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ABSTRACT

In this paper, we investigate the use of vision pre-trained models (PTMs) for
developing generalist robot manipulation policies. We study whether embodied
policies trained with representations from vision and language PTMs are capable
of multi-tasking and overcoming domain gaps. Evaluating a set of off-the-shelf
vision PTMs, our first finding is that the commonly used global features are
generally inadequate for building multi-task robot manipulation policies, while
keeping local features significantly improves in-domain performance and out-of-
domain generalizibility. Experiment results show that DINOv2, a model trained
on conventional vision datasets, outperforms models explicitly designed for robot
learning. To bridge the domain gaps, we further experiment on the effect of
augmentation methods on embodied robot policies and few-shot adaptation. On
the later case, we propose a novel objective by introducing self-distillation to the
objectives of few-shot adaptation. Experiment results show that our approach is
compatible with multiple PTMs, improving performance on novel domains when
the number of demonstration available is limited.

1 INTRODUCTION

The design of robot manipulation policies has been transformed by advancements in large pre-trained
models (PTMs) in natural language processing and computer vision. The success of foundation
models has inspired the development of generalist embodied agents. These agents are designed to
understand instructions in natural language, perceive their environment through vision inputs, and
take actions to interact with the physical world. In robot manipulation tasks, a generalist robot policy
aims to perform a wide range of tasks using a unified model or framework. Additionally, a generalist
policy also enables more flexible and efficient deployment to various environments and tasks.

As the most successful foundation models, the use of large language models (LLMs) in building
generalist robot manipulation policies has been extensively studied (Zitkovich et al., 2023; Szot
et al., 2024). The reasoning and planning capabilities of LLMs enable them to serve as high-level
policies that plan macro actions in the language domain (Marza et al., 2024). For embodied agents,
natural language provides a concise and environment-invariant description of tasks and surroundings.
Therefore, policies built from LLMs often demonstrate decent performance when executing multiple
tasks and adapting to unseen tasks in a single environment. For embodied agents that utilize both
vision and language inputs, vision plays a critical role in defining their perception of objects and
environments. However, the question of whether an embodied policy can generalize to environments
with unseen visual attributes remains a significant challenge. Thus, the effectiveness of pre-trained
visual representations in generalist agents requires extensive study. In this paper, we build robot
manipulation policies using frozen representations from vision PTMs and explore the following
questions: (1) If not relying on the predictive power of LLMs, are vision PTMs effective for building
a multi-task robot manipulation policy? (2) With “high-quality” features from vision PTMs, can
policies trained with pre-trained visual representations effectively generalize to unseen environments?
(3) How can we effectively and efficiently bridge the domain gaps between training environments
and unseen environments?

Most existing works on robot learning with vision PTMs focus on improving the quality of pre-trained
visual representations. These PTMs are benchmarked on whether their representations are effective
and efficient for learning a high-performance policy for a single task. In this paper, we investigate
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whether the representations from vision PTMs can be effectively scaled up to train a multi-task robot
policy. On the Metaworld (Yu et al., 2019) robot manipulation tasks, we found that commonly-used
aggregated visual representations (or global features) are often ineffective for training a multi-task
policy, as essential information, such as spatial structure, is lost during feature compression. We
demonstrate that using the full representations (or local features) from these models significantly
boosts the performance of the multi-task policy. Based on this discovery, we evaluate a set of
off-the-shelf vision PTMs within our problem setting. Surprisingly, we found that a PTM trained on
conventional image datasets (DINOv2 (Oquab et al., 2024)) outperforms the state-of-the-art PTM
(VC-1 (Majumdar et al., 2023)), which was pre-trained on explicitly selected datasets related to robot
learning.

In building embodied agents, vision PTMs are also termed as artificial visual cortex (Majumdar et al.,
2023). As humans, we possess a structured and, in some sense, symbolic understanding of perceived
objects and environments, allowing us to easily generalize skills learned from tasks in one domain
to similar tasks in novel domains. For example, after learning to drive a white sedan in driving
school, we can naturally drive a red sedan on a highway or a road in a forest. We could probably
also learn to drive a black SUV with just a few minutes of practice. Similarly, upon seeing a red
object, we can immediately grasp the concept of the same object in green. This knowledge of visual
representations in the human visual cortex enables us to generalize skills effectively without requiring
extensive training on diverse experiences for a specific task. Huh et al. (2024) hypothesize that
vision and language PTMs trained on large-scale data converge to representations that are similarly
distributed, suggesting they gravitate towards a statistical model of the world. Given that PTMs are
trained on internet-scale datasets, could their inductive biases induce a similar pattern when training
embodied agents with their representations? In this work, we investigate whether robot manipulation
policies trained with PTM representations and demonstrations from a single domain can generically
generalize to multiple unseen domains.

When deploying embodied agents, the gap between training task domains and unseen task domains
still presents challenges, particularly if the diversity of training domains is limited. Observing that
policies trained with vision PTMs usually result in some level of performance degrade on unseen
domains, we further investigate possible approaches to bridge these domain gaps. Existing works
address domain gaps in robot learning through two main directions: data augmentation (Laskin et al.,
2020; Yu et al., 2023) and generation (Tobin et al., 2017; Yang et al., 2024), or few-shot adaptation
(Marza et al., 2024). In this work, we explore both directions within our problem setup. First, we
assess whether conventional augmentation methods effectively reduce the generalization gap, and
we observe that each vision PTM is compatible with different types of augmentation. Next, in the
few-shot adaptation setting, we propose a novel approach by introducing self-distillation into the
fine-tuning objective.

Our contributions are summarized as follows: (1) We found that the commonly-used global features
from vision PTMs are generally ineffective for building multi-task robot manipulation policies, while
policies trained with local features from the PTMs achieve significantly better performance. (2) We
evaluate a set of existing vision PTMs, comparing their in-domain multi-task performance and out-of-
domain generalization, and conclude that policies trained with local features from DINOv2 perform
the best on both metrics. (3) We conduct an extensive study on the effects of conventional data
augmentation methods on robot policy training with pre-trained visual representations, summarizing
the compatibility of augmentation methods with different vision PTMs. (4) We propose a novel
objective for few-shot adaptation by introducing self-distillation on features from a trained policy,
which improves performance when the number of novel demonstrations is limited and generally
outperforms conventional fine-tuning methods when evaluated on unseen domains.

2 RELATED WORKS

Generalist Robot Policy Two primary research directions have emerged for building generalist robot
policies. The first direction leverages the power of large language models (LLMs). Myers et al. (2024)
decompose complex tasks into subtasks and use GPT4o to plan the sequence of subtasks for execution.
Szot et al. (2024) and Zitkovich et al. (2023) adapt LLMs into vision-language robot policies by
mapping visual representations and actions to the embeddings of a frozen LLM. The second direction
focuses on creating more generalist robot policies, where vision and language pre-trained models
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(PTMs) serve only as feature extractors for visual and language inputs (Brohan et al., 2023). Octo
Model Team et al. (2024) trains a Transformer (Vaswani et al., 2017) policy on 800k episodes of
robot manipulation tasks, establishing a foundation model for robot manipulation policies. In this
paper, we explore the second direction and emphasize the role of vision PTMs in training generalist
robot manipulation policies.

Pre-trained Visual Representations for Downstream Policy Training Utilizing pre-trained models
for downstream tasks is already common in computer vision and natural language processing.
However, due to the large domain gap between standard vision benchmarks and control tasks, such
strategies have only recently been explored. Parisi et al. (2022) use outputs from multiple layers of a
frozen pre-trained MoCo ResNet (He et al., 2020) to train a single-task policy. Shridhar et al. (2021)
propose a two-stream framework that employs pre-trained CLIP (Radford et al., 2021) to guide the
training of a Transporter model for affordance prediction tasks. Khandelwal et al. (2022) utilize
local tokens from the pre-trained CLIP model to perform navigation tasks. Later studies found that
favoring egocentric view data in the pre-training distribution improves downstream single-task policy
performance. Specifically, R3M uses temporal-contrastive learning with video-text pairs from the
Ego4D dataset (Grauman et al., 2022) to enhance single-task policy training. VC-1 (Majumdar et al.,
2023) adopts a masked image modeling objective with a diverse dataset to provide unified visual
representations for downstream policy training.

Domain Generalization and Adaptation A common approach to improve domain generalization
is to increase the amount of training data. Yu et al. (2023) use a text-to-image diffusion-based in-
painting model to randomly augment objects of interest, selected by an open-vocabulary segmentation
model, to enhance domain generalization. Wang et al. (2024) and Yang et al. (2024) further explore
generative modeling as a simulator to generate infinite examples. While the ability to produce
numerous objects with varying attributes is beneficial, challenges arise due to computational overhead
and inconsistencies in object generation across frames.

Marza et al. (2024) propose training a multitask embedding space that controls the output of a
pre-trained vision backbone using lightweight adapters. These adapters, along with the embedding
space, enable rapid adaptation to new tasks with only a few demonstrations. Recent work (Myers
et al., 2024) harnesses the generalization abilities of large vision-language models (such as GPT4o)
to generate hierarchical language instructions for adapting to new long-horizon tasks. However, the
language model tends to generalize low-level instructions (e.g., referring to both a potato and a turnip
toy as “purple thing”), and the objects remain unchanged between training and testing phases.

3 PRELIMINARIES

A robot manipulation task T = (Z, V,G) is defined by the natural language instruction Z, the
image(s) of initial condition V , and the goal condition G. Then, the language PTM encodes the
instruction with z = PTMz(Z) where z ∈ Rdlang is the instruction feature. The vision PTM encodes
the image input with (vglobal, vlocal) = PTMv(V ) where vglobal ∈ Rdglobal

is the global feature vector
and vlocal ∈ Rdlocal

is the local feature map. The policy ât = π(z, vt−h+1:t) takes the instruction
feature and a short history of observations with length of h to predict the action at ∈ Rda

. It is
important to note that our problem setup differs from those studied by Nair et al. (2022), Majumdar
et al. (2023), and Marza et al. (2024). In our case, the policy does not rely on proprioceptive signals,
as these can exhibit strong correlations with actions and goals (Octo Model Team et al., 2024). Thus,
we omit proprioceptive signals to focus solely on the effectiveness of visual representations.

A multi-task domain T = {T1, . . . , TK} contains K different types of tasks. To test the generaliz-
ability, we train the policies on a datasets from a single source domain Ttrain and evaluate them on 10
different target domains {Ttest

1 , . . .Ttest
10 }. Our problem setting differs from the approaches studied

by Tobin et al. (2017), Shridhar et al. (2021), and Lin et al. (2024), where policies are trained on a
diverse set of objects and evaluated on unseen objects. We assume that each task Tk ∈ Ttrain contains
only a single set of objects while the target domains contain sets of unseen objects. For example,
Shridhar et al. (2021) and Lin et al. (2024) assume that Tk ∈ Ttrain includes an object with multiple
colors (e.g., red, green, blue, yellow, brown, gray, cyan), and the same type of task Tk ∈ Ttest involves
the object in unseen colors (e.g., orange, purple, pink, white). In our case, we assume Tk ∈ Ttrain
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only contains the object with a single color {e.g. blue}. In this paper, we refer to Ttrain as in-domain
tasks and {Ttest

1 , . . .Ttest
10 } as out-of-domain tasks.

Transformer Policy

Language
PTM

"Pick up a nut and
place it onto a peg."

Vision
PTM

Vision
PTM

Vision
PTM

or or

+ ++ +

Positional Embeddings

Observations as timestamp t

or Readout
Token

Action Head

Global Feature

Local Features

Frozen Module

Tuned Module

Figure 1: Overview of our multi-tasks policy architecture. Vision PTM provide either global or local
features from input images and a language PTM encodes tasks instruction into a instruction token.
Action head outputs the final action signal to control the robot.

We use a Transformer policy, shown in Figure 1, that follows the design of Octo (Octo Model
Team et al., 2024) but with a deterministic action head. Based on the policy structure in Nair et al.
(2022), we incorporate observations from three different cameras—corner view, top view, and gripper
view—to reduce the number of partially observable cases where objects of interest are not visible from
a single perspective. We select a context window with a horizon of h = 5. Following the imitation
learning procedure, we train the policy using demonstrations collected with the default expert policy
for Metaworld (refer to Appendix A for details). Let τ = (Z, V1:T , a1:T ) denotes a demonstration
with instruction Z, vision recordings over T timestamps V1:T , and action recordings a1:T . We denote
the training dataset with N demonstrations as Dtrain = {τn = (Zn, V n

1:T , a
n
1:T )|n = 1, . . . , N}.

Key differences between our problem setting and those in prior works (Majumdar et al., 2023; Marza
et al., 2024) are: (1) we remove proprioceptive signals to prevent policies from focusing on them
instead of visual features, (2) we incorporate three views to minimize the occurrence of partially
observable situations, and (3) we consider a one-to-many domain generalization setup, in contrast
to the typical many-to-many setting (Tobin et al., 2017; Lin et al., 2024). With these formulations,
visual representations play a central role in policy learning, enabling us to compare the effectiveness
of features from different PTMs for training robot policies.

4 ARE EXISTING VISION PTMS EFFECTIVE FOR TRAINING A GENERALIST
ROBOT MANIPULATION POLICY?

In this section, we discuss the effectiveness of pre-trained visual representations in building generalist
robot policies. We evaluate a set of off-the-shelf vision PTMs by training policies with their
representations and comparing their performance. Table 1 summarizes the key information about the
PTMs evaluated in this study. These PTMs utilize various backbones and produce vlocal with different
spatial dimensions. To ensure a fair comparison, we unify the spatial dimensions of vlocal fed into the
policy to 7× 7 using adaptive average pooling for models with larger dimensions, such as VC-1 and
DINOv2. For CLIP-ViT32 and CLIP-RN50, the text encoder PTMz is the paired CLIP text encoder.
For all other models, PTMz is the frozen DistilBERT (Sanh et al., 2020).
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Table 1: Information about the pre-trained vision models studied in this paper.

Name Backbone # Param. Pre-train Objective Aggregate Method dglobal dlocal

CLIP-ViT32 ViT-B/32 87.85M Vision-language CLS Embedding 512 7× 7× 512Contrastive

CLIP-RN50 ResNet-50 38.32M Vision-language Attention Pooling 1024 7× 7× 2048Contrastive

R3M ResNet-50 23.51M Vision-language & Temporal Global Average Pooling 2048 7× 7× 2048Contrastive

VC-1 ViT-B/16 85.80M Masked Image Modelling CLS Embedding 768 14× 14× 768

DINOv2 ViT-B/14 86.58M Self-distillation CLS Embedding 768 16× 16× 768

DINOv2 ViT-B/14 86.58M Self-distillation CLS Embedding 768 16× 16× 768(w/ register)

Figure 2: Examples of robot manipulation tasks under different scenarios. Left: examples from
training and in-domain testing scenario; Mid: examples from unseen object colors attributes scenario;
Right: examples from unseen environment scenario.

4.1 PERFORMANCE AND GENERIC GENERALIZIBILITY

A generalist policy should be capable of performing multiple tasks and generalizing to unseen
scenarios. Therefore, we benchmark the policies using the following two metrics:

1. Success rate on in-domain tasks reflects the policy’s ability to imitate expert demonstrations
and complete multiple tasks using a single policy. The policies are evaluated on tasks from
Ttrain.

2. Success rate on out-of-domain tasks measures the policy’s ability to leverage knowledge
and skills learned from Ttrain to complete tasks in unseen domains. The policies are evaluated
on tasks from {Ttest

1 , . . .Ttest
10 }.

In this paper, we consider two types of unseen domains: unseen object attributes and unseen
environments. Figure 2 presents examples of images from the training domain and these two unseen
domains.

For each vision PTM, we train two policies: one using the local features vlocal and the other using the
global features vglobal. Details of the policy training procedure can be found in Appendix 5.1. Without
any pre-processing of the inputs or modifications to the policy, we directly evaluate the trained
policies on tasks across the three domains. Figure 3 summarizes the in-domain and out-of-domain
performance of these policies. We observe that, for most PTMs, the global features—commonly used
in existing works—fail to produce an effective multi-task policy, even for in-domain tasks.

In contrast, policies trained with local features vlocal show significant improvement in in-domain
success rates, while also demonstrating varying levels of out-of-domain generalizability. Directly
utilizing local features allows the policy to adjust the importance of provided features and retain
the spatial structure from PTMs. The different training objectives of PTMs may focus on different
aspects of visual information. As observed in many downstream applications utilizing PTM features,
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Figure 3: Multi-tasks policy performance (average success rate) comparison between using global
feature and local feature using different PTMs under various testing scenarios. Left: Evaluated under
in-domain environment. Mid: Evaluated under environment with unseen object color attributes;
Right: Evaluated under unseen environments.

a text-image contrastive objective often emphasizes semantic information, while masked image
modeling tends to preserve more spatial information. Using local features directly can mitigate the
negative impact of inductive biases from PTMs on policy training.

A notable exception is the global feature policy using the R3M backbone, which achieves relatively
high performance compared to other PTMs. We speculate several reasons for this: (1) R3M is trained
exclusively on the Ego4D dataset, which shares similar viewpoints with the MetaWorld dataset. As
observed in Nair et al. (2022), by changing the input view for training single-task policies, only the
R3M model maintains a consistent performance ranking compared to other PTMs. (2) The global
token of R3M is well-attended in its training objective, whereas models like VC-1 may under-train
the global token due to their masked image modeling objective.

Marza et al. (2024) integrate multiple learnable vision adapter layers into the frozen VC-1 backbone
to adapt pre-trained features, achieving a 54.5%average success rate on five selected tasks in the
MetaWorld dataset. This approach can be seen as a way to reweight pre-trained local features during
the forward pass before aggregating them into a global representation. These five tasks are also part
of our evaluation dataset. Without any additional modifications, our method, which simply uses local
features from the last layer of VC-1, achieves 55.2% on these five subtasks.

From these results, we conclude that: (1) vlocal is preferred over vglobal when building multi-task
robot policies with vision PTMs, (2) with vlocal, multi-task policies trained with DINOv2 and R3M
perform the best on in-domain tasks, and (3) the policy trained with vlocal from DINOv2 achieves
the best out-of-domain generalizability, suggesting that its essential features may inherently have
domain-invariant properties, while the policy trained with vlocal from R3M fails to generalize, likely
due to overfitting to Ttrain.

4.2 BRIDGING THE DOMAIN GAPS WITH AUGMENTATIONS

The results from previous experiments reveal a significant performance gap between in-domain
scenarios and unseen objects/environments, highlighting the limited generalization ability of the
policies. To address this, we investigate whether conventional augmentations in pixel space or feature
space can enhance the generalization ability of multi-task policies. RAD (Laskin et al., 2020) has
demonstrated the effectiveness of augmentations in improving single-policy generalization. Building
on this, we propose four different sets of augmentation strategies: pixel-level augmentation, feature
noise injection, feature temporal difference, and a mixture of pixel-level and feature noise injection.

Pixel-level augmentation: For each example, we randomly select one augmentation from Random
Crop, Random Flip, Random Rotation, Color Jitter, Random Invert, Random Grayscale, and Random
Erasing to augment the input images during training. The performance gains are reported in Table
2. By applying pixel-level augmentation, both CLIP backbones show significant improvements in
handling unseen color attributes and environments. However, the R3M backbone experiences a
trade-off between performance and generalization when pixel augmentation is applied.

Feature noise injection augmentation: We add Gaussian noise to the features from the PTM. The
performance is shown in Table 3. The policy trained with the VC-1 backbone benefits the most from
this noise injection. While the R3M backbone achieves the highest in-domain performance among all
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Table 2: Performance improvement using pixel
augmentation with local feature. V, C, E stands
for in-domain, unseen color attributes and unseen
environments respectively. Each cell reports the
performance with corresponding augmentation
strategy with performance gain compared to pol-
icy without augmentation.

PTMs V C E
CLIP-RN50 69.2 (+18.8) 56.6 (+23.4) 65.8 (+24.2)
CLIP-ViT32 66.8 (-7.2) 56.4 (+13.4) 47.2 (+26.4)

DINOv2-pool 81.2 (-3.2) 76.0 (+2.0) 50.4 (-2.6)
DINOv2reg-pool 72.2 (-10.2) 69.6 (-2.8) 50.0 (+4.8)

R3M-RN50 61.8 (-22.4) 22.0 (+11.6) 21.2 (+13.0)
VC1-Pool 54.8 (-3.8) 50.2 (+12.0) 41.2 (+5.4)

Table 3: Performance improvement using fea-
ture noise injection augmentation with local
feature. V, C, E stands for in-domain, unseen
color attributes and unseen environments respec-
tively.

PTMs V C E
CLIP-RN50 55.4 (+5.0) 31.6 (-1.6) 42.6 (+1.0)
CLIP-ViT32 72.2 (-1.8) 42.8 (-0.2) 26.0 (+5.2)

DINOv2-pool 85.0 (+0.6) 69.8 (-4.2) 49.2 (-3.8)
DINOv2reg-pool 79.0 (-3.4) 73.2 (+0.8) 51.2 (+6.0)

R3M-RN50 87.2 (+3.0) 10.2 (-0.2) 3.6 (-4.6)
VC1-pool 69.4 (+10.8) 44.8 (+6.6) 41.8 (+6.0)

Table 4: Performance improvement using mix-
ture of pixel and feature noise injection aug-
mentation with local feature. V, C, E stands for
in-domain, unseen color attributes and unseen
environments respectively.

PTMs V C E
CLIP-RN50 67.0 (+16.6) 57.4 (+24.2) 62.2 (+20.6)
CLIP-ViT32 65.2 (-8.8) 53.4 (+10.4) 46.8 (+26.0)

DINOv2-pool 81.8 (-2.6) 75.2 (+1.2) 47.6 (-5.4)
DINOv2reg-pool 77.4 (-5.0) 72.4 (+0.0) 52.4 (+7.2)

R3M-RN50 65.6 (-18.6) 21.4 (+11.0) 13.2 (+5.0)
VC1-Pool 54.4 (-4.2) 50.4 (+12.2) 41.4 (+5.6)

Table 5: Performance improvement using tempo-
ral difference augmentation with local feature.
V, C, E stands for in-domain, unseen color at-
tributes and unseen environments respectively.

PTMs V C E
CLIP-RN50 58.4 (+8.0) 32.6 (-0.6) 49.0 (+7.4)
CLIP-ViT32 66.2 (-7.8) 39.4 (-3.6) 35.8 (+15.0)

DINOv2-pool 86.8 (+2.4) 75.8 (+1.8) 53.0 (+0.0)
DINOv2reg-pool 83.2 (+0.8) 71.4 (-1.0) 45.8 (+0.6)

R3M-RN50 84.6 (+0.4) 9.6 (-0.8) 11.2 (+3.0)
VC1-Pool 81.8 (+23.2) 49.2 (+11.0) 36.0 (+0.2)

models, its generalization ability is further degraded. We also combine feature-level and pixel-level
augmentations, and the results are presented in Table 4.

Temporal difference augmentation: This strategy involves subtracting frame features from the first
frame’s feature within the horizon. Although the policy using the DINOv2 backbone already achieves
a high success rate, adding temporal difference augmentation further boosts its performance without
any degradation. We also report the performance gains using global features in Tables 6, 7, 8, and 9,
showing similar results.

In this section, we experiment with different augmentation strategies without introducing additional
data. Incorporating augmentation during training does improve generalization to some extent.
Another important consideration is how we can quickly enhance the generalization ability of a
well-performing multi-task policy with a small amount of new data (e.g., one demonstration) of
unseen objects and environments. In the next section, we propose an efficient method that quickly
adapts to unseen objects and environments with limited demonstrations, without sacrificing high
in-domain performance.

5 FEW-SHOT ADAPTATION

In this section, we introduce a sample-efficient method for adapting a trained policy to unseen
domains in a few-shot setting. Given a policy πtrain, trained on demonstrations from Dtrain , our goal
is to adapt this policy to unseen domains by learning from only a few demonstrations Dft . Existing
methods for few-shot adaptation typically imitate actions from the demonstrations using various
techniques. A common approach involves fine-tuning the policy or just the action head (Octo Model
Team et al., 2024). Marza et al. (2024) propose searching for a task embedding that controls the
intermediate features of the vision PTM. In this paper, we present a novel approach by introducing
feature distillation into the fine-tuning objective. To the best of our knowledge, we are the first to
incorporate self-distillation techniques in domain adaptation for robot manipulation policies.

Self-distillation methods in computer vision typically align the features of two augmented views of
an image (Grill et al., 2020; Zhou et al., 2022). Inspired by these approaches, our method aligns
the features of two demonstrations that exhibit similar behavior. Given the policy πtrain, the training
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Table 6: Performance improvement using pixel
augmentation with global feature. V, C, E stands
for in-domain, unseen color attributes and unseen
environments respectively. Each cell reports the
performance with corresponding augmentation
strategy with performance gain compared to pol-
icy without augmentation.

PTMs V C E
CLIP-RN50 30.2 (+23.6) 28.0 (+25.0) 30.2 (+24.2)
CLIP-ViT32 39.8 (+22.4) 31.0 (+28.4) 20.0 (+11.4)

DINOv2-pool 39.2 (+9.0) 37.8 (+15.4) 30.2 (+20.0)
DINOv2reg-pool 32.8 (+3.4) 29.6 (+10.8) 20.0 (+13.6)

R3M-RN50 32.2 (-26.0) 9.0 (+3.6) 1.4 (-4.6)
VC1-Pool 6.8 (+5.2) 14.8 (+13.8) 9.2 (+9.0)

Table 7: Performance improvement using fea-
ture noise injection augmentation with global
feature. V, C, E stands for in-domain, unseen
color attributes and unseen environments respec-
tively.

PTMs V C E
CLIP-RN50 7.8 (+1.2) 5.2 (+2.2) 4.8 (-1.2)
CLIP-ViT32 8.2 (-9.2) 4.2 (+1.6) 5.8 (-2.8)

DINOv2-pool 31.0 (+0.8) 26.8 (+4.4) 14.8 (+4.6)
DINOv2reg-pool 21.2 (-8.2) 14.0 (-4.8) 9.4 (+3.0)

R3M-RN50 57.6 (-0.6) 5.2 (-0.2) 4.0 (-2.0)
VC1-pool 10.0 (+8.4) 7.0 (+6.0) 2.8 (+2.6)

Table 8: Performance improvement using mix-
ture of pixel and feature noise injection aug-
mentation with global feature. V, C, E stands for
in-domain, unseen color attributes and unseen
environments respectively.

PTMs V C E
CLIP-ViT32 26.8 (+20.2) 28.6 (+25.6) 24.8 (+18.8)
CLIP-ViT32 39.6 (+22.2) 31.6 (+29.0) 20.8 (+12.2)

DINOv2-pool 39.8 (+9.6) 31.2 (+8.8) 21.2 (+11.0)
DINOv2reg-pool 32.8 (+3.4) 30.6 (+11.8) 21.6 (+15.2)

R3M-RN50 31.2 (-27.0) 16.4 (+11.0) 3.8 (-2.2)
VC1-Pool 23.0 (+21.4) 20.4 (+19.4) 19.8 (+19.6)

Table 9: Performance improvement using tempo-
ral difference augmentation with global feature.
V, C, E stands for in-domain, unseen color at-
tributes and unseen environments respectively.

PTMs V C E
CLIP-RN50 4.8 (-1.8) 4.0 (+1.0) 6.6 (+0.6)
CLIP-ViT32 20.4 (+3.0) 4.0 (+1.4) 9.2 (+0.6)

DINOv2-pool 40.2 (+10.0) 33.6 (+11.2) 21.8 (+11.6)
DINOv2reg-pool 38.0 (+8.6) 29.0 (+10.2) 16.2 (+9.8)

R3M-RN50 57.0 (-1.2) 2.6 (-2.8) 3.0 (-3.0)
VC1-Pool 2.8 (+1.2) 2.4 (+1.4) 3.8 (+3.6)

EMA update

Stop Grad.

Feature Projection Layer

Self-Distill. Loss

Figure 4: Visualization for procedures of self-distillation.

dataset Dtrain, and a query demonstration from the unseen domain τ q = (Zq, V q
1:T , a

q
1:T ) ∈ Dft, we

first identify the demonstration τp ∈ Dtrain that has the most similar instruction and action recordings
to τ q , and treat them as paired demonstrations.

When the number of demonstrations in Dft is limited, fine-tuning πtrain using behavior cloning may
lead to overfitting on Dft, without proper generalization to Ttest. By using paired demonstrations, we
can account for the domain shift between Ttrain and Ttest during fine-tuning. Building on this idea,
we employ a self-distillation approach that adds an extra term to the fine-tuning objective, reducing
overfitting by aligning the features across domains. Figure 4 illustrates our proposed self-distillation
approach. Here, ϕ represents the Transformer component in policy π , which processes the input
features and outputs the action embedding b. g is a learnable projection layer, with its outputs β
normalized using softmax (Zhou et al., 2022). In self-distillation terminology, ϕft is the student
model, and ϕema is the teacher model, whose parameters are updated through an Exponential Moving
Average (EMA) from the student model’s parameters.
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Formally, our proposed adaptation method by fine-tuning the policy with the follow objective:

Lft =
∑

τ ft∈Dft

T∑
t=h

|aft
t − πft(zft, vft

t−h+1:t)|2︸ ︷︷ ︸
(i) behavior cloning on few-shot domains

+
∑

τ train∈Dtrain

T∑
t=h

|atrain
t − πft(ztrain, vtrain

t−h+1:t)|2︸ ︷︷ ︸
(ii) behavior cloning on training domains

+ λdistill
∑

(τq,τp)∈(Dft,Dtrain)

T∑
t=h

KLDiv(β̂q, βp) + KLDiv(β̂p, βq)

︸ ︷︷ ︸
(iii) self-distillation

,

(1)

where KLDiv(βq, βq) is the KL-Divergence of distributions βq and βq. Intuitively, component (i)
optimizes the out-of-domain performance using the few-shot demonstrations while component (ii)
retains the performance on in-domain tasks; component (iii) optimizes the action embeddings to
account for domain shift between Dft and Dtrain.

5.1 EXPERIMENT RESULTS ON FEW-SHOT ADAPTATION

For benchmarking and fair comparison, we maintain the same configurations across all experiments
in this paper. The detailed experimental setups are provided in Table 10 of Appendix A. Detailed
experiment results are included in Appendix B.

The training task domain Ttrain consists of 10 tasks from the Metaworld benchmark, using datasets
selected by Yu et al. (2019) and Majumdar et al. (2023). These tasks are: assembly, bin-picking,
button-press-topdown, door-open, drawer-open, hammer, pick-place, push, reach, and window-open.
The training dataset Dtrain contains 500 expert demonstrations, with 50 demonstrations per task.
During evaluation, an episode ends either when the goal condition G is reached (success) or when
the maximum step limit is reached (failure).

The evaluation task domains consist of 5 domains with unseen object colors and 5 domains with
unseen environments. Each Ttest includes the same 10 tasks as Ttrain, but with randomized initial
conditions. For each T ∈ Ttest, we evaluate the policy 10 times with 10 different random initial
conditions and report the average success rates.

In the few-shot adaptation settings, we evaluate four representative PTMs: CLIP-ViT32, R3M, VC-1,
and DINOv2. We experiment with varying numbers of demonstrations {1, 2, 5} per task in the
test task domains. We benchmark our proposed self-distillation method against two baselines: (1)
Baseline: the success rate of πtrain, and (2) Fine-tuning: the success rate of πft, fine-tuned with only
components (i) and (ii) from Equation 1.

Figures 5, 6, 7, and 8 compare our approach with the baseline and conventional fine-tuning across
the four PTMs. When evaluated on unseen environments, our approach consistently improves the
performance of fine-tuned policies, especially when only 1 or 2 demonstrations are available per
task. We observe similar, though less pronounced, improvements when evaluated on unseen tasks
with novel object colors. The most significant performance gains are observed in policies trained
with CLIP-ViT32. In other cases, our approach maintains performance comparable to conventional
fine-tuning.

When 5 demonstrations are available for each task, the fine-tuning dataset Dft contains 500 samples,
which is sufficient to capture the domain gaps comprehensively. In these instances, adding the self-
distillation term does not yield further performance improvements. We conclude that our proposed
method effectively enhances performance when the number of demonstrations from unseen domains
is limited.

6 CONCLUSION

In this paper we investigate effective ways of building multi-tasks policies using vision PTMs. By
carefully evaluating in-domain and out-of-domain generalization ability of trained policy, we find
simply keeping local features from the last layers of PTMs can significantly improve the policy
performance compared to the global feature counterpart that is widely used for policy training.
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Figure 5: Few-shot adaptation: Success rate of πft trained with CLIP-ViT32

Figure 6: Few-shot adaptation: Success rate of πft trained with R3M-RN50

Figure 7: Few-shot adaptation: Success rate of πft trained with DINOv2-pool

Figure 8: Few-shot adaptation: Success rate of πft trained with VC1-pool

This finding can simplify the way of utilizing vision PTMs for policy training while achieving
high performance. Further, we explored different perspectives of improving policy generalization
ability. From the augmentation perspective, we observed policies using different PTM’s have clear
preference in augmentation strategies. It is challenging to come up with a unified augmentation
pipeline for training policies using different PTMs. On the other hand, we propose a novel objective
that is able to quickly improve generalization ability under few-shot setting. This method provides
overall improvements for policy with different PTMs in unseen scenarios. Our work also has several
limitations: (1) our proposed method can not further boost the policy performance when the number
of samples increases compared to weighted fine-tuning. (2) The performance is sensitive to teacher
model’s updating factor. We plan to improve these aspects in future work.
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A EXPERIMENT SETUP

Table 10: Experiment Configurations

Hyperparameter Value

Number of policy layers 4
Number of attention heads 8
Policy embedding dimension 512
Dropout 0.1
Train epochs 30
Train learning rate 3 · · · 10−4

Train learning rate schedule Linear warmup with cosine decay
Warmup epoch 1
Gradient clip norm 1.0
Weight decay 0.01
Batch size 64
Context window length h 5
Few-shot adaptation epoch 10
Few-shot adaptation learning rate 1 · · · 10−4

Few-shot adaptation learning rate schedule Linear warmup with cosine decay

B FULL EXPERIMENT RESULTS

Table 11: Success rate of policies trained with local features from CLIP-ViT32

In-domain Unseen Color Attributes Unseen Environments
Augmentation none pixel feature p.+f. t.d. none pixel feature p.+f. t.d. none pixel feature p.+f. t.d.

assembly 0.60 0.76 0.40 0.60 0.36 0.14 0.58 0.14 0.46 0.28 0.06 0.22 0.00 0.44 0.00
bin-picking 0.28 0.42 0.60 0.04 0.28 0.00 0.58 0.00 0.24 0.00 0.00 0.34 0.00 0.22 0.00

button-press-topdown 0.76 0.86 0.80 0.82 0.90 0.80 0.90 0.60 0.88 0.68 0.52 0.72 0.80 0.66 0.86
door-open 1.00 1.00 1.00 1.00 0.98 0.90 0.92 1.00 0.98 0.96 0.24 1.00 0.24 0.94 0.46

drawer-open 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.76 0.26 0.92 0.36 0.50 0.88
hammer 0.96 0.78 0.90 0.84 0.72 0.32 0.56 0.40 0.52 0.22 0.18 0.36 0.32 0.34 0.30

pick-place 0.84 0.60 0.58 0.60 0.82 0.26 0.22 0.22 0.34 0.24 0.08 0.16 0.06 0.20 0.10
push 0.84 0.74 0.88 0.82 0.98 0.30 0.44 0.24 0.36 0.42 0.26 0.52 0.30 0.58 0.44
reach 0.76 0.18 0.64 0.46 0.38 0.40 0.22 0.44 0.24 0.18 0.36 0.24 0.36 0.34 0.34

window-open 0.36 0.38 0.42 0.34 0.20 0.18 0.22 0.24 0.42 0.20 0.12 0.24 0.16 0.46 0.20

Average 0.74 0.67 0.72 0.65 0.66 0.43 0.56 0.43 0.53 0.39 0.21 0.47 0.26 0.47 0.36

Table 12: Success rate of policies trained with local features from CLIP-RN50

In-domain Unseen Color Attributes Unseen Environments
Augmentation none pixel feature p.+f. t.d. none pixel feature p.+f. t.d. none pixel feature p.+f. t.d.

assembly 0.30 0.82 0.74 0.72 0.12 0.08 0.76 0.04 0.58 0.00 0.02 0.74 0.06 0.68 0.08
bin-picking 0.26 0.68 0.36 0.40 0.46 0.00 0.02 0.00 0.00 0.00 0.34 0.64 0.30 0.46 0.44

button-press-topdown 0.62 0.98 0.54 1.00 0.92 0.16 0.94 0.10 0.96 0.24 0.40 0.96 0.46 1.00 0.88
door-open 0.92 1.00 0.90 0.96 1.00 1.00 1.00 0.98 1.00 1.00 0.98 0.98 1.00 1.00 1.00

drawer-open 1.00 1.00 1.00 1.00 1.00 0.68 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 0.90
hammer 0.24 0.98 0.22 1.00 0.28 0.16 0.90 0.10 0.88 0.20 0.00 0.62 0.02 0.48 0.10

pick-place 0.30 0.38 0.24 0.42 0.42 0.06 0.04 0.04 0.06 0.00 0.04 0.30 0.12 0.20 0.06
push 0.38 0.28 0.42 0.52 0.58 0.44 0.30 0.28 0.46 0.18 0.38 0.44 0.22 0.52 0.46
reach 0.58 0.28 0.64 0.14 0.66 0.12 0.20 0.22 0.20 0.34 0.62 0.26 0.68 0.16 0.56

window-open 0.44 0.52 0.48 0.54 0.40 0.62 0.50 0.40 0.60 0.30 0.38 0.68 0.40 0.72 0.42

Average 0.50 0.69 0.55 0.67 0.58 0.33 0.57 0.32 0.57 0.33 0.42 0.66 0.43 0.62 0.49
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Table 13: Success rate of policies trained with local features from R3M-RN50

In-domain Unseen Color Attributes Unseen Environments
Augmentation none pixel feature p.+f. t.d. none pixel feature p.+f. t.d. none pixel feature p.+f. t.d.

assembly 0.60 0.72 0.54 0.62 0.98 0.00 0.12 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00
bin-picking 0.30 0.00 0.48 0.06 0.18 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

button-press-topdown 1.00 0.90 1.00 0.96 1.00 0.12 0.26 0.00 0.60 0.02 0.00 0.66 0.00 0.20 0.00
door-open 1.00 1.00 1.00 1.00 0.92 0.00 0.00 0.00 0.00 0.00 0.02 0.10 0.06 0.04 0.00

drawer-open 1.00 0.82 1.00 0.86 1.00 0.46 0.82 0.44 0.86 0.30 0.64 0.38 0.20 0.28 0.68
hammer 1.00 0.76 1.00 0.84 1.00 0.00 0.48 0.00 0.18 0.10 0.00 0.16 0.00 0.06 0.06

pick-place 1.00 0.80 1.00 0.72 1.00 0.00 0.06 0.00 0.10 0.00 0.00 0.04 0.00 0.00 0.00
push 0.98 0.90 1.00 0.90 1.00 0.04 0.22 0.02 0.20 0.16 0.02 0.16 0.02 0.16 0.04
reach 0.58 0.08 0.78 0.20 0.78 0.42 0.16 0.56 0.16 0.38 0.14 0.14 0.08 0.14 0.22

window-open 0.96 0.20 0.92 0.40 0.60 0.00 0.04 0.00 0.00 0.00 0.00 0.48 0.00 0.44 0.12

Average 0.84 0.62 0.87 0.66 0.85 0.10 0.22 0.10 0.21 0.10 0.08 0.21 0.04 0.13 0.11

Table 14: Success rate of policies trained with local features from VC-1-pool

In-domain Unseen Color Attributes Unseen Environments
Augmentation none pixel feature p.+f. t.d. none pixel feature p.+f. t.d. none pixel feature p.+f. t.d.

assembly 0.10 0.48 0.60 0.90 0.90 0.14 0.52 0.46 0.80 0.60 0.00 0.12 0.06 0.36 0.14
bin-picking 0.30 0.06 0.26 0.00 0.62 0.00 0.04 0.00 0.00 0.00 0.08 0.00 0.10 0.00 0.10

button-press-topdown 0.80 0.90 0.96 0.80 0.98 0.40 0.88 0.38 0.82 0.20 0.74 0.90 0.90 0.84 0.92
door-open 1.00 1.00 0.94 0.92 0.98 0.32 0.98 0.18 1.00 0.16 0.80 0.96 0.70 0.92 0.40

drawer-open 1.00 1.00 1.00 1.00 1.00 0.74 1.00 0.82 1.00 0.98 0.46 0.62 0.54 0.80 0.62
hammer 0.56 0.28 0.50 0.44 0.66 0.36 0.30 0.26 0.50 0.28 0.36 0.32 0.50 0.28 0.38

pick-place 0.74 0.46 0.98 0.38 0.98 0.54 0.26 0.58 0.16 0.70 0.08 0.22 0.06 0.02 0.04
push 0.58 0.70 0.88 0.46 1.00 0.58 0.48 0.84 0.24 0.88 0.34 0.42 0.28 0.14 0.16
reach 0.20 0.14 0.38 0.12 0.68 0.28 0.26 0.48 0.22 0.68 0.30 0.18 0.48 0.20 0.32

window-open 0.58 0.46 0.44 0.42 0.38 0.46 0.30 0.48 0.30 0.44 0.42 0.38 0.56 0.58 0.52

Average 0.59 0.55 0.69 0.54 0.82 0.38 0.50 0.45 0.50 0.49 0.36 0.41 0.42 0.41 0.36

Table 15: Success rate of policies trained with local features from DINOv2-pool

In-domain Unseen Color Attributes Unseen Environments
Augmentation none pixel feature p.+f. t.d. none pixel feature p.+f. t.d. none pixel feature p.+f. t.d.

assembly 0.84 0.94 0.80 0.98 0.96 0.90 0.92 0.82 0.94 0.76 0.18 0.52 0.10 0.60 0.10
bin-picking 0.48 0.72 0.76 0.70 0.82 0.02 0.50 0.12 0.54 0.36 0.26 0.46 0.44 0.34 0.66

button-press-topdown 0.96 0.88 1.00 0.98 1.00 0.98 0.98 1.00 1.00 0.94 0.98 0.86 1.00 0.96 0.98
door-open 0.96 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.78 0.92 0.76 0.94 1.00

drawer-open 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.98 0.48 1.00
hammer 0.98 1.00 0.96 1.00 0.96 0.92 0.98 1.00 0.88 1.00 0.40 0.12 0.18 0.28 0.14

pick-place 0.88 0.88 0.72 0.86 0.92 0.64 0.66 0.38 0.58 0.82 0.24 0.14 0.10 0.12 0.18
push 0.86 0.98 0.86 0.94 1.00 0.72 1.00 0.82 1.00 0.92 0.40 0.68 0.30 0.52 0.54
reach 0.62 0.44 0.60 0.42 0.84 0.52 0.38 0.44 0.32 0.58 0.44 0.34 0.30 0.30 0.46

window-open 0.86 0.28 0.82 0.30 0.18 0.70 0.18 0.40 0.26 0.20 0.62 0.12 0.76 0.22 0.24

Average 0.84 0.81 0.85 0.82 0.87 0.74 0.76 0.70 0.75 0.76 0.53 0.50 0.49 0.48 0.53

Table 16: Success rate of policies trained with local features from DINOv2reg-pool

In-domain Unseen Color Attributes Unseen Environments
Augmentation none pixel feature p.+f. t.d. none pixel feature p.+f. t.d. none pixel feature p.+f. t.d.

assembly 0.62 1.00 0.52 0.96 1.00 0.48 0.96 0.16 0.96 0.82 0.04 0.14 0.22 0.16 0.02
bin-picking 0.30 0.00 0.08 0.44 0.16 0.14 0.16 0.22 0.06 0.10 0.08 0.32 0.30 0.30 0.00

button-press-topdown 1.00 0.94 1.00 0.82 1.00 1.00 0.98 1.00 1.00 1.00 0.98 0.92 0.96 0.76 0.98
door-open 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 1.00 0.92 0.96

drawer-open 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.00 0.98 1.00 1.00 0.90 0.78
hammer 0.84 0.80 0.64 0.98 0.96 0.58 0.82 0.68 0.92 0.94 0.40 0.48 0.48 0.62 0.52

pick-place 0.88 0.70 0.88 0.88 0.88 0.54 0.48 0.54 0.66 0.44 0.02 0.10 0.02 0.22 0.08
push 1.00 0.94 0.96 0.98 0.98 0.98 0.90 0.88 0.90 0.90 0.32 0.50 0.34 0.62 0.44
reach 0.96 0.48 0.96 0.34 0.90 0.98 0.38 1.00 0.34 0.54 0.34 0.22 0.24 0.36 0.30

window-open 0.64 0.36 0.88 0.34 0.44 0.60 0.28 0.84 0.40 0.40 0.36 0.38 0.56 0.38 0.50

Average 0.82 0.72 0.79 0.77 0.83 0.72 0.70 0.73 0.72 0.71 0.45 0.50 0.51 0.52 0.46
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