
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NAN POOLING & CONVOLUTION ACCELERATE U-
NETS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in deep learning for neuroimaging have resulted in the de-
velopment of increasingly complex models designed for a wide range of tasks.
Despite significant improvements in hardware, enhancing inference and training
times for these models remains crucial. Through a numerical analysis of convo-
lutional neural networks (CNNs) inference, we found that a substantial amount of
operations in these models are applied to pure numerical noise, with little to no
impact on the final output. As a result, some CNNs consume up to two-thirds of
their floating-point operations unnecessarily.
To address this inefficiency, we introduce NaN Pooling & Convolution—novel
variations of PyTorch’s max pooling and 2D convolution operations. These tech-
niques identify numerically unstable voxels and replace them with NaNs, allow-
ing models to bypass operations on irrelevant data. We evaluate NaN Pooling and
Convolution on two models: the FastSurfer CNN, a widely used neuroimaging
tool, and a CNN designed to classify the MNIST dataset. For FastSurfer, our ap-
proach significantly improves computational efficiency, skipping between 33.24%
and 69.30% of convolutions in certain layers while preserving the model’s origi-
nal accuracy. On MNIST, our approach skips up to 28.38% of convolutions, again
without major impact on the accuracy.

1 INTRODUCTION

Convolutional Neural Networks (CNNs), in particular U-Nets, are transforming neuroimaging by
progressively replacing traditional image analysis software with models that deliver comparable
performance in a fraction of the runtime. This advancement significantly enhances the field, en-
abling the routine processing of larger databases in reasonable timeframes. However, optimizing the
inference and training times of these models remains a critical challenge, as improvements in this
area could facilitate near-real-time analyses across various applications and support the training of
larger models for tasks currently unattainable with existing approaches.

Through previous investigations of numerical stability in CNNs, summarized in Appendix A.5, we
identified a numerical instability in the max pooling operation that leads to the propagation of pure
numerical noise in approximately two thirds of the embedding values. Consequently, a substantial
number of operations—particularly convolutions—end up only processing this noise and could be
eliminated to improve efficiency.

The source of this instability is illustrated in Figure 1. When the forward calculation of the max
pooling operation is applied to a relatively uniform window—where multiple values can achieve the
maximum up to an epsilon—the position of the max index becomes undetermined. Multiple values
in this window are now eligible for being the maximum value and they each have a different index.
This has no immediate impact, but when the unpooling operation is called, the instability arises.
Unpooling uses the indices saved from the max pooling operation to restore the maximum values
to their original positions, filling the remaining voxels with zeros. The undetermination in the max
pooling operation leads to several values in the unpooling operation being assigned either a zero or
a non-zero value, resulting in a total loss of numerical precision.

Surprisingly, models affected by this numerical issue can still be trained and produce accurate results
despite the widespread propagation of numerical noise. This suggests that the impacted values

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

do not contribute to the model’s output, revealing a potential avenue for enhancing computational
efficiency.

To capitalize on this observation, the execution framework must account for numerical precision,
allowing operations on numerical noise to be bypassed. However, accurately measuring and repre-
senting numerical precision at the scale of CNN executions is impractical and would significantly
slow down processing. Instead, we represent values with no numerical significance using IEEE NaN
values, which are already supported by existing frameworks. We have modified the max pooling op-
eration to generate NaNs in case of numerical instability, and we adjusted the convolution operation
to handle tensors containing NaNs, bypassing computations when NaNs exceed a specified thresh-
old.

We tested NaN Pooling on two CNNs: FastSurfer, a widely-used neuroimaging U-Net for whole-
brain segmentation Henschel et al. (2020), and a CNN classifying the MNIST dataset LeCun &
Cortes (1998). Our results demonstrate that for FastSurfer, NaN Pooling can bypass up to 69.30%
convolutions in some layers, and up to 44% convolutions in a full model while maintaining the
accuracy of model outputs. For MNIST, NaN Pooling skips up to 28.38% convolutions, again while
achieving comparable accuracy.

2 METHODS

2.1 NUMERICAL INSTABILITY IN MAX POOLING

Max pooling Boureau et al. (2010) is a widely used downsampling technique that replaces a defined
window of values with its maximum value. It can optionally return indices that indicate the original
locations of these maximum values. During upsampling, max unpooling uses these indices to restore
the maximum values to their original positions, filling the remaining voxels with zeros. This process
ensures that the spatial structure of the input data is partially reconstructed based on the locations
of the selected maximum values. The indices generated during max pooling are especially useful in
U-Net architectures, where downsampling and upsampling processes are frequently coupled Zeiler
et al. (2010); Çiçek et al. (2016); Lu et al. (2019); Plascencia et al. (2023); De Feo et al. (2021).

In our previous work Anonymized, we investigated the numerical uncertainty of CNNs during in-
ference. We found that numerical instabilities arose during max unpooling operations due to fluctu-
ations in the indices passed to this process. When values within a pooling window are close to each
other, even slight noise—introduced, for example, by variations in the execution environment—can
lead to index shifts while the maximum value remains unchanged. This instability is particularly ev-
ident when upsampling is applied to areas of an image’s background, where uniform values prevail.
Interestingly, we observed that the propagation of this numerical noise did not adversely impact the
final outputs of the models we tested.

Unstable voxels contribute no meaningful information to the model. To address this inefficiency, we
propose NaN Pooling and Convolution as a way to bypass operations on such irrelevant voxels. In
floating-point arithmetic, NaNs (Not-a-Number) are special values defined by the IEEE 754 stan-
dard to represent undefined or unrepresentable results, such as 0 divided by 0 or the square root of
a negative number. A NaN is represented by an exponent of all ones and a non-zero mantissa, and
it is used to flag errors or exceptional conditions in calculations. Leveraging this concept, we use
NaNs to mark numerically irrelevant voxels, effectively skipping over operations that would other-
wise be wasted on data that provides no useful information. This approach enhances computational
efficiency by allowing the model to focus on relevant data, without altering the final output or model
performance.

2.2 NAN POOLING

As max pooling is the origin of the numerical uncertainty in U-Nets, we propose NaN Pooling to
address the inefficiencies found. Below we define NaN Pooling and illustrate it in Figure 1.

First we define max pooling, where for each tensor window W in the input tensor X, the max pooling
operation Y (W) is computed per batch.

Y (W) = (m, im)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Index: (0,0) or (0,1)

Index: (0,0)

Max pooling

NaN pooling

0 1

0

1

3.0

NaN

0.0 or 3.0 0.0 or 3.0

0.0 0.0

0 1

0

1

NaN 0.0

0.0 0.0

0 1

0

1

Unpooling

Unpooling

Max Value

Max Value

3.0 3.0

1.0 2.0

0 1

0

1

3.0 3.0

1.0 2.0

Figure 1: Comparison of Max Pooling vs NaN Pooling in the presence of numerical uncertainty.
Green color represents numerically stable values, while red represents unstable values.

Where m is the maximum value of W and im, the index of the maximum value of W, i.e. im =
argmax(W).

For NaN pooling, we redefine the max pooling operation Y to handle potential NaNs and tie-
breaking for repeated maximum values as follows:

Y ′(W) =

{
(NaN, (0, 0)) if Count({W:,:,j , |W:,:,j −m| < ϵ}) > t1

(m, im) otherwise

Where t1 is a user-defined threshold that specifies the maximum number of near-equal values al-
lowed for m̄, and ϵ is a small tolerance set to 10−7 to handle floating-point precision issues. We
set (0,0) to be the index in the presence of NaNs, because it is the simplest, most efficient and most
stable value to implement when resetting indices. Should W̄ contain NaN values, we simply ignore
them when calculating m and im.

2.3 NAN CONVOLUTION

NaN Convolution handles the presence of NaNs introduced through NaN Pooling, skipping over nu-
merically irrelevant operations. Consider a padded 4D input tensor X of shape (N,Cin, Hin,Win),
a 4D kernel tensor K of shape (Cout, Cin, Hk,Wk), and a NaN threshold t2 ∈ [0, 1] , where N is
the batch size, Cin is the number of input channels, Cout is the number of output channels, Hin is
the height of the input, Win is the width of the input, Hk is the height of the kernel, and Wk is the
width of the kernel.

For each window W in the input tensor, where W is of shape (Cin, Hin,Win) and its elements are in
R ∪ {NaN}, we define the output of the NaN convolution of window W by kernel K as performed
per batch:

Yc,h,w =

NaN if rc,h,w ≥ t2
Cin−1∑
c=0

Hk−1∑
h=0

Wk−1∑
w=0

W̄ c,h,w Kc,h,w if rc,h,w < t2

Where rc,h,w is the total number of NaNs across the input channels, height and width dimensions:

rc,h,w =
Count({w ∈ Wn,i,j , w = NaN})

CinHinWin

We define W̄ as the modified window where NaNs are replaced with one of two approaches.

Approach A replaces NaNs with µn,i,j , defined as the mean of the non-NaN values within W:

W̄ =

{
µn,i,j if Wn,i,j = NaN

Wn,i,j otherwise

Approach B replaces NaNs with a random value generated from a Gaussian distribution centered
around maxn,i,j , defined as the maximum of the non-NaN values within W, and a standard deviation

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

σ of 10−3 .

W̄ =

x ∼ N
(
max
n,i,j

(W), σ

)
if Wn,i,j = NaN

Wn,i,j otherwise

Approach A can smooth the output of the NaN Convolution, which is occasionally advantageous.
However, when smoothing is undesirable, Approach B introduces variability into the output. This
variability is particularly useful in models with subsequent iterations of NaN Pooling, as it prevents
overly aggressive NaN introduction that could result from repeatedly exploiting the smoothed output
of Approach A.

W̄ is introduced to ensure that regions where the number of NaNs remains below the threshold t2
are unaffected, since standard deep learning operations cannot inherently manage NaN values. It
replaces the previous versions of the window and serves as the basis for the convolution operation.

2.4 NAN CONVOLUTION IMPLEMENTATION

Implementing NaN Convolution requires modifying PyTorch’s internal handling of 2D convolutions.
Instead of processing convolutions on a window-by-window basis, PyTorch executes an entire con-
volution layer as a single matrix multiplication. This formulation requires us to adapt the NaN
Convolution definition to align with PyTorch’s more efficient computational strategy.

PyTorch’s implementation of 2D convolutions lies in the im2col technique, illustrated in the Ap-
pendix Figure 7. This operation reshapes the input tensor by extracting overlapping subregions
(corresponding to the convolutional kernel’s dimensions) and arranges them into columns, which
can then be multiplied with the kernel weights in a single matrix multiplication step. To reduce the
occurrence of random memory seeks, the im2col process is typically column-major, meaning data
is stored and processed primarily by columns. This technique dramatically increases computational
efficiency compared to the naive approach Chetlur et al. (2014).

For an input of size (N,C,Hin,Win) and a kernel of size (C,Hk,Wk), im2col extracts subre-
gions of size (C,Hk,Wk) and arranges them into columns, repeating the process for each of the N
batches. In our NaN Convolution implementation, we reduce the number of columns by removing
subregions that exceed a predefined NaN threshold. By eliminating these irrelevant columns, we
reduce the memory footprint and the computational load, thus improving overall performance. This
optimization aligns with our theoretical expectations, offering a practical approach to reducing the
computational inefficiencies while preserving model accuracy.

Given a padded 4D input tensor X of shape (N,Cin, Hin,Win), a 4D kernel tensor K of shape
(Cout, Cin, Hk,Wk), and a NaN threshold t2 ∈ [0, 1] , we define N as the batch size, Cin as the
number of input channels, Cout as the number of output channels, Hin as the height of the input,
Win as the width of the input, Hk is the height of the kernel and Wk as the width of the kernel.

We unfold the input tensor X using PyTorch’s unfold operation, in order to obtain matrix M ∈
R(N×Hin×Win , Cin×Hk×Wk). We then rename M to M̊ , to indicate the possible presence of NaNs
and to calculate the NaN ratio rj :

rj =
Count({m ∈ M̊ :,j ,m = NaN})

CinHinWin

We then remove columns from M̊ that surpass the user set NaN threshold, t2, and name this trun-
cated matrix M̊ trunc:

M̊ trunc = {M̊ :,j | rj ≤ t2, j = 0, 1, ..., CinHkWk}
M̄ trunc is built from M̊ trunc as it has all remaining NaN values that are under t2 replaced with the
mean value of their respective column. This is done to preserve standard convolutional operations
which cannot inherently manage NaN values.

M̄ trunc[i, j] =

{
M̊ trunc[i, j] if M̊ trunc[i, j] is not NaN

mean(M̊ trunc[:, j]) if M̊ trunc[i, j] is NaN,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We then perform the matrix multiplication:

Ȳ trunc = M̄ trunc Kunfold

Where Kunfold ∈ R(Cout,Cin×Hk×Wk) and Ȳ trunc is the output of the truncated matrix multipli-
cation.

Finally, we add the removed columns back to their original locations in Ȳ trunc, populated solely
with NaNs in order to obtain ¯̊

Y , of shape (N,Cout, Hk,Wk).

In our implementation of NaN Convolution, we allow users to set the NaN threshold t2, providing
control over how aggressively NaNs are managed during operations. A higher threshold reduces
the occurrence of NaNs, which can lead to reduced computational efficiency but thoroughly main-
tains model performance. Adjusting the threshold often involves a trade-off between efficiency and
accuracy, as allowing more NaNs can impact key operations and potentially degrade performance.

3 EXPERIMENTS

We evaluated NaN Pooling and Convolution on two different CNNs. The first use case is a popular
neuroimaging U-Net, FastSurfer, using a representative set of images from a dataset provided by
the Consortium for Reliability and Reproducibility (CoRR) Zuo et al. (2014). Evaluation metrics
for FastSurfer included the ratio of skipped convolutions, and the loss functions utilized to train the
original model. The second CNN is built to perform digit classification on the MNIST dataset Le-
Cun & Cortes (1998). It is a widely known task that showcases NaN Pooling and Convolutions’
applicability beyond neuroimaging specific models.

3.1 FASTSURFER

FastSurfer is a CNN model that performs whole-brain segmentation, cortical surface reconstruc-
tion, fast spherical mapping, and cortical thickness analysis. The FastSurfer CNN is inspired from
the QuickNAT model Roy et al. (2019), which is composed of three 2D fully convolutional neu-
ral networks—each associated with a different 2D slice orientation—that each have the same en-
coder/decoder U-net architecture with skip connections, unpooling layers and dense connections
as QuickNAT. A diagram of the model’s architecture is available in the Appendix Figure 8. The
FastSurfer segmentations were shown to surpass state-of-the-art methods, as well as being general-
izable to unseen datasets and having better test-retest reliability. We used the pre-trained model from
FastSurfer available on GitHub fas. We focus exclusively on the task of whole-brain segmentation,
defined as the labeling of different anatomical brain regions, which is performed solely by the CNN.

3.2 MNIST

To evaluate the performance and behavior of NaN Pooling and NaN Convolution, we conducted
experiments on a small CNN trained on the MNIST dataset. The model architecture included alter-
nating convolutional and ReLU activation layers, each followed by a pooling layer, repeated three
times, and concluded with a final convolutional layer, a pooling layer, and a log-softmax output
layer. While this architecture is not a U-Net — considered the ideal setting for applying NaN Pool-
ing and Convolutions — we show that this approach is also effective for other CNN architectures
utilizing convolution and max pooling operations. The task, a classification problem to identify dig-
its from the input images, is well-established and widely considered solved. This experiment served
as a baseline to demonstrate the feasibility and potential benefits of NaN Pooling in a controlled,
well-understood context.

3.3 DATASET & PROCESSING

For FastSurfer, we used the Consortium for Reliability and Reproducibility (CoRR) dataset, a
multi-centric, open resource aimed to evaluate test-retest reliability and reproducibility. We
randomly selected 5 T1-weighted MRIs from 5 different subjects, one from each CoRR
acquisition site, and accessed them through Datalad Halchenko et al. (2021). The se-
lected images included a range of image dimensions, voxel resolutions and data types (Ap-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

pendix A.2). We processed all subjects’ images using FreeSurfer’s recon-all command with the fol-
lowing steps: --motioncor --talairach --nuintensitycor --normalization
--skullstrip --gcareg --canorm --careg. These steps ensured that the images were
motion-corrected, skull-stripped, intensity-normalized, and registered both linearly and non-linearly,
preparing them as input for FastSurfer segmentation.

For the MNIST use case, the CNN used in this experiment was custom-built while the dataset was
downloaded from PyTorch’s torchvision library.

When applying NaN Pooling and Convolutions to the models, we used Approach A within NaN
Convolution for NaN substitution for the FastSurfer CNN and Approach B for the MNIST CNN in
order to achieve optimal performance.

We processed the data for FastSurfer on the Narval cluster from École de Technologie Supérieure
(ETS, Montréal), managed by Calcul Québec and The Digital Alliance of Canada which include
AMD Rome 7502, AMD Rome 7532, and AMD Milan 7413 CPUs with 48 to 64 physical cores,
249 GB to 4000 GB of RAM and Linux kernel 3.10. We executed the MNIST CNN on the slashbin
cluster with 8 × compute nodes each with an Intel Xeon Gold 6130 CPU, 250 GB of RAM, and Linux
kernel 4.18.0-240.1.1.el8 lustre.x86 64. We used FreeSurfer v7.3.1, FastSurfer v2.1.1, PyTorch
v2.4.0, and Singularity/Apptainer v1.2. The scripts and documentation for this experiment will be
published on GitHub.

4 RESULTS

4.1 NAN POOLING AND CONVOLUTION SAVES 39% OF CONVOLUTIONS ON AVERAGE

To quantify the acceleration introduced by NaN Pooling and Convolution, we measured the number
of convolutional operations replaced with NaNs in the FastSurfer model. We tested the techniques
with several thresholds ranging from 1 to 0.5 depending on the use case. The threshold represents
the ratio of NaNs required to skip an operation, with threshold 1 being the most stringent (skipping
operations only when the input consists entirely of NaNs) and threshold 0.5 being more lenient
(skipping operations when 50% or more of the values are NaNs).

Our results revealed that the numerically unstable voxels impacted by NaN Pooling and Convolution
are typically found in the background of the input data. This often numerically irrelevant background
can comprise up to two-thirds of the total input space, rendering it ideal for optimization. To quantify
the computational impact, we calculated the ratio of skipped operations relative to the total number
of convolutional operations. This ratio was tracked both across the architectural layers of the models
and across brain slices in the neuroimaging data, providing a comprehensive view of the effect of
NaN Pooling and Convolution.

Figure 2 shows the impact of NaN Pooling and Convolution on FastSurfer during inference. As
illustrated in Figure 2a, skipped operations only occur between the Encode 1 and Decode 2 blocks.
This is because no NaN Pooling is applied prior to Encode 1, and no NaN Pooling occurs after
the Bottleneck layer, leading to a decline in skipped operations after Decode 2 as NaNs become
sparse. As a result, the majority of skipped operations are concentrated in the middle sections of the
model with the exception of the Bottleneck block. The drop here is due to the U-Net architecture’s
reduced spatial dimensions at this stage, which prioritises the preservation of relevant information
while minimising the presence of numerically irrelevant voxels (represented by NaNs).

In Figure 2b, we observe higher skipped operation ratios at the extremes of the brain slice distri-
bution, which implies a higher amount of numerically irrelevant voxels. Upon examination, these
slices contain a larger proportion of background than brain matter voxels. This is consistent with
preliminary results which suggested background voxels are largely numerically irrelevant.

For FastSurfer, NaN Pooling and Convolution reduced the number of operations by 33.24% and
44.19% at thresholds of 1 and 0.5, respectively. When focusing solely on model layers affected by
NaNs, the skipped operations increased significantly to 50.59% and 69.30% for these thresholds.

In brief, the most substantial computational gains were observed in the encoder section of the U-
Net architecture, largely due to the frequent use of NaN Pooling. This technique primarily targeted

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Input
Encode1

Encode2
Encode3

Encode4

Bottleneck
Decode4

Decode3
Decode2

Decode1

Output block
Classifi

er

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f S

ki
pp

ed
 O

pe
ra

tio
ns

Coronal Plane
Threshold 1
Threshold 0.5

Input
Encode1

Encode2
Encode3

Encode4

Bottleneck
Decode4

Decode3
Decode2

Decode1

Output block
Classifi

er

Axial Plane
Threshold 1
Threshold 0.5

Input
Encode1

Encode2
Encode3

Encode4

Bottleneck
Decode4

Decode3
Decode2

Decode1

Output block
Classifi

er

Sagittal Plane
Threshold 1
Threshold 0.5

(a) Across Architecture

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f S

ki
pp

ed
 O

pe
ra

tio
ns

Coronal Plane
Threshold 1
Threshold 0.5

0 50 100 150 200 250

Axial Plane
Threshold 1
Threshold 0.5

0 50 100 150 200 250

Sagittal Plane
Threshold 1
Threshold 0.5

(b) Across Brain Slices

Figure 2: Ratio of Skipped Convolutions Across FastSurfer for Architecture and Brain Slices. For
Threshold 1 (blue) and 0.5 (orange), 33.24 % and 44.19 % of total convolutional operations were
skipped, respectively.

numerically irrelevant voxels, which were concentrated in background regions or areas devoid of
brain matter.

4.2 NAN POOLING AND CONVOLUTION PRESERVES MODEL ACCURACY

Besides optimizing the computational efficiency of the model, we want to maintain its current perfor-
mance. We evaluate the models’ performance with NaN Pooling and Convolution against the model
run with their default operations using metrics commonly used to evaluate brain segmentation as
well as metrics used to evaluate the original performance of the models.

0 50 100 150 200 250
Brain Slices

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Di
ce

 L
os

s

Coronal Plane

Threshold 1
Threshold 0.5
Default

0 50 100 150 200 250
Brain Slices

Axial Plane

Threshold 1
Threshold 0.5
Default

0 50 100 150 200 250
Brain Slices

Sagittal Plane

Threshold 1
Threshold 0.5
Default

Figure 3: Comparison of Dice loss for default and NaN FastSurfer (thresholds 1 and 0.5) across
brain slices.

We begin our analysis by examining the distribution of Dice loss across brain slices, as shown in
Figure 3. Understanding Dice loss requires a grasp of the Dice coefficient score, which measures the
overlap similarity between two brain segmentations. Higher Dice coefficients indicate more similar
segmentations, while Dice loss is calculated as one minus the Dice coefficient. Consequently, higher
Dice loss values signify less similarity between predicted and ground truth segmentations.

The average and standard deviation of Dice loss across subjects for different thresholds closely
resemble those of default FastSurfer. As expected, we observe a decrease in Dice loss near the
centre of the brain, where slices contain the highest proportion of brain matter, resulting in greater

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Threshold 1 Threshold 0.5
0.06

0.05

0.04

0.03

0.02

0.01

0.00

0.01

0.02

Di
ce

 L
os

s D
iff

er
en

ce

* *

Coronal Plane

Subject 0025531
Subject 0003002
Subject 0025011
Subject 0025248
Subject 0025350

Threshold 1 Threshold 0.5
* *

Axial Plane

Subject 0025531
Subject 0003002
Subject 0025011
Subject 0025248
Subject 0025350

Threshold 1 Threshold 0.5
*

Sagittal Plane

Subject 0025531
Subject 0003002
Subject 0025011
Subject 0025248
Subject 0025350

Figure 4: Comparison of Dice loss differences between NaN-FastSurfer and default FastSurfer
across brain planes and thresholds. Significant differences between NaN and default FastSurfer
as calculated with a paired T-test are indicated by *.

similarity. In contrast, slices with more background show lower similarity and higher Dice loss.
However, a sharp increase in Dice loss is observed near the centre of the distribution for the sagittal
plane. This increase is likely attributed to the presence of the longitudinal fissure (or sagittal fissure)
that separates the two brain hemispheres. The two hemispheres are primarily connected by the
corpus callosum, and the empty space in this fissure leads to increased Dice loss.

Expanding on this analysis, Figure 4 shows the Dice loss differences between NaN-FastSurfer and
default FastSurfer across subjects. Negative values indicate worse performance for NaN-FastSurfer,
while positive values indicate improvement. Overall, NaN-FastSurfer performs similarly to the
default model, with differences tightly clustered around zero across the three brain planes.

At threshold 1, significant differences are seen in the coronal and axial planes, while at threshold 0.5,
they appear across all planes. The largest difference (-0.05) is found in the sagittal plane at threshold
0.5, representing a 5.73% variation from its default Dice score. Excluding outliers, average Dice
differences are 0.02% and 0.04% for thresholds 1 and 0.5, respectively, rising slightly to 0.06% and
0.09% when outliers are included.

Nonetheless, we also observed a substantial number of negative differences between NaN and de-
fault FastSurfer in the axial plane, as depicted in Figure 3. This variability is further illustrated in
Figure 4, where the axial plane exhibits a high standard deviation, particularly in comparison to the
coronal and sagittal planes. Upon further investigation into the source of these differences, Figure 5
highlights that the cerebellum is a significant contributor to the variability between the two methods.
Although the cerebellum is not visible in this axial slice, it becomes particularly evident in lower
axial slices and demonstrates instability across subjects and methods. Research has indicated that
the cerebellum is notoriously challenging to segment due to its complex anatomy, proximity to other
brain regions, high shape variability across subjects, and often low contrast in neuroimaging data,
which complicates detail identification. Furthermore, FastSurfer was trained on FreeSurfer segmen-
tations, which has been noted for its poor segmentation performance in regions of low contrast and
intricate anatomy Morell-Ortega et al. (2024); Carass et al. (2018); Romero et al. (2017). Addi-
tional visualisation of the expected cerebellum quality is provided in the Appendix Figure 9. While
we observe a visual decline in quality with NaN-FastSurfer, the default version is not considered a
valid segmentation either. This supports the conclusion that the limitations of FreeSurfer extend to
FastSurfer, rendering its cerebellum segmentation unreliable. Aside from the cerebellum, the seg-
mentation quality of the rest of the model appears stable and consistent between NaN and default
FastSurfer.

Interestingly, we found that the performance of NaN-FastSurfer is quite similar between thresholds
1 and 0.5. Although we observed slightly more differences from the default FastSurfer at threshold
0.5, the overall variations between the two thresholds were minimal. Therefore, while further testing
is needed to generalise our findings to other use cases, we can conclude that threshold 0.5 is the
preferred option, as it achieves comparable performance with enhanced computational efficiency.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Worst Performing Subject for Threshold 1; sub-0025011

(b) Worst Performing Subject for Threshold 0.5; sub-
0025011

Figure 5: Comparison of segmentation outputs between NaN-FastSurfer and default FastSurfer
across different thresholds, displayed in coronal (left), axial (center), and sagittal (right) planes.
The different brain regions are colored according to the Fastsurfer colormap except for the bright
red voxels scattered throughout the brain which denote differences in segmentation outputs.

4.3 THRESHOLD SENSITIVITY ANALYSIS WITH MNIST

Conv1 Conv2 Conv3 Conv4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ra
tio

 o
f S

ki
pp

ed
 O

pe
ra

tio
ns

Threshold 1
Threshold 0.85
Threshold 0.75
Threshold 0.65
Threshold 0.5

Figure 6: Ratio of Skipped Convolutions Across MNIST CNN Architecture for Test Dataset.

Table 1: MNIST CNN performance metrics with Kfold validation (K=5) across different thresholds
and the default model.

Threshold 1 Threshold 0.85 Threshold 0.75 Threshold 0.65 Threshold 0.5 Default
Precision 0.988± 0.001 0.989± 0.002 0.982± 0.003 0.932± 0.004 0.304± 0.028 0.991± 0.001

Recall 0.989± 0.001 0.989± 0.002 0.981± 0.003 0.927± 0.005 0.198± 0.006 0.991± 0.001
F1 0.989± 0.001 0.989± 0.002 0.981± 0.003 0.927± 0.005 0.194± 0.007 0.991± 0.001

Accuracy 0.989± 0.001 0.989± 0.002 0.981± 0.003 0.927± 0.005 0.198± 0.006 0.991± 0.001

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 6 illustrates the ratio of skipped operations during inference for the MNIST CNN. Skipped
operations are observed only after the Conv1 layer, due to the introduction of pooling operations.
Notably, the skipped operation ratio drops back to zero after the Conv4 layer. This is likely to hap-
pen because the Conv4 layer, being the most downsampled, primarily contains crucial information
necessary for classification, with irrelevant information effectively filtered out by this stage.

For this model, we experimented with a wider range of thresholds, as the impact of skipping oper-
ations on model performance was significantly more pronounced compared to what was observed
with FastSurfer. As shown in Figure 6, lower thresholds result in greater computational gains.
Specifically, after incorporating pooling operations, the percentage of skipped operations increases
as thresholds decrease: 5.14% for a threshold of 1, 9.28% for 0.85, 14.63% for 0.75, 28.38% for
0.65, and 64.83% for 0.5. However, these gains come at the cost of a trade-off in model performance,
highlighting the importance of selecting an appropriate threshold.

Analyzing the results in Table 1, we observe that most thresholds for the NaN-enhanced MNIST
CNN preserve comparable performance. However, the choice of threshold emerges as a critical
factor for this model. Specifically, the most stringent threshold tested, 0.5, significantly degrades
performance, while all other thresholds maintain metrics exceeding 90%.

Figure 6 and Table 1 highlight the importance of carefully selecting a threshold to balance perfor-
mance and computational efficiency. This trade-off should be tailored to the specific requirements
of the intended use case.

5 CONCLUSION

This paper introduced NaN Pooling and Convolution, new variations of PyTorch’s max pooling and
2D convolution operations, which are designed to enhance the efficiency of U-Net models. The
techniques identify and leverage numerically unstable voxels, which don’t contribute to the model’s
output, by replacing them with NaNs. This allows the model to bypass operations on irrelevant data,
thereby saving computation time. These potential benefits aren’t limited to neuroimaging and could
be advantageous in other fields facing similar challenges related to computational demands and data
efficiency.

We evaluated the effectiveness of these methods on two use cases: the widely used neuroimaging
U-Net, FastSurfer, and the MNIST benchmark CNN. For FastSurfer, our NaN Pooling and Convolu-
tion techniques achieved a 39% reduction in total convolutional operations on average, significantly
improving computational efficiency without compromising model accuracy. The NaN-FastSurfer
demonstrated performance comparable to its default implementation. Similarly, in the MNIST
benchmark CNN, we achieved up to a 28.38% reduction in convolutional operations while main-
taining comparable accuracy. However, the MNIST model showed greater sensitivity to threshold
variations compared to FastSurfer, highlighting the importance of carefully balancing efficiency and
performance when determining the optimal threshold.

Despite successfully skipping operations, we have not yet observed a direct impact on runtime
speed-up, likely due to PyTorch’s inherent computational optimizations. As a result, our analy-
sis focuses on the number of skipped convolutional operations as a proxy for computational effi-
ciency. Therefore, future work will focus on extending the application of NaN Pooling and Con-
volution to the training of models and delivering the expected runtime speed-ups from skipped op-
erations in practice. Further investigation is required to evaluate potential hardware limitations,
implementation-specific factors or investigating alternative implementations that leverage sparse
matrix representations or specific hardware architectures.

REFERENCES

PyTorch Implementation of FastSurferCNN. https://github.com/Deep-MI/FastSurfer. Accessed:
2024-09-28.

Anonymized.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical analysis of feature pooling in visual
recognition. In Proceedings of the 27th international conference on machine learning (ICML-10),
pp. 111–118, 2010.

Aaron Carass, Jennifer L Cuzzocreo, Shuo Han, Carlos R Hernandez-Castillo, Paul E Rasser,
Melanie Ganz, Vincent Beliveau, Jose Dolz, Ismail Ben Ayed, Christian Desrosiers, et al. Com-
paring fully automated state-of-the-art cerebellum parcellation from magnetic resonance images.
Neuroimage, 183:150–172, 2018.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catan-
zaro, and Evan Shelhamer. cuDNN: Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759, 2014.

Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger. 3D U-
Net: learning dense volumetric segmentation from sparse annotation. In Medical Image Comput-
ing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens,
Greece, October 17-21, 2016, Proceedings, Part II 19, pp. 424–432. Springer, 2016.

Riccardo De Feo, Artem Shatillo, Alejandra Sierra, Juan Miguel Valverde, Olli Gröhn, Federico
Giove, and Jussi Tohka. Automated joint skull-stripping and segmentation with Multi-Task U-
Net in large mouse brain MRI databases. NeuroImage, 229:117734, 2021.

François Févotte and Bruno Lathuiliere. VERROU: a CESTAC evaluation without recompilation.
SCAN 2016, pp. 47, 2016.

Yaroslav Halchenko, Kyle Meyer, Benjamin Poldrack, Debanjum Solanky, Adina Wagner, Jason
Gors, Dave MacFarlane, Dorian Pustina, Vanessa Sochat, Satrajit Ghosh, et al. DataLad: Dis-
tributed System for Joint Management of Code, Data, and Their Relationship. Journal of Open
Source Software, 6(63), 2021.

Leonie Henschel, Sailesh Conjeti, Santiago Estrada, Kersten Diers, Bruce Fischl, and Martin Reuter.
Fastsurfer-a fast and accurate deep learning based neuroimaging pipeline. NeuroImage, 219:
117012, 2020.

Yann LeCun and Corinna Cortes. The mnist database of handwritten digits. http://yann.lecun.com/
exdb/mnist/, 1998.

Hao Lu, Yutong Dai, Chunhua Shen, and Songcen Xu. Indices matter: Learning to index for deep
image matting. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 3266–3275, 2019.

Sergio Morell-Ortega, Marina Ruiz-Perez, Marien Gadea, Roberto Vivo-Hernando, Gregorio Rubio,
Fernando Aparici, Mariam de la Iglesia-Vaya, Gwenaelle Catheline, Pierrick Coupé, and José V
Manjón. Deepceres: A deep learning method for cerebellar lobule segmentation using ultra-high
resolution multimodal mri. arXiv preprint arXiv:2401.12074, 2024.

Nicholas Nethercote and Julian Seward. Valgrind: A Framework for Heavyweight Dynamic Binary
Instrumentation. ACM Sigplan notices, 42(6):89–100, 2007.

Douglass Stott Parker. Monte Carlo Arithmetic: Exploiting Randomness in Floating-Point Arith-
metic. University of California (Los Angeles). Computer Science Department, 1997.

Alfredo Chávez Plascencia, Pablo Garcı́a-Gómez, Eduardo Bernal Perez, Gerard DeMas-Giménez,
Josep R Casas, and Santiago Royo. A preliminary study of deep learning sensor fusion for pedes-
trian detection. Sensors, 23(8):4167, 2023.

Jose E Romero, Pierrick Coupé, Rémi Giraud, Vinh-Thong Ta, Vladimir Fonov, Min Tae M Park,
M Mallar Chakravarty, Aristotle N Voineskos, and Jose V Manjón. CERES: a new cerebellum
lobule segmentation method. Neuroimage, 147:916–924, 2017.

Abhijit Guha Roy, Sailesh Conjeti, Nassir Navab, Christian Wachinger, Alzheimer’s Disease Neu-
roimaging Initiative, et al. QuickNAT: A Fully Convolutional Network for Quick and Accurate
Segmentation of Neuroanatomy. NeuroImage, 186:713–727, 2019.

11

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Devan Sohier, Pablo De Oliveira Castro, François Févotte, Bruno Lathuilière, Eric Petit, and Olivier
Jamond. Confidence Intervals for Stochastic Arithmetic. ACM Transactions on Mathematical
Software (TOMS), 47(2):1–33, 2021.

Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolutional networks.
In 2010 IEEE Computer Society Conference on computer vision and pattern recognition, pp.
2528–2535. IEEE, 2010.

Xi-Nian Zuo, Jeffrey S Anderson, Pierre Bellec, Rasmus M Birn, Bharat B Biswal, Janusch Blautzik,
John Breitner, Randy L Buckner, Vince D Calhoun, F Xavier Castellanos, et al. An Open Science
Resource for Establishing Reliability and Reproducibility in Functional Connectomics. Scientific
Data, 1(1):1–13, 2014.

A APPENDIX

A.1 IM2COL OPERATION

Input Block

Encoder Block 1

Encoder Block 3

Significant Digits Standard Deviation Mean

Significant Digits Standard Deviation Mean

Significant Digits Standard Deviation Mean

Encoder Block 4
Significant Digits Standard Deviation Mean

Bottleneck
Significant Digits Standard Deviation Mean

Decoder Block 4
Significant Digits Standard Deviation Mean

Decoder Block 3
Significant Digits Standard Deviation Mean

Decoder Block 1
Significant Digits Standard Deviation Mean

Output Block
Significant Digits Standard Deviation Mean

Input Block

Encoder Block 1

Encoder Block 3

Encoder Block 4 Bottleneck Decoder Block 4

Decoder Block 3

Decoder Block 1

Output Block Input Block

Encoder Block 1

Encoder Block 3

Encoder Block 4 Bottleneck Decoder Block 4

Decoder Block 3

Decoder Block 1

Output Block

0003002

0025011

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 5 6

2 3 6 7

3 4 7 8

5 6 9 10

6 7 10 11

7 8 11 12

9 10 13 14

10 11 14 15

11 12 15 16

2 2 2

2 2 2

2 2 2

2 2 2 2 2 2 2 2 2

108 126

180 198

Input

Transformed Input

Kernel

Transformed Kernel

=

Output

Reshaped Output

Index: (0,0) or (0,1)

Index: (0,0)

Max pooling

NaN pooling

0 1

0

1

3.0

NaN

0.0 or 3.0 0.0 or 3.0

0.0 0.0

0 1

0

1

NaN 0.0

0.0 0.0

0 1

0

1

Unpooling

Unpooling
Max Value

Max Value

Index: (0,NaN)

NaN pooling3.0 3.0

1.0 2.0

0 1

0

1

3.0 NaN NaN

0.0 0.0

0 1

0

1
NaN Unpooling

Max Value

3.0 3.0

1.0 2.0

0 1

0

1

3.0 3.0

1.0 2.0

108 126 180 198x

Figure 7: Illustration of PyTorch’s im2col operation for an 4x4 input and 3x3 kernel to produce 2x2
output. The blue highlighted window indicates how the operation reshapes the each convolution
window into a column.

A.2 CORR DATASET QUALITY CONTROL

Table 2: Subjects sampled in the CoRR dataset.

Subject Image Dimension Voxel Resolution Data Type Processing Status

sub-0025248 (208, 256, 176) (1.00, 1.00, 1.00) float32 Success
sub-0025531 (160, 240, 256) (1.20, 0.94, 0.94) float32 Success
sub-0025011 (128, 256, 256) (1.33, 1.00, 1.00) float32 Success
sub-0003002 (176, 256, 256) (1.00, 1.00, 1.00) int16 Success
sub-0025350 (256, 256, 220) (0.94, 0.94, 1.00) float32 Success

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A.3 U-NET ARCHITECTURE

Figure 8: Illustration of FastSurfer’s architecture. The CNN consists of four competitive dense
blocks (CDB) in the encoder and decoder part, separated by a bottleneck layer. Figure reproduced
from Henschel et al. (2020).

A.4 CEREBELLUM SEGMENTATION

Figure 9: Comparison of FastSurfer’s cerebellum segmentation with and without NaN Pooling and
Convolution. On the left is the default FastSurfer segmentation, while on the right, the overlay shows
the differences between NaN-FastSurfer (threshold 1) and the default version. Both segmentations
are superimposed on the anatomical MRI scan of the cerebellum for reference.

A.5 FASTSURFER UNSTABLE MODEL EMBEDDINGS

In our previous work Anonymized, we examined the numerical uncertainty of the FastSurfer CNN
during inference, focusing on the stability of the final classification results as well as the embeddings.

In order to do so, we used Monte Carlo Arithmetic (MCA) Parker (1997), a stochastic arithmetic
technique that introduces randomness to assess numerical uncertainty. MCA is implemented through
the Verrou tool Févotte & Lathuiliere (2016), a tool that leverages Valgrind Nethercote & Seward
(2007) to dynamically instruments binary executables with MCA. Using Verrou, we instrumented
FastSurfer inference to generate 10 iterations of the model’s embeddings, each subjected to random
perturbations introduced during execution. These perturbations allowed us to simulate and analyze
numerical uncertainty inherent in the model. To quantify this uncertainty, we computed the number
of significant digits across the 10 iterations. Significant digits Sohier et al. (2021) measure numerical
uncertainty by determining the number of digits shared in common across multiple MCA samples
for a given floating-point value. This analysis was performed for every layer of the FastSurfer
model, with the results visualized as heatmaps in Figure10. This revealed that a large fraction of the
model embeddings were purely numerical noise (zero significant digits), represented by red-colored
regions in the figure.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 10: Significant Digit Maps for FastSurfer Model Embeddings in Selected Model Layers for
Numerically Unstable Data.

The instability first appeared during the max unpooling operations in the FastSurfer decoder, which
we later determined resulted from the indices provided to the max unpooling operation. This in-
stability becomes especially pronounced when upsampling is applied to regions of the image back-
ground, where uniform values dominate.

Interestingly, the segmentations resulting from the model were still accurate in spite of the presence
of substantial numerical noise in the embeddings, which suggested that computations performed on
these values were not contributing to the final result. This observation motivated the design of NaN
pooling and convolutions presented in this paper.

14

	Introduction
	Methods
	Numerical Instability in Max Pooling
	NaN Pooling
	NaN Convolution
	NaN Convolution Implementation

	Experiments
	FastSurfer
	MNIST
	Dataset & Processing

	Results
	NaN Pooling and Convolution Saves 39% of Convolutions on Average
	NaN Pooling and Convolution Preserves Model Accuracy
	Threshold Sensitivity Analysis with MNIST

	Conclusion
	Appendix
	im2col Operation
	CoRR DataSet Quality Control
	U-Net Architecture
	Cerebellum Segmentation
	FastSurfer Unstable Model Embeddings

