VLASCD: A Visual Language Action Model for Simultaneous Chatting and
Decision Making

Anonymous ACL submission

Abstract

Although current mainstream pre-trained large
models, such as LLM models represented by
ChatGPT and VLA models represented by
OpenVLA, have achieved significant progress
in multimodal tasks through a "Multiple-Input,
Single-Output" (MISO) architecture. How-
ever, our investigation reveals that the MISO
architecture exhibits fundamental limitations
in "Multiple-Input, Multiple-Output" (MIMO)
(e.g., parallel multi-tasks output processing):
the architecture generates task mutual exclu-
sion effects, leading to resource contention
among different tasks when sharing output
channels, and consequently resulting in opti-
mization imbalance and performance. In con-
trast, human MIMO processing inherently en-
ables concurrent task execution (e.g., while di-
alogue and decision-making) without interfer-
ence. Inspired by this, in this work, we propose
a unified MIMO training model with parallel
multi-tasks output capabilities—the Visual Lan-
guage Action Model for Simultaneously Chat-
ting and Decision Making (VLASCD). We eval-
uate the model on the CARLA autonomous
driving platform. The results show that, com-
pared to LLM models with MISO dialogue ca-
pabilities, reinforcement learning models, and
VLA models with MISO decision-making ca-
pabilities, VLASCD significantly outperforms
existing MISO models in simultaneously han-
dling dialogue generation and decision-making
tasks within the MIMO scenario.

1 Introduction

Since ChatGPT’s emergence, large language mod-
els (LLMs) have become prominent examples of
large-scale pre-trained models. Trained on exten-
sive internet text and code, LLMs encode substan-
tial real-world knowledge, enabling superior gen-
eralization over traditional AI models—including
in-context learning and reasoning abilities (e.g.,
via chain-of-thought (Wei et al., 2022)). A devel-
opment trend in the field of large-scale pre-trained

models is that their application domains are expand-
ing from tasks like dialogue and text generation to
decision-making tasks in the open physical world.

Currently, there are three primary approaches
to building large-scale pre-trained models for
decision-making in open physical environments.
The first method serializes the decision-making
process and trains sequence models like Decision
Transformers (Chen et al., 2021), treating deci-
sions similarly to text processing. This approach
depends heavily on acquiring large-scale, high-
quality decision-making datasets. The second strat-
egy employs hierarchical modular systems where
LLMs handle high-level planning (Chen et al.,
2024; Carta et al., 2023; Hu et al., 2024; Zhou et al.,
2024)—decomposing tasks and orchestrating spe-
cialized modules or tools. The third paradigm de-
velops end-to-end Vision-Language-Action (VLA)
models (Padalkar et al., 2023; Kim et al., 2024)
that bypass modular systems by directly generating
decisions from multimodal inputs.

In recent years, pre-trained large models have
achieved remarkable progress in multimodal tasks,
with notable examples including LLMs repre-
sented by ChatGPT and VLA models represented
by OpenVLA. These models typically adopt a
"Multiple-Input, Single-Output" (MISO) architec-
ture, generating a single output from multiple in-
put, and have demonstrated powerful capabilities
in tasks such as text generation and image under-
standing. However, our investigation reveals that
in "Multiple-Input, Multiple-Output" (MIMO) sce-
narios (e.g., parallel multi-tasks output), existing
MISO LLM models (Chen et al., 2024; Liu et al.,
2023), often fail to generate effective actions, and
even if actions are generated, they interfere with
dialogue capabilities. Similarly, existing MISO
VLA models (Kim et al., 2024; Liu et al., 2024)
struggle to generate effective dialogue. The fun-
damental limitation underlying this investigation
is that task interference emerges during parallel



processing, where competing tasks generate con-
flicts in shared output channels, leading to subop-
timal resource allocation. This conflict manifests
as imbalanced model optimization during training,
ultimately leading to significant performance degra-
dation in task-specific objectives. This contrasts
sharply with human MIMO processing, which in-
herently supports non-interfering concurrent exe-
cution of tasks (e.g., simultaneous dialogue and
decision-making). Inspired by this, we propose
a unified MIMO training architecture with paral-
lel multi-task output capabilities—the Visual Lan-
guage Action Model for Simultaneously Chatting
and Decision Making (VLASCD), with validation
conducted in autonomous driving CARLA 0.9.10
(Dosovitskiy et al., 2017). Experimental results
show that our MIMO architecture’s task-adaptive
distributed output mapping not only enables effi-
cient multimodal collaboration but also resolves
multi-task interference in MISO models.
The main contributions of this work are:

* This paper is the first to reveal that existing
MISO models (e.g., LLMs and VLAs) cannot
effectively handle MIMO tasks.

* we propose a unified MIMO training architec-
ture with parallel multi-task output capabil-
ities, termed VLASCD. It combines several
experimentally validated ideas: (1) a computa-
tional module and cost function term for gen-
erating continuous action values; (2) an image
reconstruction loss term added in the train-
ing cost function to ensure the exploitation of
rich information from the visual modality data
during text generation and decision-making
processes; (3) a label smoothing strategy to
maintain dialogue capabilities and enhance
decision-making.

* The experimental results show that the result-
ing VLASCD model not only outputs more
accurate real-time action decisions compared
to the SOTA models but also perfectly retains
real-time text-based dialogue functionality.

* We will open source our model, code, and
dataset after the reviewing process.
2 Related Work

2.1 LLMis for decision-making

Since (Brown et al., 2020), GPT has emerged
as the dominant paradigm for LLMs. Models

like GPT-3.5 and GPT-4 (OpenAl, 2023a) demon-
strate superior zero-shot generalization and rea-
soning. The open-source LLaMA series (Touvron
etal., 2023a,b) further advanced LLM development.
(Wei et al., 2022) introduced chain-of-thought to
boost reasoning, while (Yao et al., 2022) proposed
ReAct for interleaved reasoning and action genera-
tion. Additionally, recent works have used LLMs
as components in building hierarchical modular
decision-making agents, where they are only used
to generate high-level plans and do not directly gen-
erate decisions (Ahn et al., 2022; Fu et al., 2023;
Carta et al., 2023; Chen et al., 2024; Xu et al.,
2024; Sha et al., 2023; Hu et al., 2024; Zhou et al.,
2024). The VLASCD model proposed here can be
seen as a multimodal GPT model fine-tuned for a
downstream application scenario, featured by its ca-
pability to simultaneously output action decisions
and textual chatting.

2.2 VLA model for decison-making

VLA models process multimodal vision-language-
action inputs for embodied decision-making. Un-
like conversational LLMs like ChatGPT, VLAs
generate control signals for physical agents (e.g.,
robots) interacting with environments. They excel
at instruction-following tasks by combining lan-
guage understanding, visual perception, and action
generation (Huang et al., 2023; Li et al., 2023b;
Zhen et al., 2024; Dorka et al.). Compared to deep
reinforcement learning (RL) methods, VLA has
shown a remarkable performance gain in versatility,
flexibility, and generality in complex environments
(Padalkar et al., 2023; Brohan et al., 2023; et al,
2024; Team et al., 2024; Li et al., 2023c; Bai et al.,
2023; Li et al., 2022, 2023a; Liu et al., 2024; Tan
and Bansal, 2019). However, such VLA models
represented by RT-X (Padalkar et al., 2023) and
OpenVLA (Kim et al., 2024), typically discretize
continuous action spaces into fixed intervals. This
action discretization raises significant limitations
for them to deal with fine-grained continuous ac-
tions that are required for capturing nuanced opera-
tions necessary for some complex tasks.

2.3 LLMs for MIMO

Existing multitasking approaches often rely on
task-specific designs, lacking collaborative opti-
mization and increasing computational costs (Geng
et al., 2022; Liu et al., 2023; Ouyang et al., 2022).
While recent work proposes unified frameworks
like multitask fine-tuning using CGC LoRA for
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Figure 1: An overview of VLASCD framework. First, we process expert dataset images with their text descriptions
and action values through linear mappers to get feature representations. These features are combined in a set order
and input to the transformer. Finally, in the LoRA-tuned model’s last layer, we reconstruct sensor outputs (training
only), respond to queries, and map final actions (both training and evaluation).

LLMs (Song et al., 2024), they remain MISO ar-
chitectures and fail to acheive MIMO output.

3 Methodology

In this section, we present how to build VLASCD
in detail, including the model architecture and the
training procedure, with a focus on the loss designs
in the last output hiddens layer. An overview of
VLASCD is illustrated in Figure 1. To begin with,
we present the problem setting of our concern.

3.1 Problem Setting

We consider a multimodal setting similar as (Xiao
et al., 2020), wherein, at each time step ¢, upon
the agent performs an action a;, the environment
returns visual and textual modalities, denoted by
{ot,1¢}. Our objective is to build a generative
model  7(a, Wki|op— i, We—fr, Qp—f1y evy O, W),
which can generate both high-quality action
decisions a; and text responses w;, given a
sequence of historic trajectories. H denotes the
length of the context.

3.2 Model Architecture

Our model supports three different input modalities:
text, image, and numeric vector. We use Llama-7b
(Touvron et al., 2023b) as the backbone model, and
encode textual inputs by its pre-trained embedding
layers. To encode the visual inputs, we follow the
standard practice used in visual language models

(VLMs) (Liu et al., 2024) and VLAs (Kim et al.,
2024). Specifically, we first segment each input
image o; into L patches p;,l = 1,...,L,, then
train a 2D convolution network that directly maps
the patches to the vector space. In addition, to
deal with the input of the action value, we train a
multi-layer perceptron (MLP) module that encodes
the action values to the vector space. Finally, We
concatenate encoded embeddings of all modalities
together to form a sequence of embedded trajectory
7 at time ¢ as follows:

Tt = {(ﬁtlfH7 e 7151{;H>7 ( At}fH’ W),

atny-'-a(ﬁz%v""ﬁé)’(Atlw"vw?)} (1)
where p! and 12){ denote the embeddings of i-th
patch for visual observation and j-th token for tex-
tual observation at at time ¢, respectively.

During the inference stage, the transformer back-
bone in VLASCD generates the hidden embed-
dings si™1, - | s a5 shown in Figure 1, then
these embeddings are decoded into the outputs
of different modalities. Specifically, VLASCD
supports two different output modalities: text for
chatting and numeric vector for action-level de-
cision making. For the chatting part, we use the
pre-trained output MLP layers and tokenizer of
the Llama-7b model to generate texts. For action
decision-making, our model generates one more
embedding vector after the “< EOS >, an empty



placeholder token. Unlike previous work like Open-
VLA (Kim et al., 2024) and RT-X (Brohan et al.,
2023), in which action prediction is formalized
as a token generation task by splitting the action
space into discrete action bins, we train an action
head consisting of multiple MLP modules. This
action head directly maps the output embedding to
action values. We empirically find that using our
approach leads to better performance compared to
discretizing action values.

3.3 Training Procedure

We fine-tune the transformer backbone with LoRA
(Hu et al., 2021) and train the image encoding, text
encoding, action encoding, and decoding modules
using an offline dataset D per¢ containing demon-
strated driving trajectories with question-answer
pairs. The model learns to predict control actions
and answer driving-related questions such as "Sum-
marize the current driving scenario". An auxiliary
image reconstruction task is introduced where a
transposed convolution layer reconstructs input im-
age patches from the output embeddings s}, - - - , sff
to improve feature learning. The training objective
consists of three loss terms: text generation, action
prediction, and image reconstruction with decoder
parameters ¢, while 6 represents all other trainable
parameters.

Text Generation. In our experiment, we found
that merely replacing specific numerical values in
the translation template (Chen et al., 2024) results
in minimal representational differences caused by
the sequential nature of the data, making the phe-
nomenon of model overfitting easy to happen if
we use the conventional cross-entropy loss for text
generation. Refer to Appendix A.8 for details. To
mitigate this, we use the label smoothing technique
to regularize the training process (Szegedy et al.,
2016). Specifically, the hard label for token w;
is smoothed by assigning a small portion of the
probability mass to incorrect classes:

S A @)
%7 Otherwise,

where ¢ is the smoothing factor and K is the num-
ber of total classes, i.e., vocabulary size. That is to
say, the loss item for text generation we finally use
is:

»Clanguage(e) = % Zz Zk qf logp(k]T:i_l, 9),
(3)

where 77~1 denotes the input token sequence be-
fore position ¢, used for predicting token . N
denotes the maximum padding length to unify the
input text.

Action Prediction. To directly predicts contin-
uous action values instead of discrete action bins,
we train our model with a mean square error (MSE)
loss between the ground-truth action value a; and
the predicted value, as follows:

Lacion(0) = 7 3°{ 0 l(af — 7(7,0))?] 4)

where D denotes the dimension of the action space.
In our experiments, the action dimension is 2, cor-
responding to the acceleration and steering of the
vehicle, respectively.

Image Reconstruction. To better leverage the
rich environmental information in visual data while
avoiding information loss during training with lim-
ited data, we introduce an auxiliary image recon-
struction task. This provides additional supervision
for the visual modality by using a 2D transposed
convolution layer fy4 to reconstruct image patches
from their corresponding embeddings. The recon-
struction loss is computed as the pixel-wise Eu-
clidean distance between original and reconstructed
patches, as follows:

Limage(6,6) = £ S MSE(o, fo(n(g0(7i™).6))
l 5)
where o, is the input image, and Tt:p ¢ is the input
sequence up to this patch token, and gy represents
a trainable 2D convolutional network that directly
maps image patches p}, - - - , pé to the language em-
bedding space ﬁtl, cee ﬁé.
Training Loss Function. In summary, our train-
ing loss function is defined as follows:

L= O41£1anguage + a2 Laction + )\Eimage (6)

where a1, ag, A are the weight hyperparameters of
three components.

4 Experiments

In this section, we validate through experiments
on the autonomous driving simulation platform
CARLA that VLASCD can make fine-grained ac-
tion decisions while maintaining dialogue function-
ality. Our experiments analyze: (1) the effects of
different loss components on model performance,
and (2) how textual data quality influences driving
decisions.



your heading are respectively 2.47 m/s, 9.66 m, 179.79 °.You are now -0.012m laterally away from your driving route.

Image H»Translates» Other Sensors Input_35: You can see that there is a car. It is speed, straight-line distance from you, and angle in the direction

l Simultaneously output two modalities

;" Dialogue capabilities

& Passenger Question: How does the detected car's speed impact your driving action?

Different model responses @ GPT-4o scores the responses

Different model driving performances

Decision-making capabilities

& Passenger evaluations of driving behavior

VLASCD_pred_35: The current lateral position is important
in planning the next action because if you are too far away Good
from your driving route

VLASCD_pred_35 is driving:
action=[0.9856287, 0.0063582]

The vehicle is unable to move forward and keeps spinning
in place. The vehicle is not functional and cannot move.

Openvla_pred_35: your current position in planning the next action Not Acceptable

Openvla_pred_35 is driving:
action=[0.9856287, 0.0063582]

The vehicle is completely stationary and cannot move.
The vehicle is non-functional and immobile.

DriverGPT4_pred_35: 000000000000000000 Not Acceptable

DriverGPT4_pred_35 is driving:
action=[ ,

The vehicle is driving forward along a random route with acceleration, though
A there is slight wobbling. The driving is mostly safe, but with minor instability.

VLASCD(no-image)_pred_35: Your current lateral position is
important in planning the next action because if you don’t plan
the next action, you will not be able to reach your destinati

Acceptable

VLASCD(no-image)_pred_35 is driving:
action=[0.9232351,0.0025147]

The vehicie is driving safely along a random route with acceleration,
but occasionally deviates from the lane lines and has significant
wobbling. The driving is unstable and potentially dangerous.

VLASCD(no-language)_pred_35: — Not Acceptable

VLASCD(no-language)_pred_35 is
driving: action=[0.8945135, -0.0123564]

The vehicle is driving safely along a random route, with
smooth acceleration. The driving is smooth and safe.

Figure 2: Randomly shows examples of different models (MIMO architecture) engaging in smooth conversation
with humans while making real-time action decisions during driving.

4.1 Experimental setting

Our experiments were conducted in gym-carla
(Chen, 2020), an OpenAl Gym-compatible envi-
ronment built on CARLA 0.9.10 . For LoRA fine-
tuning, we selectively updated only the () and V'
projection modules (0.06% of Llama-7B’s total
parameters). Additional implementation details,
including hyperparameters for VLASCD, linear
mapping layers, and gym-carla configurations, are
provided in Appendix A.1.

4.2 Comparison methods

The Behavior Cloning (BC) method performed in
gym-carla was used as a baseline. The other meth-
ods involved for comparison include RL methods
Dreamer (Hafner et al., 2019) and Forbes (Chen
et al., 2022), Decision Transformer (DT) (Chen
et al., 2021), and VLA models OpenVLA (Kim
et al., 2024) and DriverGPT4 (Xu et al., 2024).

4.3 Training datasets

The training dataset D.yper+ Was obtained from
the EGADS framework (Tang et al., 2024), which
designs RL and IL-based agent with safety con-
straints, demonstrating excellent performance in
CARLA. Therefore, we select this agent as our
experts. We let such experts drive vehicles in
town03 of CARLA to collect the dataset. Degpert
is 5.69GB in size, containing 13,761 frames. For
each frame, one question out of 50 was randomly
selected based on the textual description of the cur-
rent frame’s observation, along with its correspond-
ing answer for that specific frame. For a more
detailed description of the Deyper+ and the map,

@ (b)

Figure 3: The (a) shows a sample view of the simulation
environment, while the (b) presents a bird-eye view of
our task scenario.
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Figure 4: GPT-40 scores the answers from five methods
for randomly generated inputs and question

please refer to Appendix A.3 and Appendix A.2,
respectively. As shown in Figure 3 (b), we used
the layout of the town03 for training. In the experi-
mental environment for data collection and online
evaluation, all vehicles randomly select directions
at intersections, follow randomly generated routes,
slow down for preceding vehicles, and stop when
the traffic light ahead turns red.

Following Chen et al. (2024), we design a tem-
plate based parser that translates sensor data (such
as position and distance information, excluding vi-
sion and lidar) into natural language descriptions,
as shown in "other sensors input” in Figures 1
and 2. For details on the templates, refer to Ap-



Table 1: Evaluation results for different methods in town03 (random), H=1

Method Input DSt AR (f) 1 ‘ ASD(m) 1 ER(%) 1 OR(%) | CR(%) |
BC image 20.21£7.46  175.34+72.86 ‘ 5421£6.41 9.08+£0.56 54.86+20.04 60.00£11.23
DriverGPT4 image, text - - - - - -
Openvla image, text -13.02£4.02 -199.16+38.73 | 24.34+£5.02  5.254+0.39  24.36+4.17  95.0040.00
VLASCD  image, text 92.78+23.75 466.80+91.66 | 71.77£9.40 16.35+1.56 15.33+£4.36  55.00+11.41

Table 2: Evaluation results for different methods in town03 (random), H=4

Method Input DSt AR (f) 1 ‘ ASD(m) 1 ER(%) 1 OR(%) | CR(%) |
BC image 36.39+13.37 314.66+£86.02 | 64.084+10.48 9.04+0.62 37.56+16.44 45.00+11.41

Dreamer image -0.03+0.01 -14.96+0.09 0.024+0.01 0.2240.01 0.00+0.00 0.00+0.00
Forbes image 0.98+1.43 21.63+21.72 | 22.84£1.00 6.30£0.31  18.78+1.03  56.674+9.20
DT image 7.68+3.24 51.97429.33 | 23.74+2.47  9.924+0.71  10.314+2.32  65.00+10.94

DriverGPT4  image, text - - - - - -

Openvla image, text  -7.84+0.67  -160.37+7.85 | 18.03+1.92  4.76+0.19  20.77+3.36  100.00+0.00
VLASCD  image, text 105.25+14.03 349.52+49.75 | 59.76+ 5.04 25.02+2.57 19.93+2.11 30.00+£10.51

Table 3: Evaluation the generalization for different methods in town04 (random), H=4

Method Input DSt AR (f) T ‘ ASD(m) 1 ER(%) T OR(%) | CR(%) |
BC image 39.22+11.64 358.79+79.59 | 63.08+9.37 8.69+0.56  5.64+1.26 60.00+£11.23
Dreamer image -0.03+0.01 -15.034+0.07 0.02£0.01  0.01+0.21  0.01£0.00 0.00£0.00
Forbes image -2.63+£2.75  -17.374£22.98 | 19.79+1.20 6.244+0.69 15.80+2.74 66.70+£8.75
DT image 10.66+3.26 85.58+27.04 | 24.94+2.92 10.554+0.58 11.384+2.15 55.00+11.41
DriverGPT4 image, text - - - - - -
Openvla image, text -6.74+0.88  -153.35£10.26 | 13.62+1.86 4.26+0.17 15.70£2.71 100.00£0.00
VLASCD  image, text 94.26+15.26 384.52+51.72 | 56.93+4.03 21.49+1.86 12.75+2.28 45.00+11.41

pendix A.7. Note that such "other sensors input"
does not include any action-related information
from VLASCD, such as speed and heading angle.
In this way, we can test whether VLASCD can
leverage informative text data to enhance the qual-
ity of action decisons.

4.4 Performance metrics

Performance metrics for evaluating the chatting
ability. The study by Wang et al. (2023) confirms
ChatGPT’s high consistency with human judg-
ments. Based on this finding, we employed GPT-40
(OpenAl, 2023a) to systematically compare answer
quality between VLASCD and baseline models.
Our evaluation procedure consisted of: (1) select-
ing 50 random driving environment-question pairs;
(2) generating responses from baseline models for
each pair; and (3) scoring responses (0-10 scale)
using GPT-40 with the following criteria: Not Ac-
ceptable (< 3), Acceptable (3 < score < 6), and
Good (> 6). The complete evaluation prompt is
provided in Appendix A.7. Additionally, to assess
the impact of the language and image components
on dialogue capabilities, we included VLASCD
(no-language) and VLASCD (no-image), two sim-
plified versions of VLASCD trained by removing

the loss items corresponding to text generation and
image reconstruction, respectively: Laction +Limages
ﬁaction +£language-

Performance metrics for evaluating the
decision-making ability. We deployed our trained
model on a vehicle for autonomous urban navi-
gation and evaluated its performance using estab-
lished metrics: Collision Rate (CR), Off-road Rate
(OR), Episode Completion Rate (ER), Average
Safe Driving Distance (ASD), Average Reward
(AR), and Driving Score (DS). DS, a composite
metric assessing overall performance, is defined as:
DS =ER x AR, aligning with the CARLA Leader-
board’s methodology. For AR, we adopted the re-
ward function from Chen et al. (2019), which eval-
uates driving dynamics, including yaw, collisions,
speeding, and lateral velocity. Model selection pri-
oritized checkpoints optimizing both DS and AR.
The remaining metrics (ER, OR, AR, ASD) were
implemented following Gao et al. (2024). Further
details on reward computation and metric calcula-
tions are provided in Appendices A.5 and A.6.

4.5 Results on chatting ability evaluation

As shown in Figures 2 and 4, VLASCD performs
significantly better that others in terms of chatting



ability. In contrast, OpenVLA performs poorly
in question-answering because it focuses solely
on optimizing the action loss. DriverGPT4 faces
challenges as both tasks share the same decoder,
causing the model to misinterpret inputs as only
for action prediction, making it difficult to generate
complete text. Despite having two independent loss
items, the model has not effectively balanced these
two losses. Furthermore, VLASCD (no language)
shows a significant gap in conversational ability
compared to VLASCD, while VLASCD (no image)
performs similarly to VLASCD, highlighting the
importance of the language loss component for
enhancing chatting abilities.

4.6 Results on decision-making ability
evaluation

We define the "-" entries in Tables 1-3 as system
failure cases where no complete action value is
generated within the 50-second threshold, which
represents the maximum allowable stationary wait
time before triggering system intervention. H de-
notes the length of the context.

As shown in Table 1, VLASCD significantly out-
performs BC and OpenVLA in terms of DS, AR,
and ASD at a single time step, while DriverGPT4
fails to generate precise action values. VLASCD
also shows significant improvements over other
methods across multiple time steps in Table 2, indi-
cating sustained benefits over longer durations. We
evaluated these models’ generalization capability
by training them on the town(03 dataset and then
evaluating them online in town04. As shown in
Table 3, the primary metric DS of VLASCD sig-
nificantly exceeds that of the other methods, show-
casing its strong generalization ability. Tables 1, 2,
and 3 indicate that DriverGPT4 faces challenges
in generating precise action values for real-time
control commands, highlighting the difficulties of
directly generating accurate values using a detok-
enizer. In contrast, OpenVLA can generate precise
values in experiments but produces identical action
commands, causing vehicles to wander or spin in
a place, resulting in significant penalties. Results
in Tables 2 and 3 demonstrated that VLASCD also
significantly outperforms DT, Dreamer, and Forbes
in terms of decision-making and generalization.

Finally, Figure 2 illustrates how our MIMO
model smoothly engages in conversation with a
human while simultaneously making real-time ac-
tion decisions during the driving process.

4.7 Ablation studies on the loss function
design

As shown in Equation (6), our loss function is com-
posed of three losses, namely action loss Laction,
language 10ss Lianguage, and image 10ss Limage. We
conducted ablation studies to investigate the ef-
fect of each loss on the performance of VLASCD.
The experiment result is shown in Table 4, where
the action-bins 108s Laction-bins denotes the action
loss used by OpenVLA and RT2. They deal
with continuous valued actions by value discretiza-
tion. We included VLASCD (no-language) and
VLASCD (no-image), two simplified versions of
VLASCD trained by using Laction +Limage and
Laction +Llanguage» respectively.

On the effect of L,ction As shown in Ta-
ble 4, if we compare the performance metrics
of Eimage + £language + ﬁaction-bins with that of
Limage + Lianguage + Laction, We can see a clear ad-
vantage of using our action loss Laction OVer using
Laction-bins- This explains why VLASCD outper-
forms VLA models that use the type of action loss
similar to L,ction-bins, @S Shown in Tables 1, 2, and
3. Specifically, from our experiments, we found
that doing action discretization and tokenization as
in current VLA models lead to low training loss
but bad inference performance. This is because
adjacent action intervals are represented by con-
secutive token IDs (e.g., 31830 and 31831), which
are close in token space. Consequently, the model
tends to output the same token (31830 or 31831)
in inference, while the actual action values corre-
sponding to them can have significant differences.
In contrast, our proposed approach for continuously
valued actions can avoid this phenomenon.

On the effect of Ljanguage As shown in Table
4, if we compare performance metrics between
Limage + Laction (corresponding to VLASCD (no-
language)) and Eimage + »Clanguage + Laction (cor-
responding to VLASCD), we see that including
Lianguage in the loss function significantly enhances
the quality of decision-making. As shown in Fig-
ures 2 and 4, VLASCD (no-language) has signif-
icantly different dialogue capabilities compared
to VLASCD, while VLASCD (no-image) per-
forms similarly to VLASCD. It demonstrates that
Lianguage Plays an important role for maintaining
the dialogue capability. To summarize, including
Lianguage n the loss function has beneficial impacts
on both dialogue and decision-making.

On the effect of Linage As shown in Table 4,



Table 4: Ablation studies on the loss function of VLASCD in town03 (random), H=4

Loss function Input DS t AR(f)T | ASDm)+  ER(%) T  OR%) .| CR(%) |
Limage+Lianguage+Laction-bins  image, text  11.57£0.00  142.83+0.01 | 22.71£0.01  8.10£0.05  30.87+0.10 100.00+0.00
Limage+Laction image, text  45.08+10.88  234.36+52.21 | 39.64+ 4.03 14.13+£1.71 16.68+3.15 30.00+10.51
Lianguage+Laction image, text  74.85+£10.97  331.78+49.88 | 50.63+4.73 18.624+1.95 15.96+2.45 25.00+9.93
Limage+Lianguage+Laction(0ur)  image, text  105.25+14.03  349.52449.75 | 59.76+ 5.04 25.0242.57 19.934+2.11 30.00+10.51

Table 5: The impact of noise ratio in sensor inputs and QA content on the decision-making performance of VLASCD

in town03(random)

Input Sensor input / QA (noise ratio) DS 1 AR (f) T ‘ ASD(m) 1 ER(%) 1 OR(%) | CR(%) |
image, text 0% / 100% 74.324+24.44  288.54+74.62 | 62.42+7.71 25.776+£1.54 11.05+£1.62 50.0+0.51
image, text 0% 1 0% 93.894+29.73 336.11£86.72 | 45.424+9.53 16.68+2.50 19.05+4.96 5.00+5.00
image, text 100% / 0% -0.01+1.12 -5.104+0.00 0.00+0.00  0.30+0.00  0.00+0.00  0.00=£0.00

when we added Linage in the loss function (corre-
sponding to results of Limage + Lianguage + Laction)»
all performance metrics related to decision-making
are increased in value, compared t0 Lianguage +
Laction- This confirms that the Liyage indeed brings
remarkable benefits for enhancing decision-making
performance. We argue that this is because, dur-
ing the decision-making, doing high-quality image
reconstruction can further explore and utilize the
rich information related to the current scene within
the image modality data, thereby benefiting the
decision-making.

4.8 How to resolve conflicts in simultaneous
multi-task output ?

In DriveGPT4, the text generation and action gener-
ation tasks lack independently designed loss func-
tions, leading to conflicts between the two tasks,
particularly in complex environments where the
model fails to simultaneously generate efficient
text and action instructions. As shown in Figure
2, DriveGPT4 cannot guarantee fine-grained ac-
tion instructions at each moment, compromising its
decision accuracy and dialogue capabilities. In con-
trast, VLASCD establishes independent objective
functions for text generation and action generation,
ensuring efficient parallel processing of each task
and avoiding task conflicts.

4.9 How does textual data quality in training
impact model decision-making ?

Imagine a driver operating a car while convers-
ing with a passenger. If the passenger’s words are
irrelevant to the driving situation, they might in-
terfere with the driver’s decision-making, though
humans naturally possess some level of noise resis-
tance. To test whether our model exhibits human-
like decision-making behavior, we designed a set of
experiments. The results, shown in Table 5, reveal

that when noise unrelated to driving scenarios is in-
troduced into the sensor input, the model’s decision-
making performance declines rapidly. However,
when noise is added only to the QA content while
keeping the sensor input noise-free, the perfor-
mance drop is less significant. This indicates that
our model maintains robustness when the sensor
input remains relevant to the driving scenario, even
if the QA content contains noise. These findings
demonstrate that our model’s decision-making per-
formance closely resembles that of human drivers.

5 Conclusion

In this study, we explore how to develop a multi-
modal pre-training framework to address the inher-
ent task mutual exclusion in MISO architectures
during MIMO scenarios (e.g., parallel multi-tasks
output processing), where competing conflicts arise
among different tasks sharing output channels, lead-
ing to imbalanced model optimization and signifi-
cant performance degradation in specific tasks. we
propose a unified MIMO training architecture with
parallel multi-task output capabilities-VLASCD.
Experiments show that VLASCD surpasses state-
of-the-art VLA models, RL, and decision trans-
formers in decision-making while maintaining flu-
ent dialogue, thanks to our continuous-action han-
dling, cost function design, and label smoothing
techniques.

The evolution from modular systems composed
of discrete subcomponents to unified end-to-end
models represents a major ongoing trend in Al
research. Within the MIMO scenario, we believe
this work constitutes a meaningful initial attempt in
developing a unified generative model capable of
simultaneously handling both dialogue and action
generation in an end-to-end manner.



Limitations

This study has several limitations that warrant fur-
ther exploration in future work. First, although
VLASCD is designed as a general-purpose and uni-
fied MIMO training, and the experiments leverage
the CARLA simulator for efficient data collection,
the validation is currently limited to autonomous
driving scenarios. Its generalizability to other do-
mains (e.g., robotics, human-computer interaction)
remains unverified. Second, as an initial explo-
ration of an end-to-end multi-task generative model,
the joint optimization of dialogue understanding
and action generation still has room for improve-
ment, particularly in multi-task coordination and
scalability. Additionally, we observe that exces-
sively long text prompts or large image patches can
cause synchronization delays across tasks due to
computational bottlenecks, highlighting the need
for more efficient token processing and resource
allocation strategies to enhance real-time perfor-
mance. We believe that these limitations provide
clear directions for our future research.
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A Appendix

A.1 Hyperparameter settings

In this section, we respectively introduce the model
parameters of VLASCD, the parameters of the cus-
tom linear layers, as well as the parameters of
gym-carla and evaluation, as shown in Tables 6,
7, and 8. In addition, we trained the models using
Python 3.8, Transformers 4.30.0, and a NVIDIA
Tesla V100 GPU. The training time ranges from 5
to 13 hours, depending on the input modality and
trajectory length. We also conducted experiments
on the three hyperparameters of the loss function
in Appendix A.12. In our experiments, we choose
a1 = 0.1, ag = 10, and A = 0.5.

A.2 CARLA maps

In order to comprehensively evaluate the perfor-
mance of our VLASCD, we utilized five maps in
CARLA, including town03, town04 as shown in
Figure 6. Town03 is one complex map in CARLA,
closely resembling real urban road environments,
including various complex scenarios such as tun-
nels, intersections, roundabouts, curves, and multi-
turns, covering an area of 400m x 400m, with a
total road length of approximately 6km.Town04
is a small town with a backdrop of snow-capped
mountains and conifers. A multi-lane road circum-
navigates the town in a "figure of 8".

A.3 Training datasets

We trained all comparison methods based on an
expert dataset Degpert, Which is 5.69GB in size,
containing 13,761 frames. We used 90% of it as
the training set and the remaining as the test set.
We evaluated these comparison methods online in
the random mode of CARLA town03. Following
the work on DT (Chen et al., 2021), we investi-
gated the performance of sequence fusion for both
single time steps and multiple time steps. We set
the context length H = 1, resulting in a fusion se-
quence length of 489. This includes dividing the
128 x 128 image into 64 tokens and padding the text
sequences to a length of 424 tokens, including an
empty placeholder token. However, due to com-
putational constraints, we only explored trajectory
sequences with a maximum length of 489*4=1956
to validate performance in a longer context. We
also explored whether the decision-making abil-
ity of VLASCD is enhanced with longer context of
trajectories in Appendix A.4. Additionally, we eval-
uated performance across different modalities and
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generalization capabilities in town04. For detailed
information on the CARLA maps, refer to Ap-
pendix A.2. All comparison methods were tested
online in the CARLA simulator. We conducted
evaluations over 20 episodes, each consisting of
1000 steps, with 200 involved vehicles, whose driv-
ing routes and met scenarios are generated in ran-
dom mode.

A.4 Is model decision-making ability
enhanced with longer context of
trajectories?

As shown in Table 9, we observed that although
the context length H of input trajectories is longer,
the overall DS and AR of VLASCD show some im-
provement, but the increase is not significant. This
improvement is primarily attributed to the higher
route completion and lower collision rates associ-
ated with longer time steps. According to Section
4.3, when H = 4, the sequence length extends to
1956, representing a fourfold increase in sequence
length. Despite this, the improvement in DS and
AR scores is not pronounced. Notably, in metrics
such as AR and ADS, the performance of H =4 is
even worse than that of H = 1. This suggests that
the input information might be redundant, and ex-
cessively long trajectories could negatively impact
decision-making ability.

This result highlights several key issues. First,
while longer context lengths provide the model
with more historical context and information, an
excessive amount of information may hinder the
ability of model to effectively filter and extract use-
ful decision signals, leading to information redun-
dancy. Redundant information not only increases
the computational complexity but also may dis-
tract the attention of model, reducing its capacity
to capture critical features and thereby affecting
overall decision-making. Therefore, shorter con-
text length sequences provide more concise and
precise inputs, facilitating quicker and more ac-
curate judgments by the model. This indicates
that the current fusion method has limited perfor-
mance improvements. Chen et al. (2021); Hung
et al. (2019) suggest that longer context lengths
can bring more benefits for decision control, so we
also consider how to compress historical informa-
tion and efficiently fuse it in the future to enhance
decision-making.



Table 6: Hyperparameters

Parameter Value
batch_size 64
micro_batch_size 8
num_epochs 3
learning_rate 3e-4
cutoff_len 424
val_set_size 0.1
save_step 25
lora_r 8
lora_alpha 16
lora_dropout 0.05

lora_target_modules
Other Sensors Input_types {obs, text}

lambda_action
lambda_smooth
lambda_img
horizon

regular_action_loss

img_patch_size

{q_proj, k_proj}

10
0.1
0.5

1
False
16

Table 7: Model Parameters and Layers

Parameter/Layer Details
num_patches 64
tokenizer_vocab_size 32000

split_obs_proj

inverse_split_obs_proj
split_obs_position_embedding

text_embedding
custom_lm_head
actor_linearl
actor_linear2
actor_linear3
actor_linear4
actor_linear5
actor_linear6
actor_linear7
reconstruction_layer
action_linear

Conv2d(3, 4096, kernel_size=16, stride=16)

ConvTranspose2d(4096, 3, kernel_size=16, stride=16)
Parameter(torch.randn(1, 64, 4096))

nn.Embedding(32000, 4096)
Linear(4096, 32000, bias=False)
Linear(4096, 2048)
Linear(2048, 1024)
Linear(1024, 512)

Linear(512, 256)

Linear(256, 128)

Linear(128, 64)

Linear(64, 2)

Linear(4096, micro_batch_size*3*128*128)
Linear(2, 4096)

A.5 Reward function

We use the default reward function of the Gym-

Carla benchmark (Chen et al., 2019) to evaluate all
experimental methods, as follows:

f=200r: + viop + 107 + 17,

—5a%2+0

27t — 0.1

(N
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where 7. is the reward related to collision, which is
set to -1 if the ego vehicle collides and 0 otherwise.
Vion, 18 the longitudinal speed of the ego vehicle.
7y is the reward related to running too fast, which
is set to —1 if it exceeds the desired speed (8 m/s
here) and 0 otherwise. 7, is set to —1 if the ego
vehicle runs out of the lane, and 0 otherwise. «
is the steering angle of the ego vehicle in radians.



Table 8: gym-carla and evaluation Environment Parameters

Parameter Value
Number of Vehicles 200
Number of Walkers 0
Random Seed 1

Other Sensors Input_names lidar_noground
Display Size 400

Max Past Step 1

Time Step (dt) 0.1
Discrete Control False
Continuous Acceleration Range [-3.0, 3.0]
Continuous Steering Range [-0.2, 0.2]

Ego Vehicle Filter

Traffic Manager Port

Town Map

Task Mode

Max Time per Episode

Max Waypoints

Observation Range

LiDAR Bin Size

Distance Behind Ego Vehicle
Lane Threshold

Desired Speed

Max Ego Vehicle Spawn Times
Display Route

PIXOR Grid Size

PIXOR Mode

Predict Speed

vehicle.lincoln*
Random integer (2000 to 9000)
town03 or town04
Random

2000

12

32

0.25

12

2.0

8

200

True

64

False

True

Table 9: Evaluation VLASCD longer context results for mulitmodal input in town03 (random)

Input  Limage H DS 1 AR(f)T | ASDm) T  ER(%)?T OR(%) | CR(%) |
image x 1 29.55+6.17  226.91+42.24 | 5424+4.30 11.85+0.68 20.22+5.57  70.00+10.5
image X 4 22384496  155.79431.87 | 3245+1.74 14.41£0.59 15.93+2.65 40.00+11.23
text x 1 37.44+10.11 248.89+52.91 | 47.3745.43 15.63+£1.98 17.02+2.71 40.00+£11.24
text X 4 4416£7.39  252.10438.94 | 46.96+3.23 15.66+1.06 12.86+2.45 60.00+11.23
image, text X 1 68.10£13.20 417.24+57.41 | 58.81+£6.55 13.71+1.26 11.39£2.41 40.00+11.24
image, text x4 74.85£10.97 331.78+49.88 | 50.63+£4.73 18.62+1.95 15.96+2.45 25.00+9.93
image, text v/ 1 92.78423.75 466.80+91.66 | 71.77+£9.40 16.35+1.56 15.33+4.36 55.00+11.41
image, text v/ 4 10525+14.03 349.52+49.75 | 59.76+ 5.04 25.02+£2.57 19.93+2.11 30.00£10.51

r1q¢ 18 the reward related to lateral acceleration,
which is calculated by 74; = — | - leOn. The last
constant term is added to prevent the ego vehicle
from standing still.

A.6 Measure performance metrics

We use multiple key metrics to evaluate the perfor-
mance of autonomous driving models in various
driving scenarios. Collision Rate (CR): the fre-
quency at which the vehicle collides with obstacles

or other vehicles. This metric is critical for as-
sessing the safety of the driving model. Outlane
Rate (OR): the rate at which the vehicle deviates
from its designated lane. This metric evaluates the
ability of modes to maintain proper lane discipline.
Episode Completion Rate (ER): the percentage of
driving tasks or episodes that the vehicle success-
fully completes. Higher completion rates indicate
better task performance. Average Safe Driving
Distance (ASD): the average distance driven with-
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(a) Town03

(b) Town04

Figure 5: CARLA maps

out incidents, such as collisions or off-road events.
This metric highlights the capability to drive safely
over extended periods. Average Return (AR): A
metric that measures the cumulative reward col-
lected by the vehicle during its driving tasks, often
reflecting both task performance and adherence
to safety guidelines. Driving Score (DS): A com-
prehensive metric that reflects the overall perfor-
mance of the vehicle in terms of safety, efficiency,
and compliance with traffic rules, aligning with
the CARLA Leaderboard’s methodology. For AR,
we adopted the reward function f from Chen et al.
(2019), which evaluates driving dynamics, includ-
ing yaw, collisions, speeding, and lateral velocity.
Model selection prioritized checkpoints optimizing
both DS and AR. The remaining metrics (ER, OR,
AR, ASD) were implemented following Gao et al.
(2024).

CR — {Vfollis%ons -, — ijvoff,'roadievemvs (8)
otal_episodes total_episodes
Neompleted Zl.vwis‘)des distance;
ER __ “Ncompleted_steps , ASD — i=1 2 (9)

N total_steps N total_episodes

N, episodes

AR = 2=l ™ ho pRw AR (10)

N, total_episodes

Where Neonisions 1S the number of collisions during
the episode, and Nyogal_episodes 18 the total number
of episodes in the test. Where Nyt road_events 15 the
number of times the vehicle went off-road, and
Niotal_steps 18 the total number of episodes. Where
distance; is the distance driven during the i-th safe
driving episode, and Ngafe_episodes 1S the number of
episodes without incidents (such as collisions or
off-road events). Where Ncompleted_steps 18 the num-
ber of successfully completed steps, and Niogal_steps
is the total number of steps in the episode. Where
AR is the average reward f collected during the
episode.
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A.7 The natural language template for text
input

We obtained information from the CARLA envi-
ronment using other sensors (such as speed sensors
and position sensors), excluding the acceleration
and steering (action) of the ego vehicle). This
information is transformed into a natural language
template that the VLA can understand, as shown
below:

<lateral_dis, delta_yaw, speed, vehicles_info> =
<observation_vehicle_state>

<vehicles_num> = <len(vehicles_info)>
<multi_dis +=  str(vehicles_info[i][0])+"",
multi_yaw += str(vehicles_info[i][1])+"",
multi_speed += str(vehicles_info[i][2])+"">

<if vehicles_num=1:>

<new_input="You can see that there is a car. Its
speed, straight-line distance from you, and angle
in the direction you're heading are respectively
{multi_speed} m/s, {multi_dis} m, {multi_yaw}°."
"You are now {lateral_dis}m laterally away from
your driving route. ">

<elif vehicles_num>1:>

<new_input="You can see that there are vehi-
cles_num cars. Their speed, straight-line distance
from you, and angle in the direction you're heading
are respectively {multi_speed} m/s, {multi_dis}
m, {multi_yaw}°." "You are now {lateral_dis}m
laterally away from your driving route. ">

<elif vehicles_num=0:>

<new_input="You see no car here, and you are
now {lateral_dis}m laterally away from your
driving route.">

We followed Wang et al. (2023) "Is ChatGPT a
Good NLG Evaluator?" approach. The complete
evaluation prompt template for using GPT-4o0



(OpenAl, 2023b) is as follows:"The document
contains 50 similar examples as described
above. For each example, based on the given
Input_0: and Question_0:, please evaluate
and score the responses generated by the five
methods (VLASCD_pred_0, Openvia_pred_0,
DriverGPT4_pred_0, VLASCD_image_pred_0,
and VLASCD_language_pred_0) using a 10-point
scale with the following criteria:Not Acceptable
(< 3), Acceptable (3 < score < 6), and Good
(> 6). Please output the individual scores for
each example. After evaluating all 50 examples,
calculate the average rates for: Not Acceptable,
Acceptable, Good, and Excellent performance for
each method."

A.8 The benefits of cross-entropy loss and
label smoothing loss for VLASCD

We found that merely replacing specific numeri-
cal values in the translation template (Chen et al.,
2024) results in minimal representational differ-
ences caused by the sequential nature of data, mak-
ing it easy for conventional cross-entropy loss to
lead to overfitting in text generation tasks. As
shown in Table 10, we tested on both town03 and
town(04, which led to a decline in the decision-
making performance of model. Compared to cross-
entropy loss, cross-entropy loss with smoothed la-
bels performed better. Therefore, we chose cross-
entropy loss with smoothed labels as the loss for
text generation in VLASCD in our experiments.

A.9 The impact of training data-related
factors on the decision performance of
model

In the multimodal ablation experiments on the
VLASCD model, as shown in Table 11, we system-
atically removed or replaced individual modalities
to evaluate their contribution to decision-making.
The results show that models utilizing image and
text fusion significantly outperform those with only
a single image or text input in terms of decision
accuracy and stability. This indicates that the text
modality in our dataset provides higher-level se-
mantic abstraction to complement visual inputs,
thereby enhancing overall decision-making abil-
ity. In addition, as shown in Table 11, a single
text input performs better than a single image in-
put, indicating that the information provided by the
text modality in our dataset (especially from "other
sensors input", as shown in Figure 6) is highly ben-
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eficial for improving the decision-making ability
of model.

A.10 The noise consisted of information
datasets

The noise consisted of information completely un-
related to the current driving scenario as follow:
{"A playful puppy brings joy and laughter to our
days", "The whisper of the wind carries secrets
of the universe", "A hidden garden blooms with
the magic of nature’s colors", "The aroma of fresh
coffee awakens the senses each morning", "A hand-
written letter feels like a warm hug from afar",
"The glimmer of fireflies creates a magical sum-
mer night", "A spontaneous adventure can lead to
unforgettable memories", "The serenity of a quiet
lake reflects the beauty of the world", "A gentle
touch can convey love without a single word", "The
laughter of friends is the sweetest melody of all",
"A warm hug is a universal language of comfort",
"The dance of leaves in the breeze tells stories of
change", "A cozy fire invites stories and shared mo-
ments", "The beauty of art inspires creativity and
self-expression”, "A day spent volunteering fills
the heart with purpose", "The excitement of a new
book is like embarking on a journey", "A delicious
meal shared brings people closer together", "The
sound of laughter can brighten even the gloomiest
day", "A fleeting moment can hold the weight of a
thousand memories”, "The charm of small towns
lies in their simple beauty", "A gentle rain nur-
tures the earth and inspires growth", "A colorful
painting captures the essence of joy", "The peace
of a mountain retreat refreshes the soul”, "A fa-
vorite mug holds warmth and comfort on a chilly
day", "The rustle of leaves underfoot reminds us
of nature’s rhythm", "A well-crafted story has the
power to transport us anywhere", "The thrill of dis-
covery keeps our spirits young and curious", "A
cherished photograph holds a lifetime of memo-
ries", "The beauty of winter blankets the world in
quiet calm", "A moment of kindness can change the
trajectory of a day", "The aroma of spices fills the
kitchen with warmth and love", "A shared joke cre-
ates bonds that laughter alone cannot”, "The glow
of a sunrise fills the heart with hope"”, "A melody
can linger in the mind long after it fades", "The
colors of autumn leaves create a vibrant tapestry",
"A soft pillow cradles the head and invites sweet
dreams", "The laughter of children brings joy and
light to our lives", "A surprise visit from a friend

can brighten any day", "The beauty of a flower



! Other Sensors Input: You can see that
Other Sensors Input: Youseeno |  there are 3 cars, their speed, their straight-
car here, and you are now - 9.583m | |ine distance from you, and their Angle in the
laterally away from your driving route.l  direction your heading are 4.78 2.72 4.78 m/
s, 12.67 14.29 13.89 m, 126.66 10.93 40.25
°. You are now 18.996m laterally away from
your driving route.

Other Sensors Input: You can see that
there is 1 car. It is speed, straightline
distance from you, and angle in the direction
your heading are respectively 4.63 m/s, 5.37
m, 146.55 °. You are now 1.428m laterally
away from your driving route.

Question: When do you plan to change
0 lanes?

% Question: None.

% Question: What is your action and why?

!

~o=) VLAA4CD is driving:

-~ Y VLA4CD is driving:
N7 action=[1.2836254, -0.1297846)

action=[0.9856287, 0.0063582]

7N VLAA4CD is driving:
Q«,,ﬁ action=[0.0318892, 0.0132653]

s—s VLA4CD Answer: My action is to proceed
" safely with action=[<action0>, <action1>] to
maintain safe driving given the car's position
and my current state.

VLA4CD Answer: | will change lanes at
about 50 meters ahead because there is
enough space in the right lane.

(a) (b) ()

Figure 6: An example show on how VLASCD smoothly engages in conversation with a human while simultaneously
making real-time action decisions during the driving process

Table 10: We evaluated the performance of VLASCD using smooth label loss and cross-entropy loss functions, H=4

Lianguage Town DS 71 AR ()T | ASDm)T  ER(%)?1 OR(%) | CR(%) |
Cross Entropy  town03 ~ 48.97£7.60  296.53140.72 ‘ 47.10+£4.87 15.37£0.85 12.414£2.73 35.00+10.94

Smooth Label town03 105.25+14.03 349.524+49.75 | 59.76+ 5.04 25.02£2.57 19.93+2.11 30.00+10.51

Cross Entropy  town04  66.69+16.97 358.11£61.10 | 52.72+5.44 15.43+1.11 9.63+1.42 55.00£11.41
Smooth Label town04 94.26+15.26 384.524+51.72 | 56.93+4.03 21.49£1.86 12.75+2.28 45.00+11.41

Table 11: Evaluating the impact of different modal inputs on the decision-making of VLASCD in town03 (random),
H=4

Input  Limgge DS AR(f)T  ASDm)1 | ER(%)T  OR(%)|  CR(%)|

image X 22.38+£4.96  155.79+31.87 32.45£1.74 | 14.41£0.59 15.93+2.65 40.00+11.23
text X 44.16£7.39  252.10£38.94 46.96+3.23 | 15.66£1.06 12.86+2.45 60.00+11.23
image, text X 74.85+10.97 331.78+49.88 50.63+4.73 | 18.62+1.95 15.96+2.45 25.00+9.93
image, text v 105.25£14.03 349.52+49.75 59.76+ 5.04 | 25.02£2.57 19.93+2.11 30.00+10.51

garden is a celebration of life", "A good book can ~ "How do I clean my humidifier?", "answer": "To
be a loyal companion on lonely nights", "The em-  clean your humidifier, empty it, wash the tank with
brace of nature can heal and rejuvenate the spirit”,  soap and water, and rinse thoroughly." , "question":
"A treasure hunt ignites the spirit of adventure”, "What is the national animal of Egypt?", "answer":
"The warmth of homemade cookies fills the home  "The national animal of Egypt is the steppe eagle."
with love", "A playful kitten brings joy and mis- , "question": "How do I make a cup of lavender
chief to our lives", "The scent of pine trees evokes  tea?", "answer": "To make a cup of lavender tea,
memories of the forest", |}. Additionally, we gen-  steep dried lavender flowers in hot water for 5-7
erated a dataset of over 500 question-answer pairs  minutes.” , "question": "What is the largest palace
using GPT to serve as noise for the QA content. A in the world?", "answer": "The largest palace in
random subset of these is shown below: { "ques- the world is the Palace of the Parliament in Ro-
tion": "What is the national flower of Egypt?”, "an- mania." , "question": "How do I check my com-
swer": "The national flower of Egypt is the lotus."  puter’s hard drive health?", "answer": "To check
, "question": "How do I make a vegetable soup?",  your computer’s hard drive health, use a diagnostic
"answer": "To make a vegetable soup, chop vegeta-  tool like CrystalDiskInfo or HD Tune." , "ques-
bles, simmer them in broth, and season with herbs  tion": "What is the national flower of Greece?",
and spices.”" , "question": "What is the largest  "answer": "The national flower of Greece is the
gulf in the world?", "answer": "The largest gulf  violet." , "question": "How do I make a chicken
in the world is the Gulf of Mexico.", "question":  soup?", "answer": "To make a chicken soup, sim-
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Other Sensors Input_0: You can see that there is a car. It is speed, straight-line distance from you, and angle in the direction
your heading are respectively 0.0 m/s, 12.4 m, 180.0 °.You are now -0.000m laterally away from your driving route.
Question_0: What should be your next steering action?

VLA4CD_pred_0: Your next steering action should be to turn the steering wheel to the left.

Openvla_pred_0: vyour steering action, your steering action, your steering action, your steering action, your steering action,
your steering action, your steering action, your steering action, your steering action, your steering action, your steering
DriverGPT4_pred_0: 0000000000000000000000000000000000

VLA4CD(no-image)_pred_0: right

VLA4CD(no-language)_pred_0: - ,- - ;- - - ;== === == -

Other Sensors Input_1: You can see that there are 2 cars. Their speed, straight-line distance from you, and angle in the
direction your heading are respectively 5.07 2.4 m/s, 14.89 9.64 m, 14.18 179.72 °.You are now -0.029m laterally away
from your driving route.

Question_1: How does the detected car's speed impact your driving action?

VLA4CD_pred_1: The detected car's speed impacts your driving action because if the detected car's speed is 0.000
Openvla_pred_1: driving speed and your speed and your speed and your speed and your speed and your speed and
DriverGPT4_pred_1: 000000000000000000000000000000000

VLA4CD(no-image)_pred_1: The car's speed does not impact my driving action.

VLA4CD(no-language)_pred_1: --,- - ;- - - - - ;== == = -

Figure 7: An example show on how VLASCD smoothly engages in conversation with a human while simultaneously
making real-time action decisions during the driving process

mer chicken, vegetables, and broth together, and  tea?", "answer": "To make a cup of turmeric tea,
season with herbs and spices.", "question": "What  steep fresh turmeric slices in hot water for 5-7 min-
is the largest strait in the world?", "answer": "The  utes." }

largest strait in the world is the Strait of Malacca."

, "question": "How do I clean my dehumidifier?", ~A-11 Our defined set of problems

"answer": "To clean your dehumidifier, empty it, Randomly selected a question from the set of ques-
wash the tank with soap and water, and rinse thor-  tions. = {"What are you seeing/observing?", "What
oughly.", "question": "What is the national animal  are you paying attention to and why?", "Are there
of Greece?", "answer": "The national animal of  any traffic lights? What’s the color of the traffic
Greece is the dolphin." , "question": "How do I  light?", "What’s your current speed and steering
make a cup of rose tea?", "answer": "To make a  angle?", "What is your action and why?", "Summa-
cup of rose tea, steep dried rose petals in hot water  rize the current driving scenario at a high level.",
for 5-7 minutes." , "question": "What is the largest ~ "How are you going to drive in this situation and
castle in the world?", "answer": "The largest castle ~ why?", "What’s the straight-line distance to the
in the world is Prague Castle in the Czech Repub-  nearest car?", "What is the angle of the nearest car
lic.", "question": "How do I check my computer’s  relative to your heading?", "Is there any lateral de-
network speed?”, "answer": "To check your com-  viation from your driving route?", "What should
puter’s network speed, use an online speed test tool  be your next steering action?", "What should be

and follow the instructions." , "question": "What  your next acceleration command?", "Is there any
is the national flower of Turkey?", "answer": "The ~ moving object around you?", "Describe the posi-
national flower of Turkey is the tulip." , "ques-  tion of the car relative to your heading.", "What is
tion": "How do I make a beef stew?", "answer":  your current lateral position relative to your route?",
"To make a beef stew, simmer beef, vegetables, and "What would be a safe driving action given the de-
broth together, and season with herbs and spices."  tected car’s details?", "What is the speed of the

, "question": "What is the largest canal in the  detected car?", "How far is the detected car from
world?", "answer": "The largest canal in the world  you?", "What angle should you adjust your steering
is the Grand Canal in China." , "question": "How  to avoid collision?", "Why is it important to note
do I clean my air purifier?", "answer": "To clean  the angle of the detected car?", "Is the detected
your air purifier, remove and wash the filters, and  car in motion?", "What should you be cautious

wipe the exterior with a damp cloth." , "question":  of given the car’s position?", "What action should
"What is the national animal of Turkey?", "answer":  be taken to maintain alignment on your driving
"The national animal of Turkey is the gray wolf.",  route?", What should you avoid in this situation to

"question": "How do I make a cup of turmeric ~ prevent collision?, "What considerations are neces-
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sary for the detected car’s speed?", "What’s the im-
portance of your current lateral position in planning
the next action?", Why did you brake just now?,
"What factors are influencing your next driving de-
cision?", "Is there any obstacle directly ahead?",
"How should you interpret the car’s angle for your
steering decision?", "What immediate adjustments
are necessary for safe driving?", "How does the
detected car’s speed impact your driving action?",
"What should be your focus given the detected
car’s proximity and angle?", "What safe action is
suggested based on the current scenario?", "What
should you avoid in this situation to prevent colli-
sion?", "Is there a need for a speed adjustment?",
"How will your steering angle change based on
the detected car’s angle?", "What should you con-
sider for maintaining a safe path?", "How would
you describe the current traffic conditions?", "What
immediate action is necessary given your current
lateral position?", "What factors need to be moni-
tored to ensure safe navigation?", "Is the detected
car influencing your path directly?", "What is the
priority in adjusting your speed and direction?", "

n }
A.12 Loss weights

Our loss weighting analysis provided several key
insights: First, increasing the image reconstruc-
tion weight (from 0.5 to 2) was found to degrade
decision-making performance while maintaining
language generation capabilities. Second, elevating
the language loss weight (from 0.1 to 10) signifi-
cantly improved conversational quality but substan-
tially compromised driving performance. Third,
boosting the action prediction weight (from 0.1
to 10) led to markedly better driving performance
with only negligible effects on language outputs.
Based on these findings, we determined the optimal
weighting scheme for autonomous driving applica-
tions to be: language loss weight = 0.1, action loss
weight = 10, and image reconstruction weight =
0.5. This configuration achieved the best balance
between driving performance and auxiliary task
capabilities.

A.13 Further results on VLASCD in
answering questions

Other Sensors Input_33: You can see that there
is a car. Its speed, straight-line distance from
you, and angle in the direction you’re heading are
respectively 2.45 m/s, 9.73 m, 179.82 °.You are
now -0.009m laterally away from your driving

19

route.

Question_33: What factors need to be monitored
to ensure safe navigation?

VLASCD_pred_33: You need to monitor the
speed, straight-line distance from you, and angle in
the direction you’re heading are respectively 2.45
m/s, 9.73 m, 179.82 °.

Openvla_pred_33: monitored to safe to ensure
safe and to ensure safe monitored to safe
DriverGPT4_pred_33:
00000000000000000000000000000000000000
VLASCD_image_pred_33: speed, straight-line
distance from you, and angle in the direction
you’re heading are respectively 2.45 m/s, 9.73 m,
179.82 °.You are now -0.009m laterally away from
your driving route.

VLASCD_language_pred_33: -

Other Sensors Input_34: You can see that there
is a car. Its speed, straight-line distance from
you, and angle in the direction you’re heading are
respectively 2.49 m/s, 9.69 m, 179.81 °.You are
now -0.011m laterally away from your driving
route.

Question_34: What should be your next steering
action?

VLASCD_pred_34: Your next steering action
should be to turn the steering wheel to the left.
Openvla_pred_34: your steering action and your
next steering action and your steering action and
your steering action and your steering action and
DriverGPT4_pred_34.
0000000000000000000000000000000000000
VLASCD_image_pred_34: right
VLASCD_language_pred_34: -

Other Sensors Input_35: You can see that there
is a car. Its speed, straight-line distance from
you, and angle in the direction you’re heading are
respectively 2.47 m/s, 9.66 m, 179.79 °.You are
now -0.012m laterally away from your driving
route.

Question_35: What’s the importance of your
current lateral position in planning the next action?
VLASCD_pred_35: The current lateral position is
important in planning the next action because if
you are too far away from your driving route.
Openvla_pred_35: your current position in
planning the next action

DriverGPT4_pred_35:
000000000000000000000000000000000000
VLASCD_image_pred_35: Your current lateral



position is important in planning the next action
because if you don’t plan the next action, you will
not be able to reach your destination.
VLASCD_language_pred_35: -

Other Sensors Input_36: You can see that there
is a car. Its speed, straight-line distance from
you, and angle in the direction you’re heading are
respectively 2.41 m/s, 9.64 m, 179.78 °.You are
now -0.014m laterally away from your driving
route.

Question_36: What safe action is suggested based
on the current scenario?

VLASCD_pred_36: You can see that there is a
car. Its speed, straight-line distance from you,
and angle in the direction you’re heading are
respectively.

Openvla_pred_36: suggested based on the current
safe action on the current

DriverGPT4_pred_36:
0000000000000000000000000000000000000
VLASCD_image_pred_36: The car is speed,
straight-line distance from you, and angle in the
direction you’re heading are respectively 2.41 m/s,
9.64 m, 179.78 °.You are now -0.014m laterally
away from your driving route.
VLASCD_language_pred_36: - -

Other Sensors Input_37: You can see that there
is a car. Its speed, straight-line distance from
you, and angle in the direction you’re heading are
respectively 2.37 m/s, 9.63 m, 179.77 °.You are
now -0.016m laterally away from your driving
route.

Question_37: Is there any lateral deviation from
your driving route?

VLASCD_pred_37: There is no lateral deviation
from your driving route.

Openvla_pred_37: driving route from your route
and your route from your driving route from your
route from your

DriverGPT4_pred_37:
0000000000000000000000000000000000000
VLASCD _image_pred_37: Yes, there is lateral
deviation from your driving route.
VLASCD_language_pred 37 -

Other Sensors Input_38: You can see that there
is a car. Its speed, straight-line distance from
you, and angle in the direction you’re heading are
respectively 2.37 m/s, 9.63 m, 179.76 °.You are
now -0.018m laterally away from your driving
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route.

Question_38: How will your steering angle change
based on the detected car’s angle?
VLASCD_pred_38: Your steering angle will
change based on the detected car’s angle.
Openvla_pred_38: your steering on the detected
car’s steering

DriverGPT4_pred_38:
0000000000000000000000000000000000
VLASCD_image_pred_38: The steering angle will
change based on the detected car’s angle.

Other Sensors Input_39: You can see that there
is a car. Its speed, straight-line distance from
you, and angle in the direction you’re heading are
respectively 2.41 m/s, 9.63 m, 179.75 °.You are
now -0.020m laterally away from your driving
route.

Question_39: Is there any moving object around
you?

VLASCD_pred_39: Yes, there is a car. Its speed,
straight-line distance from you, and angle in the
direction you’re heading are respectively 2.
Openvla_pred_39: moving object of you and your
work with your work?

DriverGPT4_pred_39:
0000000000000000000000000000000000000
VLASCD_image_pred_39: Yes, there is a car.
VLASCD_language_pred_39: - -

Other Sensors Input_40: You can see that there
is a car. Its speed, straight-line distance from
you, and angle in the direction you’re heading are
respectively 2.45 m/s, 9.63 m, 179.74 °.You are
now -0.022m laterally away from your driving
route.

Question_40: Is there any moving object around
you?

VLASCD_pred_40: Yes, there is a car. Its speed,
straight-line distance from you, and angle in the
direction you’re heading are respectively 2.
Openvla_pred_40: moving object of you and your
work with your work?

DriverGPT4_pred_40:
00000000000000000000000000000000
VLASCD_image_pred_40: Yes, there is a car.
VLASCD_language_pred_40: - -

Other Sensors Input_41: You can see that there
is a car. Its speed, straight-line distance from
you, and angle in the direction you’re heading are
respectively 2.46 m/s, 9.63 m, 179.73 °.You are



now -0.024m laterally away from your driving
route.

Question_41: How does the detected car’s speed
impact your driving action?

VLASCD_pred 41: The detected car’s speed
impacts your driving action because if the detected
car’s speed is faster than your driving speed
Openvla_pred_41: speed with your speed and your
speed with your speed speed with your speed with
your speed with your speed with your speed with
DriverGPT4_pred_41.
0000000000000000000000000000000000000
VLASCD_image_pred_41: The car’s speed
impacts my driving action because the car’s speed
is increasing, which means that the car’s speed is
getting faster

VLASCD_language_pred_41: - -

Other Sensors Input_42: You can see that there
is a car. Its speed, straight-line distance from
you, and angle in the direction you’re heading are
respectively 2.43 m/s, 9.63 m, 179.73 °.You are
now -0.027m laterally away from your driving
route.

Question_42: What is your action and why?
VLASCD_pred_42: My action is to turn left. [ am
turning left because I want to turn left.
Openvla_pred_42: ““ your action” and your action
and your “ your action” and your action and your
DriverGPT4_pred_42:
0000000000000000000000000000000000000
VLASCD_image_pred_42: My action is straight-
line distance from you, and why is because I am
going straight.

My action is straight-line distance from you, and
why is because I am going straight. My action is
straight-line distance from you, and why is because
I am going straight.
VLASCD_language_pred_42: - -

Other Sensors Input_43: You can see that there
are 2 cars. Their speed, straight-line distance from
you, and angle in the direction you’re heading are
respectively 5.07 2.4 m/s, 14.89 9.64 m, 14.18
179.72 °.You are now -0.029m laterally away from
your driving route.

Question_43: What safe action is suggested based
on the current scenario?

VLASCD_pred_43: What safe action is suggested
based on the current scenario? What safe action
is suggested based on the current scenario? What
safe action is suggested based
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Openvla_pred_43: What safe action is based on
the current? What safe action is based on the
current

DriverGPT4_pred_43:
0000000000000000000000000000000000000
VLASCD_image_pred_43: straight-line distance
from you, and angle in the direction you’re heading
are respectively 5.07 2.4 m/s, 14.89 9.64 m, 14.18
179.72 °.

VLASCD_language_pred_43: - - - - - .-

Other Sensors Input_44: You can see that there
are 2 cars. Their speed, straight-line distance from
you, and angle in the direction you’re heading are
respectively 4.98 2.38 m/s, 14.15 9.66 m, 14.95
179.71 °.You are now -0.032m laterally away from
your driving route.

Question_44: Is the detected car in motion?
VLASCD_pred_44: Yes answer: No answer: Yes
answer: No answer

Openvla_pred_44: motion in the detected car in
motion in the detected car in motion in the detected
car in motion in the detected car in motion in the
detected car in motion in the detected car in motion
in the detected car in motion in the detected car in
motion in the detected car in motion in the detected
car in motion in the

DriverGPT4_pred_44.
00000000000000000000000000000000000000
VLASCD_image_pred_44: Yes, the detected car is
in motion, """t

VLASCD language_pred_44: - -




	Introduction
	Related Work
	LLMs for decision-making
	VLA model for decison-making
	LLMs for MIMO

	Methodology
	Problem Setting
	Model Architecture
	Training Procedure

	Experiments
	Experimental setting
	Comparison methods
	Training datasets
	Performance metrics
	Results on chatting ability evaluation
	Results on decision-making ability evaluation
	Ablation studies on the loss function design
	How to resolve conflicts in simultaneous multi-task output ?
	How does textual data quality in training impact model decision-making ?

	Conclusion
	Appendix
	Hyperparameter settings
	CARLA maps
	Training datasets
	Is model decision-making ability enhanced with longer context of trajectories?
	Reward function
	Measure performance metrics
	The natural language template for text input
	The benefits of cross-entropy loss and label smoothing loss for VLASCD
	The impact of training data-related factors on the decision performance of model
	The noise consisted of information datasets
	Our defined set of problems
	Loss weights
	Further results on VLASCD in answering questions


