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ABSTRACT

Macrocyclic peptides are an emerging therapeutic modality, yet computational
approaches for accurately sampling their diverse 3D ensembles remain challenging
due to their conformational diversity and geometric constraints. Here, we introduce
RINGER, a diffusion-based transformer model based on redundant internal coordi-
nates that generates three-dimensional conformational ensembles of macrocyclic
peptides from their 2D representations. RINGER provides fast backbone- and
side-chain sampling while respecting key structural invariances of cyclic peptides.
Through extensive benchmarking and analysis against gold-standard conformer
ensembles of cyclic peptides generated with metadynamics, we demonstrate how
RINGER generates both high-quality and diverse geometries at a fraction of the
computational cost. Our work lays the foundation for improved sampling of cyclic
geometries and the development of geometric learning methods for peptides.

1 INTRODUCTION

Macrocyclic peptides are an important therapeutic modality in modern drug discovery that occupy
a unique chemical and pharmacological space between small and large molecules (Driggers et al.,
2008; Muttenthaler et al., 2021; Vinogradov et al., 2019). These cyclic peptides exhibit improved
structural rigidity and metabolic stability compared to their linear counterparts (Craik et al., 2013),
yet retain key conformational flexibility and diversity to bind shallow protein interfaces (Villar et al.,
2014). However, computational approaches for modeling their structural ensembles remain limited
compared to small molecules and proteins in terms of computational speed, accuracy (sample quality),
and conformational diversity (Poongavanam et al., 2018). Critically, scalable and accurate tools
are necessary to enable rational design of macrocyclic drugs; access to these tools can significantly
impact optimization of key properties including binding affinity (Alogheli et al., 2017; Garcia Jimenez
et al., 2023), permeability (Leung et al., 2016; Rezai et al., 2006; Bhardwaj et al., 2022), and oral
bioavailability (Nielsen et al., 2017).

Several key challenges hinder fast and effective macrocycle conformer generation: 1) Macrocyclic
peptides exhibit diverse molecular structures and chemical modifications, including varying ring
size, stereochemistry, N-methylation, and more (Kamenik et al., 2018). Their structural diversity,
along with the increased number of rotatable bonds, results in a vast conformational space that is
considerably more expensive to sample computationally. 2) Macrocycles are subject to complex non-
linear constraints due to ring closure. The atomic positions, angles, and dihedrals of the macrocycle
backbone are highly interdependent, and additional complex intramolecular interactions make this
process inherently difficult to model (Watts et al., 2014). 3) Experimental X-ray and NMR structures
for macrocycles are lacking (∼ 103) in comparison to small molecules (∼ 106 in the Cambridge
Structural Database (Groom et al., 2016)) and proteins (∼ 105 in the Protein Data Bank (Berman et al.,
2000)). The scarcity of available experimental data has made it difficult to integrate observational
data to improve structural predictions or train machine learning-based approaches. Together, the
vast conformational space combined with limited data make modeling and sampling of macrocycles
not only conceptually challenging, but technically challenging due to computational cost. Existing
approaches cannot accurately generate diverse and accurate conformational ensembles at a scale
necessary to accelerate and enable macrocycle design.
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Figure 1: Overview of RINGER for macrocycle conformer generation. A. Given a 2D representation
of a macrocyclic peptide, RINGER generates an accurate and diverse 3D conformational ensemble.
B. An illustration of the diffusion process learning to recover the time t = 0 bond angle (red) and
torsional (blue) distributions from time, t = T .

To address these limitations, we introduce RINGER (RINGER Generates Ensembles of Rings), a
deep learning model designed specifically for sequence-conditioned macrocycle conformer gener-
ation (Figure 1) that efficiently samples realistic angles and torsions (i.e., internal coordinates) for
macrocyclic peptides. RINGER merges a transformer architecture that naturally captures the physical
equivariances and invariances of macrocyclic peptides with a discrete-time diffusion model to learn
highly-coupled distributions over internal coordinates. We demonstrate how RINGER simultane-
ously achieves excellent performance in sample quality over angular and torsional profiles while
maintaining excellent RMSDs relative to gold-standard conformer ensembles generated with the
Conformer-Rotamer Ensemble Sampling Tool (CREST) (Pracht et al., 2020).

We summarize our contributions as follows:

• We propose a new framework, RINGER for all-atom conformer generation of macrocycles
based on efficiently encoding their geometry using redundant internal coordinates. Our
model naturally handles the cyclic nature of macrocycles and chiral side chains with both L-
and D-amino acids, and we propose a simple solution to satisfy ring-closure constraints.

• We benchmark RINGER extensively against state-of-the-art physics- and machine learning-
based algorithms to demonstrate how our approach better captures complex and highly-
coupled geometric distributions. RINGER outperforms state-of-the-art algorithms that
predict 3D conformer ensembles from their 2D structures for macrocyclic peptides.

• Our work highlights the advantages of a machine learning-based approach for conformer
generation in quality, diversity, and speed. We show how RINGER generates diverse and
complete conformational ensembles with excellent sample quality that nearly match the
gold-standard ensembles generated with expensive metadynamic simulations.

2 BACKGROUND AND RELATED WORK

Our work builds on small-molecule conformer generation and protein structure modeling to create a
framework for macrocycle conformers. Below, we briefly summarize related work.

Physics and Heuristic-based Conformer Generation for Macrocycles Physics-based and
heuristic-based algorithms remain the state of the art for macrocycles and have required special
considerations compared to drug-like small molecules due to ring-closing constraints. The open-
source cheminformatics library RDKit leverages distance geometry algorithms for small-molecule
conformer generation (ETKDG) (Riniker & Landrum, 2015), with improved heuristic bounds for
macrocycles (ETKDGv3) (Wang et al., 2020; 2022). Similarly, commercial software such as OpenEye
OMEGA (Hawkins et al., 2010; Hawkins & Nicholls, 2012) in macrocycle mode uses a distance
geometry algorithm based on 4D coordinate initialization to provide diverse conformers (Spellmeyer
et al., 1997), as their torsion-driving approach is incompatible with ring closure.

Similarly, low-mode (Kolossváry & Guida, 1996; 1999) or Monte Carlo (Chang et al., 1989) search
methods combined with molecular dynamics have been found to be effective at sampling macrocy-
cle conformations, particularly when combined with force field optimizations as demonstrated in
Schrödinger’s MacroModel (Watts et al., 2014) and Prime MCS (Sindhikara et al., 2017). These
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approaches have been tuned with expert knowledge and torsional libraries to maximize agreement
with observed experimental structures. The open-source CREST package (Pracht et al., 2020) lever-
ages iterative metadynamics with a genetic structure-crossing algorithm (iMTD-GC) to explore new
geometries, and can be considered a gold-standard for generating diverse ensembles of drug-like
molecules. In this work, we use the recently-published CREMP (Grambow et al., 2023) dataset,
containing high-quality, CREST-generated ensembles, representing over 31 million macrocycle
geometries (see Section 4.1 and Appendix B for more details).

One key limitation of these approaches is high computational cost and difficulty in scaling; in general,
conformer generation is 103 – 105× more computationally expensive compared to a drug-like small
molecule due to the increased number of rotatable bonds and their ring-closing constraints (e.g.,
generating a conformational ensemble of a macrocyclic hexapeptide with CREST requires an average
of 14 hours (Grambow et al., 2023)). These approaches become increasingly challenging when
kinetic or molecular dynamics approaches are used with explicit solvation (Damjanovic et al., 2021;
Linker et al., 2023).

Generative Approaches for Small Molecule Conformer Ensembles Recent work with deep
generative models has focused on improved sampling of the conformational landscape of small
molecules. For example, Mansimov et al. (2019) propose a conditional graph variational autoencoder
(CGVAE) approach for molecular geometry generation. Simm & Hernandez-Lobato (2020) report
conditional generation of molecular geometries based on distance geometry. Xu et al. (2021) leverage
normalizing flows and energy-based modeling to help capture the multimodal nature and complex
dependencies of small molecule space. More recently, Xu et al. (2022) report GeoDiff, an equivariant
diffusion-based model that operates on Cartesian point clouds. Although GeoDiff provides strong
results, sampling is costly and requires 5,000 time steps. Recently, Zhu et al. (2022) report DMCG,
which leverages a variational autoencoder to directly predict coordinates while maintaining invariance
to rototranslation and permutation of symmetric atoms.

Recent reports have also drawn inspiration from physics-based conformer generation to leverage
the rigid-rotor hypothesis, which treats bond distances and angles as fixed, and torsional angles
of rotatable bonds are independently sampled, assuming little or no interdependence between tor-
sions (Schärfer et al., 2013). These include GeoMol (Ganea et al., 2021), an SE(3)-invariant machine
learning model for small molecule conformer generation that leverages graph neural networks, and
EquiBind (Stärk et al., 2022) which performs conditional generation on protein structure. Recently,
Jing et al. (2022) report Torsional Diffusion, a diffusion model that operates on the torsional space via
an extrinsic-to-intrinsic score model to provide strong benchmarks on the GEOM dataset (Axelrod &
Gómez-Bombarelli, 2022). Importantly, these methods do not address the challenge of highly-coupled
torsions within cyclic systems and either propose complex ring-averaging processes (Ganea et al.,
2021) or disregard sampling of cyclic structures all together (Jing et al., 2022).

Protein Structure Prediction and Diffusion Significant progress has been made recently in
protein structure prediction with the advent of methods such as AlphaFold2 (Jumper et al., 2021) and
RoseTTAFold (Baek et al., 2021). However, structure prediction methods have predominantly focused
on deterministic maps to static output structures rather than on sampling diverse structure ensembles.
Recently, several papers have developed diffusion-based approaches for protein generation based
on Euclidean diffusion over Cartesian coordinates (Anand & Achim, 2022; Yim et al., 2023) or
backbones as in FoldingDiff (Wu et al., 2022), with an emphasis on structural design. FoldingDiff
parameterizes structures over internal backbone angles and torsions and relies on the natural extension
reference frame (NeRF) (Parsons et al., 2005) to perform linear reconstructions. However, as we
demonstrate below, naive linear transformations fail to address the ring constraints for macrocycles.
Moreover, FoldingDiff focuses on unconditional generation of protein backbones and is hence not
suitable for all-atom conformer ensemble generation. Below, we focus on the challenging problem of
conditional generation of constrained geometries.

Machine Learning Approaches for Macrocycle Conformer Ensemble Generation Despite the
many approaches focused on small molecules and protein structure generation, there are few efforts
in macrocycle structure prediction. Most notably, Miao et al. (2021) recently disclosed StrEAMM
for learning on molecular dynamics of cyclic peptides using explicit solvation. StrEAMM is a linear
model that predicts local backbone geometries and their respective 1,2- and 1,3-residue interactions
to provide excellent ensemble estimates of homodetic hexapeptides, but does not generate explicit
all-atom conformers. Additionally, the model is not naturally inductive and is not natively extensible
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to other macrocycle ring sizes and residues. Fishman et al. (2023) recently developed a more general
framework for diffusion models on manifolds defined via a set of inequality constraints. However,
they only investigate the conformational ensemble of a single cyclic peptide as a proof-of-concept
using a reduced α-carbon representation.

3 RINGER: PROBLEM STATEMENT AND METHODS

3.1 PROBLEM DEFINITION: CONDITIONAL MACROCYCLE CONFORMER GENERATION

The core objective of our work is to model the distribution of conformers for a macrocyclic peptide
with a given amino acid sequence. Given a peptide macrocycle graph G = (V, E), where V is the set
of nodes (atoms) and E is the set of edges (bonds), and n = |V| our goal is to learn a distribution
over the possible conformers. Let C = {c1, c2, . . . , cK} be the set of conformers, where each
conformer ck ∈ C represents a unique spatial arrangement of the atoms V . Our task is to learn
the distribution p(C | G), which represents the probability over the conformer ensemble C given a
molecular graph G. Learning and sampling from this complex distribution is inherently challenging
for most molecules, and is further complicated in macrocycles due to the highly-coupled nature of
ring atoms. A perturbation to one part of the ring generally perturbs the others. Consequently, any
model must account for the interdependence between atoms due to the cyclic constraints.

Given this problem, a good generative model ideally satisfies a few key properties: 1) Naturally
encodes the physical and structural aspects of macrocyclic peptides. For example, cyclic peptides with
only standard peptide bonds (i.e., homodetic peptides) do not have a natural starting residue and hence
exhibit cyclic shift invariance, e.g., cyclo-(R.I.N.G.E.R) is identical to cyclo-(I.N.G.E.R.R), where
each amino acid is denoted by its one-letter code with “cyclo” indicating cyclization of the sequence.
2) Captures multimodal distributions and complex, higher-order interactions such as the strong
coupling between atomic positions in the ring. 3) Samples high-quality and diverse conformations
from p(C | G) that faithfully capture realistic geometries while respecting the underlying conformer
distribution.

3.2 REPRESENTING MACROCYCLE GEOMETRY: REDUNDANT INTERNAL COORDINATES

Conformer geometries are defined by their set of Cartesian coordinates for each atomic position
and can hence be modeled using SE(3)-equivariant models to learn complex distributions. However,
Euclidean diffusion requires modeling the many degrees of freedom; and, in practice, can require many
time steps to generate accurate geometries (Xu et al., 2022). Moreover, realistic conformations are
highly sensitive to the precise interatomic distances, angles, and torsions—although this information
is implicit in the Cartesian positions, explicitly integrating these quantities into a model can provide a
strong inductive bias and accelerate learning (Gasteiger et al., 2020).

Borrowing from molecular geometry optimization (Peng et al., 1996), protein representation (Ra-
machandran & Sasisekharan, 1968; Dunbrack & Karplus, 1994; Parsons et al., 2005), and inverse
kinematics (Han & Rudolph, 2006), we adopt redundant internal coordinates that represent conformer
geometries through a set of bond distances, angles, and torsions (dihedral angles), i.e., C ≡ {D,Θ, T }.
In particular, this simplifies the learning task, as bond distances can be approximated as fixed distances
with little loss in accuracy (Hawkins et al., 2010; Wu et al., 2022; Jing et al., 2022), and internal
angles typically fit a narrow distribution. Importantly, these coordinates define an internal reference
frame that readily encodes complex geometries including chirality. Moreover, this approach obviates
the need for complex equivariant networks (Xu et al., 2022; Jing et al., 2022). Hence, our generative
process can be reformulated as learning the distribution p({Θ, T } | G;D) using fixed bond distances
for reconstruction back to Cartesians (Figure 1).

3.3 DEEP PROBABILISTIC DIFFUSION MODELS FOR SAMPLING INTERNAL COORDINATES

Denoising Probabilistic Models Recent works on deep denoising probabilistic models have
demonstrated excellent generative performance for complex multimodal data (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021), and have been successfully applied to both small molecules
and proteins (Xu et al., 2022; Wu et al., 2022). We adapt a discrete-time diffusion process (Wu
et al., 2022) that formulates the forward transition probability using a wrapped normal distribution,
q (xt | xt−1) = Nwrapped

(
xt;

√
1− βtxt−1, βtI

)
, instead of a standard normal distribution (Jing

et al., 2022), where xt represents the noised internal coordinates (bond angles and torsions) at time
step t. We train a diffusion model, pΞ(xt−1 | xt), by training a neural architecture, described below,
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to predict the noise present at a given time step (for full details, see Appendix C). During inference,
we sample xT from a wrapped normal distribution and iteratively generate x0 using pΞ(xt−1 | xt).
The sampling process is further detailed in Appendix D.

Encoder Architecture Macrocycles exhibit extensive coupling of their residues due to torsional
strain and intramolecular interactions such as hydrogen bonds. Here, we use self-attention (Vaswani
et al., 2017; Devlin et al., 2019) to learn the complex interactions between atoms. Unlike standard
sequence models for linear data, macrocycles exhibit cyclic symmetry with no canonical start position.
Thus, we design a modified bidirectional, relative positional encoding (Shaw et al., 2018) pK

ij to
reflect this physical invariance (see Appendix A for notation and Appendix N.4 for ablation study):

zi =

n∑
j=1

αij

(
vjW

V
)
, where αij =

exp eij∑n
k=1 exp eik

(1)

eij =
viW

Q
(
vjW

K + pK
ij

)T
√
dz

with pK
ij = WD

(i−j) mod n︸ ︷︷ ︸
forward

+WD
(i−j) mod (−n)︸ ︷︷ ︸

backward

(2)

These cyclic relative position representations specify forward (N-to-C) and reverse (C-to-N) rela-
tionships between each atom in the macrocycle, and effectively encode the molecular graph in a
self-attention module similar to Ying et al. (2021). The relative position of any neighboring atom
is uniquely defined by its forward and reverse graph distances in the embedding lookup WD. For
conditional generation, we perform a linear projection of the atom features ai, corresponding to each
macrocycle backbone atom and its side chain, and a separate linear projection of the angles and
torsions xi = θi ⊕ τi and concatenate them as a single input to the transformer, vi = a′i ⊕ x′

i. No-
tably, our diffusion model only adds noise to the angular component, xi, corresponding to backbone
and side-chain angles and torsions that define a complete atomic configuration. For unconditional
backbone generation, atoms are only labeled with their backbone identity (nitrogen, α-carbon,
carbonyl-carbon) using an embedding that is added to the input, and side chains are not modeled.
Model details are shown in Appendix E.

Ring Closing: Back Conversion to Cartesian Ring Coordinates Macrocycles with fixed bond
distances contain three redundant torsional angles and two redundant bond angles. Whereas linear
peptides and proteins can be readily converted into an arbitrary Cartesian reference frame through
methods such as NeRF (Parsons et al., 2005), these redundancies prevent direct transformation to
unique Cartesians for cyclic structures. Adopting a sequential reconstruction method such as NeRF
accumulates small errors that result in inadequate ring closure for macrocycles.1 Other studies have
developed complex heuristics with coordinate averaging for ring smoothing (Ganea et al., 2021), yet
these approaches can distort the predicted geometries. In practice, we demonstrate that an efficient
post-processing step works well with minimal distortion: we treat this as a constrained optimization
problem using the Sequential Least Squares Quadratic Programming (SLSQP) algorithm (Kraft,
1988) to ensure valid Cartesian coordinates while satisfying distance constraints:

ξ̂ = argmin
ξ

∥θ(ξ)− θ̂∥2 + ∥w (τ(ξ)− τ̂)∥2 subject to: d(ξ) = dtrue (3)

Here, we find the set of ring Cartesian coordinates, ξ̂, that minimize the squared error against the
ring internal coordinates θ̂ and τ̂ sampled by the diffusion process while satisfying bond distance
equality constraints using known ring bond distances, dtrue, from the training data. The torsion error,
τ(ξ)− τ̂, is wrapped by w(·) so that it remains in the [−π, π) range. Empirically, we demonstrate
that this scheme recovers realistic macrocycles with high fidelity by evenly distributing the error
across the entire macrocycle backbone (see Appendix F for additional details). Additionally, we
reject a sample from RINGER if the ring torsion fingerprint deviation (Wang et al., 2020) before
versus after optimization with equation 3 is larger than 0.01, which further improves the quality of
generated ensembles.

1Although direct equality and inequality constraints over the diffusion process is a promising direction that
could address this problem, we leave this for future work.

5



Under review as a conference paper at ICLR 2024

Overall Generation Procedure Our model represents macrocycles as cyclic sequences of back-
bone atoms with fixed bond lengths, where each atom is featurized with two ring internal coordinates
and several side chain internal coordinates. We train a discrete-time diffusion model to learn a
denoising process over the internal coordinates using a transformer architecture with an invariant
cyclic positional encoding. Chemical features of the backbone atoms and molecular fingerprints of the
attached side-chain atoms provide 2D macrocycle structure information for the sequence-conditioned
models. At inference time, we sample from a wrapped Gaussian distribution to produce a set of angles
and torsions. In the final post-processing step, macrocycle geometries with Cartesian coordinates
are reconstructed through our constrained optimization using equation 3 for ring atoms and using
NeRF (Parsons et al., 2005) for rotatable side-chain atoms. Hydrogens and non-rotatable side-chain
groups like phenyl rings are not modeled directly and are generated using RDKit. A detailed flowchart
illustrating the main steps of our method is shown in Appendix G.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

Dataset We train and evaluate our approach on the recently published CREMP dataset (Grambow
et al., 2023) that contains 36k homodetic macrocyclic peptides across varying ring sizes (4-mers,
5-mers, and 6-mers corresponding to 12-, 15-, and 18-membered backbone rings), side chains, amino-
acid stereochemistry, and N-methylation. Each macrocycle in CREMP contains a conformational
ensemble sampled with CREST (Pracht et al., 2020), a metadynamics algorithm with genetic crossing
built on the semi-empirical tight-binding method GFN2-xTB (Bannwarth et al., 2019). We perform
stratified random splitting on the data, with a training and validation set of 35,198 molecules (948,158
conformers using a maximum of 30 conformers per molecule), which we split into 90% training and
10% validation, and a final test set of 1,000 molecules corresponding to 877,898 distinct conformers
(using all conformers per molecule within the 6 kcal/mol energy threshold defined by CREST).
Additional dataset statistics are shown in Appendix B.

Training & Sampling All training is performed on the set of 35k peptides described above, using
the 30 lowest-energy conformers per peptide. We train each model on a single NVIDIA A100
GPU for up to 1000 epochs until convergence using the Adam optimizer with 10 warmup epochs.
Following work in small-molecule conformer generation (Ganea et al., 2021; Xu et al., 2022; Jing
et al., 2022), we sample 2K conformers for a macrocycle ensemble of K ground-truth conformers
(median K = 656) and assess them based on the evaluation criteria below. For full training and
sampling details see Appendices C and D.

Evaluation For unconditional generation, we use Kullback-Leibler divergence to measure the
difference in sample quality. For conditional generation, we evaluate the quality of our generated
macrocycles using root-mean-squared-deviation (RMSD) between heavy-atom coordinates, similar to
previous work on small-molecule conformer generation. We use several metrics including Matching
and Coverage (Xu et al., 2021; Ganea et al., 2021; Jing et al., 2022), and for each we report recall,
precision, and F1-score. We also report rRMSD, which is only evaluated on ring atoms. We note that
although RMSD is widely used to assess conformer quality, its utility for comparing backbones is
more limited, as sampled backbones with highly unrealistic or energetically unfavorable torsions can
exhibit low rRMSD values. Therefore, we additionally report the ring torsion fingerprint deviation
(rTFD) (Schulz-Gasch et al., 2012; Wang et al., 2020) to evaluate the quality of the torsional profiles.
RMSD and rRMSD provide a measure of distance between two conformers based on a least-squares
alignment of their respective atomic positions, while rTFD gives a normalized measure of matched
torsion angles between backbone geometries. Appendix J defines the evaluation metrics in detail.

Baselines We provide benchmarks of our method against open-source and commercial toolkits
RDKit ETKDGv3 (for macrocycles) (Wang et al., 2020), OMEGA Macrocycle Mode (OpenEye,
2022), GeoDiff (Xu et al., 2022), DMCG (Zhu et al., 2022), and Torsional Diffusion (Jing et al., 2022).
For GeoDiff, DMCG, and Torsional Diffusion we report results trained on CREMP (GeoDiff-Macro,
DMCG-Macro, and TorDiff-Macro), as the base models trained on small molecules provided poor
performance. To better understand ring diversity, we additionally included a nearest neighbor model
(1-NN) based on maximum graph similarity (2D) for ring-evaluation metrics only.
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Figure 2: Unconditional conformer generation for a backbone-only model. Comparison of the
bond angle and dihedral distributions from the held-out test set (orange) and in the unconditionally
generated redundant internal coordinate samples (blue). The three top left plots correspond to the three
bond angle types in each amino acid residue, the three bottom left plots show the three dihedral angles
for each residue, and the right shows Ramachandran plots (colored logarithmically by density with
high density regions shown in lighter colors). KL divergence is calculated as DKL(test ∥ sampled).

4.2 UNCONDITIONAL GENERATION OF MACROCYCLE BACKBONES

To understand whether this approach can learn the highly-coupled and underlying distribution of
macrocycle conformations, we first trained RINGER on macrocycle backbones in the absence of
any residue or side-chain features. From a design perspective, diverse backbone sampling alone can
help drive inverse peptide design, where specific backbone geometries suggest important sequences.
Figure 2 (and per-residue distributions in Appendix L) demonstrates how RINGER accurately
replicates both angles and dihedrals with tight fidelity across all residue atoms. Furthermore, we
generated Ramachandran plots (Ramachandran & Sasisekharan, 1968) alongside our withheld test set
to visualize the conditional dependencies between residue torsions. Notably, RINGER recapitulates
the critical modes of the distribution.

4.3 CONDITIONAL GENERATION OF MACROCYCLE CONFORMATIONAL ENSEMBLES

We subsequently focused on the challenge of conditional generation to understand whether RINGER
could effectively capture the complex steric and intramolecular effects that dictate macrocycle
conformation. Whereas the unconditional model disregards side chains, we now condition generation
on molecular features corresponding to each atom in the ring, including side-chain information,
stereochemistry, and N-methylation (see Appendix E) to unambiguously predict all atomic internal
coordinates. We evaluate RINGER both in the context of all-atom geometries (RMSD), but also
evaluate on backbone-only ring geometries (rRMSD, rTFD) as they are critical for macrocycle
design (Bhardwaj et al., 2022).

Comparison of RINGER RMSD, rRMSD, and rTFD ensemble metrics against the baselines are
shown in Table 1. Here, recall quantifies the proportion of ground truth conformers that are recovered
by the model, and precision quantifies the quality of the generated ensemble. We found that RDKit
ETKDGv3 and OMEGA Macrocycle mode, both based on distance-geometry approaches, performed
similarly across metrics and achieved moderate recall with limited precision. Comparing to other deep
learning approaches, we found that both GeoDiff and DMCG offer improved recall over heuristic
baselines, with only DMCG generating improved precision and moderate F1-scores. Moreover, the
nearest neighbor baseline, which uses the backbone ensemble from the most similar training molecule
(as measured by 2D similarity), provides only modest performance. This baseline demonstrates how
side chain identity dictates 3D ensemble geometry, and that deep models cannot trivially memorize
backbone geometries in this task. In contrast, RINGER achieves excellent performance across all
metrics, providing strong recall and excellent precision over all test molecules, with the best F1-score.
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Table 1: Mean performance metrics for sequence-conditioned generation of macrocycles. Coverage
is evaluated at a threshold of 0.75 Å for all-atom RMSD, 0.1 Å for ring-only RMSD (rRMSD), and
0.05 for ring-only TFD (rTFD). All test data conformers are used for evaluation.

RMSD – Recall RMSD – Precision RMSD - F1
Method COV (%) ↑ MAT ↓ COV (%) ↑ MAT ↓ COV (%) ↑ MAT ↓
RDKit (Wang et al., 2020) 41.1 0.853 7.5 1.419 12.7 1.065
OMEGA (OpenEye, 2022) 36.2 0.900 6.4 1.433 10.9 1.106
GeoDiff-Macro (Xu et al., 2022) 25.6 0.989 2.7 1.753 4.9 1.265
DMCG-Macro (Zhu et al., 2022) 78.3 0.534 41.9 0.942 54.6 0.682
TorDiff-Macro (Jing et al., 2022) 44.4 0.820 8.3 1.399 14.0 1.034
RINGER 62.3 0.684 76.2 0.525 68.6 0.594

rRMSD – Recall rRMSD – Precision RMSD - F1
1-NN (Seq. Sim.) 43.7 0.301 40.3 0.331 41.9 0.315
RDKit (Wang et al., 2020) 35.8 0.187 5.6 0.540 9.7 0.277
OMEGA (OpenEye, 2022) 32.2 0.186 3.7 0.557 6.6 0.279
GeoDiff-Macro (Xu et al., 2022) 50.8 0.151 6.4 0.592 11.4 0.240
DMCG-Macro (Zhu et al., 2022) 77.6 0.076 36.6 0.301 49.8 0.121
TorDiff-Macro (Jing et al., 2022) 35.8 0.187 5.6 0.540 9.7 0.277
RINGER 76.3 0.110 81.6 0.108 78.9 0.109

rTFD – Recall rTFD – Precision RMSD - F1
1-NN (Seq. Sim.) 53.1 0.111 48.6 0.122 50.7 0.116
RDKit (Wang et al., 2020) 52.9 0.059 9.4 0.215 15.9 0.093
OMEGA (OpenEye, 2022) 49.7 0.061 6.6 0.225 11.7 0.095
GeoDiff-Macro (Xu et al., 2022) 68.1 0.048 9.1 0.248 16.0 0.080
DMCG-Macro (Zhu et al., 2022) 93.0 0.021 48.5 0.110 63.8 0.036
TorDiff-Macro (Jing et al., 2022) 52.8 0.059 9.4 0.215 15.9 0.093
RINGER 83.8 0.035 85.3 0.038 84.5 0.037

As demonstrated through rRMSD and rTFD metrics, RINGER samples both diverse and high-quality
backbone conformations.

4.4 EVALUATING CONFORMER QUALITY WITH POST HOC OPTIMIZATION

The CREMP dataset (Grambow et al., 2023) used in this study leverages the semi-empirical extended
tight binding method GFN2-xTB (Bannwarth et al., 2019) for geometry optimization. To enable a
level comparison of sampling quality only, we reoptimized all generated samples from all methods
with GFN2-xTB (Tables 11 and 12, Appendix O). Notably, we observed a dramatic improvement
for xTB-optimized RDKit, OMEGA, GeoDiff-Macro, and TorDiff-Macro molecules, but only slight
improvement in precision. In contrast, xTB-reoptimized samples from RINGER see only a minimal
but consistent boost in performance, yet still outperform all other approaches. Further analysis of
these xTB geometries revealed that RINGER-generated samples require smaller conformational
adjustments to reach local minima (Figure 13, Appendix O), suggesting that our model can accurately
learn the complex distributions directly from the training data. Overall, these results highlight two key
strengths of our machine learning approach: 1) careful featurization enables generating high-quality
conformations that closely match quantum chemical geometries, and 2) the diffusion scheme provides
good sampling diversity.

4.5 STRUCTURAL ANALYSIS OF GENERATED MACROCYCLES

Although RMSD and TFD evaluate performance quantitatively, analyzing individual ensembles
elucidates the qualitative differences in conformer generation processes. Notably, the two distinct
macrocycles in Figure 3 possess ensembles characterized by distinctly unique Ramachandran plots.
Importantly, most ground truth conformer ensembles exhibit relatively tight distributions characterized
by a distinctive set of ϕ, ψ angles (Reference, far left). Although all methods can identify relevant
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Figure 3: Comparison of macrocycle conformational ensembles. RINGER accurately generates
ensembles as illustrated by Ramachandran plots for individual macrocycle ensembles, whereas other
methods generate unrealistic backbone geometries. The individual 3D conformers illustrate the
lowest-energy reference structure and the closest matching conformer (based on RMSD) from each
method.

low-energy conformers, the overall sampling process generates unrealistic distributions for RDKit,
OMEGA, and GeoDiff (note that TorDiff relies on RDKit for backbone sampling, and hence pro-
duces an identical plot). In contrast, RINGER recapitulates not only the ground state geometry with
excellent accuracy, but better captures the entire ensemble distribution. These results demonstrate
how RINGER achieves strong performance by providing high sample quality and diversity.

5 LIMITATIONS AND FUTURE DIRECTIONS

Our studies demonstrate the potential for diffusion-based models to overcome limitations in con-
strained macrocycle generation, but they are not without drawbacks. Our current work has focused
on the CREMP dataset, which is limited to homodetic, 4-, 5-, and 6-mer macrocycles with canonical
side chains. Extension to macrocycles with larger ring sizes, non-canonical side chains, and other
complex topologies would improve the generalizability of this work, as well as training on datasets
generated with higher levels of theory. Additionally, although we demonstrate the effectiveness of
a standard, discrete-time diffusion process, our approach is not physically constrained to satisfy
macrocyclic geometries and currently requires a post-optimization step. Developing and applying
physics-informed diffusion processes with manifold constraints could improve the efficiency of
training and sampling of relevant macrocycle backbones.

6 CONCLUSIONS

We present RINGER, a new approach for generating macrocycle conformer ensembles that signifi-
cantly improves sample quality, diversity, and inference. By leveraging strengths of diffusion-based
models, we demonstrate how a transformer-based architecture with a cyclic positional encoding results
in significant gains over Cartesian-based equivariant models and widely-used distance geometry-
based algorithms for both unconditional and conditional structure generation. The present work
paves the way for more efficient and accurate computational exploration of conformational space. We
anticipate that this approach will more broadly enable rational macrocycle discovery through further
development.
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