnxQ3UKo.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, et al. Agentverse: Facilitating multi-agent collaboration and
exploring emergent behaviors. In ICLR, 2024b.

Weizhe Chen, Sven Koenig, and Bistra Dilkina. Iterative deepening sampling for large language
models. arXiv e-prints, pp. arXiv–2502, 2025.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. In The Twelfth International Conference on Learning Representations, 2024c. URL
https://openreview.net/forum?id=KuPixIqPiq.

Roi Cohen, May Hamri, Mor Geva, and Amir Globerson. LM vs LM: Detecting factual errors via
cross examination. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 12621–12640, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
778. URL https://aclanthology.org/2023.emnlp-main.778/.

10

https://anonymous.4open.science/r/AgentRE-0CF5/
https://huggingface.co/
https://openreview.net/forum?id=VaXnxQ3UKo
https://openreview.net/forum?id=KuPixIqPiq
https://aclanthology.org/2023.emnlp-main.778/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

I De Zarzà, J De Curtò, Gemma Roig, and Carlos T Calafate. Optimized financial planning:
integrating individual and cooperative budgeting models with llm recommendations. AI, 5(1):
91–114, 2023.

Shangbin Feng, Zifeng Wang, Palash Goyal, Yike Wang, Weijia Shi, Huang Xia, Hamid Palangi,
Luke Zettlemoyer, Yulia Tsvetkov, Chen-Yu Lee, et al. Heterogeneous swarms: Jointly optimizing
model roles and weights for multi-llm systems. arXiv preprint arXiv:2502.04510, 2025.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
CRITIC: Large language models can self-correct with tool-interactive critiquing. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=Sx038qxjek.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Lin Gui, Cristina Garbacea, and Victor Veitch. BoNBon alignment for large language models and the
sweetness of best-of-n sampling. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=haSKMlrbX5.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zixian Guo, Ming Liu, Zhilong Ji, Jinfeng Bai, Yiwen Guo, and Wangmeng Zuo. Llm as a complemen-
tary optimizer to gradient descent: A case study in prompt tuning. arXiv preprint arXiv:2405.19732,
2024.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 8154–8173, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021a. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021b. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao, and Benyou Wang. LLMs for mathematical
modeling: Towards bridging the gap between natural and mathematical languages. In Luis Chiruzzo,
Alan Ritter, and Lu Wang (eds.), Findings of the Association for Computational Linguistics: NAACL
2025, pp. 2678–2710, Albuquerque, New Mexico, April 2025. Association for Computational
Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.146. URL https:
//aclanthology.org/2025.findings-naacl.146/.

Ganesh Jawahar, Muhammad Abdul-Mageed, Laks Lakshmanan, and Dujian Ding. Llm perfor-
mance predictors are good initializers for architecture search. In Findings of the Association for
Computational Linguistics ACL 2024, pp. 10540–10560, 2024.

Zipeng Ji, Guanghui Zhu, Chunfeng Yuan, and Yihua Huang. RZ-NAS: Enhancing LLM-guided neu-
ral architecture search via reflective zero-cost strategy. In Forty-second International Conference
on Machine Learning, 2025. URL https://openreview.net/forum?id=9UExQpH078.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 14165–14178, 2023.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 13:455–492, 1998.

11

https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=haSKMlrbX5
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=7Bywt2mQsCe
https://aclanthology.org/2025.findings-naacl.146/
https://aclanthology.org/2025.findings-naacl.146/
https://openreview.net/forum?id=9UExQpH078

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More agents is all you need. arXiv
preprint arXiv:2402.05120, 2024.

Shiyuan Li, Yixin Liu, Qingsong Wen, Chengqi Zhang, and Shirui Pan. Assemble your crew:
Automatic multi-agent communication topology design via autoregressive graph generation. arXiv
preprint arXiv:2507.18224, 2025a.

Zichong Li, Xinyu Feng, Yuheng Cai, Zixuan Zhang, Tianyi Liu, Chen Liang, Weizhu Chen, Haoyu
Wang, and Tuo Zhao. Llms can generate a better answer by aggregating their own responses. arXiv
preprint arXiv:2503.04104, 2025b.

Runze Liu, Junqi Gao, Jian Zhao, Kaiyan Zhang, Xiu Li, Biqing Qi, Wanli Ouyang, and Bowen
Zhou. Can 1b llm surpass 405b llm? rethinking compute-optimal test-time scaling. arXiv preprint
arXiv:2502.06703, 2025a.

Siyi Liu, Chen Gao, and Yong Li. Large language model agent for hyper-parameter optimization.
arXiv preprint arXiv:2402.01881, 2024a.

Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language
models to enhance bayesian optimization. In The Twelfth International Conference on Learning
Representations, 2024b. URL https://openreview.net/forum?id=OOxotBmGol.

Yexiang Liu, Zekun Li, Zhi Fang, Nan Xu, Ran He, and Tieniu Tan. Rethinking the role of prompting
strategies in LLM test-time scaling: A perspective of probability theory. In Wanxiang Che, Joyce
Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
27962–27994, Vienna, Austria, July 2025b. Association for Computational Linguistics. ISBN
979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1356. URL https://aclanthology.org/
2025.acl-long.1356/.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic LLM-agent network:
An LLM-agent collaboration framework with agent team optimization, 2024c. URL https:
//openreview.net/forum?id=i43XCU54Br.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

Kou Misaki, Yuichi Inoue, Yuki Imajuku, So Kuroki, Taishi Nakamura, and Takuya Akiba. Wider or
deeper? scaling LLM inference-time compute with adaptive branching tree search. In ICLR 2025
Workshop on Foundation Models in the Wild, 2025. URL https://openreview.net/forum?id=
3HF6yogDEm.

Yves Gaetan Nana Teukam, Federico Zipoli, Teodoro Laino, Emanuele Criscuolo, Francesca Grisoni,
and Matteo Manica. Integrating genetic algorithms and language models for enhanced enzyme
design. Briefings in bioinformatics, 26(1):bbae675, 2025.

Muhammad Umair Nasir, Sam Earle, Julian Togelius, Steven James, and Christopher Cleghorn.
Llmatic: neural architecture search via large language models and quality diversity optimization.
In proceedings of the Genetic and Evolutionary Computation Conference, pp. 1110–1118, 2024.

Jiayi Pan, Xiuyu Li, Long Lian, Charlie Victor Snell, Yifei Zhou, Adam Yala, Trevor Darrell,
Kurt Keutzer, and Alane Suhr. Learning adaptive parallel reasoning with language models. In
Second Conference on Language Modeling, 2025. URL https://openreview.net/forum?id=
YgwQ7sXPXU.

Chen Qian, Zihao Xie, YiFei Wang, Wei Liu, Kunlun Zhu, Hanchen Xia, Yufan Dang, Zhuoyun Du,
Weize Chen, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Scaling large language model-based
multi-agent collaboration. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=K3n5jPkrU6.

Jon Saad-Falcon, Adrian Gamarra Lafuente, Shlok Natarajan, Nahum Maru, Hristo Todorov, Etash
Guha, E Kelly Buchanan, Mayee Chen, Neel Guha, Christopher Ré, et al. Archon: An architecture
search framework for inference-time techniques. arXiv preprint arXiv:2409.15254, 2024.

12

https://openreview.net/forum?id=OOxotBmGol
https://aclanthology.org/2025.acl-long.1356/
https://aclanthology.org/2025.acl-long.1356/
https://openreview.net/forum?id=i43XCU54Br
https://openreview.net/forum?id=i43XCU54Br
https://openreview.net/forum?id=3HF6yogDEm
https://openreview.net/forum?id=3HF6yogDEm
https://openreview.net/forum?id=YgwQ7sXPXU
https://openreview.net/forum?id=YgwQ7sXPXU
https://openreview.net/forum?id=K3n5jPkrU6

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute
without verification or RL is suboptimal. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=beeNgQEfe2.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2015.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
optimally can be more effective than scaling parameters for reasoning. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=4FWAwZtd2n.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang,
Peter Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=348hfcprUs.

Yung-Chen Tang, Pin-Yu Chen, and Andrea Cavallaro. Carbon: Calibrated best-of-n sampling
improves test-time reasoning. arXiv preprint arXiv:2510.15674, 2025.

Gemma Team. Gemma 3. 2025. URL https://arxiv.org/abs/2503.19786.

Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and
Jun Wang. Alphazero-like tree-search can guide large language model decoding and training. In
Forty-first International Conference on Machine Learning, 2024. URL https://openreview.
net/forum?id=C4OpREezgj.

Fali Wang, Hui Liu, Zhenwei Dai, Jingying Zeng, Zhiwei Zhang, Zongyu Wu, Chen Luo, Zhen Li,
Xianfeng Tang, Qi He, et al. Agenttts: Large language model agent for test-time compute-optimal
scaling strategy in complex tasks. arXiv preprint arXiv:2508.00890, 2025a.

Jian Wang, Boyan Zhu, Chak Tou Leong, Yongqi Li, and Wenjie Li. Scaling over scaling: Exploring
test-time scaling pareto in large reasoning models. arXiv preprint arXiv:2505.20522, 2025b.

Tianchun Wang, Zichuan Liu, Yuanzhou Chen, Jonathan Light, Haifeng Chen, Xiang Zhang, and Wei
Cheng. Diversified sampling improves scaling llm inference. arXiv preprint arXiv:2502.11027,
2025c.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for llm problem-solving. In The Thirteenth
International Conference on Learning Representations, 2025.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael
Xie. Self-evaluation guided beam search for reasoning. Advances in Neural Information Processing
Systems, 36:41618–41650, 2023.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Bb4VGOWELI.

13

https://openreview.net/forum?id=beeNgQEfe2
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=348hfcprUs
https://openreview.net/forum?id=348hfcprUs
https://arxiv.org/abs/2503.19786
https://openreview.net/forum?id=C4OpREezgj
https://openreview.net/forum?id=C4OpREezgj
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=Bb4VGOWELI

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yingxuan Yang, Huacan Chai, Shuai Shao, Yuanyi Song, Siyuan Qi, Renting Rui, and Weinan Zhang.
Agentnet: Decentralized evolutionary coordination for llm-based multi-agent systems. arXiv
preprint arXiv:2504.00587, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural
information processing systems, 36:11809–11822, 2023.

Fei Yu, Anningzhe Gao, and Benyou Wang. Ovm, outcome-supervised value models for planning in
mathematical reasoning. In Findings of the Association for Computational Linguistics: NAACL
2024, pp. 858–875, 2024.

Zhenrui Yue, Honglei Zhuang, Aijun Bai, Kai Hui, Rolf Jagerman, Hansi Zeng, Zhen Qin, Dong
Wang, Xuanhui Wang, and Michael Bendersky. Inference scaling for long-context retrieval
augmented generation. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=FSjIrOm1vz.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic" differentiation" via text. arXiv preprint arXiv:2406.07496,
2024.

Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Yunhua Zhou, and Xipeng Qiu. Revisiting the
test-time scaling of o1-like models: Do they truly possess test-time scaling capabilities? arXiv
preprint arXiv:2502.12215, 2025.

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
Tianlong Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication topologies
via graph neural networks. In Forty-second International Conference on Machine Learning, 2025a.
URL https://openreview.net/forum?id=LpE54NUnmO.

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. Mlcopilot: Unleashing the
power of large language models in solving machine learning tasks. In Proceedings of the 18th
Conference of the European Chapter of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 2931–2959, 2024a.

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Zhihan Guo, Yufei Wang, Irwin
King, Xue Liu, and Chen Ma. What, how, where, and how well? a survey on test-time scaling in
large language models. CoRR, 2025b.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B. Tenenbaum, and Chuang Gan.
Planning with large language models for code generation. In The Eleventh International Conference
on Learning Representations, 2023. URL https://openreview.net/forum?id=Lr8cOOtYbfL.

Tuo Zhang, Jinyue Yuan, and Salman Avestimehr. Revisiting OPRO: The limitations of small-scale
LLMs as optimizers. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the
Association for Computational Linguistics: ACL 2024, pp. 1727–1735, Bangkok, Thailand, August
2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.100. URL
https://aclanthology.org/2024.findings-acl.100/.

Yisong Zhang, Ran Cheng, Guoxing Yi, and Kay Chen Tan. A systematic survey on large language
models for evolutionary optimization: From modeling to solving. arXiv preprint arXiv:2509.08269,
2025c.

Mingkai Zheng, Xiu Su, Shan You, Fei Wang, Chen Qian, Chang Xu, and Samuel Albanie. Can
gpt-4 perform neural architecture search? arXiv preprint arXiv:2304.10970, 2023.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024.

14

https://openreview.net/forum?id=FSjIrOm1vz
https://openreview.net/forum?id=LpE54NUnmO
https://openreview.net/forum?id=Lr8cOOtYbfL
https://aclanthology.org/2024.findings-acl.100/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 TEST-TIME SCALING: MODES AND BUILDING BLOCKS

(a) Parallel
Scaling

(b) Sequential
Scaling

(c) Hybrid
Scaling

Input Direct/
refined output Fused output

(d) Scaling with
Various Models

output
refine
fuse

…

…

…

… … … …

Node with an
assigned model

Various
models

Figure 7: Test-Time Scaling Paradigms: (a–c) Fixed topologies with single-model assignments, and
(d) dynamic scaling with diverse models.

Sequential
Scaling

Parallel
Scaling Answer Answer

Self-refinement

Initial
candidats

Input Direct/refined output

Refined output

Direct output Repeated sampling Fusion

output refine fuseFused output

… … … … …

…

Figure 8: Test-time scaling primitives.

Fig. 7 shows four paradigms: (a) parallel via repeated sampling + aggregation; (b) sequential via
iterative self-refinement; (c) fixed hybrids that fuse both; and (d) our dynamic setting that searches
architectures and assigns heterogeneous models under a compute budget. Fig. 8 reduces these to three
primitives—repeated sampling, fusion, self-refinement, and frames dynamic TTS as a multi-LLM
collaboration graph with role-assigned nodes (e.g., fuser, assistant), directed information flow, and a
terminal aggregator.

A.2 INFERENCE ON MULTI-LLM COLLABORATION GRAPH FOR TTS ALGORITHM

Algo 2 executes the collaboration graphG in topological order: Successors of the input node generate
initial outputs; nodes activate when in-degree reaches zero and run by role—fuser (aggregate) or
assistant (refine)—propagating results forward. The unique sink node produces the final answer.

A.3 PILOT EXPERIMENTS FOR EXISTING TTS

Table 4 summarizes the task-specific preferences for topologies and model combinations. In MATH,
the hybrid graph topology combined with a mixture of 3B models yields the best accuracy. In contrast,
MMLU shows a clear preference for pure parallel graph topologies and the use of a single 8B model.
These results indicate that different tasks exhibit distinct preferences for architectural patterns and
model configurations.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2 Inference on Multi-LLM Collaboration Graph for TTS

Require: Query q, graph G = (V, E ,R,M) (DAG with a unique sink vsink)
Ensure: Final output o

1: Initialize din(v), dout(v) and buffers O(v)← ∅ for all v ∈ V
2: Q ← { v ∈ V | din(v) = 0 } ▷ topological frontier
3: while Q ≠ ∅ do
4: Remove a node v from Q
5: C ←

⋃
u∈pred(v)O(u)

6: if rv = fuser then
7: O(v)← ffuse(q, C,Mv)
8: else ▷ rv = assistant
9: O(v)← frefine(q, C,Mv)

10: end if
11: for all w ∈ succ(v) do
12: din(w)← din(w)− 1; if din(w) = 0 then add w to Q
13: end for
14: end while
15: return o← O(vsink) ▷ unique sink with dout(vsink) = 0

Table 4: Accuracy (ACC, %) across different topologies and model combinations on MATH and
MMLU. LLaMA-3 models are used by default. Results are averaged over 10 random graphs.

Dataset Model Comb. Sequential Parallel Hybrid

MATH
1B Mix 37 41 44
3B Mix 58 56 59
8B×1 49 49 49

MMLU
1B Mix 35 43 30
3B Mix 49 51 41
8B×1 64 64 64

A.4 CALCULATION OF THE NUMBER OF DAGS

Given n nodes, the spectrum of possible configurations ranges from totally indistinguishable nodes
to totally distinguishable nodes. The number of directed acyclic graphs (DAGs) lies within this range:
the indistinguishable case corresponds to counting the number of non-isomorphic DAGs (where
isomorphic topologies are counted only once), while the distinguishable case corresponds to counting
the number of labeled DAGs.

Indistinguishable nodes: Number of non-isomorphic DAGs. A closed-form characterization can
be derived from the fact that every DAG admits at least one topological ordering. If we fix the order
1 < 2 < · · · < n, then only edges of the form i→ j with i < j are permitted. This yields n(n−1)

2

possible edges, and thus 2(
n
2) candidate adjacency matrices, all acyclic by construction. However,

many of these candidates are isomorphic. To correctly count non-isomorphic DAGs, each candidate
graph is reduced to a canonical labeling, and graphs with the same canonical form are merged. To
reduce the cost of considering all permutations, nodes are grouped by their in-degree and out-degree,
and permutations are applied only within these groups, which substantially reduces computational
complexity. The Python implementation in Listing 1 computes the number of non-isomorphic DAGs.

Distinguishable nodes: Number of labeled DAGs. When nodes are labeled, the total num-
ber of DAGs can be computed using a well-known recurrence relation: A(0) = 1, A(n) =∑n
k=1(−1)k+1

(
n
k

)
2k(n−k)A(n− k). Here, A(n) denotes the number of labeled DAGs on n nodes.

This formulation accounts for all possible edge configurations under node labeling and ensures that
only acyclic structures are counted. The corresponding Python implementation is provided in the
Listing 2.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

import itertools as it

def upper_adj_bitmasks(n, bits):
rows = [0]*n
for i in range(n):

for j in range(i+1, n):
if bits & 1: rows[i] |= (1<<j)
bits >>= 1

return rows

def indegree_outdegree(rows):
n = len(rows)
outdeg = [r.bit_count () for r in rows]
indeg = [0]*n
for i,r in enumerate(rows):

while r:
j = (r&-r).bit_length () -1
indeg[j] += 1
r &= r-1

return tuple(zip(outdeg , indeg))

def permute_rows(rows , perm):
inv = [0]* len(perm)
for i,p in enumerate(perm): inv[p]=i
return [sum(1<<inv[j] for j in range(len(rows)) if (rows[perm[i]]>>j)&1) for i in range(

len(rows))]

def canonical_form_rows(rows):
degs = indegree_outdegree(rows)
groups = {}
for i,deg in enumerate(degs): groups.setdefault(deg ,[]).append(i)
perms = [it.permutations(g) for g in groups.values ()]
best = None
for p in it.product (*perms):

perm = [x for part in p for x in part]
newrows = permute_rows(rows , perm)
key = ’’.join(’1’ if (newrows[i]>>j)&1 else ’0’ for i in range(len(rows)) for j in

range(len(rows)))
if best is None or key < best: best = key

return best

def count_unlabeled_dags(n):
m = n*(n-1)//2
return len({ canonical_form_rows(upper_adj_bitmasks(n,b)) for b in range(1<<m)})

for n in range (1,8): print(n, count_unlabeled_dags(n))

Results (number of non -isomorphic DAGs)
n=1: 1
n=2: 2
n=3: 8
n=4: 54
n=5: 762
n=6: 21,542
n=7: 1,259,209

Listing 1: Python code computes the number of non-isomorphic DAGs

import math
from functools import lru_cache

@lru_cache(None)
def labeled_dags(n):

if n==0:
return 1

s=0
for k in range(1,n+1):

s += (-1)**(k+1) * math.comb(n,k) * (2**(k*(n-k))) * labeled_dags(n-k)
return s

for n in range (1,9):
print(n, labeled_dags(n))

n=8: 783 ,702 ,329 ,343

Listing 2: Python code computes the number of labeled DAGs

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.5 TASKS, DATASETS, AND MODELS

MATH dataset (Hendrycks et al., 2021b) The MATH dataset is used for arithmetic reasoning
evaluation tasks, consisting of 12,500 competition-level problems from high school contests. Each
problem is accompanied by a step-by-step solution, which supports evaluation of final-answer
accuracy as the primary metric. Serving as a rigorous benchmark for symbolic manipulation and
multi-step mathematical reasoning, MATH is widely used to test the limits of language models. In
our experiments, we sample 750 problems for training and 100 for testing, with average prompt and
generation lengths of 202 and 275 tokens, respectively.

MMLU dataset (Hendrycks et al., 2021a) The Massive Multitask Language Understanding
(MMLU) dataset is a comprehensive benchmark for evaluating knowledge and general reason-
ing tasks across 57 tasks spanning humanities, social sciences, STEM, and professional fields, with
questions ranging from elementary to advanced difficulty. Each task is presented in a multiple choice
format and precision is used as a standard evaluation metric. MMLU has become a widely adopted
benchmark for assessing the general knowledge and cross-domain adaptability of large language
models. In our experiments, we randomly sampled 285 questions for training and 100 for testing,
with average prompt and generation lengths of 213 and 230 tokens, respectively.

HumanEval dataset (Chen et al., 2021) The HumanEval dataset is a benchmark designed to assess
code generation and synthesis capabilities of language models. It contains 164 Python programming
problems, each consisting of a function signature, natural language docstring, and unit tests for
automatic evaluation. The primary metric is passk, which measures the probability that at least one
of k generated solutions passes all hidden test cases. HumanEval has become a standard benchmark
for evaluating the ability of models to translate natural language descriptions into correct, executable
code. In our experiments, we randomly sample 128 instances for training and others for testing, with
average prompt and generation lengths of 181 and 104 tokens, respectively.

Language models adopted We evaluate our method using language models of varying scales from
the LLaMA-3 family (Grattafiori et al., 2024) and Gemma family Team (2025). To promote diversity
in generations and enhance coverage during parallel sampling, we set the decoding temperature to
0.9 while retaining all other hyperparameters at their default values. All experiments are conducted
on an NVIDIA A800 GPU with 80GB HBM3 memory to ensure a consistent runtime environment.

A.6 DETAILED INSIGHTS

Insight 1: Task-specific preferences for model family and size combinations. We conduct
preliminary tests across various combinations of model families and sizes on the MATH and MMLU
datasets to explore the task-specific model preferences. Fig. 3(a–b) compares performance with
various family combinations. The results show that allocating the budget to multiple instances of
the strongest model is more effective than mixing families. For example, within the 3B space of
LLaMA and Gemma on MMLU, LLaMA outperforms Gemma; thus, LLaMA×2 surpasses both
Gemma+LLaMA and Gemma×2. This is because test-time scaling effectiveness is driven by the
capability of base models, favoring replication of stronger ones. Fig. 3 (c–d) reports 10-run average
performance with 90% confidence intervals under the same limited FLOPs budget, considering
LLaMA 1B, 3B, and 8B, to explore whether limited budgets should be allocated to more small
models or fewer large models (noting that with an unlimited budget, large models are always optimal).
Reasoning tasks (MATH) favor mixtures of smaller models (3B×3), while knowledge tasks (MMLU)
prefer larger models (8B×1). The trade-off depends on marginal performance gains: on MATH,
LLaMA 3B improves by 7 points (from 39% to 46%) when scaled from one to two instances, showing
the potential to surpass a single 8B (49%) with more instances, thus favoring small-model mixtures;
on MMLU, the gain (41% to 45%) is modest, making larger models (8B×1 with 64%) preferred.
These are attributed to (i) task demands: reasoning tasks benefit from smaller-models ensembles
because multiple models provide more opportunities to refine the answers with multi-step reasoning,
whereas knowledge tasks need broad parametric knowledge coverage, better supported by large
models; and (ii) task difficulty: easier tasks yield larger gains from small models, as they can already
solve such tasks well and scaling further improves performance, whereas harder tasks are challenging
for small models and demand large ones. Consequently, tasks favor replication of the strongest
model family, with small-model ensembles preferred only when their incremental gains are
substantial.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Insight 2: Parallel and sequential scaling saturate and decline beyond an optimal budget. Fig. 4
(a–b) shows that both parallel and sequential scaling on various datasets follow a non-monotonic
pattern. Increasing the number of parallel nodes (width) or sequential nodes (depth) initially improves
performance, but beyond a task-specific optimal point, performance plateaus and eventually declines.
For example, peak performance is achieved at 8 parallel nodes or 8 sequential nodes on MATH, after
which additional nodes yield no consistent gains. This performance degradation arises from different
sources. In parallel scaling, performance converges once a sufficient width ensures dominance of
correct answers, so additional nodes provide little benefit. Excessive outputs from preceding nodes
lengthen input contexts, straining long-context capacity and degrading performance. In sequential
scaling, performance improves while refinement benefits exceed potential propagated errors; once
the refinement capacity is reached, additional steps mainly propagate and amplify errors, leading
to performance degradation. In summary, both width and depth exhibit task-dependent optima,
beyond which extra computation provides negative returns.

Insight 3: Interdependence between graph width and depth. Fig. 4 (c) shows MATH perfor-
mance under varying width (parallel nodes) and depth (sequential nodes) combinations. We adopt
a fixed architecture that first performs parallel sampling of w nodes from the input node, followed
by sequential self-refinement of d nodes for each sampled branch, using the LLaMA-1B model
uniformly across all nodes. To examine the trade-off between width and depth, we impose the
constraint wd ≤ 24. We observe: (i) accuracy at the optimal depth rises then falls as width increases
(e.g., 38 at width 1, 47 at width 3, 45 at width 4), consistent with Insight 2; (ii) the optimal depth
decreases with larger widths (e.g., 8 at width 1 vs. 4 at width 3), as initially wider structures enhance
refinement capacity and accelerate convergence. Increasing depth yields the same pattern on width:
accuracy follows a non-monotonic trend, and the optimal width decreases because deeper refinement
allows correct answers to dominate earlier, shifting the optimal width point forward. In summary,
graph width and depth are interdependent, with growth in one dimension shifting the optimal
point of the other.

A.7 fCOST(G,T) WITH THE FLOPS COMPUTE METRIC

We adopt a simplified but standard FLOPs accounting scheme, where one multiply-add counts as
2 FLOPs, and causal self-attention reuses cached keys/values during decoding. Consider a model
at node v with non-embedding model parameters M , hidden size D, and layers L. Let Np and Nd
denote the input (prefill) and output (decode) lengths for node v on task T = (N̄T

p , N̄
T
d) where N̄T

p

and N̄T
d are the average length of input and output, respectively.

Token-wise projection/MLP FLOPs. Each non-embedding weight is applied once per token
through a matrix multiplication followed by addition, yielding approximately 2M FLOPs per token.
Aggregating across sequence lengths, we obtain 2MNp for prefill, 2MNd for decode.

Attention FLOPs. For a single layer and a single head, the number of attention score dot-products
(queries × keys) is:

• Prefill (length Np): causal masking yields a triangular count
Np∑
i=1

i =
Np(Np+1)

2 .

• Decode (length Nd): token t attends to Np + t tokens, giving
Nd∑
t=1

(
Np + t

)
= NdNp +

Nd(Nd+1)
2 =

Nd(2Np+Nd+1)
2 .

Since each attention requires both query-key dot products and value applications, the total multiply-
adds are 4LD FLOPs per token. Summing across D hidden size and L layers gives

FLOPsattn, prefill = 2LDNp(Np + 1), FLOPsattn, decode = 2LDNd(2Np +Nd + 1).

These formulas combine constant factors from scoring, softmax, and value multiplication, while
preserving quadratic and linear scaling in Np and Nd.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Node-level cost. Summing the projection/MLP and attention costs yields

fcost_prefill(Np,M) = 2MNp + 2LDNp(Np + 1),

fcost_decode(Np, Nd,M) = 2MNd + 2LDNd(2Np +Nd + 1),

so that
fcost(Np, Nd,M) = fcost_prefill(Np,M) + fcost_decode(Np, Nd,M).

Effective input length in a collaboration graph. In a multi-LLM collaboration graph G =
(V, E ,R,M), the effective prefill length for node vi depends on the task average input and the
number of predecessor outputs concatenated to its input. With T = (N̄T

p , N̄
T
d) and in-degree d(vi),

we set
Nvi
p = N̄T

p + d(vi) N̄
T
d , Nvi

d = N̄T
d .

Graph-level cost. Summing node costs across the graph,

fcost(G,T) =
∑
vi∈V

[
fcost_prefill

(
Nvi
p ,Mi

)
+ fcost_decode

(
Nvi
p , N

vi
d ,Mi

)]
.

Substituting node-level cost formulas,

fcost(G,T) =
∑
vi∈V

[
2MiN

vi
p + 2LiDiN

vi
p (Nvi

p + 1) + 2MiN
vi
d + 2LiDiN

vi
d

(
2Nvi

p +Nvi
d + 1

)]
.

Simplified form. Let A = N̄T
p , B = N̄T

d , and di = d(vi). Then

fcost(G,T) =
∑
vi∈V

[
2Mi(A+diB)+2LiDi(A+diB)(A+diB+1)+2MiB+2LiDiB

(
2(A+diB)+B+1

)]
.

Expanding and grouping by di yields a quadratic form

fcost(G,T) =
∑
vi∈V

[
αi d

2
i + βi di + γi

]
,

with coefficients

αi = 2LiDiB
2, βi = 2MiB+2LiDiB(2A+2B+1), γi = 2(Mi+LiDi)(A+B)+2LiDi(A+B)2.

Please remark that

(i) Verifier/top-k filtering. If a fuser applies top-k selection on predecessor outputs, replace
d(vi) by min{d(vi), k} in Nvi

p .
(ii) Alternative metrics. For monetary cost, replace FLOPs-based node terms with calibrated

surrogates {fcost_prefill, fcost_decode} per model; graph aggregation remains identical.
(iii) Budget normalization. With unit budget defined as one inference of the smallest model,

the normalized budget is

B = fbudget(G,T), fcost(G,T) = B · fcost(Gsmallest, T).

A.8 DETAILED BUDGET DEFINITION

Different model sizes and graph topologies incur substantially different computational costs: larger
models introduce higher inference overhead, while denser topologies require more interactions. These
differences make it challenging to establish a unified metric for budget measurement. To address
this, we propose a standardized budget definition that enables comparability across model scales and
topology complexities. For example, this framework allows us to equate the budget cost of “more
sequential/parallel nodes with smaller models” to that of “fewer nodes with larger models.”

Formally, let the average input and output lengths of a task be denoted by T = (N̄T
p , N̄

T
d). The

total computational cost of a collaboration graph G on task T is defined as fcost(G,T), and the
corresponding normalized budget is B = fbudget(G,T). The cost function fcost can be instantiated

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

according to user preference to reflect different measures, such as FLOPs, wall-clock runtime, or
monetary cost. To establish a common unit of comparison, we define the budget of executing one full
inference with the smallest model in the pool as a single unit, i.e.,

fbudget(Gsmallest, T) = 1,

where Gsmallest denotes a graph consisting of only one node of the smallest model. Consequently, the
budget value of any graph G is equivalent to the number of unit costs required, namely,

B =
fcost(G,T)

fcost(Gsmallest, T)
.

where it means TTS graph with budget B is equal to run B-time single-node inference.

We define the computation cost of a multi-LLM collaboration graph G on a task T = (N̄T
p , N̄

T
d) in

terms of FLOPs, which we adopt as the primary cost metric in this work. The corresponding cost
function is stated in the theory below. The proof is in Appendix A.7.

FLOPs Cost Function: For each node vi ∈ G, the cost depends on the model size and its effective
input/output lengths, leading to a quadratic dependence on the node in-degree d(vi). Summing across
all nodes, the total cost can be expressed as

fcost(G,T) =
∑
vi∈V

[
αi d(vi)

2 + βi d(vi) + γi
]
,

where coefficients αi, βi, γi capture the contributions of model dimension, depth, and average task
input/output lengths. Detailed derivations of αi, βi, γi are provided in Appendix A.7.

A.9 DETAILED OPTIMIZATION WITH JOINT OBJECTIVE

Our optimization objective is not limited to single-performance criteria; in many cases, it is necessary
to identify graph structures that satisfy composite objectives, such as achieving both low latency
and high accuracy. To this end, the proposed Agent-REINFORCE framework incorporates diverse
feedback mechanisms obtained from the Environment to accommodate different optimization goals.
For instance, under the joint objective of low latency and high performance, we incorporate the
inference time of each candidate graph as an additional feedback signal to the Agent. Moreover,
we can explicitly provide the Agent with prior knowledge through instructions that describe the
relationship between graph structures and latency, for example, that latency is more sensitive to the
number of nodes and the graph width, thereby accelerating the search for composite-optimal graphs.
All feedback, including inference time, is stored in the Archive, enabling the LLM to leverage
historical information to assess the marginal effect of latency reduction on performance, and thus
achieve a principled trade-off between efficiency and accuracy.

A.10 DETAILED DOLLAR COST-BASED BUDGET

Table 5 is the API cost information for each model from Together AI and Compare Ai Models. We
do not convert it in the same manner as above, as the dollar serves as a natural unit of price. Note that
LLaMA-3.2 1B, Gemma-3 1B, and Gemma-1.1 2B are not quoted in Together AI or Compare Ai
Models; for convenient consistency in our comparison, we adopt estimated reference values of 0.02,
0.02, and 0.06, respectively, for these models.

Table 5: Inference costs per 1M tokens for models from Together AI and Compare Ai Models.

Model Name Parameters Inference Cost (per 1M tokens)
LLaMA-3.1 70B 70B $0.88
LLaMA-3.1 8B 8B $0.18
LLaMA-3.2 3B 3B $0.06
Gemma-1.1 7B 7B $0.27

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A.11 DETAILED REINFORCE ALGORITHM

A gradient-based algorithm can be employed to solve the optimization problem. Since the search space
of collaboration graphs is prohibitively large, exhaustive enumeration of all possible configurations is
infeasible. Instead, we parameterize the distribution of graphs as G̃ = Pθ,π,ψ, where θ encodes the
probabilities of edge existence, π encodes the probabilities of role assignments, and ψ encodes the
probabilities of model selections.

Given a budget B, we set the number of nodes n to the maximum number of smallest models that the
budget can cover. A straightforward approach to defining a parameterized distribution over DAGs
with fixed n nodes, edges, models, and roles is as follows. We introduce real-valued parameters:
θ = [θij], pθ(θij) = σ(θij) for edge probabilities; π = [π1, π2, . . . , πn] with role probabilities
pπ(ri) = softmax(πi); and ψ = [ψ1, ψ2, . . . , ψn] with model probabilities pψ(mi) = softmax(ψi).
By iteratively refining this distribution, the algorithm progressively biases sampling toward low-loss
collaboration graphs.

During training, we adopt the REINFORCE algorithm (Williams, 1992), a classical policy-gradient
method that provides unbiased estimates of the utility gradient. It follows a sampling–gradient–update
pipeline: candidates are sampled from the distribution, gradients are computed by evaluating on the
training set, and parameters are updated via gradient ascent.

Monte Carlo Sampling. The probability of sampling a graph G ∼ Pθ,π,ψ is decomposed as

Pθ,π,ψ = p(ψ) · p(θ | ψ) · p(π | θ, ψ) = p(ψ) · p(θ | ψ) · p(π | θ),

where

p(ψ) =

n∏
i=1

pψ(ψi),

p(θ | ψ) =

{∏
i,j pθ(θij), if the resulting graph is a DAG and fbudget(G,T) ≤ B,

0, otherwise,
,

p(π | θ) =
n∏
i=1

pπ(α
|d(vi)|πi), α ∈ [1, 1.1],

where α is a constant that encourages the fusion role when the in-degree of vi is high. This
formulation provides a principled probabilistic parameterization of collaboration graphs, enabling
efficient sampling and optimization within the REINFORCE framework.

Gradient Estimation. The gradient is calculated by:

∇θ,π,ψ EG′∼Pθ,π,ψ
[
uT (G

′)
]
= EG′∼Pθ,π,ψ

[
uT (G

′)∇θ,π,ψ log pθ,π,ψ(G
′)
]

≈ 1

N

N∑
i=1

uT (G
(i))∇θ,π,ψ log pθ,π,ψ(G

(i)),
(5)

where G(i) is the i-th candidate graph independently sampled from Pθ,π,ψ, and N is the number of
Monte Carlo samples.

Parameter Updates. The distribution parameters are then updated with gradient ascent:

θ ← θ + ℓ
N

N∑
i=1

uT (G
(i))∇θ log pθ(G(i)),

π ← π + ℓ
N

N∑
i=1

uT (G
(i))∇π log pπ(G(i)),

ψ ← ψ + ℓ
N

N∑
i=1

uT (G
(i))∇ψ log pψ(G

(i)),

(6)

where ℓ is the learning rate.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 3 REINFORCE: Optimization of the Task-Specific Multi-LLM Collaboration Graph

Require: Task T , training data Dtrain, budget B, learning rate ℓ, batch size N
Ensure: Optimized distribution Pθ,π,ψ and final graph G∗

1: Initialize parameters θ (edge logits), π (role logits), ψ (model logits)
2: Define distributions: pθ(eij) = σ(θij), pπ(ri) = softmax(πi), pψ(Mi) = softmax(ψi)
3: while stopping criterion is not met do
4: B ← ∅ ▷ initialize mini-batch of sampled graphs
5: for i = 1 to N do
6: G(i) ∼ Pθ,π,ψ ▷ sample edges, roles, and models
7: if fbudget(G

(i), T) > B then
8: continue ▷ reject graph if budget exceeded
9: end if

10: ui ← uT (G
(i), Dtrain) ▷ evaluate utility

11: B ← B ∪ {(G(i), ui)}
12: end for
13: gθ ← 1

|B|
∑

(G,u)∈B
u∇θ log pθ(G)

14: gπ ← 1
|B|

∑
(G,u)∈B

u∇π log pπ(G)

15: gψ ← 1
|B|

∑
(G,u)∈B

u∇ψ log pψ(G)

16: θ ← θ + ℓ gθ; π ← π + ℓ gπ; ψ ← ψ + ℓ gψ ▷ gradient ascent updates
17: end while
18: Construct G∗ by MAP decoding: include edge eij if pθ(eij) ≥ τe; set role ri ←

argmaxr pπ(ri=r); set model Mi ← argmaxm pψ(Mi=m) ▷ deterministic final graph
19: Ensure fbudget(G

∗, T) ≤ B (greedy prune if needed)
20: return Pθ,π,ψ and G∗

Optimization loop. REINFORCE alternates between three phases: (i) sampling, where candidate
graphs G(i) are drawn from the current distribution; (ii) evaluation, where utilities uT (G(i)) are
computed on the training set; and (iii) update, where parameters θ, π, ψ are refined by gradient ascent.
This process repeats until convergence or when the budget is exhausted.

Final graph selection. After optimization, the learned distribution Pθ,π,ψ is used to construct a
deterministic collaboration graph G∗. Specifically, we decode by maximum a posteriori (MAP):
edges are included if pθ(eij) ≥ τe, roles are assigned as ri = argmaxr pπ(ri=r), and models
are chosen as Mi = argmaxm pψ(Mi=m). The final graph is pruned if necessary to ensure
fbudget(G

∗, T) ≤ B. The complete optimization procedure is summarized in Algorithm 3.

A.12 PROMPT DESIGN IN AGENT-REINFORCE

We design structured prompts to guide the LLM search agent in initializing and updating the
collaboration graph. Each prompt provides task context, distilled insights, and design constraints
to support systematic reasoning and planning. For model family and size initialization, the agent
ranks candidate families and sizes under budget constraints, guided by single-model performance and
preliminary evaluations. This establishes a principled starting point for subsequent exploration. For
model instance count initialization, the agent specifies concrete model combinations with family, size,
and instance counts. These candidates are then tested in the environment, and the feedback highlights
the most promising allocations. For graph updates, the agent leverages Insight 2, Insight 3, and
feedback from the previous round to refine edge distributions, adjust connectivity, and balance budget
allocation, thereby improving the overall structure and moving toward compute-optimal performance.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

LLM Prompt for Model Family and Size Preference Initialization

Your current task is model family and size initialization: you must provide the model
family and size preferences for a test-time collaboration graph that will later be optimized
into a DAG. An edge indicates that the previous model’s output is the next agent’s input.

================ TASK =================
1. Examine the candidate model combinations listed at the end of this message.
2. Return a JSON dictionary of model family and size ranking.
No extra text, explanations, or formatting—just the dictionary.

=============== INSIGHTS ===============
(1) Different tasks exhibit a clear preference for specific model combinations. Under budget
constraints, it is necessary to identify the preferred model family and model size for each
task.

=============== DATA ===================
Single-model accuracy on {task} (higher is better):
{model_profile} or {pre_test_accuracy}
Random-graph pre-experiment results (including small models running once or twice and
large models running once):
{combinations_accuracy}

=============== CANDIDATES =============
Choose only one from this list (each already fits the budget):
{model_combinations}

===
Respond with the dictionary only. Example format:

LLM Prompt for Model Instance Counts Initialization

Your current task is model instance count initialization: you must provide the model
instances for a test-time collaboration graph that will later be optimized into a DAG. We will
test them in the Environment and select the best one according to the feedback. An edge
indicates that the previous model’s output is the next agent’s input.

================ TASK =================
1. Examine the model family and size preferences listed at the end of this message.
2. Return a JSON dictionary of model combinations with model family, size, and instance
counts.
No extra text, explanations, or formatting—just the dictionary.

=============== INSIGHTS ===============
(1) Different tasks exhibit a clear preference for specific model combinations. Under budget
constraints, it is necessary to identify the preferred model family and size for each task.

=============== PREFERENCE =============
Model family and size preferences:
{model_family_size_preference}

=============== DATA ===================
Single-model accuracy on {task} (higher is better):
{model_profile} or {pre_test_accuracy}

===
Respond with the dictionary only. Example format:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

LLM Prompt for Graph Updates

You are a professional Multi-LLM system optimizer. Your task is an iterative self-RL
refinement of a multi-LLM system that solves the {task} dataset.

TASK CONTEXT
• A Multi-LLM system is represented as a directed acyclic graph (DAG). Each node = one
language-model agent. Each directed edge = “the source agent’s output is appended to the
destination agent’s context”.
• For the current budget, we have a fixed model-selection requirement: {model_selection}
• You will see the last-round graph, its batch accuracy, and the full table of edge-selection
probabilities.
• Your job: propose the next-round graph and the updated probability table, applying RL-style
probability nudges.
• The graph you receive in this iteration has been expanded outward from the FinalDecision
node, gradually increasing in both depth and breadth. The edge probabilities start with all
edge probabilities set to zero, and through multiple sampling rounds, probabilities are raised
only for edges that prove useful.

HISTORICAL SNAPSHOT
Last-round accuracy ({task}-dev batch): {accuracy}
Last-round graph: {prev_graph}
Last-round edge-probabilities: {edge_probs}

OPTIMIZATION RULES
R-1 Model counts must exactly match model selection after you assign models to all nodes.
R-2 A node’s role is either "assistant" (generates a new answer) or "fuser" (reviews & picks
the best).
R-3 Increase an edge probability only if it was sampled in the last-round graph AND proved
useful. Always start expansion from FinalDecision’s incoming edges, then its parents’
incoming edges, and so on. Increase edges used by high-accuracy graphs, decrease edges
from poor graphs.
R-4 Keep the graph acyclic; avoid too much in-degree to prevent context explosion; avoid
very deep chains to prevent “answer corruption”.

DATA AND INSIGHT
• Model accuracy on {task} (single-agent): {model_profile}
• The optimal depth is conditioned by current width, and vice-versa: wider graphs shift the
depth sweet-spot downward, while deeper graphs reduce the optimal width.
• You should expand the architecture outward from the FinalDecision node, gradually adding
depth and width.
• Different tasks favor different graph topologies; optimize toward the topology style that this
task prefers.

WHAT TO RETURN
• graph — the next-round DAG, same schema as last-round graph.
• edge probs — the updated probability table, same schema and order as last-round edge-
probabilities.

Example output format (do NOT add comments):
Graph: {graph_example}
Edge-probabilities: {node_example}

Now think step-by-step with the rules and insights above, and return the Graph and Edge-
probabilities two blocks only.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

A.13 BASELINES

We compare three baseline categories: LLM-based (MaaO (Guo et al., 2024) and TextGrad (Yuk-
sekgonul et al., 2024)), gradient-based (GPTSwarm (Zhuge et al., 2024)), and traditional methods
(Bayesian Optimization (Shahriari et al., 2015) and Random Search). Then, we detail their adaptation.

TextGrad (Yuksekgonul et al., 2024) performs automatic “differentiation” through text, where an
LLM generates a natural language “gradient” that guides updates to optimizable variables based on
predictions and loss values. In the context of compute-optimal collaboration graph optimization for
TTS, the probabilistic graph serves as the optimizable variable. Candidate graphs are sampled from
the current distribution and evaluated on a batch of training data to compute the loss; the LLM then
provides textual guidelines indicating how the graph should be refined given the observed loss and
inputs. This process is repeated iteratively until convergence or a predefined stopping criterion is
met. During initialization, TextGrad selects the maximal model combination that encompasses all
potential candidates (i.e., allocating nodes to every feasible mixture of available models within the
budget). Compared with our method, TextGrad lacks task-specific initialization and test-time scaling
knowledge, making it a less efficient and less effective baseline.

MaaO (Guo et al., 2024). is a hybrid approach that integrates gradient-based optimization with
LLM-guided optimization, leveraging the complementary strengths of both. Gradient-based methods
provide precise directional updates in the parameter space but are prone to local optima, while LLM
optimizers offer high-level heuristic guidance yet often lack stability. To address this, MaaO alternates
between the two optimization strategies. In our problem setting of optimizing probabilistic graphs,
we adopt REINFORCE to compute numerical gradients and use an LLM to generate textual updates,
alternating between them during training. Concretely, the probabilistic graph is first initialized with
a uniform distribution (same as described above), from which candidate graphs are sampled and
evaluated on a training batch to compute predictions and loss values. Gradients derived from the loss
are then used to update the probabilistic graph (see Appendix A.11). Subsequently, new candidates
are sampled, and their losses are used by the LLM to provide textual updates on how the graph
should be modified. This alternating process of gradient updates and LLM guidance continues until
convergence or a stopping criterion is met.

GPTSwarm (Zhuge et al., 2024) generalizes LLM-based agent architecture search into a com-
putational graph and optimizes it using gradient-based REINFORCE. In our problem setting, we
adapt this approach as follows: a probabilistic graph is first initialized, from which candidate graphs
are sampled and evaluated on a batch of training data to compute predictions and loss values. The
loss gradients are then used to update the probabilistic graph, and this process is iterated until a
stopping criterion is reached. The detailed REINFORCE optimization procedure is in Appendix A.11.
However, as a purely gradient-based approach, GPTSwarm is relatively inefficient, as each update
makes only incremental progress, and the method is susceptible to convergence at suboptimal local
minima, thereby limiting both convergence speed and global search capability.

Bayesian Optimization (BO) (Shahriari et al., 2015) is a model-based framework for black-box
optimization and has been widely applied to hyperparameter tuning. For optimizing collaboration
graphs in test-time scaling, the graph is parameterized by θ, π, ψ, from which a concrete graph G is
sampled and evaluated on a training batch to obtain its performance f(G). Accordingly, BO treats
θ, π, ψ as input variables, with the objective function defined as F (θ, π, ψ) = EG∼Pθ,π,ψ [f(G)].
Specifically, BO constructs a surrogate model, such as a Gaussian process, to approximate F (θ, π, ψ),
and employs an acquisition function (e.g., Expected Improvement, EI) to guide the selection of
promising candidates. Each selected (θ, π, ψ) is evaluated by sampling multiple graphs to estimate
average performance. Under budget constraints, the cost function fbudget(G) can be incorporated via
constrained acquisition (e.g., constrained EI). This iterative process of surrogate modeling, candidate
selection, and evaluation continues until a stopping criterion is reached, at which point BO returns
the optimal parameter set (θ⋆, π⋆, ψ⋆) and its corresponding high-performing probabilistic graph.

Random Search is a simple but widely adopted baseline in hyperparameter optimization. For
compute-optimal collaboration graph search in test-time scaling, it generates candidate graphs
uniformly at random under the budget constraint, without leveraging prior knowledge or performance
history. While its simplicity makes it robust to irregular or non-smooth search landscapes and
occasionally capable of identifying strong candidates, the absence of guidance typically leads to
inferior search efficiency and performance compared with more structured or informed methods.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

A.14 CONVERGENCE AND EFFICIENCY ON MATH DATASET

As shown in Fig. 9, our method achieves the best accuracy and fastest convergence via strong
initialization and guided by empirical insights. TextGrad tends to overuse the budget and slows down,
while GPTSwarm/MaaO converges quickly but gets stuck in local optima.

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) GPTSwarm
MaaO

TextGrad
Ours

Figure 9: Training trajectories on MATH across LLM-based methods over 20 iterations. X-axis:
iteration; Y-axis: the validation accuracy.

A.15 A QUALITATIVE EXAMPLE OF TTS GRAPH AND ITS OUTPUT

Figure 10: A qualitative example of TTS graph.

We present a quantitative example in Fig. 10 using an instance from the MATH dataset. The graph
contains five nodes: one input node, one output node, two Assistant nodes, and one Fuser node.
The topology consists of two Assistant nodes feeding into the Fuser node, which then connects to
the output node. We provide the prompts and outputs for each node in the text boxes below. As
shown, one Assistant node produces the correct answer while the other produces an incorrect one; the
Fuser successfully selects the correct output. The output node receives input from a single node and
therefore simply copies that node’s output (details omitted for brevity).

Input Node

System Message: You are an expert mathematician. Help the user to solve this problem. Answer the following mathematics question. Provide your
reasoning by showing your work before your answer. At the end of your response, output your final answer in the format: ’The answer is: [answer]’.
You must provide the separator ’The answer is: ’ before your final answer. Make sure to put the answer (and only the answer) inside \boxed{}.

User Message: If f(x) =
a

x + 2
, solve for the value of a so that f(0) = f−1(3a).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Assistant 1 Node Output

To find the inverse function f−1(x), we swap x and y in f(x) = a
x+2

and solve: x = a
y+2

⇒ x(y + 2) = a ⇒ xy + 2x = a ⇒ y =

a−2x
x

, so f−1(x) = a−2x
x

.

We are given f(0) = f−1(3a). Compute f(0) = a
2

. Next, f−1(3a) = a−6a
3a

= − 5
3

.

Set them equal: a
2

= − 5
3

. Multiply by 6: 3a = −10, so a = − 10
3

.

The answer is: \boxed{− 10
3

}.

Assistant 2 Node Output

To find the inverse function f−1(x), we swap x and y in y = a
x+2

. After swapping, we get x = a
y+2

, which simplifies to xy + 2x = a, then

xy = a − 2x, and finally y = a−2x
x

. Thus, f−1(x) = a−2x
x

.

We now solve for a such that f(0) = f−1(3a). Since f(x) = a
x+2

, we have f(0) = a
2

. Next, compute f−1(3a) = a−6a
3a

= − 5a
3a

=

− 5
3

.

Setting them equal: a
2

= − 5
3

. Cancelling a ̸= 0 gives 1
2

= − 5
3

, which is impossible, so no real value of a satisfies the equation.

Fuser Node Prompt and Output

System Message:

You are a fusion agent in a multi-agent system. Your role is to review, condense, and synthesize the reasoning and answers
produced by previous agents.

User Message:

According to the previous agents’ answers for the problem:

Question: If f(x) = a
x+2

, solve for a so that f(0) = f−1(3a).

As the fusion agent, synthesize a high-quality final answer by extracting correct reasoning, removing redundancy, ensuring
mathematical rigor, and producing a clear justification. The final answer must be wrapped in \boxed{}.

Previous Answers:
1. Previous Agent (Version 1):

Correctly computed f−1(x) = a−2x
x

, f(0) = a
2

, and f−1(3a) = − 5
3

.

Correctly solved a
2

= − 5
3

⇒ 3a = −10 ⇒ a = − 10
3

.

2. Previous Agent (Version 2):

Derived f−1(x) by swapping x, y in y = a
x+2

, leading to x = a
y+2

, then xy + 2x = a, xy = a − 2x, and

y = a−2x
x

. Thus f−1(x) = a−2x
x

.

Computed f(0) = a
2

and f−1(3a) = a−6a
3a

= − 5
3

.

Equating gave a
2

= − 5
3

, but incorrectly concluded no solution due to cancelling a incorrectly.

Fuser Output:

Synthesis of the Solution. Both previous agents correctly derived the inverse function f−1(x) = a−2x
x

. Agent 2

provided the cleanest evaluation of f(0) and f−1(3a).
Step 1: f(0) = a

2
.

Step 2: f−1(3a) = − 5
3

.

Step 3: Set a
2

= − 5
3

. Multiply both sides by 6 to clear denominators: 3a = −10, so a = − 10
3

.
Step 4: Substitution verifies correctness.
Final Answer: \boxed{− 10

3
}.

A.16 DETAILED RELATED WORK

Test-time Scaling and Compute-optimal Strategy. Inspired by the human tendency to allocate
additional cognitive effort for deeper and more deliberate reasoning, recent studies have proposed
distributing extra computational resources during inference to improve model performance on various
tasks (Wei et al., 2022; Wang et al., 2023). In parallel, other works (Brown et al., 2024; Wu et al.,
2025) have observed that increasing inference-time computation follows a scaling law analogous
to that of training, where additional computation consistently enhances task performance. This
phenomenon is commonly referred to as Test-Time Scaling (TTS). Existing TTS techniques can
be broadly categorized into two paradigms: sequential scaling and parallel scaling. In sequential
scaling, the model enhances its reasoning ability by progressively extending a reasoning chain. A
common approach is self-refinement, in which the model first generates an initial response and then
iteratively revises it based on self-assessment (Madaan et al., 2023; Gou et al., 2024; Snell et al.,
2025; Chen et al., 2024c; 2025). Because this strategy depends heavily on the quality of the initial

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

output, it tends to be more effective on relatively simple tasks (Snell et al., 2025). By contrast, parallel
scaling improves inference by generating multiple independent candidate solutions simultaneously
and aggregating them into a final answer. Representative aggregation strategies include majority
voting (Liu et al., 2025b; Wang et al., 2023), which selects the most frequent output among N
candidates, and Best-of-N (Brown et al., 2024; Sun et al., 2024; Gui et al., 2024), which samples
N solutions and uses a verifier to select the best one (Setlur et al., 2025). Other approaches employ
LLMs themselves as fusers to integrate multiple candidates into a single output, thereby providing
stronger generalization and flexibility (Jiang et al., 2023; Li et al., 2025b; Saad-Falcon et al., 2024).
Despite these successes, both paradigms exhibit limitations. Sequential scaling suffers from poor
scalability, as extending the reasoning chain increases the risk of corrupting previously correct
intermediate results (Zeng et al., 2025). Parallel scaling, while improving diversity, often lacks the
depth of reasoning required for more complex tasks (Misaki et al., 2025). To address these issues,
hybrid approaches have been explored. For instance, Snell et al. (2025) propose adaptively switching
between sequential and parallel scaling depending on task difficulty, using sequential scaling for
simpler tasks and parallel scaling for more complex ones. Other methods leverage tree-structured
search to combine the two paradigms at the step or output level, employing process-level reward
models to expand top-K intermediate steps and refine them further. Typical examples include beam
search (Yu et al., 2024; Xie et al., 2023) and Monte Carlo Tree Search (MCTS) (Wu et al., 2025; Snell
et al., 2025; Hao et al., 2023; Wan et al., 2024; Chen et al., 2024a; Zhang et al., 2023). Nevertheless,
most existing hybrid methods assume a fixed inference structure (e.g., fixed width or depth), limiting
their flexibility. Recent studies have begun to relax these assumptions. For example, Adaptive Parallel
Reasoning (Pan et al., 2025) dynamically switches between sequential and parallel computation
using spawn and join operations, while Adaptive Branching MCTS unifies both paradigms within a
tree-search framework, deciding at each node whether to parallelize candidate generation or continue
sequential refinement. In addition, prior work has noted that sampling across multiple models
naturally falls within the scope of test-time scaling, since ensembles improve diversity and output
quality (Zhang et al., 2025b; Ashiga et al., 2025; Jiang et al., 2023), yet this dimension remains
underexplored in test-time scaling.

The configuration of allocating computation at inference time is central to the effectiveness of
test-time scaling (TTS), giving rise to the compute-optimal test-time scaling strategy. A growing
body of work (Brown et al., 2024; Wu et al., 2025; Liu et al., 2025a; Yue et al., 2025; Snell et al.,
2025; Wang et al., 2025a) highlights that model size and scaling configuration must be carefully
balanced: in certain scenarios, smaller models can achieve superior accuracy compared to large
models when constrained by the same compute budget. This line of research explores both model
selection, deciding when to employ small versus large models, and method selection, choosing
between alternative scaling paradigms to maximize utility. For instance, Snell et al. (2025) show
that the optimal scaling strategy varies with task difficulty: moderately challenging tasks favor
parallel exploration with small models, whereas simpler tasks are better addressed through sequential
refinement with large models. They further introduce a difficulty predictor to adaptively switch
strategies. Other studies extend these ideas in different directions: Liu et al. (2025a) emphasize the
sensitivity of scaling strategies to reward design, Yue et al. (2025) develop a linear model to capture
key determinants of scaling within retrieval-augmented generation (RAG), and Wu et al. (2025)
propose Reward Balanced Search (REBASE), a tree-search algorithm that achieves a Pareto-efficient
balance between accuracy and inference cost through weighted voting. Despite these advances,
existing approaches remain limited to fixed inference structures, overlooking the richer TTS patterns
that arise in general graph topologies. Motivated by these gaps, we address a novel problem: unifying
test-time scaling under a graph-based framework that incorporates heterogeneous model combinations,
and searching for the compute-optimal collaboration graph.

Multi-agent Collaboration Graph. With the emergence of LLMs and the rapid development of
LLM-based agents (Cohen et al., 2023; Zhuge et al., 2024), researchers have increasingly recognized
that interactions among multiple agents can be naturally represented from a graph-based perspec-
tive (Chen et al., 2024b; Zhuge et al., 2024; Qian et al., 2025; Liu et al., 2024c). Graphs provide
a principled abstraction for capturing communication patterns, role assignments, and coordination
strategies in multi-agent systems, making them well-suited for reasoning about collaborative intelli-
gence. Recent systems such as G-Designer (Zhang et al., 2025a), ARG-Designer (Li et al., 2025a),
Heterogeneous Swarms (Feng et al., 2025), DyLAN (Liu et al., 2024c), AgentNet (Yang et al., 2025),
GPTSwarm (Zhuge et al., 2024), and MacNet (Qian et al., 2025) have explicitly employed graph

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

structures to organize and optimize multi-agent interactions. These approaches primarily focus on
structural optimization over a predefined set of agents, selecting the structure that maximizes task
performance, which can be partially applied to our problem setting. However, they overlook the
distinctive patterns of test-time scaling, resulting in inefficient architecture search.

LLMs for Optimization Optimization is fundamental to computational models and is often cus-
tomized for individual tasks to address the challenges of complex decision spaces and performance
landscapes. Large Language Models (LLMs), with their rich prior knowledge and reasoning capabili-
ties, have opened new avenues for solving practical optimization problems (Zhang et al., 2025c; Guo
et al., 2024). Existing research primarily employs LLMs in two paradigms: as black-box optimizers
and in conjunction with gradient-based white-box optimization. The distinction lies in whether
gradient information is available. In the black-box setting, LLMs are used to generate candidate
solutions and iteratively refine them by leveraging their planning ability and extensive machine
learning knowledge. Prior work has demonstrated the effectiveness of this approach in small-scale
mathematical optimization (Yang et al., 2024; Zhang et al., 2024b; Huang et al., 2025), hyperpa-
rameter tuning (Liu et al., 2024a;b), and neural architecture search (Zheng et al., 2023; Nasir et al.,
2024; Ji et al., 2025). For instance, OPRO (Yang et al., 2024) proposed “optimization by prompting,”
where tasks are described in natural language and LLMs iteratively generate new solutions based on
meta-prompts and prior evaluations. AgentHPO (Liu et al., 2024a) empowers LLMs to autonomously
search hyperparameter configurations by processing task descriptions, conducting experiments, and
refining search quality from accumulated trials. GENIUS (Zheng et al., 2023) explored the potential
of GPT-4 for neural architecture search, employing its generative ability as a black-box optimizer
to efficiently navigate the search space and refine promising architectures. LLMs are particularly
valuable during initialization, as they can generate high-quality solutions that embed prior knowledge,
narrowing the search space and establishing a stronger foundation for subsequent iterations. This
capability has also been applied to NAS initialization (Jawahar et al., 2024), genetic algorithms in
bioengineering (Nana Teukam et al., 2025), and financial planning (De Zarzà et al., 2023).

These studies demonstrate that LLMs can serve as general-purpose black-box optimizers. However,
when gradient information is available—typically in data-rich scenarios—black-box optimization
becomes inefficient, as each candidate must be evaluated on the full training set, leading to prohibitive
search costs. To address this, recent work has combined gradient-based optimization with LLM-
guided search to exploit their complementary strengths (Guo et al., 2024; Yuksekgonul et al., 2024).
For example, MaaO (Guo et al., 2024) interleaves gradient-based training with LLM-guided opti-
mization, integrating the data efficiency and precise updates of gradient methods with the exploratory
diversity of LLMs. TextGrad (Yuksekgonul et al., 2024) generalizes this idea by transforming AI
systems into computational graphs and using LLMs to generate textual updates that serve as a form
of backpropagation. This framework provides natural language critiques of system components,
such as neurons, prompts, molecules, or code segments, and guides their updates. Building on this
line of work, we extend the complementary use of LLMs and gradient methods to compute-optimal
test-time scaling by optimizing a gradient-available probabilistic graph. This approach enables us
to combine the data efficiency of gradient-based optimization with the semantic task-awareness of
LLMs, particularly for critical initialization and text-form parameter updates, thereby improving both
search effectiveness and efficiency.

B LLM USAGE

Large Language Models (LLMs) were used solely for language refinement, including rephrasing,
grammar checking, and improving readability. They were not involved in ideation, methodology,
experiments, or data analysis. All research concepts and results are the authors’ own, and the authors
take full responsibility for the manuscript, ensuring that LLM-assisted text complies with ethical
standards and avoids plagiarism or misconduct.

30

	Introduction
	Related Work
	Preliminaries and Problem Formulation
	Insights of Multi-LLM Collaboration Graph for TTS
	The Proposed Framework – Agent-REINFORCE
	Probabilistic Graph Optimization Problem
	Agent-REINFORCE

	Experiments
	Conclusion
	Appendix
	Test-Time Scaling: Modes and Building Blocks
	Inference on Multi-LLM Collaboration Graph for TTS Algorithm
	Pilot Experiments for Existing TTS
	Calculation of the number of DAGs
	Tasks, Datasets, and Models
	Detailed Insights
	fcost(G,T) with the FLOPs compute metric
	Detailed Budget Definition
	Detailed Optimization with Joint Objective
	Detailed Dollar Cost-based Budget
	Detailed REINFORCE Algorithm
	Prompt Design in Agent-REINFORCE
	Baselines
	Convergence and Efficiency on MATH Dataset
	A Qualitative Example of TTS Graph and its Output
	Detailed Related Work

	LLM Usage

