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ABSTRACT

Motion forecasting is essential for making intelligent decisions in robotic naviga-
tion. As a result, the multi-agent behavioral prediction has become a core compo-
nent of modern human-robot interaction applications such as autonomous driving.
Due to various intentions and interactions among agents, agent trajectories can
have multiple possible futures. Hence, the motion forecasting model’s ability to
cover possible modes becomes essential to enable accurate prediction. Towards
this goal, we introduce HalentNet to better model the future motion distribution
in addition to a traditional trajectory regression learning objective by incorporat-
ing generative augmentation losses. We model intents with unsupervised discrete
random variables whose training is guided by a collaboration between two key
signals: A discriminative loss that encourages intents’ diversity and a hallucina-
tive loss that explores intent transitions (i.e., mixed intents) and encourages their
smoothness. This regulates the neural network behavior to be more accurately
predictive on uncertain scenarios due to the active yet careful exploration of pos-
sible future agent behavior. Our model’s learned representation leads to better
and more semantically meaningful coverage of the trajectory distribution. Our
experiments show that our method can improve over the state-of-the-art trajectory
forecasting benchmarks, including vehicles and pedestrians, for about 20% on av-
erage FDE and 50% on road boundary violation rate when predicting 6 seconds
future. We also conducted human experiments to show that our predicted trajec-
tories received 39.6% more votes than the runner-up approach and 32.2% more
votes than our variant without hallucinative mixed intent loss.

1 INTRODUCTION

The ability to forecast trajectories of dynamic agents is essential for a variety of autonomous systems
such as self-driving vehicles and social robots. It enables an autonomous system to foresee adverse
situations and adjust motion planning accordingly to prefer better alternatives. Because agents can
make different decisions at any given time, future motion distribution is inherently multi-modal. Due
to incomplete coverage of different modes in real data and interacting agents’ combinatorial nature,
trajectory forecasting is challenging. Several existing works focus on formulating the multi-modal
future prediction only from training data (e.g., (Tang & Salakhutdinov, 2019; Alahi et al., 2016;
Casas et al., 2019; Deo & Trivedi, 2018; Sadeghian et al., 2018; Casas et al., 2019; Salzmann et al.,
2020)). This severely limits the ability of these models to predict modes that are not covered beyond
the training data distribution, and some of these learned modes could be spurious especially where
the real predictive spaces are not or inadequately covered by the training data. To improve the multi-
modal prediction quality, our goal is to enrich the coverage of these less explored spaces, while
encouraging plausible behavior. Properly designing this exploratory learning process for motion
forecasting as an implicit data augmentation approach is at the heart of this paper.

∗Work done prior to Amazon.

1



Published as a conference paper at ICLR 2021

Most data augmentation methods are geometric and operate on raw data. They also have been
mostly studied on discrete label spaces like classification tasks (e.g., (Zhang et al., 2017; Yun et al.,
2019; Wang et al., 2019; Cubuk et al., 2019; Ho et al., 2019; Antoniou et al., 2017; Elhoseiny &
Elfeki, 2019; Mikołajczyk & Grochowski, 2019; Ratner et al., 2017)). In contrast, we focus on
a multi-agent future forecasting task where label space for each agent is spatial-temporal. To our
knowledge, augmentation techniques are far less explored for this task.

Our work builds on recent advances in trajectory prediction problem (e.g., Tang & Salakhutdinov
(2019); Salzmann et al. (2020)), that leverage discrete latent variables to represent driving behav-
ior/intents (e.g. Turn left, speed up). Inspired by these advances, we propose HalentNet, a sequential
probabilistic latent variable generative model that learns from both real and implicitly augmented
multi-agent trajectory data. More concretely, we model driving intents with discrete latent variables
z. Then, our method hallucinates new intents by mixing different discrete latent variables up in
the temporal dimension to generate trajectories that are realistic-looking but different from training
data judged by discriminator Dis to implicitly augment the behaviors/intents. The nature of our
augmentation approach is different from existing methods since it operates on the latent space that
represents the agent’s behavior. The training of these latent variables is guided by a collabora-
tion between discriminative and hallucinative learning signals. The discriminative loss increases the
separation between intent modes; we impose this as a classification loss that recognizes the one-hot
latent intents corresponding to the predicted trajectories. We call these discriminative latent intents
as classified intents since they are easy to classify to an existing one-hot latent intent (i.e., low en-
tropy). This discriminative loss expands the predictive intent space that we then encourage to explore
by our hallucinated intents’ loss. As we detail later, we define hallucinated intents as a mixture of
the one-hot classified latent intents. We encourage the predictions of trajectories corresponding to
hallcuinated intents to be hard to classify to the one-hot discrete latent intents by hallucinative loss
but, in the meantime, be realistic with a real/fake loss that we impose. The classification, hallucina-
tive, and real/fake losses are all defined on top of a Discriminator Dis, whose input is the predicted
motion trajectories and the map information. We show that all these three components are necessary
to achieve good performance, where we also ablate our design choices.

Our contributions are summarized as follows.

• We introduce a new framework that enables multi-modal trajectory forecasting to learn
dynamically complementary augmented agent behaviors.

• We introduce the notion of classified intents and hallucinated intents in motion forecast-
ing that can be captured by discrete latent variables z. We introduce two complementary
learning mechanism for each to better model latent behavior intentions and encourage the
novelty of augmented agent behaviors and hence improve the generalization. The classified
intents ẑ is defined not to change over time and are encouraged to be well separated from
other classified intents with a classification loss. The hallucinated intents ẑh, on the other
hand, changes over the prediction horizon and are encouraged to deviate from the classified
intents as augmented agent behaviors.

• Our experiments demonstrate at most 26% better results measured by average FDE com-
pared to other state-of-the-art methods on motion forecasting datasets, which verifies the
effectiveness of our methods. We also conducted human evaluation experiments showing
that our forecasted motion is considered 39% safer than the runner-up approach. Codes,
pretrained models and preprocessed datasets are available at https://github.com/
Vision-CAIR/HalentNet

2 RELATED WORK

Trajectory Forecasting Trajectory forecasting of dynamic agents has received increasing atten-
tion recently because it is a core problem to a number of applications such as autonomous driving
and social robots. Human motion is inherently multi-modal, recent work (Lee et al., 2017; Cui et al.,
2018; Chai et al., 2019; Rhinehart et al., 2019; Kosaraju et al., 2019; Tang & Salakhutdinov, 2019;
Ridel et al., 2020; Salzmann et al., 2020; Huang et al., 2019; Mercat et al., 2019) has focused on
learning the distribution from multi-agent trajectory data. (Cui et al., 2018; Chai et al., 2019; Ridel
et al., 2020; Mercat et al., 2019) predicts multiple future trajectories without learning low dimen-
sional latent agent behaviors. (Lee et al., 2017; Kosaraju et al., 2019; Rhinehart et al., 2019; Huang
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et al., 2019) encodes agent behaviors in continuous low dimensional latent space while (Tang &
Salakhutdinov, 2019; Salzmann et al., 2020) uses discrete latent variables. Discrete latent variables
succinctly capture semantically meaningful modes such as turn left, turn right. (Tang & Salakhut-
dinov, 2019; Salzmann et al., 2020) learns discrete latent variables without explicit labels. Built on
top of these recent work, we hallucinate possible future behaviors by changing agent intents. As the
forecast horizon is a few seconds, these are highly plausible. We use a discriminator to encourage
augmented trajectories to look real.

Data augmentation Data augmentation is a popular technique to mitigate overfitting and improve
generalization in training deep networks (Shorten & Khoshgoftaar, 2019). New data is typically gen-
erated by transforming real data samples in the original input space. These transformations range
from simple techniques (e.g. random flipping, mirroring for images, mixup (Zhang et al., 2017) and
Cutmix (Yun et al., 2019)) to automatic data augmentation techniques (e.g. AutoAugment (Cubuk
et al., 2019)) and class-identity preserving semantic data augmentation techniques (Ratner et al.,
2017) (e.g. changing backgrounds of objects). Recently data augmentation via semantic transfor-
mation in deep feature space (Liu et al., 2018; Wang et al., 2019; Li et al., 2020a) has also been
proposed. ISDA (Wang et al., 2019) proposes a loss function to implicitly translate training samples
along with semantic directions in the feature space. For example, a certain direction corresponds to
the semantic translation of ”make-bespectacled.” When a person’s feature without glasses is trans-
lated along this direction, the new feature may correspond to the same person but with glasses.
MoEx (Li et al., 2020a) proposes a new augmentation method that leverages the first and second
moments extracted and re-injected by feature normalization. Specifically, it replaces the moments
of the learned features of one training image by those of another and interpolates the target labels.
Our data augmentation is also in the latent space, which represents agent behavior.

Imaginative/Hallucinative models. GANs (Goodfellow et al., 2014; Radford et al., 2015) are a
powerful generative model, yet they are not explicitly trained to go beyond the training data to
improve generalization. Inspired by the theory of human creativity (Martindale, 1990), recent ap-
proaches on generative models were proposed to encourage novel visual content generation in art
and fashion designs. In (Elgammal et al., 2017), the authors adapted GANs to generate uncon-
ditional creative content (paintings) by encouraging the model to deviate from existing painting
styles. In the fashion domain, (Sbai et al., 2018) showed that their model is capable of producing a
non-existing shape like “pants to extended arm sleeves” that some designers found interesting.

The key mechanism in these methods is the addition of a deviation loss, which encourages the
generator to produce novel content. More recently, (Elhoseiny & Elfeki, 2019) proposed a method
for understanding unseen classes, also known as zero-shot learning (ZSL), by generating visual
representations of synthesized unseen class descriptors. These visual representations are encouraged
to deviate from seen classes, leading to better generalization compared to earlier generative ZSL
methods. (Zhang et al., 2019) and (Li et al., 2020b) introduced methods to generate additional
data based on saliency maps and adversarial learning for few-shot learning task, respectively. In
the field of navigation, (Xiao et al., 2020a) and (Xiao et al., 2020b) utilized geometric information
to hallucinate new navigation training data. In contrast to these earlier methods, our work has
two key differences. First, our work is a sequential probabilistic generative model focusing on
motion forecasting requiring time-series prediction in continuous space. Second, the deviation signal
in (Elgammal et al., 2017; Sbai et al., 2018; Elhoseiny & Elfeki, 2019) is based on defining labeled
discrete seen styles and seen classes, respectively. In contrast, we model the deviation from a discrete
latent space guided by a deviation signal to help the model imagine driver intents without supervision
signal. Similar to MoEx (Li et al., 2020a), augmented trajectories are dynamically generated during
training. We believe we are the first to propose a data augmentation method in latent space for
trajectory forecasting.

3 METHOD

Problem Formulation We are aiming at predicting the future trajectory ygt of a specified agent
given the input states x, which contains the historical information like positions and heading angles
of the agent itself and the surrounding agents, and a semantic map patch m, which offers context
information like drivable region, by generating a distribution P(y|x,m) to model the distribution of
real future trajectory ygt.

3



Published as a conference paper at ICLR 2021

Figure 1: Overview of our architecture. The generator is trained to infer the behavior intents z and
forecast the future trajectories. In addition to a GAN loss and a prediction loss like MLE, we propose
classified latent intent behavior that classifies the latent code ẑ behind trajectories, and hallucinative
learning that generates novel and plausible trajectories by mix two latent codes. White and color
points denote the ground truth and generated trajectories, respectively.

Our Model Motion forecasting in the real world is a multi-modal task. There are usually multiple
possible futures given the same state. To accurately model this diversity, we define a latent code z to
represent different intents of the predicted agent inspired by literature (e.g., (Tang & Salakhutdinov,
2019; Salzmann et al., 2020)). We denote the input state as x, a local map as m, and the correspond-
ing ground truth future as ygt. The possible behaviors are modeled by the distribution of latent code
z conditioned on the input state and the map P(z|x,m). Then, the predicted trajectory distribution
is calculated by conditioning on both input state and the latent code P(y|z,x,m). For motion fore-
casting tasks, we use maximum likelihood estimation (MLE) loss on the ground truth future as the
learning objective L = − log P(ygt|x,m). Note that we do not have the label for the latent code z
in the dataset. Similar to (Tang & Salakhutdinov, 2019; Salzmann et al., 2020), we represent latent
code as a discrete random variable. The learning objective can be rewritten as follows.

L = − log P(ygt|x,m) = − log
∑

i
[P(zi|x,m)P(ygt|zi,x,m)] (1)

Hence, we obtain an unsupervised latent code z that captures some uncertainty of the future without
knowing its label. The distribution P (z|x,m) can be modeled by any model that outputs a cate-
gorical distribution. P (y|z,x,m) is usually modeled by models that output multivariate Gaussian
distribution. An overview of our model can be found in Fig.1. It consists of two sub-networks, a
generator module and a discriminator module described in the following paragraphs.

Generator The generator is the prediction model that produces the future trajectory distribution
P (y|x,m) given agent states x and a local map m. As the possible future is multi-modal, the output
distribution should model this uncertainty. As we discussed earlier, we model distribution P(z|x,m)
and P (y|z,x,m) by neural networks. We use a discrete random variable to represent the latent code
z. The uncertainty of the future trajectory can be factorized hierarchically into intent uncertainty and
control uncertainty (Chai et al., 2019). The intent uncertainty reflects different intents or behavior
modes of the agent. Furthermore, the control uncertainty covers other minor noise. As the simple
Gaussian distribution P (y|z,x,m) is not expressive enough to model the complex uncertainty of
multi-modal behaviors, this framework encourages the latent code distribution P(z|x,m) to cover
more the intent uncertainty. We denote the modules that generate the latent code distribution and
the trajectory distribution as encoder Encθ and decoder Decφ with parameter θ and φ, respectively.
In addition, Encθ also encodes agent states x and the local map m into a feature vector e, which
is part of the decoder’s input. Note that our method does not introduce further restrictions for the
model structure. Any model that fits this framework can be used as our generator like MFP(Tang &
Salakhutdinov, 2019) and Trajectron++(Salzmann et al., 2020). In our experiments, we select Tra-
jectron++ as our generator. Its original learning objective Ltraj++ is shown in Appx.B. In summary,
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the process of the generator can be represented by the following equations.

P(z|x,m), e = Encθ(x,m)

ẑ ∼ P(z|x,m) (2)
P(y|ẑ,x,m) = Decφ(ẑ, e)

Discriminator The discriminator Disψ with parameters ψ takes either a real trajectory ygt or a
generated one ŷ sampled from our predicted distribution together with the local map m as input
to judge whether the trajectory is real or generated following GAN framework (Goodfellow et al.,
2014). This helps the decoder inject map information into the learning signal and alleviate the vio-
lation of road boundaries in prediction. Besides, we add a classification head to the discriminator.
When the input data is generated, this head needs to recognize the latent code ẑ the generator used
for creating the input trajectory. In this way, the generator is forced to increase the difference among
latent codes and give us more distinct and semantically meaningful driving strategies. This is fur-
ther discussed in the following paragraphs. The following equation describes the function of our
discriminator.

D(y),P(z|y,m) = Disψ(y,m) (3)
Trajectory y is either the ground truth future ygt or the sample from predicted trajectory distribution
ŷ. D(y) is the score to indicate whether y is real or synthetic. P(z|y,m) is the classified distri-
bution. Our discriminator is modified from the one in DCGAN (Radford et al., 2015) by adding a
fully-connected classification head at the end to classify the latent code. Trajectories y are trans-
formed into the format that convolutional layers can handle via differentiable rasterizer trick (Wang
et al., 2020) and stacked together with the local map m as the input for the discriminator as described
in Appx.B.

Learning Methods Our architecture can be trained by a GAN learning objective, together with
the original learning loss of the generator module depends on the model we choose to combine with.
To learn a better behavior representation and improve the quality of predicted trajectory distribution,
we introduce two new methods Classified latent Intent Behavior and Hallucinative Latent Intent for
training.

Algorithm 1: Training Process
Initialize EncθE , DecθD , Disφ;
Initialize learning rate α, β;
while not converge do

// discriminator
ygt,x ∼ Dataset
Sample normal prediction ŷ
LD = (1−D(ygt))

2+(D(ŷ))2+Lc
φ = φ− α∇φLD
// generator
,x ∼ Dataset

Generate hallucinated trajectory ŷh
∼ P(y|ẑh,x,m)
LG,c = (D(ŷ)− 1)2 + Lc
LG,h = (D(ŷh)− 1)2 + Lh
θ = θ− β∇θ(λLG,c + (1− λ)LG,h)
ygt,x ∼ Dataset
θ = θ −
β∇θ(Ltraj++) // Trajectron++ loss

end

Classified latent Intent Behavior In the real
world, humans can recognize different behavior in-
tents by looking at the trajectories. To encourage the
latent code to contain more information about the
intent uncertainty and less about the control uncer-
tainty, we mimic this phenomenon and let the dis-
criminator classify the latent code behind the gener-
ated trajectories. The classification function can be
trained by a cross-entropy loss.

Lc = −
∑
i

ẑi log z̃i, where ẑ ∼ P(z|x,m)

(4)
zi denotes the i-th dimension of the vector z. ẑ is
the latent code under the input trajectory, which is
a one-hot vector sampled from the multinoulli dis-
tribution P(z|x,m). z̃ denotes the classified cat-
egorical distribution generated by our discrimina-
tor. Minimizing this loss encourages the decoder to
widen the difference among predictions from differ-
ent z to reduce the classification difficulty for the dis-
criminator. Therefore, we reduce the overlap among
output distributions from different latent codes and
sharpen them to increase accuracy. Since our model
is trained to classify trajectory into ẑ, we name ẑ classified intent. Note that this loss is only applied
for generated trajectories since we do not have the latent code for ground truth trajectory.
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Hallucinative Learning Latent codes z are trained to model intents in the training data. Each
predicted trajectory ŷ is calculated from single latent code ẑ for all the prediction steps. Assume the
predicted horizon is T , ŷ = [ŷ1, ŷ2, ..., ŷT ], ŷ∗ at each step is generated conditioned on the same ẑ.
And our discriminator is trained to recognize ẑ given the synthetic trajectory ŷ by the classification
loss. Besides, the MLE loss encourages synthetic trajectories to be similar to the training data.
Therefore, the discriminator implicitly classifies the training data into one of the latent code z.

We propose a novel way to utilize this property and learn beyond the training data by encouraging
the model to generate trajectories from unfamiliar driving behaviors. This is done by first sampling
a second different latent code ẑ′ in addition to the original one ẑ and randomly selecting a time step
th. The prediction until time step th in this case ([ŷ1, ..., ŷth ]) is conditioned on the first latent code
ẑ and we switch to ẑ′ for the remaining steps ([ŷth+1, ..., ŷT ]). By this way, we hallucinate a new
intent by stacking 2 learned intents in the temporal dimension. We denote this mixed hallucinated
intent as ẑh and name it hallucinated intent. The predicted distribution from such a intent is denoted
as P(y|ẑh,x,m). We aim to encourage the hallucinative trajectories ŷh to be plausible but dif-
ferent from the training data. To achieve this, we minimize the cross entropy between the uniform
distribution and our intent class distribution.

Lh = −
∑
i

1

N
log z̃i (5)

N indicates the number of latent codes. z̃i is the i-th dimention of the classified distribution z̃.
It encourages the hallucinative trajectory to be hard to be classified into any latent code z, and
therefore, to be different from the training data. The plausibility of the hallucinative trajectory is
encouraged by the additional GAN loss. In this way, we implicitly apply data augmentation in the
latent space to train a more powerful discriminator and improve the generator prediction quality. We
call this method hallucinative learning inspired from literature (e.g., Hariharan & Girshick (2017)).

Training We use LSGAN(Mao et al., 2017) loss with spectral normalization(Miyato et al., 2018)
as our GAN learning objective. We also keep the original Trajectron++ learning loss Ltraj++ to
maintain the performance in case Trajectron++ is our generator. The combination of GAN learn-
ing, training of the original generator, classified latent intent behavior, and hallucinative learning
is demonstrated in Alg.2 (Detailed version in Appx.F). We use a hyperparameter λ to balance the
training between classification learning and hallucinative learning for the generator by adjusting the
weighting of the learning loss.

4 EXPERIMENTAL RESULTS

We compare the performance of our method with state-of-the-art models. To demonstrate our
method’s performance in complex scenarios, we focus on evaluating the nuScenes dataset (Cae-
sar et al., 2019a) which contains about 1000 driving scenes in 2 cities (Boston and Singapore) with
dense traffic. Each scene of them has annotations for pedestrians and vehicles, sampled at a rate of
2 Hz, and about 20 seconds long (40 frames). Besides, both cities include maps, which are required
in our method. In addition, we also evaluate our method on widely-used pedestrian datasets ETH
(Pellegrini et al., 2009) and UCY (Leal-Taixé et al., 2014).

Evaluation Metrics We use average l2 displacement error (ADE) and final l2 displacement error
(FDE) to evaluate the prediction performance. Each of them contains some sub-versions. ADE-
ML/FDE-ML is the ADE/FDE calculated using the most likely predicted trajectories. In minADE-
k/minFDE-k, we select k candidate trajectories for each prediction and use all candidates’ minimal
value as the final score. ADE-Full/FDE-Full represents the quality of output distribution. To com-
pute ADE-Full/FDE-Full, we randomly sample 2k trajectories and calculate the average score.

Model Setting Our models are trained in two different scenarios. In the first scenario, we train
the model totally from scratch, and in the second one, we finetune on a pretrained generator and
train the discriminator from scratch. The number of latent code z is set as 25 latent codes following
(Salzmann et al., 2020). Our method is trained for 23 epochs with the pretrained generator and 35
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Table 1: nuScenes: Vehicle prediction
Model FDE

1s 2s 3s 4s

Const. Velocity 0.32 0.89 1.70 2.73
S-LSTM 0.47 - 1.61 -
CSP 0.46 2.35 1.50 -
CAR-Net 0.38 - 1.35 -
SpAGNN 0.36 - 1.23 -
Trajectron++ 0.07 0.45 1.14 2.20
Ours 0.08 ± 0.02 0.45 ± 0.01 1.09 ± 0.01 2.03 ± 0.02

Table 2: nuScenes: Pedestrian prediction
Model FDE

1s 2s 3s 4s

Traj++ 0.01 0.17 0.37 0.62
Ours 0.02 0.17 0.35 0.57

Table 3: nuScenes: Detailed comparison with
Trajectron++. ∆% is relative improvement.

Metric Model 1s 2s 3s 4s 5s 6s

FDE (Full) Traj++ 0.16 0.64 1.52 2.80 4.53 6.70
Ours 0.09 0.52 1.21 2.17 3.41 4.93
∆% +43 +19 +20 +23 +25 +27

FDE (ML) Traj++ 0.06 0.41 1.06 2.06 3.46 5.29
Ours 0.05 0.40 1.00 1.88 3.06 4.52
∆% +16 +2 +6 +9 +12 +14

minFDE-10 Traj++ 0.05 0.31 0.65 1.15 1.75 2.57
Ours 0.04 0.30 0.65 0.99 1.49 2.24
∆% +20 +3 0 +14 +15 +13

minADE-10 Traj++ 0.06 0.15 0.29 0.47 0.71 1.02
Ours 0.05 0.15 0.28 0.42 0.61 0.89
∆% -16 0 +3 +10 +14 +13

RB. Viol. Traj++ 0.24% 0.57% 2.55% 7.04% 12.95% 19.09%
Ours 0.26% 0.45% 1.30% 3.21% 6.00% 9.22%
∆% -8 +21 +49 54 +54 +52

epochs from scratch for vehicles. The training with a pretrained model lasts about 16 hours with a
single NVIDIA V100 graphic card and about 24 hours from scratch.

Comparison Methods We compare our contribution to state-of-the-art methods. S-LSTM (Alahi
et al., 2016) uses LSTM to predict trajectories and pool the hidden states among agents to model
their interaction. CSP (Deo & Trivedi, 2018) discretizes behaviors into a fixed number of classes
and predict the best possible behaviors. CAR-Net (Sadeghian et al., 2018) utilizes visual atten-
tion mechanism to encodes the surrounding environment and SpAGNN (Casas et al., 2019) detects
agents first from LIDAR and semantic map. Then, a graph neural network decoder interactively pre-
dicts their trajectories. Trajectron++ (Salzmann et al., 2020) encodes surrounding vehicles using a
graph neural network model and infers the behavior intents to produce a multi-modal prediction. As
Trajectron++ is the best model among these baselines, we perform an extensive comparison with it
using the released pretrained model.

nuScenes Dataset We run extensive experiments on the nuScenes dataset (Caesar et al., 2019b)
to evaluate and analyze our trajectory forecasting performance and verify model ability to learn dy-
namically complementary augmented agent behaviors. In this task setting, the model forecasts 3
seconds future with maximal 4 seconds of history information during training. However, the predic-
tion horizon for evaluation is up to 6 seconds to demonstrate our model’s generalization capacity.
NuScenes dataset contains many agent categories like adult pedestrian and truck. We group them
into two semantic classes vehicle and pedestrian, train individual models on them and report the
performance separately, following (Salzmann et al., 2020).

Our method achieves the best performance compared to other state-of-the-art approaches on the FDE
with minimal 4 seconds of future information during testing; see Tab.1. Due to the instability of
GAN, we remove the diverging training cases and average the numbers over 3 stable runs. Although
other methods do not report values at 2s and 4s, we can see that the performance of HalentNet
increases and HalentNet outperforms existing approaches as we predict more time steps in the future.
The complementary learning mechanism and hallucinated intents show a noticeable improvement
in vehicle trajectory prediction.

We run more experiments to examine further our method’s performance and Trajectron++ (Salz-
mann et al., 2020) as Trajectron++ outperforms other baseline approaches. We used various metrics
with the prediction horizon from 1 second to 6 seconds for all tracked objects with at least 6-second
available future data. The evaluation results are demonstrated in Tab.3. Our method outperforms
Trajectron++ in almost all metrics with a significant margin. Besides, the methods also generalize
well when we extend the prediction horizon. We obtain about 26% on average FDE over the output
distribution (FDE Full) and 52% for the road boundary violation improvement over the baseline
model in the 6-second prediction case. Superiority is when the prediction horizon is more extended.
HalentNet trajectories show more respect to road boundaries and output plausible trajectories pro-
duced from hallucinated intents that are changed over the prediction horizon and are encouraged to
deviate from the classified intents. The evaluation on the pedestrian nuScenes benchmark is listed
in Tab.2. We obtain a 8% improvement in the 4s prediction horizon case.
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Table 4: With Map. We evaluate our model and Trajec-
tron++ (both trained from scratch) on the combination of
ETH and Hotel datasets with maps. Maps help to learn a
better discriminator, hence increase the performance of our
method on ETH and Hotel sets. Note that Trajectron++ also
takes maps as input in this experiment for a fair comparison.
Our method is significantly better.

Methods ADE ML FDE ML minADE-20 minFDE-20

Trajectron++ 0.48 1.15 0.37 0.89
Ours 0.46 1.08 0.31 0.70

Table 5: Ablation study on nuScenes dataset.
Components FDE Full FDE ML B. Violations
Dis Lc Lh 3s 4s 5s 3s 4s 5s 3s 4s 5s

+ + + 1.21 2.17 3.41 1.00 1.88 3.06 1.30% 3.21% 6.00%
+ - + 1.23 2.32 3.81 1.01 1.90 3.09 1.48% 4.91% 10.84%
+ + - 1.29 2.54 4.27 1.02 1.99 3.31 1.75% 6.09% 12.44%
+ - - 1.28 2.35 3.75 1.08 2.01 3.23 1.64% 4.62% 8.66%
- - - 1.52 2.80 4.53 1.06 2.06 3.46 2.55% 7.04% 12.95%
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Figure 2: Balancing classified la-
tent intent behavior and hallucina-
tive learning by selecting a proper
λ = 0.5 in Algo.2 helps to get a
best FDE ( averaged over 2000 ran-
dom samples)

Pedestrian Datasets To further demonstrate our performance, we train our model on two widely
used pedestrian datasets; ETH(Pellegrini et al., 2009) and UCY(Leal-Taixé et al., 2014).
UCY (no map). UCY does not provide map information that is important for our method. We still
test our method in this case in Tab. 10 in Appendix E. This can be viewed as a variant of our model
since the map is not provided. We observe a slight improvement in the FDE results with about 7%
over Trajectron++. As we show later, the improvement is more significant when map information is
used that we think is available in most cases.
ETH (with map). We split the data by 70%, 15%, and 15% as a training set, validation set, and test
set, separately. Then, we combine these two sets as one big dataset and train both our method and
Trajectron++ from scratch with map information. The assessment uses an observation period of 8
timesteps (3.2s) and a projected horizon of 12 timesteps (4.8s). The results are shown in Tab.4. Our
method is significantly better than Trajectron++ with an improvement of about 20% on minFDE-20.

Ablation Study To better demonstrate and understand each component’s effect in our model, we
create model variants by removing the evaluated components step by step and showing their perfor-
mance. The evaluation is on the nuScenes dataset with the vehicle prediction for all tracked objects
with at least 6-second available future data. The results are listed in Tab.5. Dis, Lc, and Lh denote
the discriminator, the classification learning, and the hallucination learning, respectively.

Compared to the variant without all the components we list, the model with the discriminator out-
performs it by 15% on average FDE over the output distribution (FDE Full) and 30% for the road
boundary violation. The FDE of most likely prediction is also better after 3 seconds. This indicates
that the discriminator helps to improve the quality of output distribution. One of the possible reasons
is the injection of the map info. Although the generator takes the local map m as input, we do not
guarantee that the plain model will use it. As a trajectory that violates the road boundary can be
easily recognized as fake data by the discriminator, the map info is injected into the GAN learning
objective. Hence, optimizing this loss helps to push map information into output distribution. We
observe that we can not gain additional improvement when we add the classification loss Lc . We
think this is because Lc only encourages the classified intents ẑ to be distinguishable from each
other. And this property doesn’t have a clear relationship to the performance. Our method benefits
from the implicit behavior augmentation by the hallucinated intent. When we implicitly augment
the data by hallucinative intent loss Lh, mixing intents during training with ẑh by combining clas-
sified intents, we observe a further boost in the performance. The FDE is more than 5% better than
the discriminator only variant Dis, and the road boundary violation is about 20-30% better, show-
ing the effectiveness of the hallucinative learning; see Table 5. Note that although Lc alone does
not improve, it is still important to encourage the hallucinative signal Lh to be more explorative.
This is since the exploration of Lh depends on the classified intents’ diversity that Lc increases.
Mathematically, the classification loss Lc encourages reducing the entropy of the categorical output
distribution over z, and the hallucinative loss promotes that mixing these intents can still be plausi-
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Table 6: Ablation study on different designs for hallucinative loss Lh on nuScenes.
Methods FDE Full FDE ML

3s 4s 5s 3s 4s 5s

Lh (default=entropy) 1.21 2.17 3.41 1.00 1.88 3.06
Lh (mixup) 1.19 2.20 3.60 1.02 1.97 3.60
Lh(N + 1) 1.35 2.69 4.58 1.20 2.63 4.66

Table 7: Human Evaluation Results
Compared Methods Votes for our method Votes for compared method Our Advantage

Variant without Lh 427 323 32.2%
Trajectron++ 437 313 39.6%

ble. In other words, Lc trains the discriminator to classify trajectories and Lh trains the generator to
output trajectories that are hard to be classified if we use hallucinated intent. If we remove Lc and
keep Lh only, our classifier cannot be trained, which make Lh meaningless. Hence, the two losses
are complementary to one another. The complementary importance of Lc to Lh, can be explained
by drop in performance when Lc only is discarded (second row in Tab 5).

Fig.2 shows our exploration of how to balance the classification learning and hallucinative learn-
ing. λ represents the importance of classification learning. When λ = 1, our method is reduced to
the variant without hallucinative learning. We set the λ in Alg.2 from 0.0 to 1.0 for training sep-
arately and plot the corresponding average FDE over the output distribution. The results suggest
that properly balancing classified latent intent behavior and hallucinative learning helps improve
performance.

Hallucinative loss Lh defined in Eq.5 is used to encourage the classification difficulty of the hal-
lucinated trajectory ŷh. Lh is defined as the cross entropy between the uniform distribution and
the classification results in our method. Here we denote our original design choise as Lh(default)
In addition to this design choice, we also experiment with another 2 possibilities: Lh(mixup) and
Lh(N + 1). Lh(mixup) is defined as the cross entropy between a discrete distribution that only
has non-zero probabilities on the 2 latent codes (probabilities equal 50% for both) used together as
the hallucinated intent ẑh and the classification results. For Lh(N + 1), we define a new class label
for all the hallucinated trajectories. Lh(N + 1) is the cross entropy between this new class and the
prediction results. Results are shown in Tab.6. Our design choice achieves the best performance,
but the TwoHot variant also shows comparable results. The performance of AdditionClass is much
worse compared to our design and TwoHot.

Human Evaluation We use Amazon Mechanical Turk to evaluate the quality of our prediction.
We randomly selected 150 paired scenes, each of which is evaluated by five human subjects on
MTurk who are requested to judge which model predicts better trajectory given a scene. Each
scene is evaluated by 5 times. Therefore, each comparison contains 750 votes in total. Our method
generates better trajectories compared to our variant without hallucinative learning measured by
32.2% more votes and Trajectron++ measured by 39.6% more votes. Results shown in Tab.7.

5 CONCLUSION

In this paper, we propose HalentNet, a probabilistic latent variable framework that hallucinates
novel trajectories via transformations in discrete latent agent behavior space. Our method contains
two complementary learning mechanisms that encourage a diverse and novel generation to regulate
the neural network behavior and achieve more accurate predictions on uncertain scenarios. We
show that HalentNet can significantly improve generalization for multi-modal future predictions in
multi-agent settings and reduces the boundary violation metric by more than 50%.
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L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, and S. Savarese. Learning an image-based
motion context for multiple people tracking. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2014.

Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B. Choy, Philip H. S. Torr, and Manmohan
Chandraker. DESIRE: distant future prediction in dynamic scenes with interacting agents. In 2017
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017, pp. 2165–2174. IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.233.
URL https://doi.org/10.1109/CVPR.2017.233.

Bo-Yi Li, Felix Wu, Ser-Nam Lim, Serge J. Belongie, and Kilian Q. Weinberger. On feature nor-
malization and data augmentation. ArXiv, abs/2002.11102, 2020a.

Kai Li, Yulun Zhang, Kunpeng Li, and Yun Fu. Adversarial feature hallucination networks for
few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13470–13479, 2020b.

Bo Liu, Xudong Wang, Mandar Dixit, Roland Kwitt, and Nuno Vasconcelos. Feature space transfer
for data augmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 9090–9098, 2018.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley.
Least squares generative adversarial networks. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pp. 2794–2802, 2017.

Colin Martindale. The clockwork muse: The predictability of artistic change. Basic Books, 1990.

Jean Mercat, Thomas Gilles, Nicole El Zoghby, Guillaume Sandou, Dominique Beauvois, and
Guillermo Pita Gil. Multi-modal simultaneous forecasting of vehicle position sequences using
social attention. arXiv preprint arXiv:1910.03650, 2019.

Agnieszka Mikołajczyk and Michał Grochowski. Style transfer-based image synthesis as an efficient
regularization technique in deep learning. In 2019 24th International Conference on Methods and
Models in Automation and Robotics (MMAR), pp. 42–47. IEEE, 2019.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc Van Gool. You’ll never walk alone:
Modeling social behavior for multi-target tracking. In 2009 IEEE 12th International Conference
on Computer Vision, pp. 261–268. IEEE, 2009.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Alexander J Ratner, Henry Ehrenberg, Zeshan Hussain, Jared Dunnmon, and Christopher Ré. Learn-
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A APPENDIX

In this document, we present more explanations and details about the training and the testing results
on the NuScenes dataset and the pedestrian datasets with more visualization for our method. It
contains the following sections:

• Training Details
• Qualitative Results
• Pedestrian Experiments

The code and pretrained models will be released in the future (soon).

B TRAINING DETAILS

Original Loss of Generator In this dataset, we initialize the generator of our Halent model with
the pretrained Trajectron++ model (Salzmann et al., 2020). The original Trajectron++ training loss
Ltraj is kept in our method.
Ltraj++ = −Eẑ∼q(z|x,m,ygt)[logp(ygt|x,m, ẑ)] + k1DKL(q(z|x,m,ygt)||p(z|x,m))− k2Iq(x; z)

(6)

Here, k2 is set to 1. Instead of directly learning the distribution of latent intents p(z|x,m), Tra-
jectron++ learns q(z|x,m,ygt) which additionally conditioned on ground truth trajectory during
training. p(z|x,m) is learned by reducing the KL divergence between q(z|x,m,ygt and p(z|x,m).
k1 is gradually increase to enhance the information transfer. Note that only p(z|x,m) is used during
testing.

Differentiable Rasterizer To combine the trajectory y and the local map m into a acceptable
format for the CNN-based discriminator, we use differentiable rasterizer (Wang et al., 2020) to
convert y, which can be represented by a sequence of T positions {(x1, y1), (x2, y2), ...(xT , yT )},
into T 2D occupancy grids {G1,G2, ...GT }. Each grid Gt is a tensor with the same weight and height
of m. In detail, it creates a bivariate Gaussian distribution N (µt,Σt) for every time step t, where
µt = fa(xt, yt), Σ = diag(σ2, σ2). σ is a hyperparameter. The value for cell (i, j) of Gt is the
scaled probability density at location (i, j) in the map coordinate system

Gt[i, j] = k · N ((i, j)|µt,Σt)
N (µt|µt,Σt)

(7)

Here, we normalize the occupancy grids so the maximal amplitude equal to k. By this way, we
obtain 2D trajectory grids {G1,G2, ...GT }, which can be processed by CNN and are differentiable
w.r.t the original trajectory. In our experiments, we set k = 9 and σ = 5 based on the hyperparameter
search on the validation set.

Training We set λ = 0.5 to balance the classified latent intent behavior and hallucinative learning.
The model is trained by Adam optimizer (Kingma & Ba, 2014). The pretrained model is trained by
12 epochs. We continued the training for another 23 epochs with our method and kept the original
learning rate for our generator. The learning rate of the discriminator is lower compared to the
generator to avoid a large gradient at the beginning of training.

C ADDITIONAL RESULTS ON NUSCENES

Here we report the ADE scores of our method compared to Trajectron++ and the variants of our
method in Tab.8 as a supplementary to Tab.1 and Tab.5. The evaluation is on the nuScenes dataset
with the vehicle prediction for all tracked objectswith at least 4-second available future data. Com-
pared to Trajectron++ (the last row), we obtain a 25cm improvement in the 4s case measured by
ADE-Full, which is about 21% better.
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Table 8: ADE scores on nuScenes dataset.
Components ADE Full ADE ML
Dis Lc Lh 3s 4s 3s 4s

+ + + 0.53 0.91 0.43 0.76
+ - + 0.53 0.94 0.44 0.77
+ + - 0.55 1.00 0.44 0.79
+ - - 0.56 0.97 0.47 0.83
- - - 0.67 1.16 0.45 0.82

Table 9: Results for the variant without discriminator map input on nuScenes.
Methods FDE Full FDE ML

3s 4s 5s 3s 4s 5s

Ours 1.21 2.17 3.41 1.00 1.88 3.06
Ours without discriminator map input 1.31 2.38 3.75 1.07 1.99 3.18

Trajectron++ 1.52 2.80 4.53 1.06 2.06 3.46

In Tab.9, we show the importance of the map information to the discriminator by removing the map
input to the discriminator and keep all the rest parts the same (the map input to the generator is kept).
Due to the lack of map information, the discriminator cannot be well trained and the performance
drops compared to our full model. Models are evaluated on nuScenes dataset.
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D QUALITATIVE RESULTS

Here, we demonstrate qualitative results of our method compared with Trajectron++ for 4 seconds
prediction, trained for 3 seconds prediction. We randomly sample 50 trajectories from model for
each prediction, use kernel density estimation to approximate the total output distribution from the
samples, and print it out in Fig.3. The ground truth trajectories are represented by white points.
Compared to Trajectron++, our method reduces the uncertainty of the future by a large margin and
also increase the accuracy.

The classified latent intent behavior helps us to widen the difference among trajectories from dif-
ferent behavior intents. To demonstrate this, we plot out trajectories for every latent intents, totally
25 intents including the unlikely latent intents given the input data, for both our method and Trajec-
tron++ in Fig.6. The white points are ground truth trajectories. The red trajectories are the behaviors
ẑ with at least 5% probability (p(ẑ|x,m) ≥ 0.05). The gray trajectories are behaviors which are less
possible to occur (p(ẑ|x,m) < 0.05). From the visualization we can see that the latent behaviors in
our method are more diverse and distinguishable compared to Trajectron++.
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(a) Ours (b) Trajectron++

(c) Ours (d) Trajectron++

(e) Ours (f) Trajectron++

(g) Ours (h) Trajectron++

Figure 3: Qualitative results of our method and Trajectron++. Compared to Trajectron++, our
method significantly reduces the uncertainty of the prediction in all scenes with improved accuracy.
White points denotes the ground truth trajectories.
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(a) Ours

(b) Trajectron++

Figure 4: The trajectories from all behavior intents generated by our method and Trajectron++. We
force the model to predict trajectory for all behaviors no matter the behaviors are possible judged
by the model or not. White points denote the ground truth trajectories. The other points denote pre-
dicted trajectories with different behavior intents. With the help of classified latent intent behavior,
we obtain more diverse behaviors compared to Trajectron++. Note that red points comes from the
intents which are likely under the judgement of models given the input data. The gray points comes
from intents which are very unlikely to happen and we forcibly set it for demonstration. Note that
Trajectory++ predicts unsafe trajectory with a high likelihood. While Our method have a capability
to predict diverse trajectories but unsafe modes have a vert low likelihood
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E PEDESTRIAN DATASETS

Here, we train our model on the pedestrians dataset ETH (Pellegrini et al., 2009) and UCY (Leal-
Taixé et al., 2014) without map information. A leave-one-out technique is used for evaluation,
similar to previous work (Alahi et al., 2016; Gupta et al., 2018; Ivanovic & Pavone, 2019; Kosaraju
et al., 2019; Sadeghian et al., 2019; Salzmann et al., 2020), where the model is trained in four datasets
and tested in the fifth dataset. The assessment uses an observation period of 8 timesteps (3.2s) and a
projected horizon of 12 timesteps (4.8s). Note that different from experiments in nuScenes dataset,
our model is trained from scratch here.

We show in table 10 our performance on the UCY datasets. In addition, the model’s deterministic
ML output scheme is used, which produces the most likely single trajectory of the model. With only
using the the notion of classified intents and hallucinated intents that can be captured by a discrete
latent vector ẑ, we see a slight improvement in the FDE results with almost 7% over Trajectron++.

Table 10: Without Map. The performance of our method on UCY pedestrian datasets. We don’t
have map information in this experiments. Although, our method still achieve comparable perfor-
mance compared to other state-of-the-art methods and get the best performance in the FDE of most
likely trajectories averaged over 3 datasets. Lower is better. Bold indicates best. Our method is
significantly better.

Dataset
ADE/FDE ML

S-LSTM S-ATTN Trajectron++ Ours(Gupta et al., 2018) (Vemula et al., 2018) (Salzmann et al., 2020)

Univ 0.67/1.40 0.33/3.92 0.41/1.07 0.42/1.07
Zara 1 0.47/1.00 0.20/0.52 0.30/0.77 0.27/0.67
Zara 2 0.56/1.17 0.30/2.13 0.23/0.59 0.20/0.52
Average 0.57/1.19 0.28/2.19 0.31/0.81 0.29/0.75
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F DETAILED ALGORITHM

Algorithm 2: Detailed Training Process
Predicted horizon T , Integration model Inte
Initialize EncθE , DecθD , Disφ;
Initialize learning rate α, β;
while not converge do

// discriminator
ygt,x,m ∼ Dataset
// Compute the high level features e and the distribution of latent code z.
P(z|x,m), e = Encθ(x,m)
// Sample the classified intent ẑ
ẑ ∼ P(z|x,m)
for t in range(T ) do

P(at|ât−1,x,m) = DecθD (e, ẑ, ât−1)
ât ∼ P(at|ât−1,x,m)

end
// convert the action into trajectories by integration model
ŷ = [ŷ1, ŷ2, ...ŷT ] = Inte(y0, â1, â2, ..., âT )

// Discriminator judge whether the given trajectory is real/fake and classified to which z
// z̃ represents the classification result P(z|ŷ,m). The i-th element z̃i is the probability ŷ

belongs to i-th z judged by the discriminator
D(ŷ), z̃ = Disψ(ŷ,m)
D(ygt), = Disψ(ygt,m)
LC = CrossEntropy(ẑ, z̃) = −

∑
i ẑi log z̃i // classification loss

LD = (1−D(ygt))
2 + (D(ŷ))2 + Lc // GAN loss plus classification loss

φ = φ− α∇φLD

// generator
,x,m ∼ Dataset

P(z|x,m), e = Encθ(x,m)
// Sample ẑ, ẑ′ and a time step th. Their combination is viewed as the hallucinated intent ẑh
ẑ, ẑ′ ∼ P(z|x,m), ẑ′ 6= ẑ
th ∼ Uniform(2, T − 1)
// Generate hallucinated trajectory ŷh
for t in range(th) do

P(ah,t|âh,t−1,x,m) = DecθD (e, ẑ, âh,t−1) // Conditioned on ẑ
âh,t ∼ P(ah,t|âh,t−1,x,m)

end
for t in range(th + 1, T ) do

P(ah,t|âh,t−1,x,m) = DecθD (e, ẑ′, âh,t−1) // Conditioned on ẑ′

âh,t ∼ P(ah,t|âh,t−1,x,m)
end
ŷh = [ŷh,1, ŷh,2, ...ŷh,T ] = Inte(y0, âh,1, âh,2, ..., âh,T )
D(ŷh), z̃h = Disψ(ŷh,m)
// Make ŷh hard to be classified by reducing the cross entropy between a uniform

distribution and the classification results z̃h. N is the number of latent code
Lh = CrossEntropy(UniformDist, z̃h) = −

∑
i

1
N log z̃h,i

LG,c = (D(ŷ)− 1)2 + Lc
LG,h = (D(ŷh)− 1)2 + Lh
θ = θ − β∇θ(λLG,c + (1− λ)LG,h)

ygt,x,m ∼ Dataset
θ = θ − β∇θ(Ltraj++) // Original Trajectron++ loss

end
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G CODE PATCH FOR TRAINING LOOP

1 #################################
2 # TRAINING #
3 #################################
4

5 pbar = tqdm(data_loader, ncols=80)
6 pbar_gen = iter(pbar)
7

8 d_loss = g_loss = train_loss = torch.zeros(1)
9 not_empty = True

10 while not_empty:
11 trajectron.set_curr_iter(curr_iter)
12 trajectron.step_annealers(node_type)
13

14 # -------------- discriminator --------------#
15 # 1. Compute the high level featurese
16 # and the distribution of latent codez.
17 # 2. Sample the classified intent z
18 # 3. convert the action into trajectories
19 # by integration model
20 # 4. Discriminator judge whether the given
21 # trajectory is real/fake and classified to which z
22 # 5. z represents the classification result P(z| y ,m).
23 # The i-th element zi is the probability y
24 # belongs to i-th z judged by the discriminator
25 optimizer_d.zero_grad()
26 part2train(model_registrar, "discriminator")
27

28 batch, not_empty = fetch_batch(pbar_gen)
29 if not not_empty:
30 break
31

32 d_loss, dc_loss, d_real, d_fake = trajectron.gan_d_loss(
33 batch, node_type, grid_std=args.grid_std, grid_max=args.grid_max
34 )
35 loss = d_loss + args.class_lambda * dc_loss
36 (args.loss_weight_total * loss).backward()
37 optimizer_d.step()
38

39 # -------------- Generator --------------#
40 # 1. Sample additional latent code z and
41 # a time step th to assemble hallucinated intent zh
42 # 2. Generate hallucinated trajectory yh
43 # 3. Make yh hard to be classified by
44 # reducing the cross entropy between
45 # a uniform distribution and the classification results zh .
46 optimizer.zero_grad()
47 part2train(model_registrar, "generator")
48

49 batch, not_empty = fetch_batch(pbar_gen)
50 if not not_empty:
51 break
52

53 g_loss, c_loss = trajectron.gan_g_loss(
54 batch, node_type, grid_std=args.grid_std, grid_max=args.grid_max
55 )
56 (
57 args.real_ratio * args.g_factor * (g_loss + args.class_lambda *

c_loss)
58 ).backward()
59 g_loss, creative_loss = trajectron.gan_g_loss(
60 batch,
61 node_type,
62 grid_std=args.grid_std,
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63 grid_max=args.grid_max,
64 creative=creative_mode,
65 )
66 loss = (
67 (1 - args.real_ratio)
68 * args.g_factor
69 * (g_loss + args.creative_lambda * creative_loss)
70 )
71 (args.loss_weight_total * loss).backward()
72

73 optimizer.step()
74

75 # ---------- trajectron++ ----------
76 optimizer.zero_grad()
77 part2train(model_registrar, "generator")
78

79 batch, not_empty = fetch_batch(pbar_gen)
80 if not not_empty:
81 break
82 train_loss = trajectron.train_loss(batch, node_type)
83 train_loss.backward()
84

85 optimizer.step()
86

87 # Stepping forward the learning rate scheduler and annealers.
88 lr_scheduler.step()
89 lr_scheduler_d.step()
90

91 curr_iter += 1

Listing 1: Training Loop
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