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Abstract

In the real world, especially in the medical imaging context, data scarcity and
limited labeled data are recurrent and frequent problems. This is very often a
bottleneck to high-performance of recent Deep Learning approaches that are very
data-hungry. In this work, we show that active learning could be very effective
in data scarcity situations, where obtaining labeled data is expensive. We com-
pare several acquisition functions (BALD, MeanSTD, and MaxEntropy) on the
ISIC 2016 Melanoma detection dataset, explore the impact of selecting either the
most or least uncertain samples, and leverage the effect of acquired pool sizes on
the performance of the model. Our results on the Melanoma detection test set,
demonstrate that uncertainty is useful to the Melanoma detection task and that it
is more beneficial to select the most uncertain pool samples. These results suggest
that active learning could be very useful for medical imaging tasks (in particular)
and more generally in low-resource settings.

1 Introduction

Active learning (AL) is generally defined as a semi-supervised machine learning (ML) algorithm
whose goal is to use relatively few initial training samples in order to achieve better performance of
a given model M. The optimization of M is done by iteratively training it and making it learn how to
choose useful new data samples to label, from a pool of unlabelled data, which will help it find better
parameters and improve its overall performance on downstream tasks (e.g., prediction accuracy).
The query and acquisition of new samples from the pool of unlabeled data are often done using
uncertainty-based measures (5), and selecting the most uncertain samples in the pool of unlabeled
data samples. Due to the fact that AL-based methods learn to smartly pick useful samples for their
learning, this makes AL a prevalent paradigm to cope with data scarcity (which is often a bottleneck
to many ML applications (e.g. in the medical where patient data is rare, sensitive, and subject to
many privacy issues). The efficiency of active learning (i.e. its ability to produce better performance
despite being trained on smaller training data) has been proven in many works of literature (9; 2;
15; 1; 3). In this work, we are exploring epistemic uncertainty (hereafter referred to as uncertainty),
which refers to the uncertainty of the model in low-resource (lack of training data or availability
of a very small amount of data) settings. In order to get some uncertainty score, most existing
works make use of kernel-based methods on pair of images in order to capture image similarity
(17; 14; 10). Conversely to these methods, in this paper, we make use of Bayesian CNNs (4) which
are Convolutional Neural Networks (CNNs) (13) with prior probability distributions placed over a
set of model parameters (6). In this paper, exploring the ISIC 2016 Melanoma Diagnosis dataset (7)
we attempted to answer the following questions:
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• is model uncertainty beneficial to the Melanoma detection task (disguised here as a binary
classification)? which acquisition function works better for the given task?

• is it more efficient for medical imaging in general, and in particular for the Melanoma
Detection task, to query and acquire the most uncertain samples or least uncertain samples?

• what is the effect of the size of the set of newly acquired data points, on the model’s overall
performance?

2 Acquisition Functions and Dataset

In this section, we describe the different acquisition functions and the dataset used.

Maximum Entropy (6) This acquisition function aims at selecting the data points which maxi-
mize the entropy of the model over each unlabelled data sample and known labels (classes). With
the entropy defined as

H[y|x,DT ] = −
∑
c

p(y = c|x,DT )logp(y = c|x,DT )

where DT is the training set, which is augmented by the set of newly acquired samples at each active
learning round.

Mean Standard Deviation (6) The Mean Standard Deviation (for short MeanSTD) is the most
commonly used acquisition function. It leverages the variance of the model over classes, given an
input x and the parameters w of the model (11; 12). It is mathematically defined as follow:

σc =
√
Eq(w)[p(y = c|x,w)2]− Eq(w)[p(y = c|x,w)]2

σx =
1

C

∑
c

σc

As with the Maximum Entropy, in this scheme, we are also selecting points that maximize the
MeanSTD.

BALD (8; 6) is based on mutual information. By definition, the mutual information denoted I
between two random variables X,Y is telling us how much uncertainty we observe in X if we
observe Y. BALD focuses on maximizing the mutual information between the predictions of the
model and its posterior. BALD is mathematically defined as

I(y, w|x,DT ) = H[y|x,DT ]− Ep(w|DT )[H[y|x,w]]

= −
∑
c

p(y = c|x,DT )logp(y = c|x,DT )

+Ep(w|DT )[
∑
c

p(y = c|x,w)logp(y = c|x,w)]

where w are the parameters of the model. In other words, BALD chooses points that are expected to
maximize the information gained about the parameters of the model w (6). These points are points
on which the model is uncertain on average, but about which some parameters produce disagreeing
predictions with high certainty.

Dataset and Task Description The ISIC 2016 dataset (7) has been created for the ISIC 2016
challenge. Its goal was to foster the development of image analysis tools to enable the automated
diagnosis of melanoma from dermoscopic images. The ISIC 2016 dataset contains 900 training
images, and 350 testing images; a rather small dataset. The task is a binary classification, with the
goal to detect whether a given picture is cancerous or not. The initial training dataset has been ran-
domly split into two sets: training (containing 700 images) and evaluation (containing 200 images).
The repartition of classes is unbalanced, with a clear and net dominance of negative samples (non-
cancerous image samples). The images are colorful (RGB format), and we have downsampled them
to the shape of (224, 224).
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3 Experiments

We built the experiments using the details and hyperparameters provided in (6). Given the small
size of the dataset, we started out with a small set of 100 examples made of 80 positives, and 20
negatives. Each example from all splits has been resized as stated above and normalized. The
training images have additionally been augmented with Center Cropped and Random Horizontal
Flip transformations. The CNN architecture is made of two 2-dimensional convolutional layers,
each followed by a relu activation function. After the second convolution-activation, the result is
fed to a maximum pooling layer, followed by a dropout. The result is flattened and fed to a fully-
connected layer, with later on passed successively through a dropout layer, and classification head
(technically another dense layer with output dimension 2). The network has been trained for 100
epochs, with a batch size of 8 and a learning rate of 1e-4. As the authors stated in the paper, we used
Adam optimizer with weight decay

w =
(1− p) ∗ l2

|DT |
with p = 0.5 being the dropout probability, l2 being the length scale, set to 0.5, and |DT | the length
of the cumulative training dataset. At each active learning round, with a given acquisition function,
we perform 20 MC-Dropout forward passes. The top − k, (k = 100) most informative samples
according to the given acquisition function, are selected, added to the training set, and deleted from
the pool of unlabelled data. These hyper-parameters are kept identical across all CNN-based models
for each acquisition function explored in this work.

4 Results and Discussion

Our first analysis consisted of checking the importance of uncertainty, in the context of our task
description. In order to achieve that, we compared the evaluation losses and accuracies of 4 Bayesian
CNNs with and without uncertainty. The results on the test set are reported in Table 1. The normal
legend corresponds to the model without uncertainty. Table 1, and our training observations, show
that uncertainty is important to have a lower and stable training loss, which helps to have better
performance. The low performance of mean std, compared to the normal Bayesian CNN, intuitively
makes sense since the method is designed to maximize the variance (gaussian) of the model which
could be seen as noise. This noise, coupled with the unbalanced dataset could have negatively
impacted the robustness and predictive accuracy. On the other hand, bald performs the best: in fact,
bald maximizes the mutual information between predictions and model posterior, which over time
should make the model more accurate in predicting the right label while being robust and coping with
the data unbalance. Maximum entropy (referred to as max entropy) is also efficient and stable. In
fact, theoretically, a higher entropy (since here we are maximizing it) means lower information gain:
this can be considered a bit as the opposite of the goal of bald. Consequently, with the assumption
that images from the same class share some specific features, this behavior makes sense: in a way
that as the model gets more exposed to non-cancerous images during training, it is more confident
about them, thus learning to select samples (images) from the minority (cancerous) class. Therefore,
throughout the active learning rounds, the model gets more and more confident about samples from
both classes and is more robust in performance.

Method Testing Loss Testing Accuracy
normal 0.01538 0.8021

bald 0.0077 0.8047
max entropy 0.0075 0.7784

mean std 0.0072 0.4670

Table 1: Results on the testing set for both with and without uncertainty Bayesian CNN

Method Testing Loss Testing Accuracy
bald 0.009 0.20

max entropy 0.0099 0.5876
mean std 0.0094 0.8012

Table 2: Test Results of Bayesian CNNs using the Least Uncertain Samples

Next, we leveraged the impact of the selection of the most and least uncertain samples on the final
test set performance. In order to do that, we ran the same experiences (previously done by selecting

3



the most uncertain samples) but selected at each acquisition round the least uncertain samples. As
opposed to Table 1, in Table 2 we can observe overall higher loss values. On the accuracy metric, we
can see that in average, bald performed worse, which makes sense since technically in this setting
we are choosing the points with lower mutual information. The mean std has better performance
because the points selected are the ones minimizing the variance, thus inducing less noise and en-
couraging better performance. The maximum entropy kept a relatively normal balance and suggests
that it is agnostic of the sampling mode (least uncertain or most uncertain samples i.e. samples re-
spectively minimizing or maximizing the entropy). Thus far, our experiments, insights, and analyses
have shown that: (a) uncertainty is beneficial to our Melanoma Detection task, (b) bald is overall
the best acquisition function as the authors claimed, and (c) our additional ablation studies have also
revealed that, in the context of our Melanoma Detection task, max entropy has been proven to be
agnostic of the acquisition function, offering more robustness and flexibility.

Method Metric Query=115 Query=100 Query=90 Query=80 Query=70 Query=60 Query=50
bald loss 0.0177 0.0174 0.0183 0.0169 0.0208 0.0201 0.0185
bald accuracy 0.8047 0.8047 0.7994 0.7942 0.7994 0.8021 0.8047

max entropy loss 0.0173 0.0235 0.0192 0.0202 0.0157 0.0167 0.0170
max entropy accuracy 0.7995 0.8047 0.8021 0.7863 0.8021 0.8021 0.7863

mean std loss 0.0185 0.0164 0.0191 0.0177 0.0164 0.0202 0.0186
mean std accuracy 0.7916 0.8021 0.8021 0.8047 0.7889 0.8074 0.7968

Table 3: Report of Testing Loss and Testing Accuracy on ISIC 2016 dataset as a function of the
different query sizes. For each method and for each metric, the number in bold represents the best
value achieved for a given query size.

Finally, we proceeded to leverage the influence of the size of the newly acquired samples (query
size). The default pool size value (similarly as in (6)) used is 100. In our ablation study, we tried
different additional query sizes: 115, 90, 80, 70, 60, and 50. Our previous experiments revealed that
the learning happens mainly on the first active learning round. Therefore, we focused on the impact
of the query sizes, solely in the first active learning round. The results are presented in Table 3.

In Table 3, we can notice that the scale of the loss and accuracy does not change that much. However,
as far as the loss metric is concerned, we can observe that generally, all acquisition functions are
impacted by the query size. On the accuracy scale, we can see that max entropy and mean std vary
a lot compared to bald, which consequently offers more stability. In fact, we can speculate that
BALD avoided selecting noisy points: nearby images for which there exist multiple noisy labels of
different classes (points for which the aleatoric uncertainty is large) (6). Moreover, we can see that
the accuracy results are very similar across query sizes and acquisition methods, on the fixed test set.
This also demonstrates the difficulties with handling ML performances of ML models in extremely
small data regimes. We can see that the loss values are almost similar, while most of the acquisition
functions achieved their highest accuracy scores around the original query size of 100 (except for
mean std which performed better in terms of accuracy, with the second-lowest query size).

5 Conclusion and Future Works

In this work, we demonstrated how active learning could be used for a classification downstream task
on the Melanoma Dataset. First of all, we showed that using uncertainty (epistemic) is useful for the
Melanoma detection task. Next, we demonstrated that it is better for the model to query the most
uncertain samples using the designated acquisition functions. Once that was settled, we leveraged
several acquisition functions and found out that on average bald performs the best. These results
demonstrated the viability of active learning in the context of low-resource settings1. However, one
of our additional extensive analyses of the impact of the query size on the test set performance re-
vealed that despite all the advantages and shortcomings of the different acquisition functions we
leveraged, it is still hard to work and generalize in an extremely low data regime. As future work,
we could leverage how well these acquisition functions perform on later versions (and bigger) of the
ISIC Dataset. Additionally, this work could be extended to the new acquisition function EPIG intro-
duced in (16). EPIG measures information gain in the space of predictions rather than parameters
and leads to a better performance than BALD.

1Due to the requirements and format of the submission, some interesting figures have been removed from
this version. Authors would gladly like to include them in the final post Indaba camera ready.
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