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Abstract

In this work, we introduce a new unsupervised001
embedding method, Meta-Task Prompting with002
Explicit One-Word Limitation (MetaEOL), for003
generating high-quality sentence embeddings004
from Large Language Models (LLMs) with-005
out the need for model fine-tuning or task-006
specific engineering. Leveraging meta-task007
prompting, MetaEOL guides LLMs to produce008
embeddings through a series of carefully de-009
signed prompts that address multiple represen-010
tational aspects. Our comprehensive experi-011
ments demonstrate that embeddings averaged012
from various meta-tasks yield competitive per-013
formance on Semantic Textual Similarity (STS)014
benchmarks and excel in downstream tasks,015
surpassing contrastive-trained models. Our016
findings suggest a new scaling law for embed-017
ding generation, offering a versatile, resource-018
efficient approach for embedding extraction019
across diverse sentence-centric scenarios.1020

1 Introduction021

The advent of Large Language Models (LLMs)022

such as GPT-3 (Brown et al., 2020) and023

LLaMA (Touvron et al., 2023a) has marked a sig-024

nificant milestone in the field of natural language025

processing (NLP), introducing promising unsuper-026

vised methods for various NLP tasks by leveraging027

task-related instructions or prompts. These tasks028

also include the generation of sentence embeddings,029

which aims to produce sentence representations030

that can be applied across a spectrum of scenarios,031

ranging from intrinsic tasks like Semantic Textual032

Similarity (STS) (Agirre et al., 2012a; Cer et al.,033

2017b) to downstream tasks including information034

retrieval (Mitra et al., 2017; Izacard et al., 2021),035

sentiment categorization (Ke et al., 2020), and be-036

yond. By employing specific prompts (Jiang et al.,037

2023b, 2022a), researchers have begun to explore038

1Our anonymous code link: https://anonymous.4open.
science/r/MetaEOL.

Figure 1: The highest decoding probabilities are largely
allocated to stop words that carry little useful informa-
tion when conducting a meaning compression prompt-
ing, even if employing a constraint of "in one word"
following (Jiang et al., 2023b). Although the general
semantic, movie, is contained, other aspects of this sen-
tence are missing, like sentiments.

the potential of extracting meaningful sentence em- 039

beddings directly from the hidden states of LLMs 040

without the need for explicit training on embedding- 041

specific tasks. The significance of zero-resource 042

settings – where embeddings are generated without 043

any fine-tuning or in-context learning – cannot be 044

overstated. 045

Initial efforts in this domain, as highlighted by 046

works like (Jiang et al., 2023b, 2022a; Liu et al., 047

2023a), have focused on unsupervised techniques 048

that extract sentence representations directly from 049

LLMs. These methods typically involve using 050

fill-in-the-blanks prompts, such as This sentence: 051

"[TEXT]" means in one word:" (Jiang et al., 2023b), 052

to embed a sentence into a single token representa- 053

tion, achieved by extracting output hidden states of 054

the last token as the sentence’s embedding. Despite 055

promising, they also reveal the inherent challenges 056

where embeddings may be overly simplistic or mis- 057

aligned with the intended semantic nuances of the 058
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sentences.059

In our pilot experiment, we show that the pre-060

vious prompt-based method (Jiang et al., 2023b)061

struggles to capture a comprehensive meaning for a062

sentence, especially when the usage of the sentence063

is associated with multiple aspects. As illustrated064

in Figure 1, when probing probability distribution065

for the next token during decoding, which reflects066

the embedding quality of the last token, the highest067

probabilities are mostly distributed to frequent stop068

words. Although the general semantic — movie —069

is contained, other meaningful aspects like senti-070

ments are missing.071

A straightforward solution to mitigate this issue072

is to demonstrate LLMs with task-specific instruc-073

tions. This approach involves instructing the model074

with prompts explicitly designed for a particular075

task, thereby tailoring the embeddings to better076

suit the specific requirements of that task. How-077

ever, considering the realm of NLP encompasses078

thousands of distinct tasks (Mishra et al., 2022;079

Wang et al., 2022; Chung et al., 2022), this would080

be impractical due to computational and storage081

challenges. Furthermore, task-specific embeddings,082

while effective for their designated tasks, often fail083

to generalize well across different tasks.084

Drawing on the principles of the usage-based085

theory of language acquisition (Tomasello, 2009),086

which asserts that the essence of meaning is rooted087

in the practical utilization of language, we aim088

to introduce a novel, unsupervised approach for089

the extraction of high-quality sentence embeddings090

directly from LLMs. Our method does not con-091

fine itself to deriving embeddings from a singu-092

lar, overarching meaning. Instead, it embraces093

the concept of meta-task prompting, inspired by094

the burgeoning fields of meta-task promoted train-095

ing (Sanh et al., 2022) and hyper-prompt (He et al.,096

2022) techniques. By defining a suite of meta-097

tasks, each tailored to a distinct application context,098

MetaEOL prompts LLMs to consider multiple rep-099

resentational tokens from a variety of perspectives.100

This multifaceted approach enables the extraction101

of more diverse and nuanced contextualized token102

embeddings that collectively form a comprehensive103

sentence embedding.104

Extensive experiments empirically show that: (I)105

Simply averaging embeddings from different meta-106

tasks without any training leads to general embed-107

dings that are competitive to contrastive-trained108

models on STS tasks and can achieve the best aver-109

age result in downstream tasks. (II) Incrementally110

integrating more meta-tasks (ranging from one to 111

four) yields consistent improvements across STS 112

tasks, showcasing high generalities, and highlight- 113

ing the significant impact of meta-task integration 114

on overall performance. (III) The final layer is not 115

always the most effective for STS tasks and with 116

a simple proportional layer selection strategy, we 117

achieve the best results with a 70B model, which 118

points to a potential scaling law. 119

2 Related Work 120

Sentence Embeddings. Sentence embeddings 121

aim to encapsulate the semantic content of sen- 122

tences into fixed-sized vector representations. Re- 123

cent developments in contrastive learning have 124

proven to be highly effective for generating sen- 125

tence embeddings, under both unsupervised and 126

supervised settings (Gao et al., 2021; Jiang et al., 127

2022a; Chuang et al., 2022; Wu et al., 2022). For 128

instance, SimCSE (Gao et al., 2021) utilizes dif- 129

ferent dropout masks as a form of noise to create 130

positive pairs in an unsupervised fashion, while 131

in a supervised setting, models like Sentence- 132

BERT (Reimers and Gurevych, 2019) leverage nat- 133

ural language inference (NLI) datasets to construct 134

positive and negative pairs. Additionally, Su et al. 135

(2023) and Asai et al. (2023) show that training 136

with a large amount of tasks with annotated in- 137

structions can enable the model to generate em- 138

beddings tailored to different downstream tasks. 139

In contrast, our approach MetaEOL demonstrates 140

the potential of utilizing LLMs directly to generate 141

instruction-followed embeddings without necessi- 142

tating any training. 143

Large Language Models for Sentence Represen- 144

tation. Recent studies have explored the applica- 145

tion of LLMs for enhancing sentence embeddings 146

through data augmentation techniques (Cheng 147

et al., 2023; Zhang et al., 2023). Notably, Sentence- 148

T5 (Ni et al., 2022) employs contrastive learning 149

on models with billions of parameters, demonstrat- 150

ing consistent performance improvements correlat- 151

ing with increases in model size. More recently, 152

Liu et al. (2023b) represents sentences through the 153

distribution of possible text continuations, com- 154

paring the distributional similarity between sen- 155

tences. This method, although effective, neces- 156

sitates the generation of 20 trajectories, each up 157

to 20 tokens in length, making it computationally 158

intensive. Moreover, this type of representation 159

can not directly be used for downstream tasks. 160
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Figure 2: The workflow of our method (MetaEOL). We use the prompt in Appendix A.1 to prompt ChatGPT-4
to generate templates. Each input sentence will be decorated with multiple task-specific templates, indicating its
various intended usage scenarios. The resulting multiple prompts will be fed to LLMs. Then, multiple task-specific
embeddings will be extracted.

Jiang et al. (2022a) incorporates in-context learn-161

ing (Dong et al., 2023) to enhance sentence em-162

beddings. While proven effective, it also reveals163

that the produced embeddings are task-specific and164

struggle with generalization across various down-165

stream tasks, in addition to being highly sensitive166

to the choice of demonstrations.167

3 Method168

In this section, we begin by reviewing two kinds169

of previous prompting methods for deriving sen-170

tence representation from masked and causal lan-171

guage models, respectively (see Section 3.1). Sub-172

sequently, we describe our proposed method, i.e.,173

Meta-Task Prompting with Explicit One-Word174

Limitation (MetaEOL) (see Section 3.2) in detail.175

Lastly, we describe meta-tasks involved in this pa-176

per (see Section 3.3).177

3.1 Previous Language Model Prompting178

3.1.1 Masked Language Model179

Masked language models, e.g., BERT (Devlin et al.,180

2019) and RoBERTa (Liu et al., 2019), use a mask181

prediction task to capture contextual information182

for a certain token. To align with this point, Prompt-183

BERT (Jiang et al., 2022a) formulates the sentence184

embedding extraction as a similar task and employs185

the following template,186

This sentence : “[TEXT]” means [MASK] .187

for prompting. Here, [TEXT] and [MASK] indicate188

the placeholder for the input sentence and the mask189

token. The last layer’s hidden vector of [MASK] to-190

ken is directly used as the sentence representation.191

Jiang et al. (2022a) empirically show that such a 192

simple prompting method can achieve decent per- 193

formance, and equipping it with a contrastive loss 194

for large-scale continued training leads to further 195

enhancements for embedding quality. However, 196

it is worth noting that extra training is resource- 197

intensive, especially for today’s LLMs. To enhance 198

clarity, we provide results both with and without 199

training on BERT and RoBERTa in the following 200

experiments. 201

3.1.2 Causal Language Model 202

There are trials to directly extract sentence represen- 203

tation from large Causal Language Models (CLMs), 204

e.g., OPT (Zhang et al., 2022) or LLAMA (Touvron 205

et al., 2023a), without additional training. Inspired 206

by (Jiang et al., 2022a), PromptEOL (Jiang et al., 207

2023b) employs a similar template as follows, 208

This sentence: “ [TEXT] ” means in one word: “ 209

for prompting, where the last layer’s hidden vector 210

for the last token ““” is extracted as the sentence 211

representation. A constraint of “in one word” is 212

applied to avoid the model’s tendency to gener- 213

ate long sentences such that the last token fails to 214

capture the overall information. 215

Nevertheless, the obtained embedding highly re- 216

lies on the single prompt. So the inference process 217

is confined and results in incomprehensive features, 218

making it not applicable to extensive scenarios. As 219

shown in Figure 1, for a negative review of a movie, 220

the resulting embedding only contains the general 221

semantics of movies but falls short of capturing 222

other critical aspects such as sentiment. 223
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3.2 Meta-Task Prompting224

To overcome the issues raised above, we propose225

Meta-Task Prompting with Explicit One-Word226

Limitation (MetaEOL). A meta-task is associated227

with a potential broad usage scenario for the cor-228

responding sentence representation. As shown in229

Figure 2, we directly prompt casual LLMs with the230

goals of multiple meta tasks, aiming to obtain the231

representations under various broad intents.232

Specifically, we produce task-oriented prompts233

by decorating the original prompting template used234

for causal LLMs (see Section 3.1.2) with the cor-235

responding task description. For example, given a236

meta-task where representations are extracted for237

Text Classification (TC), we extend the template238

with task-oriented context to define the behavior239

during inference. As the template of Meta Task-240

1 shown in Figure 2, a detailed task description241

text, telling the LLM that it should categorize the242

excerpt into a broad category, is placed at the be-243

ginning of the prompt. Then, an instruction with a244

constraint of "in one word" is followed to ensure245

models aggregate the information of the whole sen-246

tence into the embedding of the last token. The247

placeholder [TEXT] will be substituted with the248

original sentence to produce the final task-oriented249

prompt. The resulting task-specific prompt will250

serve as input to LLMs. Subsequently, we extract251

the hidden vector of the last token ““” as the sen-252

tence representation, following the pattern outlined253

in Section 3.1.254

It is worth noting that given various meta-tasks,255

distinct templates will be employed, leading to mul-256

tiple different sentence embeddings. Our hypothe-257

sis posits that each embedding captures a distinct258

representation customized for a specific feature259

viewpoint (meta-task). In this paper, we empiri-260

cally show that simply averaging different embed-261

ding derived from multiple meta-tasks can achieve262

superior performance for both intrinsic and down-263

stream evaluation benchmarks.264

3.3 Types of Meta-Tasks265

In this paper, we conduct experiments on the fol-266

lowing four distinct meta-tasks, i.e., Text Classifi-267

cation (TC), Sentiment Analysis (SA), Paraphrase268

Identification (PI), and Information Extraction (IE),269

aiming to capture information from different angles.270

E.g., intuitively, the TC task primarily emphasizes271

topic-level information, whereas the IE task con-272

centrates on surface-level signals.273

For each meta-task, we straightforwardly lever- 274

age ChatGPT-4 as a template generator to pro- 275

duce multiple templates. The instruction we 276

used to prompt the ChatGPT-4 is provided in Ap- 277

pendix A.1. 278

Note that introducing more meta-tasks is trivial, 279

which only requires adding more task names to the 280

generator. Here, we choose the above four meta- 281

tasks as a testbed to assess the scalability. More 282

specifically, in Section 5.2, we show that incre- 283

mentally adding more meta-tasks to our workflow 284

results in consistently better performance. 285

4 Experiments 286

4.1 Settings 287

Dataset. Suggested by prior works (Reimers and 288

Gurevych, 2019; Gao et al., 2021; Jiang et al., 289

2022b) that the primary objective of sentence em- 290

beddings is to cluster semantically similar sen- 291

tences, we evaluate MetaEOL on seven semantic 292

textual similarity (STS) datasets, utilizing the Sen- 293

tEval toolkit (Conneau and Kiela, 2018). The STS 294

datasets consist of STS 2012-2016 (Agirre et al., 295

2012b, 2013, 2014, 2015, 2016), STS-B (Cer et al., 296

2017a), and SICK-R (Marelli et al., 2014). Each 297

sentence pair in the STS datasets is annotated with 298

a score from 0 to 5 indicating the pairwise seman- 299

tic similarity. The Spearman correlation (scaled 300

by 100x) between the model-predicted similarity 301

scores and human-annotated similarity scores is 302

used as the metric. We employ cosine similarity 303

to measure the similarity between sentence em- 304

beddings. The Spearman correlation is computed 305

under the “all” setting. 306

Baselines. The baselines we consider can be 307

mainly categorized into two types – models 308

with contrastive training and without contrastive 309

training: (I) Models with Contrastive Training: 310

We compare MetaEOL with SOTA unsupervised 311

contrastive-trained models, namely SimCSE (Gao 312

et al., 2021) and PromptBERT (Jiang et al., 2022a). 313

The models are trained on 106 sentences ran- 314

domly sampled from Wikipedia. Results based 315

on BERT (Devlin et al., 2019) and RoBERTa (Liu 316

et al., 2019) models are reported. And, (II) 317

Models without Contrastive Training: We com- 318

pare MetaEOL with (1) Average pooling meth- 319

ods, where average pooling is applied to the out- 320

put hidden states of all tokens in a sentence to 321

obtain the sentence embedding. We report re- 322

sults with BERT, the encoder of ST5 (Ni et al., 323
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Method Params STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Unsupervised Contrastive Training
SimCSE-BERT 110M 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
SimCSE-RoBERTa 123M 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
PromptBERT 110M 71.56 84.58 76.98 84.47 80.60 81.60 69.87 78.54
PromptRoBERTa 123M 73.94 84.74 77.28 84.99 81.74 81.88 69.50 79.15

Without Contrastive Training
BERT avg. 110M 30.87 59.89 47.73 60.29 63.73 47.29 58.22 52.57
BERT prompt 110M 60.96 73.83 62.18 71.54 68.68 70.60 67.16 67.85
ST5-Enc avg. 4.8B 34.97 60.19 47.59 66.40 70.62 62.83 63.57 58.02
LLAMA2 avg. 7B 35.49 53.15 40.12 55.35 53.26 42.10 49.96 47.06
Mistral avg. 7B 41.13 54.08 43.99 56.94 53.80 42.99 52.32 49.32

PromptEOL-LLAMA2 7B 58.81 77.01 66.34 73.22 73.56 71.66 69.64 70.03
PromptEOL-Mistral 7B 63.08 78.58 69.40 77.92 79.01 75.77 69.47 73.32
PromptEOL-LLAMA2 13B 56.19 76.42 65.42 7273 75.21 67.96 68.23 68.83

MetaEOL-LLAMA2 (Ours) 7B 64.16 81.61 73.09 81.11 78.94 77.96 74.86 75.96 (+5.93)
MetaEOL-Mistral (Ours) 7B 64.05 82.35 71.57 81.36 79.85 78.29 75.13 76.09 (+2.77)
MetaEOL-LLAMA2 (Ours) 13B 61.07 82.53 73.30 80.99 79.14 77.11 74.77 75.56 (+6.73)

Table 1: Results on STS tasks (Spearman correlation scaled by 100x). Values in parentheses, such as “(+5.93)”
in MetaEOL’s results, represent the increase in average score compared to the average score of the same model
utilizing PromptEOL.

2022), LLAMA2 (Touvron et al., 2023b) and Mis-324

tral (Jiang et al., 2023a) models; and (2) Prompt-325

based methods, which include BERT Prompt that326

employs the same prompt strategy as PromptBERT327

but does not incorporate contrastive training, and328

also PromptEOL. All methods mentioned above329

rely on the output from the final layer to obtain the330

sentence embedding.331

Implementation Details. We apply MetaEOL332

to LLaMA2-7B, LLAMA2-13B, and Mistral-7B333

models, using meta-tasks consisting of Text Classi-334

fication (TC), Sentiment Analysis (SA), Paraphrase335

Identification (PI), and Information Extraction (IE).336

These tasks are distinct and collectively consider di-337

verse aspects of a sentence. For each of these meta-338

tasks, we utilize GPT-4 to create two unique task339

prompts, resulting in a total of eight task prompts.2340

MetaEOL rely on the output from the final layer to341

obtain the sentence embedding. We simply aver-342

age the resulting embeddings of task prompts from343

different meta-tasks to obtain the final embedding.344

4.2 Main Results345

The results of MetaEOL on STS tasks are shown in346

Table 1, with a notable performance by MetaEOL347

which requires no training. Among models that do348

not require training, prompt-based methods exhibit349

2The details of these eight task prompts are presented in
Appendix A.3.

superior results compared to average pooling meth- 350

ods, especially with the LLAMA and Mistral mod- 351

els. Across various models including LLAMA2- 352

7B/13B and Mistral-7B, MetaEOL, which does 353

not require any training, demonstrates competi- 354

tive performance compared to contrastive-trained 355

models such as SimCSE-BERT and SimCSE- 356

Roberta, albeit with a slight lag behind Prompt- 357

BERT. Furthermore, MetaEOL significantly outper- 358

forms PromptEOL across three test models, demon- 359

strating a consistent improvement. Notably, the 360

LLAMA2-13B model using MetaEOL shows an 361

average improvement of 6.73% over PromptEOL, 362

underscoring the efficacy of MetaEOL. 363

4.3 Qualitative Example 364

We further show the top-10 tokens predicted by 365

different task prompts in Table 2. The example 366

illustrates that PromptEOL creates sentence em- 367

beddings focusing on stop-word tokens (such as 368

a, this, the, it), which convey minimal informa- 369

tion. In contrast, the four meta-tasks of MetaEOL 370

demonstrably shift the behavior of the embeddings, 371

leading to the prediction of tokens that are distinct 372

and imbued with substantive meaning. 373

Specifically, Text Classification steers the em- 374

beddings toward tokens that are indicative of spe- 375

cific topics, such as Culture. Sentiment Analysis is 376

inclined to produce embeddings close to sentiment- 377

related words. Paraphrase Identification yields em- 378
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Sentence Prompt Top-predicted tokens

Smart and alert, thirteen conversations
about one thing is a small gem.

PromptEOL I one a thing the This The smart It it
Text Classification Culture E Pol \n Bus " Culture educ Te Health
Sentiment Analysis positive pos good ext good very neut negative smart extremely
Paraphrase Identification smart a the intelligent The short clever conc A conversation
Information Extraction gem smart thing alert small conversation Gem thirteen gem a

Table 2: The top-10 tokens predicted by different task prompts with Mistral-7B. PromptEOL creates sentence
embeddings with an emphasis on stop-word tokens. Text Classification focuses embeddings on topic-relevant tokens
like Culture. Sentiment Analysis aligns embeddings with sentiment words. Paraphrase Identification diversifies
embeddings with synonyms, adding richness with terms like intelligent, short, and clever. Information Extraction
steers embeddings toward key factual tokens.

Method STS Avg.

PromptEOL 70.03
w. 8 paraphrases 62.72

MetaEOL 75.96
TC only 70.92
SA only 67.06
PI only 73.03
IE only 72.06
w. embedding concatenation 74.99

Table 3: Ablation study on LLAMA2-7B. STS Avg.
refers to the average score of the seven STS tasks. TC:
Text Classification; SA: Sentiment Analysis; PI: Para-
phrase Identification; IE: Information Extraction.

beddings that capture a spectrum of synonyms, en-379

riching the sentence with varied linguistic expres-380

sions like intelligent, short, and clever. Informa-381

tion Extraction modifies the embeddings towards382

tokens that represent key facts or elements within383

the sentence.384

5 Analysis385

In this section, we thoroughly analyze MetaEOL386

using the LLAMA2-7B model.387

5.1 Ablation Study388

We evaluate the effectiveness of key components389

of MetaEOL in table 3. First, to ensure the im-390

provement observed with MetaEOL is not merely391

due to involving more prompts, we create seven392

paraphrased versions of the PromptEOL prompt,393

resulting in a total of eight prompts.3 We then av-394

erage the embeddings from these eight prompts395

to form the final sentence embedding. We find396

merely duplicating PromptEOL prompts (w. 8397

paraphrase) does not improve PromptEOL but re-398

sults in a significant decline. Additionally, we399

implement MetaEOL exclusively on each meta-400

task (TC/SA/PI/IE only). We find that tasks re-401

3The seven paraphrased prompts are presented in Ap-
pendix A.2

quiring a detailed comprehension of sentences (PI 402

and IE) yield superior performance compared to 403

those requiring a broader understanding, even sur- 404

passing PromptEOL. However, MetaEOL, which 405

combines the embeddings from these meta-tasks, 406

outperforms all individual meta-tasks, confirming 407

the complementarity of the meta-tasks and the ef- 408

fectiveness of combining embeddings from diverse 409

meta-tasks. We finally find that averaging the em- 410

beddings from different meta-tasks yields better 411

results than concatenating them. 412

5.2 Influence of Number of Tasks 413

We investigate the influence of the number of tasks 414

as presented in table 4. We find increasing the 415

number of tasks leads to a consistent improvement 416

in performance on average and nearly every indi- 417

vidual STS task. This further verifies the comple- 418

mentarity of the meta-tasks and underscores the 419

importance of utilizing various diverse meta-tasks. 420

5.3 Influence of Number of Prompts 421

Here, we investigate the impact of the number of 422

prompts in Figure 3. We concentrate on Sentiment 423

Analysis as the meta-task and utilize GPT-4 to gen- 424

erate three additional Sentiment Analysis prompts 425

besides the two we used in MetaEOL. This results 426

in a total of five distinct prompts, specifically tai- 427

lored for Product Review Rating, Emotion Detec- 428

tion, Sentiment Polarity Detection, Sentiment In- 429

tensity and Emotion Detection, and Aspect-Based 430

Sentiment Analysis, respectively.4 We systemati- 431

cally computed the average performance across all 432

combinations of these five prompts, conditioned on 433

a fixed number of prompts. 434

As Figure 3 shows, increasing the number of 435

prompts within a particular task type facilitates 436

more nuanced embeddings, thereby leading to bet- 437

ter STS results. We opt for two prompts for each 438

4The details of these five instructions are in Appendix A.4.
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Meta-Tasks STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

TC 58.36 75.57 67.20 77.04 74.51 71.84 71.90 70.92
TC+SA 58.89 75.56 67.35 77.60 74.90 73.58 72.48 71.48
TC+SA+PI 63.08 80.01 71.24 80.38 78.26 77.42 75.00 75.06
TC+SA+PI+IE 64.16 81.61 73.09 81.11 78.94 77.96 74.86 75.96

Table 4: Results on increasing number of tasks with LLAMA2-7B. TC: Text Classification; SA: Sentiment Analysis;
PI: Paraphrase Identification; IE: Information Extraction.

Figure 3: Influence of number of prompts on LLAMA2-
7B. STS Avg. refers to the average score of the seven
STS tasks.

Figure 4: Influence of output layer index. STS Avg.
refers to the average score of the seven STS tasks.

meta-task for MetaEOL to optimize both perfor-439

mance and computational efficiency.440

5.4 Influence of Output Layers441

We check the impact of output layers for LLAMA2442

and Mistral-7B models, using PromptEOL and443

MetaEOL. Figure 4 presents the STS average444

scores across different output layer indices.445

It is highlighted that the third-to-last layers (in-446

dexed as -3) across all four configurations perform447

similarly well, which suggests that this layer can448

be considered as a point of convergence in terms of449

optimal performance for these models.450

MetaEOL outperforms PromptEOL across451

all layers and configurations. Interestingly,452

PromptEOL tends to show more variability in453

performance across different layers compared to454

MetaEOL. This suggests that the MetaEOL ap-455

proach potentially stabilizes the representational456

quality across layers.457

5.5 Scaling LLMs458

In this section, we investigate the impact of model459

size on the performance of MetaEOL. For the sake460

Model Layer Index STS Avg.

LLAMA2-7B -1 75.35
LLAMA2-13B -1 74.96
LLAMA2-70B -1 75.41

LLAMA2-7B -3 77.00
LLAMA2-13B -4 76.08
LLAMA2-70B -8 78.06

Table 5: Results of MetaEOL on increasing the model
size. All models are loaded with 4-bit precision. We
develop a proportional layer selection strategy, lever-
aging the last 10% of layers to derive sentence embed-
dings (specifically, the third-to-last, fourth-to-last, and
eighth-to-last layers for the 7B, 13B, and 70B models,
respectively), and obtain the best results with the 70B
model.

of computational resources, we load models with 461

4-bit precision. 462

Informed by the insights observed from Sec- 463

tion 5.4, which suggested that for 7B models, the 464

layer index -3 can be considered optimal, as ev- 465

idenced by its performance in both PromptEOL 466

and MetaEOL. We, therefore, propose a simple 467

proportional layer selection strategy, opting for lay- 468

ers -3 of 32, -4 of 40, and -8 of 80 as the output 469

layers for the LLAMA2-7B, LLAMA2-13B, and 470

LLAMA2-70B models respectively. This approach 471

aligns with the model sizes, which correlates to 472

10% from the final layer. 473

The results show that using the final layer for 474

sentence embedding generation, which is indicated 475

by layer index -1, does not yield improved perfor- 476

mance with increased model size. Contrastingly, 477

the application of our proportional layer strategy re- 478

veals a different trend. Specifically, the LLAMA2- 479

70B model, which utilizes the -8 layer, demon- 480

strates superior performance, suggesting that larger 481

models might benefit more significantly from se- 482

lecting a proportionate layer rather than the last 483

layer for sentence embedding. This observation 484

could point to a potential scaling law, where larger 485

models require a different, non-final layer to maxi- 486

mize performance effectively. 487
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Method Params MR CR SUBJ MPQA SST TREC MRPC Avg.

Fine-tuning on supervised datasets
SimCSE-RoBERTa 123M 84.92 92.00 94.11 89.82 91.27 88.80 75.65 88.08
ST5-Enc 4.8B 90.83 94.44 96.33 91.68 94.84 95.40 77.91 91.63

Without fine-tuning
MRPrompt-LLAMA2 7B 91.82 92.88 97.07 91.60 96.54 95.80 74.61 91.47
CRPrompt-LLAMA2 7B 91.17 93.27 96.62 91.75 96.60 95.80 73.22 91.20
SUBJPrompt-LLAMA2 7B 91.88 93.17 96.96 91.09 95.66 96.00 76.41 91.60
MPQAPrompt-LLAMA2 7B 91.10 93.04 96.30 91.82 95.72 96.00 75.42 91.34
SSTPrompt-LLAMA2 7B 91.82 92.88 97.07 91.60 96.54 95.80 74.61 91.47
TRECPrompt-LLAMA2 7B 88.97 92.19 96.23 91.45 94.18 96.80 74.72 90.65
MRPCPrompt-LLAMA2 7B 90.33 93.32 96.36 91.45 94.67 96.00 75.13 91.04

Avg. on task-specific prompting (i.e., diagonal): 91.76

PromptEOL-LLAMA2 7B 90.63 92.87 96.32 91.19 95.00 95.40 75.19 90.94
MetaEOL-LLAMA2 (Ours) 7B 90.93 93.51 96.12 91.95 95.77 97.60 76.81 91.81

Table 6: Results on transfer learning tasks. We design task-specific prompts for each task, denoted as {TASK}Prompt
where {TASK} is a placeholder for the task’s name. The corresponding task performance of each specific prompt
and their average is bold italic. SST and MR share the same prompt. These task-specific prompts can significantly
improve the performance of the corresponding tasks compared to both PromptEOL and ST5-Enc. MetaEOL yields
superior results even without being explicitly customized for these tasks.

5.6 Transfer Learning Tasks488

We conclude our analysis by assessing the per-489

formance of MetaEOL on transfer learning tasks.490

Following prior works (Gao et al., 2021; Ni491

et al., 2022), we utilize the standard transfer492

learning tasks provided by SentEval. The tasks493

consist of MR (Pang and Lee, 2005), CR (Hu494

and Liu, 2004), SUBJ (Pang and Lee, 2004),495

MPQA (Wiebe et al., 2005), SST-2 (Socher et al.,496

2013), TREC (Voorhees and Tice, 2000), and497

MRPC (Dolan and Brockett, 2005). We include498

two supervised contrastive-trained models (Sim-499

CSE and ST5-Enc) for reference. Notably, ST5-500

Enc, a model with a 4.8B parameter count, is exten-501

sively trained on natural language inference (NLI)502

data and two billion question-answer pairs.503

To investigate the ability of task-specific prompts504

to modify embedding behavior, we have crafted505

task prompts tailored to each SentEval task.5 As506

an example, for the Movie Review (MR) dataset,507

we designed a prompt structured as: In this task,508

you’re given a movie review, and you need to clas-509

sify its sentiment into positive or negative. For510

this task, this sentence: "input sentence" means511

in one word:", referred to as MRPrompt in Ta-512

ble 6. These task-specific prompts significantly513

improve the corresponding task performance, al-514

ways better than PromptEOL and heavily super-515

5The details of the task prompts are presented in Ap-
pendix A.5.

vised contrastive-trained ST5-Enc, verifying that 516

LLAMA2-7B can follow the prompt to generate 517

tailored embeddings without any training. This 518

indicates that carefully designed prompts can ef- 519

fectively steer the pre-trained embeddings to align 520

with various NLP tasks, thus providing a more 521

resource-efficient alternative to the traditional fine- 522

tuning paradigm. 523

Moreover, although without being explicitly cus- 524

tomized for these tasks, MetaEOL achieves the 525

highest average result, even outperforming heavily 526

trained ST5-Enc. This suggests that the integration 527

of the four meta-tasks in MetaEOL can cultivate 528

generalized embeddings that perform admirably 529

across different tasks. 530

6 Conclusion 531

In this paper, we introduce MetaEOL, a new ap- 532

proach for deriving high-quality sentence embed- 533

dings from LLMs without requiring any training. 534

By leveraging a diverse set of meta-task prompts, 535

MetaEOL effectively captures multiple representa- 536

tions of sentences from distinct perspectives. We 537

show simply averaging these meta-task derived em- 538

beddings leads to generalized general-purpose em- 539

beddings, which work remarkably well across STS 540

datasets and transfer learning tasks. 541
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Limitations542

We acknowledge two limitations in our work:543

computational overhead and restricted evaluation544

benchmarks. As MetaEOL requires feeding mul-545

tiple prompts to LLMs to generate several embed-546

dings, the computational cost will be higher than547

previous methods. Nonetheless, in contexts where548

sentences are consistently reused, such as when549

embeddings are stored for downstream classifica-550

tion or retrieval tasks, this issue becomes less sig-551

nificant. Furthermore, our evaluation is currently552

confined to sentence-level tasks in English only. As553

LLMs continue to advance, exploring the perfor-554

mance of MetaEOL in multilingual contexts and555

its applicability to document retrieval presents an556

intriguing avenue for future research.557
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A Appendix 902

A.1 Instruction to Prompt ChatGPT4 for Template Generation 903

We insert a blank line between paragraphs to enhance readability. 904

Obtaining the representation of sentences is a fundamental task in natural language processing.

The representation can not only be used to compute the semantic similarity between dif-
ferent sentences but also to be directly used for downstream tasks, like Text Categorization,
Sentiment Analysis, Summarization, Style Transfer, Text Simplification, and Sentence Composi-
tion.

A common way to obtain the representation is to use the format "This sentence "input
sentence" means in one word:"" and use the hidden states of the last token as the representation
of the sentence. However, we want a versatile representation that covers various aspects of the
sentence by adding task instructions before the format. For instance: "In this task, you’re given a
review from Amazon. Your task is to generate a rating for the product on a scale of 1-5 based
on the review. The rating means 1: extremely poor, 2: poor, 3: neutral, 4: good, 5: extremely
good. For this task, this sentence : "input sentence" means in one word:"" is used to obtain the
representation of the sentence conditioned on the given task.

Can you help me write task instructions that can cover different aspects of the sentence
such that the representation is versatile to both similarity tasks and downstream tasks?

Please write two instructions for each of the Text Classification, Sentiment Analysis,
Paraphrase Identification, and Information Extraction tasks.

905

A.2 Paraphrased Prompts of PromptEOL 906

This sentence : "input sentence" can be rephrased to one word:"
This sentence : "input sentence" can be expressed as one word:"
This sentence : "input sentence" implies in one word:"
This sentence : "input sentence" indicates in one word:"
The meaning of this sentence : "input sentence" can be conveyed in another word:"
This sentence : "input sentence" can be restated as one word:"
This sentence : "input sentence" can be reformulated as one word:"

907
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A.3 Prompts of MetaEOL908

Text Classification
General Category Identification: In this task, you’re presented with a text excerpt. Your task
is to categorize the excerpt into a broad category such as ’Education’, ’Technology’, ’Health’,
’Business’, ’Environment’, ’Politics’, or ’Culture’. These categories help in organizing content for
better accessibility and targeting. For this task, this sentence : "input sentence" should be classified
under one general category in one word:"
Opinion vs. Fact Discrimination: In this task, you’re given a statement and you need to
determine whether it’s presenting an ’Opinion’ or a ’Fact’. This distinction is vital for information
verification, educational purposes, and content analysis. For this task, this sentence : "input
sentence" discriminates between opinion and fact in one word:"

Sentiment Analysis
Product Review Rating: In this task, you’re given a review from an online platform. Your task
is to generate a rating for the product based on the review on a scale of 1-5, where 1 means
’extremely negative’ and 5 means ’extremely positive’. For this task, this sentence : "input
sentence" reflects the sentiment in one word:"
Emotion Detection: In this task, you’re reading a personal diary entry. Your task is to identify
the predominant emotion expressed, such as joy, sadness, anger, fear, or love. For this task, this
sentence : "input sentence" conveys the emotion in one word:"

Paraphrase Identification
Similarity Check: In this task, you’re presented with two sentences. Your task is to assess whether
the sentences convey the same meaning. Use ’identical’, ’similar’, ’different’, or ’unrelated’ to
describe the relationship. To enhance the performance of this task, this sentence : "input sentence"
means in one word:"
Contextual Synonym Detection: In this task, you’re given a sentence and a phrase. Your task is
to determine if the phrase can be a contextual synonym within the given sentence. Options include
’yes’, ’no’, or ’partially’. To enhance the performance of this task, this sentence : "input sentence"
means in one word:"

Information Extraction
Key Fact Identification: In this task, you’re examining a news article. Your task is to extract the
most critical fact from the article. For this task, this sentence : "input sentence" encapsulates the
key fact in one word:"
Entity and Relation Extraction: In this task, you’re reviewing a scientific abstract. Your task is
to identify the main entities (e.g., proteins, diseases) and their relations (e.g., causes, treats). For
this task, this sentence : "input sentence" highlights the primary entity or relation in one word:"
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A.4 Prompts of the Sentiment Analysis Meta-Task 910

Sentiment Analysis Meta-Task
Product Review Rating: In this task, you’re given a review from an online platform. Your task is
to generate a rating for the product based on the review on a scale of 1-5, where 1 means ’extremely
negative’ and 5 means ’extremely positive’. For this task, this sentence : "input sentence" reflects
the sentiment in one word:"
Emotion Detection: In this task, you’re reading a personal diary entry. Your task is to identify
the predominant emotion expressed, such as joy, sadness, anger, fear, or love. For this task, this
sentence : "input sentence" conveys the emotion in one word:"
Sentiment Polarity Detection: In this task, you’re analyzing customer feedback from various
platforms. Your task is to identify the overall sentiment polarity of the feedback. The sentiment
polarity means: 1 for very negative, 2 for negative, 3 for neutral, 4 for positive, and 5 for very
positive. Based on this guidance, this sentence : "input sentence" represents in one word:"
Sentiment Intensity and Emotion Detection: In this task, your objective is to gauge the intensity
and type of emotion conveyed in a piece of text, such as a social media post or a product review. This
involves not just identifying whether the sentiment is positive or negative, but also understanding
the strength of that sentiment and the specific emotions involved (e.g., joy, anger, sadness, surprise).
For this task, this sentence : "input sentence" conveys an emotion that is best described in one
word as:"
Aspect-based Sentiment Analysis: In this task, you’re given a review of a product or service.
Your task is to assess the sentiment toward specific aspects of the product or service mentioned in
the review. For each mentioned aspect (e.g., quality, price, customer service), classify the sentiment
as: 1 for very negative, 2 for negative, 3 for neutral, 4 for positive, and 5 for very positive. Based
on this instruction, this sentence : "input sentence" signifies in one word:"
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A.5 Task-Specific Prompts on Transfer Tasks912

MR/SST
In this task, you’re given a movie review, and you need to classify its sentiment into positive or
negative. For this task, this sentence : "input sentence" means in one word:"

CR
In this task, you’re given a customer review of a product sold online, and you need to classify its
sentiment into positive or negative. For this task, this sentence : "input sentence" means in one
word:"

SUBJ
In this task, you’re analyzing movie reviews to determine their level of subjectivity. A subjective
review is filled with personal opinions, feelings, and preferences of the reviewer, often expressing
likes or dislikes and personal experiences. An objective review, on the other hand, sticks to factual
information, such as plot details or actor performances, without revealing the reviewer’s personal
stance. For this task, this sentence : "input sentence" means in one word:"

MPQA
In this task, you are given a description of a entity or event expressed in data such as blogs,
newswire, and editorials. You need to classify its sentiment into positive or negative. For this task,
this sentence : "input sentence" means in one word:"

TREC
In this task, you are given a question. You need to detect which category better describes the
question. A question belongs to the description category if it asks about description and abstract
concepts. Entity questions are about entities such as animals, colors, sports, etc. Abbreviation
questions ask about abbreviations and expressions abbreviated. Questions regarding human beings,
description of a person, and a group or organization of persons are categorized as Human. Quantity
questions are asking about numeric values and Location questions ask about locations, cities,
and countries. Answer with "Description", "Entity", "Abbreviation", "Person", "Quantity", and
"Location". For this task, this sentence : "input sentence" means in one word:"

MRPC
In this task, you are given two sentences(Sentence1 and Sentence2). Answer "Yes" if these
sentences are a paraphrase of one another, otherwise answer "No". For this task, this sentence :
"input sentence" means in one word:"
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