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ABSTRACT

Recent advancements in diffusion models have brought new vitality into visual
content creation. However, current text-to-video generation models still face chal-
lenges such as high training costs, substantial data requirements, and difficulties in
maintaining consistency between given text and motion of the foreground object.
To address these challenges, we propose mask-guided video generation, which re-
quires only a small amount of data and is trained on a single GPU. Furthermore, to
mitigate the impact of background interference on controllable text-to-video gen-
eration, we utilize mask sequences obtained through drawing or extraction, along
with the first-frame content, to guide video generation. Specifically, our model
introduces foreground masks into existing architectures to learn region-specific
attention, precisely matching text features and the motion of the foreground ob-
ject. Subsequently, video generation is guided by the mask sequences to prevent
the sudden disappearance of foreground objects. Our model also incorporates
a first-frame sharing strategy during inference, leading to better stability in the
video generation. Additionally, our approach allows for incrementally generation
of longer video sequences. By employing this method, our model achieves effi-
cient resource utilization and ensures controllability and consistency in video gen-
eration using mask sequences. Extensive qualitative and quantitative experiments
demonstrate that this approach excels in various video generation tasks, such as
video editing and generating artistic videos, outperforming previous methods in
terms of consistency and quality1.

1 INTRODUCTION

In recent years, diffusion-based generative models (Ho et al., 2020; Song et al., 2020a;b) have made
significant progress in text-to-image generation. Models such as DALLE2 (Ramesh et al., 2022),
Stable Diffusion (Rombach et al., 2022), and Imagen (Saharia et al., 2022) have demonstrated the
ability to generate diverse and high-quality images guided by text prompts. Given the success of text-
to-image generation, some researchers have begun to explore applying these successful experiences
to the field of text-to-video (T2V) generation. However, unlike image generation, video creation de-
mands not only accurate alignment between text and individual frames, but also coherence between
the text and the motion of the foreground object.

Some researchers have attempted to achieve text-to-video generation by training on a large amount
of video data (Blattmann et al., 2023; Esser et al., 2023). While this method may make some
progress, it requires a significant amount of computational resources and human effort for data
and text annotation, making it impractical for real-world applications. To address this issue, Tune-
A-Video (Wu et al., 2023a) introduced a new single-video fine-tuning setup for T2V generation.
This approach significantly reduces the training workload, as it only requires the fine-tuning of
a single video to complete the training on a consumer-grade GPU. However, Tune-A-Video (Wu
et al., 2023a) tends to overfit the given video, making it highly susceptible to the background of the
provided video.

1We will make our code publicly available once the paper is accepted.
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Figure 1: Our model generates various videos consistent with the foreground mask and text prompts,
delivering satisfactory results. The first frame is generated using the mask through ControlNet’s
Scribble model, capturing most of the content in the video frames. Subsequently, video generation is
guided by the mask sequence, enabling effective control over text positions and motion regions while
accurately distinguishing foreground and background, thereby preventing object disappearance.

To address above issues, LAMP (Wu et al., 2023b) is proposed and it keeps the first frame un-
changed while learning subsequent frames, allowing the video diffusion model to focus mainly on
motion learning. This approach effectively improves video quality and the degree of freedom in gen-
eration. Despite the progress made by LAMP (Wu et al., 2023b), there are still two challenges(see
Fig. 2), which can be summarized as follows: (i) Imprecise Foreground Positioning and Motion Cap-
ture: The generative model encounters difficulties in accurately determining the foreground position
specified by the text. This imprecision leads to subsequent errors in interpreting the movement of
foreground objects, ultimately compromising the video’s overall visual fidelity. (ii) Unnatural fusion
between moving foreground and background: Even when the position and motion specified by the
text are accurately captured, the fusion between the text-specified moving foreground and the back-
ground is still challenging. This unnatural fusion makes the model unable to distinguish between
the text-described subject and the background, causing disappearance of foreground object.

To address these issues, introducing controllability to video generation is a potential solution. We
propose a novel mask-guided video generation method for producing high-quality and controllable
videos. Unlike previous works (Wu et al., 2023b;a), we introduce a foreground mask branch in the
network to adjust attention for foreground positioning and motion capture. As shown in Fig. 2, our
model effectively captures the foreground position and motion trajectory defined by the text. During
inference, we can guide the motion generation according to the provided mask sequence, effectively
distinguishing between the foreground and background and preventing the sudden disappearance of
the foreground. This effectively controls the motion generation of the foreground extracted from
the first frame. Following this approach, we can use a frame from the generated video as the first
frame for the generation of subsequent frames, resulting in a longer video guided by the mask.
Additionally, we use the latent features of the first frame as shared noise to improve the quality
and stability of video generation. We conduct experiments on motion in various scenarios, and the
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Figure 2: From the comparison results, it is easy to see that in LAMP, the model does not accurately
capture the direction of the horse’s movement and failed to effectively distinguish the foreground
from the background, resulting in the disappearance of the person. In contrast, our model has suc-
cessfully addressed these issues, accurately capturing the position corresponding to the text and
clearly distinguishing the foreground from the background.

results show that our method significantly improves the quality of generated videos. Our method
can generate both short and long videos with training conducted in a single GPU, as shown in Fig 1.

In summary, our contributions are as follows: (i) This text-to-video method can be trained in a single
GPU using only a small video dataset. (ii) Our model introduces an innovative mask-aware atten-
tion layer during training, which allows for more precise capture of the foreground region. During
generation, by providing a mask sequence to control the video generation, it effectively prevents
the blending of foreground and background, ensuring clear separation and stable presentation of the
foreground in the video. (iii) We have empirically demonstrated that our model achieves excellent
results in both consistency and quality. As a byproduct of using the first-frame conditional gener-
ation strategy, our method is capable of generating long videos while ensuring the continuity and
consistency of the target object’s motion.

2 RELATED WORKS

2.1 TEXT-TO-IMAGE GENERATION

In recent years, text-to-image generation technology has made significant progress in producing
high-quality and semantically consistent images. Particularly, diffusion models (Ho et al., 2020;
Song et al., 2020a;b) have been widely favored over GANs (Goodfellow et al., 2020; Zhang et al.,
2017; Xu et al., 2018) and VAEs (Kingma & Welling, 2013; Sohn et al., 2015; Van Den Oord et al.,
2017) for their excellent text consistency, high-quality generated images. Models such as GLIDE
(Nichol et al., 2021), Imagen (Saharia et al., 2022), DALL·E2 (Ramesh et al., 2022), and LDM
(Rombach et al., 2022) enhance the association between text and images using the CLIP (Radford
et al., 2021) model and generate images with fine textures and accurate semantics through powerful
image generation architectures like Transformers (Vaswani et al., 2017). Additionally, to achieve a
more personalized generation, researchers have developed methods like DreamBooth (Ruiz et al.,
2023) and textual inversion (TI) (Gal et al., 2022), which expand the tokenizer’s vocabulary by em-
bedding user-provided concepts in the text embedding space, and improve image generation through
denoising processes. Furthermore, the ControlNet (Zhang et al., 2023) has brought new vitality to
the research on text-to-image generation by introducing more controllable input conditions to Stable
Diffusion, such as depth maps, poses, and so on. In our method, we use the first frame mask to
create the first frame of the video by ControlNet (Zhang et al., 2023), which is then used to generate
the subsequent frames.

2.2 TEXT-TO-VIDEO GENERATION

The success of text-to-image generation has inspired researchers to explore the field of text-to-video
generation, leading to some notable achievements, such as ImagenVideo (Ho et al., 2022) developed
by Google Research, Make-A-Video (Singer et al., 2022) by Meta AI, MagicVideo (Zhou et al.,
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2022), VideoComposer (Wang et al., 2024)], CogVideo (Hong et al., 2022), and AnimateDiff (Guo
et al., 2023). These models have achieved a transition from generating static images to dynamic
videos through multimodal learning, diffusion models, and keyframe generation, as well as cogni-
tion and understanding. However, these models currently focus primarily on generating short videos.
To address the challenge of generating long videos, existing methods typically rely on autoregressive
models and diffusion models. Autoregressive models like NUWA-Infinity (Wu et al., 2022), Phenaki
(Villegas et al., 2022), and TATS (Ge et al., 2022) generate long video content by using generated
frames as conditions for subsequent frames. On the other hand, diffusion models like MCVD (Vo-
leti et al., 2022), FDM (Harvey et al., 2022), PVDM (Yu et al., 2023), and LVDM (He et al., 2022)
also adopt a similar autoregressive mechanism, generating coherent video sequences by creating
high-quality intermediate frames and gradually interpolating them. However, these models undeni-
ably require substantial training resources, while methods like Text2Video-Zero (Khachatryan et al.,
2023) and ControlVideo (Zhang et al., 2024b) employ zero-shot techniques, which do not require
fine-tuning but depend on pre-trained models and large-scale pre-training data, demanding high data
quality and diversity. In specific domains or scenarios, these methods may fail to generate suffi-
ciently detailed and accurate content due to the lack of specialized training on domain-specific data.
Additionally, methods like Control-A-Video (Chen et al., 2023) and MoonShot (Zhang et al., 2024a)
draw on the ideas of ControlNet (Zhang et al., 2023), using depth maps, edges, and other motion se-
quences to generate videos. While these methods can improve generation quality, they also require
considerable training resources. To address this issue, we follow the approach of the LAMP (Wu
et al., 2023b) model, which can be trained with only a small number of samples and a single GPU.
Different from their approach, we introduce a method that incorporates foreground masks during
training, allowing for more precise capture of the foreground region. This effectively prevents the
blending of the foreground and background, ensuring clear separation and stable presentation of the
foreground in the video.

3 METHOD

In this section, we will first briefly introduce our training pipeline in Sections 3.1 . Then, in Section
3.2, we will detail the proposed mask-guided video generation method. Our method uses the first
frame as a condition, effectively decoupling mask-guided frame generation and motion generation,
thereby reducing training costs. We also introduce a foreground mask branch, incorporating the
foreground mask into the network to adjust attention for foreground positioning and motion capture,
making the model focus more on the text-specific foreground region, making the model focus more
on the foreground positions matching the text. During the inference phase, the mask sequence
enables the model to effectively distinguish between the foreground and background, preventing the
disappearance of foreground objects. In Section 3.3, we will provide a detailed explanation of the
proposed mask-aware attention layer. Additionally, in Section 3.4, we will briefly introduce our first-
frame shared sampling strategy, which improves the quality and stability of video generation.Details
about the theoretical background of Latent Diffusion Models (LDMs) (Rombach et al., 2022) and
their relevant applications can be found in Appendix A.

3.1 TRAINING PIPELINE

Current text-to-video methods are commonly trained on large-scale datasets. Moreover, they are not
only computational expensive. However, this approach is not only computationally expensive but
also faces significant challenges in capturing the motion patterns of foreground objects, especially
in achieving precise control over motion trajectories. To address these issues and enhance the con-
trollability of foreground motion, we optimize the LAMP (Wu et al., 2023b) model and propose a
new video generation pipeline.

Our model first processes a video set V = {Vi|i ∈ [1, n]} and uses the Segment Anything model
(Kirillov et al., 2023) to extract foreground masks from the videos, generating a corresponding set of
foreground mask videos. The training data includes n videos and their foreground mask video sets,
along with a text Pm describing a shared motion pattern. By fine-tuning a pre-trained T2I model
based on the given video set and motion prompt, the model can generate new videos V ′ with motion
patterns specified by prompt Pm.
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In our pipline, the model focuses on learning the common motion patterns shared across a small set
of videos while ignoring unimportant details. Hence, our model can be trained on a small number
of videos. Additionally, our model can more accurately capture foreground motion, achieving fine-
grained control over motion trajectories.

Figure 3: Overall framework of our mask-guided video generation method. We apply trainable
temporal-spatial self-attention and mask cross-attention within the U-Net, enabling the model to
focus more on the foreground. Training: The input consists of randomly sampled video frames,
text prompts describing their motion pattern, and mask sequence maps extracted from an annotator.
We add motion-prior noise to every latent signal except for the first frame, and the model is trained to
predict the subsequent noise conditioned on the first frame. Inference: The first frame of the motion
sequence mask is generated using ControlNet and the text prompt. After training, the generated first
frame can be used to generate subsequent frames with content priors.

3.2 MASK-GUIDED TRAINING

Based on our observations, the first frame of a video often contains key information of the entire
video. Therefore, we use the content of the first frame as a condition to generate the subsequent
frames. This approach not only reduces the amount of training content but also allows the model to
focus more on learning the motion in the video. During training, we keep the first frame unchanged
and continuously add noise to the other frames to capture the motion in the subsequent frames
based on the first frame. As shown in Fig 3, we represent the sampled n video frames as V =
{fi|i = 1, ..., n}. These frames are embedded into latent space using an encoder and we obtain
X = {xi|i = 1, ..., n}. We then keep the first frame x1 unchanged and apply a forward diffusion
process to the subsequent frames x2, . . . , xn to obtain the noisy video frame sequence ε2, . . . , εn.
The loss function can be expressed as:

L = Ex,ε∼N(0,I),t,cp

[∥∥ε2:n − εθ2:n(xt, t, cp)
∥∥2
2

]
, (1)

where ε2:n represents the noisy video frame sequence from the 2nd to the n-th frame and εθ2:n and
is the noise predicted by the neural network at time step t conditioned on the input cp (e.g., text
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prompts). This way, we retain the original signal of the first frame, and the loss function is only
applied to the frames from the 2nd to the n-th frame. Using this method, the model gains the
capability to generate a video with the motion pattern of the video set according to the first frame.

During inference, we input the first frame m1 of the mask motion sequence, the text prompt cp, and
random Gaussian noise x1 into the ControlNet (Zhang et al., 2023) model to obtain the initial frame
v1:

v1 = ControlNet(x1, cp,m1), (2)

After obtaining the desired first frame, we encode the first frame and obtain E(v1). The subsequent
motion sequence frames are generated using:

v = MaskVideo (x, cp,m,E(v1)) , (3)

The video generation method we developed, based on the first-frame condition, offers the following
advantages: First, it allows precise control over the content of dynamic videos, enabling content
diversification by adjusting the first frame. Second, this method excels in generating long videos, as
we can use any frame from the generated video as a new starting point, enabling iterative extension
of the video, thus overcoming the limitation of video length. This distinguishes our approach from
other techniques that can only generate short videos in a single step. Specifically, the proposed
algorithm is outlined in Alg 1.

Algorithm 1 Mask-Guided Video Generation
Input: Mask M = {m1,m2, ...,mn} ,Text prompt cp
Parameter: T
Output: V :generated video

1: V1 = ControlNet(ε1, cp,m1)
2: εs = E(V1)
3: for i = 2 to T do
4: ϵi = αϵs + (1− α)ϵi
5: end for
6: for t = 2 to T do
7: vt = MaskVideo(cp,M, ϵt, ϵs)
8: v.append(vt)
9: end for

10: V = D(v)
11: return V

3.3 MASK-AWARE ATTENTION LAYER

To integrate with the proposed pipeline and facilitate subsequent frames referencing the conditions
established by the first frame, we introduce a new temporal-spatial self-attention. To ensure con-
sistency, all key and value features are derived from the first frame. More specifically, each self-
attention layer takes as input a feature map vi and projects it linearly into query, key, and value
features as follows:

Q = wQ · vi, K = wK · v1, V = wV · v1, (4)

where Q,K, V ∈ RBNS×HW×C
S . Here, B is the batch size, N is the number of frames, H is the

height, W is the width, C is the number of channels, and S is the number of attention heads. The
attention scores of the self-attention layer are then obtained as follows:

SelfAttn(Qi,K1, V 1) = Softmax
(
Qi(K1)T√

d

)
V 1, (5)

where i =∈ 1, . . . , n indicates that the extracted feature map comes from the i − th frame, and d
is the hidden layer size. The attention scores establish the connection between the first frame and
subsequent frames.

Additionally, to better match the foreground with the text, we propose mask cross-attention, which
incorporates the mask into the calculation of the attention scores in cross-attention. Specifically, we
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first project the the original feature map v from the U-Net, the foreground mask m, and the text
embedding vector c, using the following equations:

Q = wQ · v, K = wK · c, V = wV · c, M = wQ ·m, (6)

where Q,M ∈ RBNS×HW×C
S , K, V ∈ RBNS×L×C

S . The attention scores from the mask are
then added to the original scores:

CrossAttn(Q,K, V,M) = Softmax
(
QKT +MKT

√
d

)
V, (7)

With this method, the degree of matching between text features and the motion of the foreground
object is significantly improved, allowing the model to more accurately identify and capture the
motion of the foreground object, achieving high consistency between text features and the motion
of the foreground object. This not only enhances the quality of video generation but also effec-
tively avoids difficulties in maintaining consistency between given text and its motion, making the
generated results more natural and coherent in terms of visual effects.

3.4 FIRST-FRAME SHARED SAMPLING STRATEGY

During inference, most existing methods introduce a random shared noise that is fed into the model
throughout the video generation process. This is because reducing the noise variance can narrow the
dynamic range of the latent space, which contributes to a more stable generation process. However,
we found that if the shared noise is a randomly sampled εs∼N(0, I), the generated results some-
times show a significant color loss in the foreground object and instability in the background ,as
shown in Fig 4(a). To address this issue, we convert the first frame image into a latent embedding
εs and regard it as shared noise. Then, we sample a noise sequence [ε2, · · · , εn] from the same
distribution as the base noise of samples. The shared noise is then added to the subsequent frames
at a certain ratio, specifically: εi = αεs + (1− α)εi, where α is a balance parameter. According to
our experiments, setting α to 0.2 yields the best results. Adding the first frame’s features to the sub-
sequent frames effectively prevents the loss of certain features during video generation and ensures
continuity between frames. The result is shown in Fig 4(b).

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Figure 4: Given the text prompt ”a horse runs in
the desert,” we conduct a comparison between us-
ing and not using the first-frame sharing strategy
and the random noise sharing strategy.

In our experiments, we train our model on only
5 to 8 videos with the same motion pattern, ex-
tracting the foreground masks using the ”seg-
ment anything” method (Kirillov et al., 2023).
In each iteration, we randomly sample a 16-
frame clip from the original video and the mask
video, with all frames resized to a resolution
of 320 × 512 before being input into the U-
Net network.We use the relatively lightweight
SD-v1.4 (Rombach et al., 2022) for computa-
tionally intensive subsequent frame prediction,
thereby reducing inference costs, and we train
the model for 15,000 epochs. We only update
the parameters of the newly added layers, as well as the parameters in the self-attention and cross-
attention layers. The learning rate was set to 3.0 × 10−5. During the inference phase, we use the
ControlNet (Zhang et al., 2023) model to generate the first frame. Subsequently, by inputting the
mask’s motion sequence, the corresponding motion video can be generated. All experiments are
conducted on a single NVIDIA RTX 4060Ti, requiring approximately 15GB of memory for training
and around 12GB of memory for inference.
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4.2 COMPARISON

Our method and baseline methods are trained on three types of data: animal movement, multi-
object movement, and rigid body movement, as shown in Fig 1. The following methods are selected
as our baselines: (i) Tune-A-Video (Wu et al., 2023a), a video editing model that enables high-
quality, personalize video editing and special effects by adjusting and fine-tuning existing video
content. (ii) Text2Video-Zero (Khachatryan et al., 2023), which utilizes the ControlNet (Zhang
et al., 2023) model for video generation. It is based on ControlNet, and employs the first-only cross-
frame attention on Stable Diffusion without finetuning. (iii) LAMP (Wu et al., 2023b), a framework
for video generation base on a small amount of video data. It focuses on learning motion patterns
by separating content and motion patterns, generating videos with higher degrees of freedom.

We present a comparison between our method and several baseline networks. The results are shown
in Fig 5. The results indicate that Tune-A-Video (Wu et al., 2023a) still has room for improvement
in terms of video quality and occasionally exhibits excessive adherence to the given video content.
Text2Video-Zero (Khachatryan et al., 2023) demonstrates high sensitivity to the input video, with its
generated output frequently being influenced by the background of the provided video. For exam-
ple, the appearance of a fence in the background in Fig 5(c) is clearly unreasonable. Additionally,
Text2Video-Zero heavily relies on pre-trained models, and when there is no fine-tuning with spe-
cific domain data, it tends to generate results with artifacts, failing to meet the needs for fine-grained
video generation in specific domains. LAMP (Wu et al., 2023b) also generates videos based on
the first frame, but it does not capture foreground objects well, leading to undesirable effects like
the sudden disappearance of foreground objects. In contrast, as shown in Fig 5(e), our model ef-
fectively captures the text-specified motion trajectory and clearly distinguishes foreground from the
background, avoiding the issue of the foreground suddenly disappearing.

Figure 5: Comparison between our method and baselines when the text prompt is ”A red horse runs
in the desert”. (a) Input video. (b) Tune-A-Video. (c) Text2Video-Zero. (d) LAMP. (e) Ours.

4.3 QUALITATIVE RESULTS

In this section, we evaluated our model and the baselines in terms of text-to-video alignment and
inter-frame consistency.

Objective metrics. Text alignment assesses whether the generated video accurately reflects the
description in the input text, ensuring a high match between the content and the text prompt. To
achieve this, we employ the CLIP model to quantify text alignment by comparing the embedding
similarity between the generated video frames and their corresponding text descriptions. The CLIP
model maps both text and images into the same embedding space, allowing us to compute similar-
ity scores between generated frames and text prompts, ultimately obtaining the average CLIP score
(Radford et al., 2021) for each frame. Frame consistency measures the smooth transitions and co-
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Table 1: Quantitative comparisons of text-to-video methods in frame consistency and textual faith-
fulness.

Method Frame Consistency Textual Faithfulness
CLIP Score↑ User Preference↑ CLIP Score↑ User Preference↑

Tune-A-Video 88.9 11.0 29.4 12.4
Text2Video-Zero 96.1 9.4 30.2 12.4
LAMP 94.3 24.5 30.3 22.2
OURS 96.7 55.0 31.0 53.0

herence between video frames, ensuring that the generated video appears visually continuous and
natural. High frame consistency indicates that movements and scene changes in the video are fluid,
without abrupt transitions. We can use the CLIP model to evaluate consistency by comparing the
similarity between frames.

In comparative experiments with baselines, we use the same motion sequence and provide five
different scene prompts: ”A red horse runs in the desert.” ”A white horse runs on the grassland.” ”A
black horse runs on a flat snowy plain.” ”A grey horse runs in the pink sky.” and ”A brown horse
runs on the road.” We obtain five sets of results and average the scores for each. According to the
experimental results in Table 1, our results outperform the other models in both text alignment and
frequency consistency.

User study. We conduct a user evaluation survey to compare the performance of our method with
other publicly available generation methods. Specifically, we create a questionnaire using 22 video
samples, providing each evaluator with a set of text prompts and the corresponding generated results.
We ask them to select the better generated videos based on two criteria: video quality and the
alignment between the prompts and the generated videos. Ultimately, we received 33 completed
questionnaires. As shown in Table 1, evaluators prefer our generated videos in both aspects. In
contrast, Tune-A-Video, which only uses DDIM inversion for structural guidance, fails to produce
consistent and high-quality videos, while the videos generated by Text2Video-Zero also exhibit
lower quality.

Figure 6: Ablation results. Given the text prompt ”A horse runs on the grass,” we conduct ablation
experiments with the following variations: (a) our model; (b) without using the first frame for gen-
eration; (c) without providing the motion sequence mask; (d) without using ControlNet to generate
the first frame; (e) without using the latent representation of the first frame as shared noise.
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4.4 ABLATION STUDY

To validate the effectiveness of our method, we conduct ablation experiments by removing key
components one by one to observe the impact on the quality of the generated videos. First, we
completely remove the conditioning on the first frame and directly generated video frames from
random noise. The resulting video, as shown in Fig 6(b), lost the content described by the text,
demonstrating the foundational role of the first frame in generating the video. Secondly, we remove
the motion sequence mask during inference. The resulting video, as shown in Fig 6(c), exhibited
unclear motion patterns and poor frame-to-frame coherence, highlighting the importance of the mask
sequence in guiding and capturing motion information. Thirdly, we did not use ControlNet (Zhang
et al., 2023) to generate the first frame, instead generating a random initial frame. As shown in Fig
6(d), the generated first frame did not align with the first frame mask, leading to poor overall video
generation quality. This further validates the advantage of using ControlNet (Zhang et al., 2023)
for generating the first frame based on the mask. Finally, we replace the shared noise with random
noise instead of using the latent representation of the first frame. The results, as shown in Fig 6(e),
indicated a significant decline in video quality and consistency, with the foreground objects’ colors
becoming too bright and losing their original hues. This demonstrates the importance of shared
noise. Through these ablation experiments, we demonstrate the crucial role of the motion sequence
mask, shared noise, first frame results, and ControlNet (Zhang et al., 2023) in video generation.
These components enable the model to effectively control the motion trajectory of the foreground
text, prevent the issue of the foreground suddenly disappearing, and improve the quality of the
generated video.

5 CONCLUSION

In this paper, we propose an innovative mask-guided video generation method that effectively ad-
dresses significant challenges in existing technologies, such as difficulties in maintaining consis-
tency between foreground text and its motion. By introducing foreground masks during training,
this method significantly improves the model’s ability to learn foreground motion, thereby greatly
enhancing the quality and controllability of the generated videos. Our approach can be trained on a
small number of videos with a single GPU, utilizing ControlNet to generate the content of the first
frame and guiding the generation of subsequent video frames through masks, achieving diversity
and controllability in the motion of the foreground object. The experimental results show that this
method not only improves the quality and consistency of the generated videos but also efficiently
reduces training resource consumption.
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A PRELIMINARY

In the preliminary knowledge section of this study, we will discuss the related concepts and appli-
cations of Latent Diffusion Models (LDMs). The main feature of LDMs Rombach et al. (2022) is
operating in the latent space of an autoencoder, which provides significant computational advantages
when generating high-quality images.

Given an input image I , its latent feature representation x0 = E(I) is first extracted through an
encoder E. In the forward diffusion process, noise is gradually added to these latent features, with
each noisy image at step t represented by the following conditional probability distribution:

q(xt|xt−1) = N
(
xt;

√
αtxt−1, (1− αt)I

)
, (8)

where αt is a hyperparameter controlling the noise intensity at step t, and q(xt|xt−1) is the condi-
tional probability distribution for generating xt given xt−1. Additionally, we can directly sample xt

at any time step t from x0 as:

q(xt|x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt)I

)
, (9)

where ᾱt =
∏t

i=1 αi , representing the cumulative diffusion coefficient.

As noise is added, the information of the initial features x0 gradually deteriorates with increasing
time steps t, and eventually, xt approaches a standard Gaussian distribution. To reconstruct x0 from
random noise, we use a U-Net structured neural network εθ trained to estimate the noise added
in the forward process. Specifically, during reverse inference, the deterministic DDIM (Denoising
Diffusion Implicit Models) sampling method is used to progressively generate xt−1 from xt. The
formula is as follows:

xt−1 =
√
ᾱt−1x̂0 +

√
1− ᾱt−1εθ(xt, t, cp), (10)

where x̂0 is the predicted value of x0 corresponding to time step t, obtained x̂0 =
xt−

√
1−αtεθ(xt,t,cp)√

αt
and εθ(xt, t, cp) is the noise predicted by the neural network at time step t

conditioned on the input cp (e.g., text prompts).

The training objective is to minimize the difference between the noise predicted by the model and
the actual noise. The loss function can be defined as:

Lsimple = Ex0,ε,t

[
∥ε− εθ(xt, t, cp)∥2

]
, (11)

where ε is the noise from a standard normal distribution, and εθ is the noise predicted by the neural
network.

In the final inference stage, we sample noise xt from a standard Gaussian distribution N(0, I) and
progressively derive x0 under the guidance of text prompts cp using the DDIM Song et al. (2020a)
sampling method. Finally, we use a decoder D to convert the obtained latent features x0 into the
final generated image I ′ = D(x0).

B MORE VISUALIZATIONS

We focused on three types of image sequences: animal motion, multi-object motion, and rigid body
motion, as shown in Fig 1. The corresponding text prompts were “A horse runs on the grass,” “A
helicopter flies in the pink sky,” and “Birds fly in the dark sky.” We first generated the initial frame
using ControlNet’s Scribble model to ensure the accuracy of the motion content. Then, the video
content was generated by guiding it with hand-drawn or extracted mask sequences. Our model
achieved excellent results in terms of content consistency.

C LONGER VIDEO GENERATION

We employ an autoregressive generation approach to achieve long video generation using only a
small amount of training videos on a single GPU. In Fig 7, we showcase the results of long video
generation. Given a motion sequence of 24 frames, we need to generate a video based on the prompt
”A horse runs across a flat desert plain under a midday sun in a pop art painting style.”. We use a
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Figure 7: Auto-Regressive Generation. Our model is capable of generating long videos. Given the
text prompt ”A horse runs across a flat desert plain under a midday sun in a pop art painting style,”
the video frames were generated using a first-frame-based method, producing a 24-frame video after
three epochs.

Figure 8: Limitation of visualization. Mask-guided video generation struggles to produce videos
beyond the input motion sequence. The text prompt does not match the given mask motion sequence,
and the resulting video is less than satisfactory, which reduces the overall quality and consistency of
the video.

three-step generation process, where in each step, we generate 16 frames. Then, we select the ninth
frame from the generated results as the new first frame for the next generation process. Finally,
the generated frames are assembled according to their respective sequence positions. The results
demonstrate excellent foreground consistency, indicating that our method is effective for generating
longer videos.

D LIMITATION

Although our mask-guided video generation method achieves a high degree of consistency between
the motion trajectory of the foreground object and the text description, the method still has certain
limitations when generating videos beyond the scope of the input mask motion sequence. For exam-
ple, when the input motion mask shows a horse walking, even if the text prompt is ”a horse running
in the desert,” the generated video still strictly follows the given mask motion sequence, as shown
in Fig 8. While the background may display a motion trend, the foreground horse still maintains a
walking posture. Therefore, when there is a clear conflict between the text prompt and the motion
sequence, the generated video tends to prioritize the input motion sequence, ignoring the dynamic
information implied in the text prompt. To address this issue, future research will focus on how to
adaptively adjust the motion sequence based on the text prompt, allowing the generated video to not
only better align with user expectations but also exhibit greater dynamic expressiveness.
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