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Abstract

3D human motion-text retrieval is essential for accurate motion understanding,
targeted at cross-modal alignment learning. Existing methods typically align
the global motion-text concepts directly, suffering from sub-optimal generaliza-
tion due to the uncertainty of correspondence learning between multiple motion
concepts coupled in a single motion/text sequence. Therefore, we study the ex-
plicit fine-grained concept decomposition for alignment learning and present a
novel framework, Structural Generative Augmentation for 3D Human Motion
Retrieval (SGAR), to enable generation-augmented retrieval. Specifically, re-
lying on the strong priors of existing large language model (LLM) assets, we
effectively decompose human motions structurally into subtler semantic units,
i.e., body parts, for fine-grained motion modeling. Based on this, we develop
part-mixture learning to better decouple the local motion concept learning, boost-
ing part-level alignment. Moreover, a directional relation alignment strategy
exploiting the correspondence between full-body and part motions is incorpo-
rated to regularize feature manifold for better consistency. Extensive experi-
ments on three benchmarks, including motion-text retrieval as well as recog-
nition and generation applications, demonstrate the superior performance and
promising transferability of our method. Our project page can be found at
https://jhang2020.github.io/Projects/SGAR/SGAR.html

1 Introduction

3D human motion understanding is a crucial topic in computer vision. To deal with the complex
nature of human motions, natural language is widely adopted as a medium to achieve fine-grained
motion modeling. Among these, motion-text retrieval is a fundamental task, which aims to search
relevant motion/text samples based on queries of another modality, with wide applications including
film production [22], health-care [43], and character animation [1].

Following the practice of the image-text [28, 3] and video-text [41, 49] retrieval, many efforts have
been made to establish a semantic-aligned latent space of 3D motions and texts. TMR [25] first
proposes the motion-text retrieval benchmark and presents a framework by jointly contrasting and
reconstructing. However, the scarcity of high-quality motion-text data heavily limits the model
performance. To this end, many works propose to leverage the pre-trained vision/language models as
priors to boost the motion-text retrieval. For instance, some methods [35, 44] render the 3D motions
into images/videos to leverage large-scale pre-trained vision-language models, e.g., CLIP [28], as
priors to bridge the motion and text modalities.

However, we argue that the above approaches can still suffer from two points. First, the significant
disparity between rendered and natural images results in sub-optimal representations for the vision-
bridged methods. More importantly, they neglect the characteristics of human motion data. For
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Figure 1: Left: A motion sequence typically comprises multiple motion concepts, e.g., body part
movements. Meanwhile, these fine-grained concepts often exhibit higher cross-motion generality,
facilitating more precise and generalized motion-text alignment. Right: Inspired by the Retrieval
Augmented Generation [7] (RAG), we explore the Generation-Augmented Retrieval paradigm, which
relies on LLMs as available assets, and propose a series of effective alignment strategies.

instance, the subtler semantic units, i.e., body parts that depict motions in a finer granularity are
ignored, leading to sub-optimal alignment. Taking “walks and waves hand” shown in Figure 1 as
an example, with a single global alignment objective, existing methods may incorrectly correspond
the motion pattern of arm swinging to the verb “walk” rather than “wave hand”, especially training
with limited data scale. This means the difficulty of motion-text retrieval arises not only from the
cross-modal alignment but also from the reorganization and decomposition of sematic concepts
within the same modality. In this context, learning the correspondence of local concepts as primitives
can lead to more precise, generalized local alignment, and ultimately enhance global understanding.
Therefore, our key motivation is to explicitly decompose the holistic human motions into fine-grained
local concepts by leveraging available priors, e.g., LLMs, to achieve better motion-text alignment.

To this end, we study a new Generation-Augmented Retrieval (GAR) paradigm as shown in Figure 1,
which is less explored by previous work, i.e., leveraging the generated information (part motion texts)
relevant to the queries (full motion text) to augment retrieval performance. Specifically, to exploit the
generated structural knowledge, we propose a novel Structural Generative Augmentation Retrieval
framework, SGAR. SGAR aligns linguistic motion knowledge of body parts generated by LLMs for
fine-grained concept modeling. Based on this, a part-mixture learning strategy is developed to better
de-correlate the motion pattern learning of different parts and the full-body. By virtue of such a way,
the consistency learning at both full-body and part levels is boosted. In addition to this independent
intra-hierarchy alignment, we propose a directional consistency regularization, introducing relational
knowledge between full-body and part motions to enhance correspondence. Finally, we conduct
extensive experiments on three large-scale benchmarks to demonstrate our strong performance on
motion-text retrieval and promising transfer capacity to a series of downstream tasks.

Our contributions can be summarized as follows:

• We propose SGAR, an effective motion-text retrieval framework with structural generative knowledge
augmentation. By modeling part motion concept correspondence as more general knowledge, it
effectively boosts the cross-modal alignment performance of motion-language models.

• To enable part-based motion alignment, we integrate structural linguistic knowledge from LLMs and
propose a part-mixture learning strategy. By decoupling the motion representations of the global
body and local parts, our method can facilitate alignment within different structural levels.

• In addition to independently minimizing the Euclidean distance of embeddings at global and local
motion levels, a directional alignment objective is introduced to model the relational knowledge
between them. This further alleviates over-fitting and leads to better representation consistency.

2 Related Works

2.1 Motion-Language Retrieval and Alignment Learning

Cross-modal representation alignment enables entities from different modalities, which share concep-
tually similar meanings, to have comparable feature embeddings. However, different from images,
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Figure 2: Overview of SGAR pipeline following a GAR paradigm. We utilize LLMs to generate
the part motion corpus and construct mixed motion data, to enable the part motion modeling. Three
objectives are integrated: 1) global alignment for full body motion-text pairs, 2) part alignment with
soft contrastive learning; 3) part-mixture decomposition for further de-correlation of different part
motions. For clarity, the directional relation regularization is omitted here.

human motion-text data collection presents more challenges, e.g., the diverse semantics and the
limited motion-text data scale. Most existing approaches focus on incorporating pre-trained vi-
sion/language models to guide motion representation alignment. For instance, TMR [25] directly
utilizes a frozen pre-trained text encoder [32] to accelerate learning of the motion encoder. Mo-
tionCLIP [35] and TriModal [44] convert motion data into images or videos, enabling the use of
pre-trained vision-language models for guidance. Yu et al. [45] introduced a novel motion represen-
tation that structures 3D motion data into patches, making it compatible with pre-trained ViT [4]
models. Other studies [33, 42] take a model-centric approach, aiming to achieve more informative
motion representations. However, these methods overlook the inherent structural properties of human
motion, which can lead to suboptimal representations and hinder generalization performance.

Meanwhile, some recent methods [11, 39] also study the part kinematics to boost motion generation
performance. However, this cross-modal alignment is unidirectional, i.e., the text encoder is often
fixed, while the model is dominated by generation objectives, making it difficult to achieve explicit
semantic alignment. Furthermore, the part knowledge is injected by guiding motion generation
through conditioning, which still differs from our case, that is, achieving bidirectional fine-grained
motion-language alignment.

2.2 Collaboration between Generation and Retrieval

Retrieval and generation are closely connected not only because of their similar function, i.e.,
new content presentation, but also the potential collaboration. Retrieval-Augmented Generation
(RAG) [7, 10] is widely studied to enhance accuracy and credibility of LLM generation by knowledge
from external databases. In contrast, with more and more impressive LLMs as available knowledge
expert assets, we explore a new Generation-Augmented Retrieval (GAR) paradigm, especially to
leverage the strong priors in LLMs to augment data-scarce 3D human motion retrieval, which
has been studied by few works. Mao [21] discussed generation-augmented retrieval to deal with
language question answering (QA), where, however, “retrieval” is still evaluated by and serves for
the generative QA task. Therefore, it is still confined to RAG in a sense. In contrast, we focus on the
retrieval task exactly and aims to boost it by the generation knowledge following the GAR paradigm.
Meanwhile, our cross-modal setting also brings new challenges in how to effectively utilize the
generated information.

3 The Proposed Method

Our goal is to achieve semantic-aligned representations with paired motion-language dataset D =
{mi, ti} to support cross-modal retrieval, where (mi, ti) are the ith paired motion and text data.
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3.1 Contrastive Motion-Language Learning

Data Representation. The human motions can be generally formulated as skeleton joint positions
defined in SMPL [18] model, i.e., mi ∈ RT×J×3, where T is the sequence length and J × 3 is the
3D positions of J joints in Cartesian coordinates. Following previous work, we further structure the
motion data into a series of “patches” to leverage the pre-trained ViTs as priors. Typically, a patch
aggregates the joint information of a body part in some adjacent frames. The final input motion can
be formulated as mi ∈ RT×PN×3 for patchification, where P = 5 is the body part number, i.e.,
{left/right arm, left/right leg, torso}, and N is the patch size. More details can be found in [45].

Model Architecture. Following the canonical design, our model consists of two modality-specific
encoders, fm(·) and ft(·). Specifically, for the motion encoder, we adopt ViT-B/16 [4] with 12 layers
pre-trained on ImageNet-21k [31] to better utilize the existing prior vision knowledge. For the text
encoder, we employ the pre-trained Distill-BERT [32].

To obtain the motion/text embeddings, we append a [cls] token to inputs, which is finally projected
into the shared motion-language latent space, i.e., zm,i, zt,i for contrastive learning. The contrastive
learning objective [23] can be formulated as the sum of the following two terms, denoted as Lfull:

Lm2t
full = E

[
− log

exp(zm,i · zt,i/τ)∑
j exp(zm,i · zt,j/τ)

]
,Lt2m

full = E

[
− log

exp(zm,i · zt,i/τ)∑
j exp(zm,j · zt,i/τ)

]
, (1)

where τ is the temperature coefficient. For clarity, only text-to-motion (t2m) term is presented in the
following, which shares similar definition of motion-to-text (m2t) term.

3.2 Structural Knowledge Generation

With the rapid development of LLMs, it is promising to leverage LLMs as available knowledge
experts to boost the data-scarce motion-text retrieval scenario as discussed in Sec. 1. Specifically, we
aim to generate the motion descriptions for each body part based on ti.

Remark: Leveraging LLMs to generate part texts is also studied in other motion generation and
recognition works [48, 40, 5]. Differently, we focus on the retrieval task following GAR paradigm,
especially jointly considering the testing GAR application. Specifically, since there are often no
paired motion-text data for the query side or database during testing, only texts can be conveniently
utilized. It means some complex prompting strategies, e.g., feeding LLMs with both motion pose
descriptors and texts, are inapplicable. While there are inevitably some less accurate descriptions
generated by LLMs, especially for complex motions, the output content is still relevant or partially
matched to serve as supplementary and boost the retrieval learning. More discussions and analysis on
the part texts generated by LLMs and model robustness can be found in Appendix A.1 and A.2.

To this end, we develop a clear and effective generation strategy. We select LLaMA3-70B [37]
with carefully crafted few-shot prompts for our implementation. Meanwhile, to improve part text
quality for training, we provide LLMs with all global texts annotated by different subjects as detailed
and comprehensive descriptions to jointly reason (for training data generation only). Besides, to
deal with the uncertainty in generation for the parts with confusing or hard-to-infer motions, we
introduce a special indicator, [udf ], and require the LLMs to output this indicator for the parts with
high uncertainty. Subsequently, the texts with this indicator are excluded during training. Overall,
our GAR paradigm is compatible with different LLMs and generation strategies, where the retrieval
performance can be expected to be boosted as the generation capability improves.

Then, the generated part motion descriptions are fed into the text encoder, yielding the embeddings
zjt,i for the jth body part text of the ith sample. On the motion encoder side, we register an additional
token for each body part, i.e., [cls − pj ], to feed the encoder to obtain part motion embeddings
zjm,i, j = 1, ..., P , denoting the jth part. Along with the [cls] tokens, the motion encoder aligns both
the global and local motion embeddings. However, the local part motions are much less diverse, and
different body motions can share similar part motions. Therefore, we adopt a soft contrastive learning
objective by replacing the hard label with the intra-modality similarity scores:

Lt2m
part = E

− 1

P

P∑
j=1

pτ
′
(
zjt,i, z

j
t,∗

)
log pτ

(
zjm,i, z

j
t,∗

) , pτk

(
z, zjt,∗

)
=

exp(z · zjt,k/τ)∑
i=1

exp(z · zjt,i/τ)
. (2)
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3.3 Part-Mixture Decorrelation Learning

Due to the inherent correlation between global and part motions, it can be undesirably learned by
model to derive the part embeddings based on the common concurrence of motion patterns, instead
of the exact part kinematics. For instance, the model can associate arm swinging with leg stepping,
which can impair knowledge generalization. Therefore, we propose a part-mixture learning policy to
construct unusual motion samples to force the representation decorrelation and precise modeling.

With the part “patches” representation, we can simply perform Cut-Mix [46] by exchanging the part
patches of different motions. Specifically, given two motion data mi,mk, we randomly sample K
body parts (K < P ) and replace the corresponding patches of mi with mk to generate the mixing
motion data. Then we obtain the full body and part motion embeddings as Sec. 3.2 by feeding the
mixed motions into the motion encoder.

Similarly, we optimize the global and part alignment objectives. For global alignment, we utilize
the linear blending of text embeddings, zt,i and zt,k, as the target text positives for contrastive
learning. Specifically, it is calculated as zt,mix = λmzt,i + (1− λm)zt,k, where λm is the mixing
ratio determined by the proportion of replaced part number. For part alignment, the target part text
embeddings of mixed data can be reassembled from zjt,i and zjt,k following the replacement in mixing
process. Building on this, we calculate the Lmix

full and Lmix
part for optimization similar to Eq. (1) and

Eq. (2) to boost the part-mixture learning. More detailed formulations can be found in Appendix D.1.

Remark: Although this direct copy-paste approach can lead to globally unreal motions, recent
work [16] has emphasized the local motion patterns as a more essential aspect for human motion
modeling. Our experiments in Table 2 also verify the effectiveness of this copy-paste implementation.

3.4 Directional Relation Alignment Strategy

As introduced before, we encourage the model to jointly learn both full-body and part alignment.
However, the two objectives optimize the Euclidean distance of embeddings independently, which
ignores the relational knowledge between them, leading to over-fitting and limited performance.
Inspired by the inter-word directional knowledge discovered in the neighbor topology structure
of language model latent space [38], we explore the motion-text analogies between the relevant
global-local motion concepts as a beneficial representation regularization.

Specifically, we model the relational knowledge between the full body and parts as the direction of
their difference in the normalized space. Formally, the directional relation alignment objective can be
denoted as

Lr = E

1− 1

P

P∑
j=1

∆zjm,i ·∆zjt,i

|∆zjm,i||∆zjt,i|

 , (3)

where ∆zjm,i = zm,i − zjm,i, ∆zjt,i = zt,i − zjt,i. This can be regarded as a part-conditioned motion
knowledge consistency regularization, leading to more meaningful representations. Overall, the full
optimization objective of our framework can be formulated as (λ∗ is the loss weight)

L = Lfull + Lpart + λmixLmix
full + λmixLmix

part + λrLr. (4)

3.5 Generation-Augmented Retrieval: An Optional Testing-Augment Strategy

The above designs naturally enable a testing-augmentation option by providing additional part
information. Specifically, giving one or more additional part texts embeddings, we calculate the
similarity matrixes between both global and local motion-text pairs, which are then summed with
a weight α, i.e., s = sg + α

∑
j∈Jp

sjp, where sg, s
j
p and s are the global, part, and final similarity

matrix and Jp is the set of parts with available descriptions. Finally, the retrieval results can be derived
from s. This is an optional generation-augmented retrieval policy during testing. In implementation,
α is set as 0.1 to control the intensity of the part-level effect.

Next, some possible application scenarios are discussed. For text-to-motion retrieval, part texts can
be provided by users as additional queries or generated by LLMs. For motion-to-text retrieval, the
additional part texts can be automatically generated by feeding global texts in the database to LLMs
and maintained in the database.
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Table 1: Motion-text retrieval results on HML3D and KIT benchmark. “SGAR” follows the same test
setting as other methods (i.e., no part information available for testing), while “SGAR++” employs
part information during testing as discussed in Sec. 3.5 to show an optional generation augmented
retrieval capacity.

Protocol Methods Text-to-motion retrieval Motion-to-text retrieval
R@1 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓ R@1 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓

TMR [25] 8.92 16.33 22.06 33.37 25.00 9.44 16.90 22.92 32.21 26.00
MoPatch [45] 10.80 20.00 26.72 38.02 19.00 11.25 19.98 26.86 37.40 20.50

All-HML3D ChronRet [6] 8.30 16.70 23.65 35.31 22.00 9.08 11.22 23.68 34.31 23.00
SGAR 12.86 23.52 30.75 43.00 15.00 13.82 23.38 30.09 41.83 16.00
SGAR++ 14.07 25.32 33.03 44.78 13.00 14.64 25.52 32.55 44.50 14.00

Small-HML3D

TMR [25] 67.45 86.22 91.56 95.46 1.03 68.59 86.75 91.10 95.39 1.02
MoPatch [45] 71.61 90.02 94.35 97.69 1.00 72.11 90.21 94.44 97.76 1.00
TriModal [44] 68.58 85.02 88.77 92.58 1.01 68.64 85.52 88.76 92.82 1.01
ChronRet [6] 70.10 87.07 91.13 94.32 1.01 70.19 86.66 90.69 94.23 1.01
SGAR 75.66 92.11 95.55 98.06 1.00 76.35 92.38 95.69 98.02 1.00
SGAR++ 76.51 92.77 95.87 98.27 1.00 77.24 92.79 96.01 98.20 1.00

All-KIT

TEMOS [24] 7.11 17.59 24.10 35.66 24.00 11.69 20.12 26.63 36.39 26.50
TMR [25] 10.05 20.74 30.03 44.66 14.00 11.83 22.14 29.39 38.55 16.00
MoPatch [45] 14.02 28.91 34.10 50.00 10.50 13.61 27.54 33.33 44.77 13.00
SGAR 16.75 30.48 40.00 53.61 9.00 14.46 25.54 35.54 48.31 11.00
SGAR++ 16.51 30.96 40.48 56.99 8.00 16.14 29.28 38.67 52.29 9.00

Small-KIT

TMR [25] 50.00 78.02 87.97 94.87 1.50 51.21 78.64 89.00 95.31 1.50
MoPatch [45] 53.55 79.82 88.92 96.29 1.36 54.54 79.68 89.35 96.11 1.31
TriModal [44] 58.10 86.34 93.08 96.47 1.08 60.23 86.44 93.22 95.87 1.20
LaMP [14] 52.50 84.70 92.70 97.60 - 54.00 84.40 92.20 97.60 -
SGAR 62.12 87.88 94.25 98.00 1.04 63.00 87.25 94.38 98.38 1.03
SGAR++ 62.50 88.12 94.75 98.75 1.04 63.38 87.75 95.00 98.88 1.02

4 Experiments on Motion-Text Retrieval

4.1 Datasets and Implementation Details

HumanML3D [8] (HML3D) enriches the AMASS [20] and HumanAct12 [9] motions by with the
textual descriptions. It consists of 23,384 and 4,380 motions for training and testing with a mirror
augmentation, respectively. There are 3.0 different textual labels on average for each motion.
KIT-ML [26] (KIT) is a small dataset with a focus on locomotion motions, consisting of 3,911
sequences and 6,278 text descriptions. We obtain 4,888, 300, and 830 motions for training, validation
and testing , respectively, each of which is annotated 2.1 times on average.
Motion-X [15] is a large-scale dataset with more than 80K sequences from different motion domains.
The texts are generated by LLMs. We further process the motions into our adopted representation.
Since there are few previous works evaluated on this dataset, it is mainly utilized to support cross-
dataset evaluation of transfer capacity.
For implementation, we utilize the same data pre-processing methods with ViT-B and Distill-BERT
as motion and text encoders following previous works [25, 45]. The model is trained using Adam
optimizer [12] for 50 epochs, with learning rates of 10−5, 10−4 and 10−3 for the text encoder, the
motion encoder, and the projection heads, respectively. The embedding dimension after projection is
256 for contrastive learning. λmix and λr are set to 0.5 and 0.1. The temperature coefficients τ and τ ′

are 0.07 and 0.05. The batch size is 128. For the input data, the patch size N is 224. We pad or crop
the motions to a fixed length of 224 following ViT. For evaluation, we adopt the metrics and protocol
in [25]. Specifically, the standard Recall at various ranks, i.e., R@k, and median rank, MedR, are
employed to evaluate the performance. Meanwhile, we vary the scale and data similarity of the target
gallery sets, yielding All Data2, Small protocols following [25, 45]. More details in Appendix D.2.

4.2 Performance Comparison

In this section, we compare our method with the latest works with experimental settings aligned. As
shown in Table 1, our method achieves the best scores with significant performance improvement

2Following [45], we consider misjudgments due to mirror augmentation for evaluation correction.
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Figure 3: Qualitative T2M retrieval with top-3 results on HML3D testing set. The left column is
full-body retrieval, with test set query (the first sample) and the customized text query (second) Green
text is the perfect match. The right column is part-based retrieval, using only part motion queries.

.

Table 2: Ablation studies on our designs, part contrastive learning (Part CL), part-mixture learning
(Part Mix), and directional relation regularization (Relation Reg.)

Part Part Relation T-to-M Retrieval M-to-T Retrieval
CL Mix Reg. R@1 R@5 MedR R@1 R@5 MedR

9.87 26.36 19.50 10.19 26.56 21.50
✓ 11.27 28.44 16.50 12.57 27.87 19.00
✓ ✓ 11.90 28.56 16.00 12.95 28.47 18.00
✓ ✓ 12.09 30.48 15.50 13.41 30.13 17.00
✓ ✓ ✓ 12.86 30.75 15.00 13.82 30.09 16.00

compared with the state-of-the-art methods on both HML3D and KIT benchmarks. Previous works
mainly focus on how to enable the availability of pre-trained vision/language models while ignoring
the structural nature of human motion data. In contrast, our method starts from the characteristics of
the human body and models the part kinematics in a GAR manner, achieving remarkable performance
improvement and renewing the scores. Meanwhile, compared with Lex [19] which requires 4 training
stages, our method is more training-friendly (∼ 8 times faster) and clear with better performance.

Besides, benefited from our GAR paradigm, SGAR can be boosted with further generated (or user-
provided) part information as discussed in Sec. 3.5, yielding a testing-augment version denoted as
“SGAR++”. Although it can be unfair to directly compare SGAR++ with previous works without part
information in testing, we show this intended to verify our motivation and demonstrate a remarkable
testing-augment capacity. As we can see Table 1, additional part information as supplementary can
significantly benefit retrieval performance. More discussions and visualizations on this part-based
testing GAR can be found in Appendix B.2 and C.1.

4.3 Qualitative Results

We present the text-to-motion retrieval results with full-body and part motion text queries, respectively,
in Figure 3. For the full-body retrieval, our model successfully retrieves the ground-truth/semantic-
aligned motion samples, whether by the original text annotations or the user-customized text queries.
For the part-based retrieval, we obtain the candidate motions by calculating the similarity of their part
motion embeddings and the given part texts, achieving the partial match retrieval [29]. Meanwhile,
these two techniques can be combined to achieve more fine-grained motion retrieval. As we can see,
although the results possess different global motion concepts, the motions of the target local regions
align with the part text descriptions well, demonstrating our superior structure-aware modeling
capacity. More visualization results can be found in Appendix B.

4.4 Ablation Study

In this section, we present the ablation study results on the HumanML3D dataset.
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Table 3: Comparison for the different LLMs for part motion knowledge generation.

Knowledge Experts Text-to-motion retrieval Motion-to-text retrieval
R@1 ↑ R@5 ↑ R@10 ↑ MedR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MedR ↓

No Part Text 9.87 26.36 37.38 19.50 10.19 26.56 36.63 21.50
LLaVA1.6-34B [17] 11.82 28.36 41.89 16.00 12.18 28.62 39.93 17.00
LLaMA3-70B [37] 12.86 30.75 43.00 15.00 13.82 30.09 41.83 16.00

Table 4: Comparison of the computational complexity and runtime using one NVIDIA 4090 GPU.
Method ChronRet [6] MoPatch [45] SGAR SGAR++

FLOPs 5.48G 6.46G 6.89G 6.89G+1.05G*5=12.12G

Runtime 0.0072s 0.0078s 0.0083s 0.0086s

1) Effectiveness of Part Motion Modeling. The crucial idea of our method is the integration of the
structural part motion learning. Specifically, it consists of two parts, i.e., the basic part contrastive
learning for subtler semantic alignment and the part-mixture learning for better local motion decorre-
lation. As shown in Table 2, it significantly boosts the model performance, demonstrating stronger
human motion understanding capacity due to the fine-grained action unit modeling.

2) Effectiveness of Directional Relation Regularization. Meanwhile, the proposed relational
consistency further regularizes the feature manifold and pursues the corresponding relation knowledge
consistency, which improves the model representations as shown in Table 2.

3) Different LLMs for Generation. Table 3 shows the results using different LLMs for part descrip-
tion generate. First, it can seen the above LLM choices can generally be bring about performance
improvement, which indicates the promising future of our GAR paradigm. Besides, we find the gen-
eral reasoning capacity of LLMs matters more than the visual capacity in our agent task. Furthermore,
employing stronger LLMs could further improve part text quality and performance, which, however,
is not the focus of this work. We kindly refer the readers to Appendix A for more discussions.

4) Complexity Analysis. As shown in Table 4, our SGAR has similar complexity and runtime to
other methods. When testing GAR is enabled (SGAR++), the main additional cost is the encoding of
the extra part texts (1.05G for once forward of text encoder, here we take 5 parts for example). In
terms of the runtime, it should be noted that the encoding of part texts is highly parallel and does not
incur much time cost.

5 Applications

In the following, we demonstrate the transfer capacity and application value of our model in terms of
the motion encoder and text encoder.

5.1 Skeleton-Based Human Motion Understanding

1) Transfer Learning for Action Recognition. We adopt the BABEL 60-classes benchmark [27]
consisting of 10892 sequences from AMASS. It is challenging due to the extremely short clips and
fine-grained action categories. In our transfer learning setting, the motion encoder is pre-trained
on HumanML3D/Motion-X first, and then transferred to the BABEL dataset for 60-class action
recognition. A new fully-connected (FC) layer is attached to the encoder to predict final scores. As
shown in Table 5, our method can surpass the state-of-the-art supervised models by fine-tuning the
last FC layer solely. When we utilize the larger dataset, i.e., Motion-X, a stronger transfer learning
capacity can be achieved. Finally, we demonstrate the best performance by fine-tuning the whole
model, indicating the promising benefits for skeleton-based action recognition.

2) Cross-Dataset Motion Retrieval. In this part, we implement the cross-dataset retrieval, i.e.,
training the model on HumanML3D first and then testing on Motion-X test set, which covers various
domains and noise as a more comprehensive benchmark.
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Table 5: Transfer learning results for action recognition
on BABEL benchmark. “L” indicates linear evaluation
and “F” uses fully finetuning for evaluation.

Method Pretrain Finetune Top-1 Top-5

2s-AGCN [34] - F 41.14 73.18
MotionCLIP [35] - F 40.90 57.71

TMR [25] HML3D L 40.16 70.42
MoPatch [45] HML3D L 41.05 71.97
SGAR HML3D L 42.59 73.09
SGAR Motion-X L 43.05 73.82

SGAR Motion-X F 46.21 77.09

Table 6: Cross-dataset motion retrieval
results. All models are trained on Hu-
manML3D dataset.

Method R@1 R@5 R@10 MedR

T-to-M Retrieval
TMR [25] 20.23 46.18 60.95 8.38
MoPatch [45] 24.00 48.81 64.32 7.50
SGAR 31.05 54.77 69.22 6.81

M-to-T Retrieval
TMR [25] 20.21 43.82 59.05 9.24
MoPatch [45] 22.68 46.45 61.74 8.25
SGAR 30.13 52.92 66.77 7.46

Table 7: Results (Top1-accuracy) of using different
text encoders for zero-shot skeleton-based action
recognition.

Method
NTU 60 split NTU 120 split

55/5 48/12 110/10 96/24

SA-DVAE [13]
Sentence-BERT [30] 82.37 41.38 68.77 46.12
CLIP-B [28] 83.28 39.72 73.88 48.38
CLIP-L [28] 79.35 36.39 70.21 49.99
Distill-BERT [32] 83.78 39.72 55.51 47.94
ChronRet (Distill-BERT) [6] 31.49 11.47 - -
LaMP (BERT) [14] 38.05 14.92 - -
SGAR (Distill-BERT) 83.92 45.66 69.97 52.27

Table 8: Quantitative results of motion genera-
tion with different text encoders.

Method
R-Precision ↑

FID ↓ MM-Dist ↓
Top-1 Top-2 Top-3

MDM [36]
CLIP [28] - - 0.611 0.544 5.566
TMR [25] 0.459 0.663 0.770 0.528 3.259
Lex [19] 0.357 0.536 0.643 0.524 5.212
SGAR 0.515 0.710 0.806 0.221 3.024

T2M-GPT [47]
CLIP [28] 0.491 0.680 0.775 0.116 3.118
TMR [25] 0.513 0.705 0.803 0.103 2.964
LaMP [14] 0.540 0.732 0.825 0.084 2.783
ChronRet [6] 0.528 0.717 0.810 0.074 2.915
SGAR 0.535 0.728 0.822 0.081 2.862

Specifically, we retrieve the counterparts from a batch following Small protocol. The results are
shown in Table 6. As we can see, our method demonstrates a remarkable improvement over previous
works, verifying the stronger generalization capacity. Meanwhile, we also present the model trained
on Motion-X as in-domain reference, which is much better than the HumanML3D model. This is
partly due to the limited domains in HumanML3D, resulting in limited generalization capacity. On
the other hand, HumanML3D uses SMPL-format data and lacks hand motion supervising, leading to
some motions in Motion-X being indistinguishable.

5.2 Stronger Text Encoder for Human Motion

1) Application to Zero-Shot Action Recognition. Existing zero-shot skeleton action recognition
models are trained on the seen categories to generalize to the unseen categories. They necessitate a
pre-trained text encoder to derive the category label embeddings, capturing the potential semantic
relations between the seen and unseen action categories. To verify the effectiveness of our text
representations, we vary the choice of text encoder from general trained to our human-motion-centric
text encoders, and adopt the recent work [13] as the zero-shot algorithm for comparison.

The accuracy of the unseen categories is reported in Table 7. Our method can achieve better
performance than other language models which are trained on general domains. This shows the
advantage of our text encoder in human motion text representation.

2) Application to Text-Guided Motion Generation. For motion generation, the text encoder is
responsible for obtaining textual embeddings as accurate guidance. However, previous works directly
utilize the text encoder derived from vision-language pre-training, e.g., CLIP. Here we study the
motion generation from the perspective of text embedding quality which few previous works consider.
Similarly, we utilize the text embeddings output by different text encoders, and adopt two popular
generation methods as baseline, the diffusion-based MDM [36] and the auto-regressive model T2M-
GPT [47]. Following the previous works [8, 36], the evaluation metrics include Frechet Inception
Distance (FID), Top 1-3 retrieval precision (R-Precision), and Multi-modal Distance (MM-Dist).
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MDM+Ours

MDM
w CLIP / Ours 

A person runs as waving the 

right hand to someone.

A person unleashes strikes 

with his fists while dodging.

This person stumbles left and 

right while moving forward.Text Prompt

Figure 4: Comparison of motion generation results guided by different text encoders. Left: MDM
model with default CLIP text encoder. Right: MDM model with our text encoder.

Specifically, we compare different text encoders for motion generation. As shown in Table 8, we
can find existing motion-language pre-trained text encoders perform better than traditional CLIP
baseline for motion generation tasks due to human-centric motion modeling, and our text encoder
achieves competitive scores compared with other latest methods (Note that LaMP utilizes a larger
text encoder, i.e., BERT). Meanwhile, evidenced by the cases in Figure 4, our text encoder can output
more accurate text embeddings as conditions due to the decoupled structural learning, effectively
alleviating the difficulty of composite motion generation.

6 Conclusion

This paper presents a novel structural generative augmented retrieval paradigm for motion-text data,
which exploits part motion concepts as more generalizable knowledge to boost retrieval in a GAR
manner. By generating part linguistic knowledge through LLMs, SGAR effectively aligns part
motions with part-mixture decorrelation learning and directional relation consistency techniques.
Remarkably, the adopted GAR paradigm enables our model with an optional testing-augment capacity
for fine-grained and improved retrieval. Extensive experiments on retrieval as well as recognition, and
generation applications, demonstrate our superior performance and promising transferring capacity.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction accurately reflect our contri-
bution.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see the Limitations and Future Work section (Appendix E).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please see the Experiments on Motion-Text Retrieval and Applications sections
(Sec. 4 & 5) in Main Paper and Experiment Settings and Implementation Details section in
Appendix D.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The code and data have not been released yet. We plan to release them
uponpublication and we provided extensive implementationdetails in the main paper and
appendix to facilitate reproducibility.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see the Experiments on Motion-Text Retrieval and Applications sections
(Sec. 4 & 5) in Main Paper and Experiment Settings and Implementation Details section in
Appendix D.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to limited resources and following the practice of previous works, we do
not report the error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please see this in Experiment Settings and Implementation Details section in
Appendix D.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please see the Broader Impact section (Appendix F) in the Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This work properly credits and respects the assets used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Please see the Method, Experiments, and Applications (Sec. 3 4 5) in Main
Paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The LLMs are used as the knowledge experts for generation query-relevant in-
formation to boost retrieval. Details can be found in Method section (Sec. 3) and Appendix A
and D.2 for usage.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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We present more details of our method, experiments and implementation below. Code and models
will be available upon publication.

A Discussion on Structural Knowledge Generation by LLMs

A.1 Comparison of Different LLMs for Generation.

Table 9: Comparison for the different knowledge experts for part motion knowledge generation.

Knowledge Experts Text-to-motion retrieval Motion-to-text retrieval
R@1 ↑ R@5 ↑ R@10 ↑ MedR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MedR ↓

No Part Text 9.87 26.36 37.38 19.50 10.19 26.56 36.63 21.50
LLaVA1.6-34B [17] 11.82 28.36 41.89 16.00 12.18 28.62 39.93 17.00
LLaMA3-70B [37] 12.86 30.75 43.00 15.00 13.82 30.09 41.83 16.00
ChatGPT-3.5 Turbo [2] 12.47 30.84 42.09 15.00 13.48 29.89 41.07 16.00
Hybrid 12.61 29.14 43.92 15.00 13.75 28.96 40.29 16.50

We compare the widely used MLLM/LLM model, LLaVA model (v1.6-34B) [17], LLaMA3-70B [37],
and GPT-3.5 Turbo [2] model. For LLaVA, we render 3D motions into a sequence of images, which
are then stitched together as additional visual prompts. In our experiments, we observe that LLaVA
tends to over-rely on the image prompt, leading to confusion between the left and right sides. To
mitigate this, we use distinct colors for the left and right sides to aid the model’s differentiation.
However, the hallucination problem still exists. Some examples are shown in Figure 5, where
LLaVA still exhibits hallucinations with limited output diversity. We also present the diversity results
quantitatively in Table 10 by calculating the type-token ratio of the generated part descriptions in the
HumanML3D dataset to support our claim.

We provide the quantitative results of using different LLMs as shown in Table 9. In addition to relying
on a single LLM, we have explored refining the LLaVA results by LLaMA to combine their merits,
denoted as “Hybrid”. Specifically, given the global texts and the part texts generated by LLaVA, we
prompt the LLaMA to improve the accuracy and diversity of these part texts. However, we do not
observe a non-trivial improvement as shown in Table 9.
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A man grabs his right leg with right hand and extends left arm into an akward stretch.

#LLaVA Output: 
- The right arm is extended outward and upward, then bent at the elbow and brought toward the 
body, then extended outward again.
- The left arm is extended outward and upward, then bent at the elbow and brought toward the body, 
then extended outward again.
- The right leg is extended straight out to the side, then bends at the knee and brings the foot toward 
the body, then extends straight out again.
- The left leg is extended straight out to the side, then bends at the knee and brings the foot toward 
the body, then extends straight out again.
- The torso is upright and facing forward, then leans to the side as the arms are brought in, then 
straightens as the arms extend outward again.

# LLaMA Output:
- The right arm bends downward from straight to bent when grabbing the right leg.
- The left arm extends from bent to straight when stretching outward.
- The right leg is lifted upward by the right hand.
- The left leg remains stationary, providing balance.
- The torso leans forward slightly, aligning with the direction of the stretch.

A person picks up something with his right hand, then raises it slightly several times.

#LLaVA Output: 
- The right arm is extended downward and then retracted upward.
- The left arm is extended downward and then retracted upward.
- The right leg is extended forward and then retracted backward.
- The left leg is extended forward and then retracted backward.
- The torso is bent forward and then straightened back up.

# LLaMA Output:
- The right arm bends from straight to bent when reaching downward and then extends from bent to 
straight when lifting the object.
- The left arm remains relaxed under the shoulder by the side of the body.
- The right leg is stationary, providing balance.
- The left leg is stationary, providing balance.
- The torso leans forward slightly when reaching downward and then returns to upright when lifting 
the object.

Figure 5: Some examples of the part motion text generation results of LLaVA and LLaMA. The
output descriptions that differ greatly from the actual motions are highlighted in red.

Finally, we select LLaMA3-70B for linguistic knowledge generation, as we find that its superior
reasoning capacity is more critical than additional visual prompts for our task. Another reason is
that in the context of GAR, paired motion-text data is often unavailable during testing. Therefore,
jointly utilizing the motions and texts as prompts, such as LLaVA, is not preferred. Although this
joint strategy can be considered to enhance the text quality during training, we find that a general
text-only generation strategy can already achieve satisfactory performance.

Overall, our paradigm is compatible with different generation strategies, which is not the very
focus of this work. We believe that as the capabilities of future LLMs improve, the proposed
GAR-based solutions are promising.

Next, we further discuss the generation quality and model robustness to support our motivation.
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• 000786

Input Motion Text: A person holds both hands in front of them, punching forward with 
the left hand, then punching to the left hand side before stopping.
# LLaMA Output:
- The right arm is holding straight in front, then moving to the right (when punching to 
the left hand side) and stopping.
- The left arm is holding straight in front, bending at the elbow when punching forward, 
and then extending when punching to the left.
- The right leg is [udf].
- The left leg is [udf].
- The torso is [udf].

Input Motion Text: A person breakdances while kicking feet and then flips backwards 
while spinning on their hands, landing on their feet.
# LLaMA Output:
- The right arm is bending from straight to bent when placing hands on the ground, 
and then extending from bent to straight when pushing off ground to flip backwards.
- The left arm is bending from straight to bent when placing hands on the ground, and 
then extending from bent to straight when pushing off the ground to flip backwards.
- The right leg is kicking outward, lifting off the ground, and then tucking inward when 
flipping backwards, and finally landing on the ground.  #missing walking forward
- The left leg is kicking outward, lifting off the ground, and then tucking inward when 
flipping backwards, and finally landing on the ground.  #missing walking forward
- The torso is twisting rapidly when spinning on hands, and then aligning with the 
direction of the flip when landing on feet.

Figure 6: Some examples of the imperfect generated part descriptions. For example, the right
arm “holding straight in front” is not accurate in the first case. And in the second case, the man
walks forward first as shown in the rendered images while the leg motion texts miss this movement.
However, these imperfect part texts, due to the lack of visual information or incomplete global motion,
are still closely related to the part motions to benefit the model training.

Table 10: Type-Token Ratio analysis of the generated part motion descriptions by LLaVA and LLaMA
in HumanML3D dataset. A higher metric indicates more diverse corpus.

Knowledge Experts Type-Token Ratio ↑

LLaVA1.6-34B 0.360
LLaMA3-70B 0.416

A.2 Discussion on the Quality of Generated Texts and Model Robustness.

Based on our observation, most LLM-generated part descriptions effectively capture local motion
patterns with clear kinematic phrasing. Although a subset of results (particularly for complex motions,
as illustrated in Figure 6) exhibit minor deviations from ground truth, they are acceptable and still
closely associated with the actual movements, which usually deviate only in some small movements.
With the supervision of the accurate ground-truth global motion descriptions, the additional part texts
introduce structurally decomposed knowledge as regularization. Therefore, the generated part texts
can still serve as beneficial knowledge for model training, as evident in Table 9.

On the other hand, we study the model robustness on the quality of the generated part texts. We
artificially perturb the quality of the part texts for a portion of the training data to roughly simulate the
imperfections in the part texts generated by LLMs. Specifically, we randomly select and exchange
the part texts of different data samples, or randomly delete a certain proportion of words, or randomly
add some predefined motion descriptions of part movements as noise. In implementation, to eliminate
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Table 11: Retrieval results using artificially perturbed part texts for training. Noise ratio α means the
part texts of α ratio of training data are perturbed through human intervention to roughly simulate the
imperfections in the part texts generated by LLMs.

Noise Ratio Text-to-motion retrieval Motion-to-text retrieval
R@1 R@5 R@10 MedR R@1 R@5 R@10 MedR

No Part Training 9.87 26.36 37.38 19.50 10.19 26.56 36.63 21.50
0% 11.27 28.44 41.21 16.50 12.57 27.87 39.74 19.00
10% 11.06 28.34 40.80 16.50 12.87 27.80 38.92 19.50
20% 10.45 27.07 39.05 18.00 12.21 27.04 37.49 19.50
30% 10.62 26.41 38.24 19.00 11.12 26.38 36.92 21.00

the influence of other proposed alignment strategies, we only use global and local contrastive learning
objectives for training. The results are shown in Table 11. As we can see, our paradigm is robust
to the part text quality. When the noise ratio is less than 30%, it can always show a non-trivial
performance improvement compared to training without part involvement. This is mainly because
under the dominant global supervision, slight noise from body parts will not make the model to learn
“wrong” representations. Meanwhile, due to the relatively low diversity of body part motions, this
adverse effect is further weakened. Instead, the knowledge of body parts can be used as an effective
regularization to guide the precise alignment learning of the model, thereby achieving performance
improvement.

B Visualization Results

B.1 Motion-Text Retrieval Comparison with Other Methods

We present more motion-to-text and text-to-motion retrieval results in Figure 8 and Figure 7 for
comparison. As we can see, owing to the part motion knowledge modeling, our method can retrieve
results that are more consistent at fine-grained semantics, e.g., “at knee height” (the third case in
Figure 7), “in a circle” (the third case in Figure 8). This is not observed in the baseline method
MoPatch [45], which solely applies the global alignment, leading to the potential over-fitting with
limited data.

B.2 Motion-Text Retrieval Results with/without Testing GAR

To better illustrate the effect of our proposed testing-augment policy, i.e., GAR using additional
part information generated by LLMs, we present some qualitative results of text-to-motion retrieval
results with/without Testing GAR in Figure 9.

As we can see, providing additional part information is generally beneficial for retrieval during testing.
More precisely, the “generation” of part information is more like a kind of information reformulation
to explicitly associate the motion patterns with the linguistic verbs. Although part motion information
is derived from full-body motion descriptions, exploiting it can still bring about improvement. We
believe that this improvement mainly comes from a more precise local concept matching constraint.
This leads to the explicit retrieval of local motion concepts. For example, the model without testing
GAR can generally retrieve the roughly similar motions according to the queries in Figure 9. However,
it is still insufficient for the precise matching of some local motion patterns. Especially when dealing
with some long text queries, some movement details can be ignored by the text encoder. At this time,
the decoupling of structural parts can effectively enhance the loyalty of retrieval results to this query
information.
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A person jumps to 
side with legs and 

arms then squats a 
few times with 

arms raised.

MoPatch Ours

A person walks 
forward, and 

repeatedly reaches 
down then shakes 

something.

A man steps 
forward, then 

brushes something 
at knee height with 

his left arm, then 
steps back and 

stretches his arm 
out to either side.

A person jumps to 
side with legs and 

arms then squats a 
few times with arms 

raised.

Person squats all 
the way to the 

ground, then leaps 
up all the way, 

raising both hands 
above the head.

Person squats with 
knees facing 
inwards then 

stands up and 
quickly jogs before 

stopping.

Person brings right 
elbow to left knee, 
then left elbow to 
right knee, stands 

straight then 
bends at the knees 

a few times.

The person watch 
forward and is 

leaning over some 
thing.

A person walks 
forward and 

appears to pour 
two items into a 

bowl.

A person walks 
forward and picks 
things up and puts 

them down with 
their hands.

A person walks 
forward, and 

repeatedly reaches 
down then shakes 

something.

The person takes a 
step and waves his 
left hand back and 

forth.

The person watch 
forward and is 

leaning over some 
thing.

A person steps 
forward and picks 
something up with 

his left hand, 
before stepping 

back and holding 
his arms out to his 

sides.

A man steps 
forward, then 

brushes something 
at knee height with 

his left arm, then 
steps back and 

stretches his arms 
out to either side.

Rank #1 Rank #2 Rank #1 Rank #2 

Figure 7: Comparison results of text-to-motion retrieval between MoPatch [45] and our proposed
SGAR. The top-2 retrieval motion results with their textual annotations are shown here. Green texts
indicate the perfect match of the query text. All motions in the gallery are from the test set and were
unseen during training.
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MoPatch Ours

Ground-Truth Text: A man does a push up and then uses his arms to 
balance himself back to his feet.

Rank #1: A man bends over and puts 
his hands on the ground and is on all 
fours.

Rank #2: The figure rises from a laying 
position and walks in a 
counterclockwise circle, and then lays 
back down the ground.

Rank #3: A figure is laying on the 
ground then rolls into a sit, then into 
being on all fours, then to standing.

Rank #4: The person was laying  down 
and then they got up.

Rank #1: A man does a push up and 
then uses his arms to balance himself 
back to his feet.

Rank #2: A person doing torso-twists, 
side-bends, and a lower 
back/hamstring stretch.

Rank #3: A person who is prone pushes 
himself up off the ground using his 
arms and propping himself with his 
knees before standing awkwardly in a 
ready to wrestle position.

Rank #4: The person was laying down 
and then they got up.

Ground-Truth Text: This person steps forward and grabs an item then 
moves his left arm up and down.

Rank #1: A person walks forward and 
appears to pour two items into a bowl.

Rank #2: A man steps forward, then 
picks something up with his right hand, 
then with his right hand, brings them 
close together, and sets them back 
down in the same order.

Rank #3: A man steps forward, then 
picks something up with his left hand, 
then with his left hand, brings them 
close together, and sets them back 
down in the same order.

Rank #4: A person walks forward and 
moves something with his right hand.

Rank #1: This person steps forward 
and grabs an item then moves his left 
arm up and down.

Rank #2: Person walks forward with 
left hand extended to side, trying to feel 
something.

Rank #3: This person steps forward 
and grabs an item then moves his right 
arm up and down.

Rank #4: A person gracefully walks 
forward, picks up an object, and raises 
it towards their face.

Ground-Truth Text: A person walks in a counterclockwise circle while bent 
forward at the waist, and holding their left leg with both hands.

Rank #1: A person is crouched down 
and walking around sneakily.

Rank #2: A person with both feet on 
the ground with both knees bended 
moving from one side to another, trying 
to hide or something.

Rank #3: A man slowly leans forward 
and moves around and carries a heavy 
object. 

Rank #4: A person is sneaking around.

Rank #1:  A person limping with left leg 
hurt and going around in a circle.

Rank #2: A person limping with right 
leg hurt and going around in a circle.

Rank #3: A person walks in a 
counterclockwise circle while bent 
forward at the waist, and holding their 
left leg with both hands.

Rank #4: A person walks in a clockwise 
circle while bent forward at the waist, 
and holding their right leg with both 
hands.

Figure 8: Comparison results of motion-to-text retrieval using our method with and without Testing
GAR.

C Additional Experimental Results

C.1 Retrieval Based on Only Part Queries

In the previous sections, we primarily utilize the part information as the auxiliary information of the
full-body motion. Next, we study the motion retrieval performance using only the part-based queries,
i.e., no full-body motion descriptions.

As shown in Table 12, retrieval only relying on part queries is confusing due to the absence of other
part motion descriptions. As shown in Figure 3, our model can return reasonable results that differ in
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This person put 
both arms up in 

front of themselves, 
while standing still.

Ours w/o Testing GAR Ours w Testing GAR

A person jumps into 
wide stance with his 

arms making a V 
shape and then 

jumps back into a 
normal, relaxed 

stance

A person who is 
standing with his arms 

down by his sides 
raises his hands 

shoulder high, looks 
slightly to the right, 

turns his body to the 
left and drops his 

hands to his sides and 
faces forward.

This person put 
both arms up in 

front of themselves, 
while standing still.

A person raises 
both arms to his 
face, then drops 
them back to his 

sides.

A person raises 
both arms to his 
face, then drops 
them back to his 

sides.

A person raises 
their hands and 

brings them closer 
to their face then 

lowers them.

A person who is 
jumping around 
with one leg but 
alternating the 
legs every jump.

A person takes a 
big jump forwards.

A person takes a 
big jump forwards.

A person jumps into wide 
stance with his arms 

making a v shape and 
then jumps back into a 
normal, relaxed stance.

A man stands 
with his arms at 

his sides, and 
sways slightly to 

his left.

Person moves 
right foot infront 

to side then 
moves left foot  
leading body to 
stand side on on 
opposite side of 

square.

A person who is 
standing with his arms 

down by his sides 
raises his hands 

shoulder high, looks 
slightly to the right, 

turns his body to the 
left and drops his 

hands to his sides and 
faces forward.

A man stands 
with his arms at 

his sides, and 
sways slightly to 

his left.

Rank #1 Rank #2 Rank #1 Rank #2 

The right/left arm is 
lifting from down to up 
in front of themselves

Additional Part Info. :

The right/left leg is jumping 
outward (from in to out) and 
landing in a wide stance, 
and then jumping inward 
(from out to in) back to the 
normal position.

Additional Part Info. :

Additional Part Info. :

The left/right arm is raising 
from straight down to bent 

at the shoulder and then 
lowering back down to 

straight.

This person jumps 
up and down on his 

left leg.

This person jumps 
on his right foot 
then on his left 

foot.

This person 
jumps on his left 
foot then on his 

right foot.

This person jumps up 
and down on his left 

leg.

A person does 
chicken wings.

Additional Part Info. :

The right leg is lifted off the 
ground, not bearing weight. 

The left leg is jumping up and 
down, from bent to straight 
and then back to bent.

Figure 9: Text-to-Motion retrieval results in terms of using or not using testing GAR, i.e., jointly
considering the full-body motion-text similarity and the part motion-text similarity to derive the final
retrieval results.

Table 12: Text-to-motion retrieval results by only part queries on HumanML3D benchmark.

Query Type Text-to-motion retrieval
R@1 R@2 R@3 R@5 R@10 MedR

Left Arm 1.92 3.06 4.63 7.17 12.12 171.00
Right Arm 2.46 3.81 5.18 8.06 12.87 150.00
Torso 3.54 5.27 7.12 10.20 16.91 89.00
Left Leg 2.58 3.63 5.39 8.31 13.90 154.50
Right Leg 2.81 3.90 5.91 9.01 14.67 127.50
All Parts 6.21 9.63 13.16 18.18 27.18 37.00

the global motion but match the query for local motion patterns, which can support partial match
retrieval [29]. We also study the retrieval by averaging several types of part information to jointly
perform retrieval as shown in Table 12. However, the performance is still lower than using full-body
motion descriptions. This is because when decoupled to local part motion descriptions, it is difficult
for the query to contain global motion semantics and the temporal correspondence, resulting in
degraded retrieval results. Therefore, our key idea is to use part information as auxiliary information
for retrieval or to enable the possibility of partial match retrieval.

C.2 Different ViT Backbones

Table 13 shows the results of different sizes of the ViT backbone. As the size of the model increases,
the performance improves. Note that this is not observed in the previous works [25, 45], where
the model still suffers from severe over-fitting problem, resulting in poorer performance of ViT-L
than ViT-B. In contrast, our model well exploits the more general part knowledge to enable better
generalization, alleviating the over-fitting problem with limited training data.
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Table 13: Ablation studies of different ViT backbone sizes on HumanML3D benchmark.

ViT Size Text-to-motion retrieval Motion-to-text retrieval
R@1 R@5 R@10 MedR R@1 R@5 R@10 MedR

Small 11.79 28.85 41.61 16.00 12.64 29.13 39.94 17.00
Base 12.86 30.75 43.00 15.00 13.82 30.09 41.83 16.00
Large 13.05 31.84 44.32 14.00 13.73 31.18 42.01 16.00

C.3 More Ablation Study Results

We present the ablation results of the hyper-parameters, λmix and λr as the loss weight of the mixing
objectives in Table 15, and the relational regularization in Table 14. We choose the best settings for
implementation.

D Approach and Implementation Details

D.1 Part-Mixture De-correlation Learning

Here we provide a detailed introduction of the part-mixture learning method. First, the mixed motion
sequence mmix

i,k is constructed. Specifically, giving two randomly sampled motions mi,mk, we
randomly swap the patches of 2 ∼ 3 parts (5 in total) for the mixing operation. Then the mixed
data are fed into the motion encoder to obtain the full-body and part motion embeddings, zm,mix

and {zjm,mix}j (recall that j indicates the jth part). Meanwhile, the text encoder takes the full-body
and part textual descriptions as inputs, and outputs the corresponding embeddings zt,i and {zjt,i}j .
Then, we calculate the global and local alignment objectives of the mixed motions for optimization.
Although the implementation is not complicated, its formalization is somewhat cumbersome, and we
try to present it as clearly as possible.

For global alignment, the positive text embedding of zm,mix is the linear blending of zt,i and zt,k,
i.e., zt,mix = λmzt,i + (1− λm)zt,k, where the λm is the mixing ratio determined by the number of
replaced parts. Then, the global mixed alignment can be formulated as

Lmix,m2t
full = E

[
− log

exp(zm,mix · zt,mix/τ)∑
j exp(zm,mix · zt,j/τ)

]
,

Lmix,t2m
full = E

[
− log

exp(zm,mix · zt,mix/τ)∑
j exp(zm,j · zt,mix/τ)

]
.

(5)

This objective introduces more diverse motion patterns for motion-language representation learning,
improving the model performance.

On the other hand, we rearrange the part text embeddings according to the sampling process in mixing
operation and match the part motion embeddings of the ith mixed motion to the corresponding part
text embeddings. Denoted the rearranged part text embeddings as {zjt,mix}j that matches the part

Table 14: Ablation study on the loss weight of
directional relation regularization.

λr T2M R@1 M2T R@1

0.007 12.73 13.75
0.1 12.86 13.82
0.3 12.61 13.66
0.5 12.25 13.54

Table 15: Ablation study on the loss weight of
part-mixture de-correlation learning.

λmix T2M R@1 M2T R@1

0.3 12.93 13.60
0.5 12.86 13.82
0.7 12.48 13.63
1.0 11.93 13.37
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The multiple text descriptions of the same person’s motion will be provided. Please decouple the 
specific pose and movement descriptions of different body parts from the total body motion 
descriptions. Default that the performer's dominant hand is the right hand. Body parts should 
include [right arm, left arm, right leg, left leg, torso]. If the specific movement of a body part cannot 
be determined, denote its motion as "undefined".

Output the description for each body part in the following format: The [body part] ... . For the output, 
use general words aligning with common sense and keep the sentence as simple as possible.

Q: [a man is bowling with right hand.] [a man swung his right hand backward, then threw something 
forward.]
A: {
The right arm is bending from straight to bent under the shoulder when preparing to release the ball 
and then extending from bent to straight when releasing the ball.
The left arm remains relaxed under the shoulder by the side of the body.
The right leg is undefined.
The left leg is undefined.
The torso leans forward slightly during the release of the bowling ball, aligning with the direction of 
the throw.
}
Q: [xxx] [xxx] ...
A:

stationary, providing balance

The right arm ...
The left arm ...
The right leg ...
The left leg ...
The torso ... 

Figure 10: The text prompt of the part motion description generation with LLaMA3-70B.

motion embeddings {zjm,mix}j , the part-mixture alignment objective is

Lmix,t2m
part = E

− 1

P

P∑
j=1

−p
(
zjt,mix, z

j
t,∗, τ

′
)
log p

(
zjm,mix, z

j
t,∗, τ

) ,

Lmix,m2t
part = E

− 1

P

P∑
j=1

−p
(
zjm,mix, z

j
m,∗, τ

′
)
log p

(
zjt,mix, z

j
m,∗, τ

) ,

where pk

(
z, zjt,∗, τ

)
=

exp(z, zjt,mix,k/τ)∑
i=1

exp(z · zjt,mix,i/τ)
, pk

(
z, zjm,∗, τ

)
=

exp(z, zjm,mix,k/τ)∑
i=1

exp(z · zjt,mix,i/τ)
.

(6)

zt,mix,k is the kth mixed sample and we have omitted k in some cases where there is no ambiguity to
reduce clutter.

D.2 Experiment Settings and Implementation Details

For the motion-language alignment pre-training, we conduct the experiments on a single NVIDIA
A40 GPU. We present the details of the downstream tasks as follows:

1) Motion-Text Retrieval. In the paper, the adopted protocols include: a) All: The entire test set
is used as the gallery set without any modifications. This is a challenging setting because the recall
scores can be directly affected by several texts with very conceptually similar meanings but different
words, e.g., “walk” or “walking”. b) Small Batches (Small): This protocol is designed by Guo et
al. [8]. It involves randomly selecting batches of 32 motion-text pairs and then reporting the average
performance. While this approach introduces randomness, it serves as a benchmark for comparison.
Note that the batch size of 32 is relatively manageable, making it a less challenging scenario.

For our texting-time augmentation version, SGAR++, we first calculate the similarity maps of the
full-body motions and each part motions. Then, we do a weighted sum over them, and the weight
ratio between the full body and any part is 10 : 1. The final calculated similarity map is used to
determine the ranks for retrieval.

2) Transfer Learning for Action Recognition. We process the BABEL dataset using the Hu-
manML3D style methods to normalize the orientation, foot contact, etc. The pre-trained motion
encoder with a new fully connected (FC) layer is fine-tuned for transfer learning. For the linear
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evaluation, we only train the FC layer with the encoder fixed. The learning rate is 0.1 with a batch
size of 512. For the full fine-tuning, the learning rate is 0.01 with a batch size of 384.

3) Cross-Dataset Motion-Text Retrieval. This is the same as Motion-Text retrieval, except for the
difference of the training dataset and testing dataset. We utilize the HumanML3D dataset for training
and Motion-X for testing.

4) Zero-Shot Skeleton-based Action Recognition & Text-guided Motion Generation. This part
is mainly to evaluate the text encoder. Therefore, we simply replace the original text encoder in
SA-DVAE [13], MDM [36], and T2M-GPT [47] as baseline algorithms with other text encoders to
conduct the experiments. Other implementations are not changed in the baseline algorithms.

5) Prompts for LLM Generation. A few-shot prompting strategy is employed, with the detailed
prompt shown in Figure 10.

E Limitations and Future Work

As discussed before, our proposed paradigm relies on the generated part texts by LLMs, which
may exhibit minor imperfections for highly complex motions. As extensively analyzed in Sec. 3.2,
Appendix A and Table 11, our experiments demonstrate that despite these challenges, existing LLMs
can almost always be expected to boost performance, indicating the promising potential of the GAR
paradigm for motion-text retrieval. Meanwhile, future work could explore temporal information
generation, which remains challenging due to the lack of fine-grained temporal correspondence (a.k.a,
weakly-supervised temporal grounding problem). This further highlights the scalability of the GAR
paradigm to inspire future research.

F Broader Impact

Accurate human motion-text retrieval can effectively improve technologies such as virtual assistants
and rehabilitation robots, and enhance the human-interaction experience. Meanwhile, it is also
expected to be applied to the action demonstration in physical education teaching, dance teaching,
etc.. Furthermore, the storage of traditional dance, martial arts, and other movements in the form
of texts may help digitally preserve cultural heritage and have a positive impact. The other side of
the coin is the issue of privacy protection, which needs attention to avoid being used for monitoring
specific groups of people.
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