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ABSTRACT

Visual Parameter-efficient Tuning (VPT) has become a powerful alternative for
full fine-tuning, which only updates a small number of parameters while freezing
the remaining vast majority of parameters to significantly reduce the storage costs
for adapting the pre-trained vision models to downstream tasks. Although the
storage burden is largely alleviated, VPT approaches still face many challenges,
e.g., lower inference speed and lacking effective configurations for trainable pa-
rameters tailored for each task. In this paper, we present a simple yet effective ap-
proach termed Sensitivity-aware visual Parameter-efficient Tuning (SPT) to tackle
these challenges. Given a desired tunable parameter budget, SPT quickly identi-
fies the important parameters to the given task in a data-dependent way before
fine-tuning, without the complex selection schedule. Then, SPT adaptively deter-
mines the tuning granularity for each weight matrix. Accordingly, for the whole
model, we structurally tune the entire sensitive weight matrices that contain a
large proportion of sensitive parameters (structured tuning), and non-structurally
tune the sensitive connections in the insensitive weight matrices (unstructured tun-
ing), simultaneously. For structured tuning, SPT approximates the update with
the low-rank reparameterization to preserve the parameter budget. Therefore,
our SPT has high flexibility and representational capability while achieving fa-
vorable trade-off between parameter-efficiency and accuracy. Through extensive
experiments on a wide range of downstream recognition tasks, our SPT achieves
better overall transfer performance than the full fine-tuning and the other VPT
approaches, with no additional computational or memory overhead during infer-
ence. For instance, SPT saves 99.35% of the trainable parameters than the full
fine-tuning while achieving a 7.3% higher average top-1 accuracy on VTAB-1k
benchmark with the supervised pre-trained ViT-B backbone. Notably, SPT is also
the first work that bridges the gap between full fine-tuning and VPT approaches
with backbones under self-supervised pre-training strategies MAE and MoCo v3
on the challenging VTAB-1k benchmark.

1 INTRODUCTION

The pre-training and fine-tuning paradigm has underpinned the most recent breakthroughs in vision,
yielding stunning empirical performance on a series of tasks such as segmentation (Chen et al., 2017;
Ronneberger et al., 2015) and detection (He et al., 2017; Carion et al., 2020). Transformer (Vaswani
et al., 2017) has been widely adopted as the standard architecture for pre-trained vision models, with
representatives including CLIP (Radford et al., 2021), MAE (He et al., 2022b), BEiT (Bao et al.,
2022), etc. To effectively adapt the pre-trained representations to the downstream tasks, the de-facto
choice is fine-tuning, which initializes the model with the pre-trained weights and tunes all the pa-
rameters. However, vanilla fine-tuning needs to store a separate instance of parameters for each
task and each deployment scenario. It can be extremely storage-intensive as the storage cost grows
linearly with the number of possible cases, considering there are vast varieties of downstream tasks
and dynamic deployment environments, especially when deploying the large vision models (Doso-
vitskiy et al., 2021; Liu et al., 2021; Xu et al., 2021b) to mobile systems. For example, even storing
a single large pre-trained ViT-H (He et al., 2022b) model on a local disk requires at least 2.3GB,
while the top-10 U.S. apps required only collectively 2.2GB in May 2021.1

1https://sensortower.com/blog/ios-app-size-growth-2021
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Figure 1: (a) The block-wise parameter sensitivity with supervised pre-trained ViT-B back-
bone (Dosovitskiy et al., 2021) for three sampled tasks from VTAB-1k (Zhai et al., 2019a). “TPS”
denotes our task-specific parameter sensitivity (importance). We show averaged scores over all 800
training samples. The sensitivity of each block varies markedly across different tasks. (b) Our pro-
posed Sensitivity-aware visual Parameter-efficient Tuning (SPT) identifies the task-specific impor-
tant positions and adaptively combines unstructured and structured tuning to enjoy both flexibility
and high capacity. The blue and red lines represent the frozen and trainable parameters, respectively.
(c) Accuracy vs. parameter efficiency with the supervised pre-trained ViT-B backbone. Our SPT
has no extra computational overhead during inference, surpasses full fine-tuning by large margins,
and performs favorably against other VPT approaches.

Notably, an emerging trend is to replace the full fine-tuning with Visual Parameter-efficient Tuning
(VPT) (Jia et al., 2022; Chen et al., 2022; Zhang et al., 2022), which only tunes a small number
of trainable parameters (newly introduced or inherently in the model) to cooperate with a frozen
backbone that is shared by multiple tasks. As VPT approaches exhibit less than 1% of the trainable
parameters, the storage burden is largely alleviated. Another attractive property of VPT is that
tuning fewer parameters eases the optimization difficulty and mitigates the overfitting issue for the
large models, thereby achieving comparable or even better performance than fine-tuning (Jia et al.,
2022) (see Figure 1 (c)). Although promising, the existing VPT approaches suffer from two major
issues. First, they specify the positions to add the trainable parameters with different heuristics,
and the importance of these positions has not been well studied. For instance, Prompt tuning (Jia
et al., 2022) and Adapter (Houlsby et al., 2019) add trainable parameters to the input space and
each Transformer (Vaswani et al., 2017) block, respectively. Moreover, these approaches keep the
same configuration for the trainable parameters across different downstream tasks, neglecting their
domain gaps and characteristics. Second, the additional parameters lead to a non-negligible sacrifice
on the inference efficiency in terms of speed and memory consumption. Taking Prompt tuning (Jia
et al., 2022) as an example, with the enlarged input space (200 prompts), it exhibits 2× slower
inference speed and consumes 2× of the GPU memory than the full fine-tuning counterpart.

To this end, in this work, we present a novel Sensitivity-aware visual Parameter-efficient Tuning
(SPT) that identifies and tunes the parameters at task-specific important positions while being
inference-efficient. Based on the assumption that not all pre-trained parameters contribute equally
to the performance across different tasks, we first propose a new criterion to efficiently measure
the sensitivity (importance) of the pre-trained backbone parameters to a specific task for our SPT.
Inspired by model pruning methods (Srivastava et al., 2015; Molchanov et al., 2019), we propose
to use loss reduction for the sensitivity measurement, which can be efficiently approximated with a
first-order Taylor expansion. The resulting parameter sensitivity is solely computed from the gradi-
ents, and therefore it can be quickly derived ahead of fine-tuning. We show an example of parameter
sensitivities using a pre-trained ViT-B (Dosovitskiy et al., 2021) backbone in Figure 1 (a), where the
sensitivities vary across different tasks.

Next, an intuitive solution is to only tune the parameters with the highest sensitivity, which we name
as unstructured tuning following (Han et al., 2015; 2016). Despite its simplicity and flexibility,
unstructured tuning still lacks representational capability as only a few parameters are tuned to cap-
ture the domain gap. To this end, our SPT further incorporates unstructured tuning with structured
tuning (Figure 1 (b)). Specifically, after identifying the sensitive parameters of the pre-trained back-
bone, SPT adaptively determines the tuning granularity for each weight matrix. Accordingly, for the
whole model, we structurally tune the entire sensitive weight matrices that contain a large propor-
tion of sensitive parameters (structured tuning), and non-structurally tune the sensitive connections
in the insensitive weight matrices (unstructured tuning), simultaneously. To preserve the parameter
budget, for structured tuning, SPT follows the efficient reparameterization strategy of LoRA (Hu
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et al., 2022) to optimize the low-rank decomposition. Therefore, our SPT merits high flexibility and
representational capability from both tuning granularities. After fine-tuning, our SPT only needs to
store a subset of task-specific weights and indexes, which can be merged into the backbone, thereby
being parameter-efficient while having no extra cost during inference.

This paper has the following key contributions. 1) We introduce a sensitivity criterion to measure
the importance of the pre-trained backbone parameters, which is fast, effective, and can be applied
to backbones with various pre-training strategies. 2) Based on the sensitivity criterion, we propose
a parameter-efficient tuning approach to tune parameters at task-specific important positions, which
includes not only unstructured tuning but also structured tuning to achieve high flexibility, large ca-
pacity, and favorable tradeoff between parameter-efficiency and accuracy. 3) Extensive experiments
on a total of 24 downstream recognition tasks with vision Transformer backbones under supervised,
MAE (He et al., 2022b), and MoCo v3 (Chen et al., 2021) pre-trainings show that our SPT achieves
the overall best performance, outperforming vanilla fine-tuning and the other SOTA VPT methods
by clear margins (Figure 1 (c)). Moreover, to the best of our knowledge, SPT for the first time
bridges the gap between full fine-tuning and VPT approaches on VTAB-1k under MAE and MoCo
v3 self-supervised pre-trainings.

2 RELATED WORK

The full fine-tuning is the most predominant approach when adapting a large-scale pre-trained model
to downstream tasks, where the model is initialized from the pre-trained weights with all parameters
trainable. Yet, when a model becomes larger, parameter-efficient tuning (Lester et al., 2021; Li
& Liang, 2021) is highly desirable, which transfers a pre-trained model to the downstream tasks
by tuning only a tiny portion of parameters to alleviate the storage burden. The general parameter-
efficient tuning approaches can be categorized into addition-based methods (Jia et al., 2022; Houlsby
et al., 2019; He et al., 2022a; Chen et al., 2022) and reparameterization-based methods (Zaken et al.,
2022; Hu et al., 2022; Xu et al., 2021a; Guo et al., 2021; Xu et al., 2021a).

Addition-based methods attach additional trainable parameters to the backbone and only tune these
parameters. Apart from Prompt tuning (Jia et al., 2022) and Adapter (Houlsby et al., 2019), recent
addition-based methods study connecting or combining existing VPT methods. For instance, He
et al. (2022a) connect Prompt tuning and Adapter and provide a unified view that all VPT approaches
share the same design to modify the backbone outputs. Zhang et al. (2022) search for the optimal
configurations to combine multiple VPT approaches following once-for-all approaches (Cai et al.,
2020; Wu et al., 2021). However, the additional parameters require extra computations compared to
the full fine-tuning, thereby introducing additional lags during inference.

Reparameterization-based methods tune the parameters that are inherently in the backbone or new
parameters that can be merged into the backbone, thereby yielding no extra computational costs
during inference. For reparameterization-based methods, one line of work tunes the same set of
trainable parameters for different tasks, e.g., tuning the bias terms (Zaken et al., 2022) or the last
several layers (Yosinski et al., 2014; Caelles et al., 2017). The representative work LoRA (Hu
et al., 2022) optimizes two low-rank matrices to approximate the update of each weight matrix
in the self-attention modules, which can be merged into the pre-trained weights during inference.
Another line of work explores task-specific trainable parameters by jointly optimizing the model
parameters and tuning configurations (Guo et al., 2021; Zhao et al., 2020). For example, Guo et al.
(2021) seek task-specific trainable parameters by optimizing a sparse mask with L0 norm and Zhao
et al. (2020) optimize binary masks to identify trainable parameters. However, learning the extra
masks to identify the tunable parameters requires a formidable amount of training time and GPU
memory, which makes these methods hard to be applied to large vision models (Liu et al., 2021; Xu
et al., 2021b). Our method also belongs to the reparameterization-based methods but differs from the
existing ones in two aspects. On one hand, we follow importance estimation approaches (Molchanov
et al., 2019; Lee et al., 2019) and adopt an effective sensitivity criterion to quickly identify the task-
specific trainable parameters before fine-tuning. On the other hand, we incorporate both structured
and unstructured tuning granularities to enable higher flexibility and representational power than the
sole unstructured counterpart, offering consistent accuracy gains for a fixed parameter budget.

Apart from the fine-tuning strategies, the choice of the pre-trained models affects the adaptation per-
formance greatly. Recently, models pre-trained with self-supervised strategies (Caron et al., 2021;
He et al., 2020; 2022b; Xiao et al., 2021) have gained much popularity as they better tackle the over-
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fitting issue than supervised pre-trained models (He et al., 2020). Although several works (He et al.,
2022b; Ericsson et al., 2021) argue better transferability for the self-supervised pre-trained models,
their effectiveness is barely studied under the VPT settings. Recently, Jia et al. (2022) show that
unlike the supervised pre-trained models, applying the SOTA VPT approaches with representative
self-supervised pre-trained strategies, i.e., MAE (He et al., 2022b) and MoCo v3 (Chen et al., 2021),
achieves inferior results than the full fine-tuning. AdaptFormer (Chen et al., 2022) achieves higher
performance than the vanilla fine-tuning on the video domain with MAE pre-training, while it still
falls behind the full fine-tuning in the image domain. In contrast to the previous work, to the best
of our knowledge, our SPT for the first time bridges the gaps on the popular VTAB-1k benchmark
under the backbones pre-trained with both MAE and MoCo v3.

3 METHOD

To introduce our Sensitivity-aware visual Parameter-efficient Tuning (SPT), we first describe our
simple yet effective criterion to measure the task-specific sensitivity for pre-trained backbone pa-
rameters in Section 3.1. We then introduce how SPT employs the task-specific sensitive parameters
to adaptively incorporate both unstructured and structured tuning granularities, while having no ad-
ditional computational overhead during inference in Section 3.2.

3.1 TASK-SPECIFIC PARAMETER SENSITIVITY

Based on our assumption that not all parameters contribute equally to the performance across dif-
ferent tasks, we first propose a new criterion to measure the sensitivity for the parameters in the
pre-trained backbone, that is specifically tailored for a given task.

Specifically, given the training dataset Dt for the t-th task and the pre-trained model weights w =
{w1, w2, . . . , wN} ∈ RN where N is the total number of parameters, the objective for the task
is to minimize the empirical risk: minw E(Dt,w). We denote the sensitivity criterion as S =
{S1, . . . , SN}. The sensitivity Sn for parameter wn is measured by the empirical risk difference
when tuning it

Sn = E(Dt,w)− E(Dt,w | wn = w∗
n), (1)

where w∗
n = argmin

wn

(E(Dt,w)). We can reparameterize the fine-tuned parameters as w∗
n = wn +

∆wn , where ∆wn denotes the change for wn after tuning. However, it is computationally intensive
to compute Eq. (1) for two reasons. Firstly, getting the empirical risk for N parameters requires
forwarding the entire network N times, which is too time-consuming. Secondly, it is challenging to
derive ∆wn

, as we have to tune each individual wn until convergence.

To overcome the first barrier, we simplify the empirical loss by approximating Sn in the vicinity of
w by its first-order Taylor expansion:

S(1)
n = −gn∆wn , (2)

where the gradient g = ∂E/∂w and gn is the gradient for the n-th element.

To address the second barrier, following (Liu et al., 2019; Cai et al., 2019), we take the one-step
unrolled weight as the surrogate for w∗

n and approximate ∆wn in Eq. (2) with a single step of
gradient descent. We can accordingly get S(1)

n ≈ g2nϵ, where ϵ is the learning rate. Since ϵ is the
same for all parameters, we can eliminate it and finally get S(1)

n ≈ |gn|. This essentially states that
the sensitivity for a parameter is solely measured based on the magnitude of its gradient. This is
intuitive since the pre-trained weights with higher sensitivity are more likely to affect downstream
tasks fine-tuned with SGD. Getting S is also very simple, which can be derived once prior to fine-
tuning.

It’s noteworthy that it would make only slight differences if we use a higher order Taylor expansion
in Eq. (2). Without loss of generality, we take second-order Taylor expansion as an example and
get S(2)

n ≈ g2nϵ − 1
2ϵ

2gnHng, where Hn is the n-th row of the Hessian matrix H = ∂2E/∂w2 ∈
RN×N . Since ϵ is small, the first term is much larger than the second one. Thus, we directly use the
first-order Taylor expansion in this paper.

In practice, we accumulate S from a total number of C training samples to generate accurate sensi-
tivity, where C is a pre-defined hyper-parameter. We derive S ahead of fine-tuning to simplify the
process as shown in Algorithm 1.
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Algorithm 1 Computing task-specific parameter sensitivities.
Input: Pre-trained model with network parameters w, training setDt for the t-th task, and number
of training samples C used to calculate the parameter sensitivities.
Output: Sensitivity set S = {S1, . . . , SN}.
Initialize S = {0}N .
for i ∈ {1, . . . , C} do

Get the i-th training sample of Dt.
Compute loss E.
Compute gradients g.
for n ∈ {1, . . . , N} do

Update the n-th sensitivity: Sn = Sn + |gn|.
end for

end for

3.2 SENSITIVITY-AWARE VISUAL PARAMETER-EFFICIENT TUNING

After obtaining the sensitivity set S and a desired parameter budget τ , a straightforward solution is
unstructured tuning, which directly tunes the top-τ most sensitive unstructured connections (param-
eters). Specifically, we get the top-τ sensitive connections to form T from S. For any weight matrix
W ∈ Rdin×dout , we aim to get a binary mask M ∈ Rdin×dout computed by

M j =

{
1 W j ∈ T
0 W j /∈ T , (3)

where W j and M j are the j-th element in W and M , respectively. Accordingly, the updated
weight matrix can be formulated as W ′ ←W − ϵgW ⊙M , where gW is the gradient for W . In
this way, only the sensitive parameters are updated while the other parameters are frozen.

Weight
Matrix

Unstructured Tuning Structured Tuning

…

≈

×+

Low-rank Matrices

Task-specific
Sensitivity

Task-specific
Sensitivity

Top-𝜏 Top-𝜏

Unstructured Tuning

Figure 2: Comparison between unstructured tuning and adaptively
combining unstructured and structured tuning granularities. The latter
structurally tunes the sensitive weight matrices that a large proportion
of their parameters are sensitive. The blue and red lines represent the
frozen and trainable parameters.

However, considering VPT
approaches generally limit
the proportion of train-
able parameters to less
than 1%, tuning only a
small number of unstruc-
tured connections might
not have enough represen-
tational capacity to handle
the datasets with large do-
main gaps from the pre-
training data. Therefore,
we propose to improve the representational capability under the same parameter budget by incorpo-
rating unstructured tuning with structured tuning and adaptively determine the tuning granularity
for each weight matrix. In structured tuning, we update the entire sensitive weight matrices instead
of only some unstructured connections as depicted in Figure 2. Formally, we employ a pre-defined
threshold hyper-parameter σ and the updated weight matrix W ′ with our SPT can be formulated as:

W ′ =

{
W ′

s if
∑din×dout

j=0 Mj

din×dout
≥ σ

W − ϵgW ⊙M otherwise
, (4)

where W ′
s denotes the structurally updated W . Eq. (4) essentially states that we structurally tune

W when its proportion of the sensitive parameters is higher than σ. To implement W ′
s , one can

directly tune all the parameters in W and get W ′
s ←W −ϵgW . However, directly tuning the entire

weight matrix is parameter-consuming, e.g., a weight matrix in the feed-forward layer takes up 2.7%
of the total parameters for ViT-B (Dosovitskiy et al., 2021). To preserve the parameter budget when
tuning the entire sensitive weight matrices, we freeze the pre-trained weights and reparameterize the
update with two trainable low-rank weight matrices in a parameter-efficient way as in LoRA (Hu
et al., 2022). Therefore, we implement W ′

s ← W + WdownWup, where Wdown ∈ Rdin×r and
Wup ∈ Rr×dout are randomly initialized learnable low-rank matrices to approximate the update
of W and the rank r is a hyper-parameter that r ≪ min(din, dout). By letting σ

r > din+dout

din×dout
, we

ensure that the total number of trainable parameters does not exceed τ to preserve the parameter
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budget. In this way, our SPT incorporates both structured and unstructured tuning granularities
adaptively with our sensitivity criterion to enable higher flexibility and stronger representational
power simultaneously, leading to noticeable gains in parameter-efficiency vs. accuracy tradeoff. We
investigate the effectiveness of both tuning methods in Section 4.3.

Discussions. Although our SPT employs LoRA (Hu et al., 2022) when conducting structured tuning,
it is fundamentally different from LoRA. First, similar to the other VPT approaches (Jia et al., 2022;
Houlsby et al., 2019), LoRA neglects the domain gaps across different downstream tasks and adds
the low-rank reparameterizations to positions with heuristics. To tackle this fundamental challenge,
our SPT estimates the parameter sensitivity and accordingly identifies the task-specific sensitive
positions. We show that applying the VPT modules (i.e., visual prompts (Jia et al., 2022), LoRA (Hu
et al., 2022), and adapter modules (Houlsby et al., 2019)) to the task-specific instead of heuristic
positions achieves solid performance gains (Section 4.3). Second, LoRA employs only structured
tuning that updates entire weight matrices. In contrast, under arbitrary parameter constraints, SPT
integrates both structured and unstructured tuning granularities, and adaptively determines the tuning
granularity for each weight matrix according to their proportion of sensitive parameters. In this way,
our SPT can achieve higher flexibility and stronger representational power simultaneously, leading
to noticeable gains in parameter-efficiency vs. accuracy trade-off (Section 4.2) and higher scalability
than LoRA (Section D).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and metrics. We evaluate our SPT on total 24 downstream tasks in two groups follow-
ing (Jia et al., 2022). 1) FGVC is a benchmark for fine-grained visual classification, which includes
CUB-200-2011 (Wah et al., 2011), NABirds (Van Horn et al., 2015), Oxford Flowers (Nilsback
& Zisserman, 2008), Stanford Cars (Gebru et al., 2017), and Stanford Dogs (Khosla et al., 2011)
datasets. Each of the FGVC datasets contains between 55 to 200 classes and a few thousands of
images in total for train, validation, and test. We follow (Jia et al., 2022) for their validation splits if
the validation set is unavailable. 2) VTAB-1k (Zhai et al., 2019b) is a large-scale transfer learning
benchmark consisting of a collection of 19 visual classification tasks. VTAB-1k can further be di-
vided into three groups, including Natural tasks with natural images, Specialized tasks with images
captured by specialized equipments, e.g., medical images, and Structured tasks with images mostly
generated from synthetic environments. Each of the VTAB-1k dataset has only 1,000 training sam-
ples, while the test set sizes vary. We use top-1 accuracy (%) averaged within each group as our
main metric following (Jia et al., 2022).

Pre-trained backbones. We conduct experiments on the representative plain vision Transformer
backbone ViT-B/16 (Dosovitskiy et al., 2021) that is pre-trained on ImageNet (Krizhevsky et al.,
2012) with different pre-training strategies following (Jia et al., 2022), including supervised pre-
training, self-supervised pre-training with MAE (He et al., 2022b) and MoCo v3 (Chen et al., 2021).

Contenders. We categorize the baseline methods into two groups which are addition-based and
reparameterization-based methods, respectively. Unless specified, all baseline methods keep the
backbone frozen. Addition-based methods require extra computations during inference, which in-
cludes ADAPTER-k (Houlsby et al., 2019), PROMPT-SHALLOW (Jia et al., 2022) that adds trainable
prompts only to the input space, PROMPT-DEEP (Jia et al., 2022) that adds the prompts to each layer,
NOAH (Zhang et al., 2022), and MLP-k that replaces the classification head with a trainable k-layer
multi-layer perceptrons as described in (Jia et al., 2022). Reparameterization-based methods have
no additional computational overhead during inference, which includes LINEAR that only tunes the
classification head (details in (Jia et al., 2022)), PARTIAL-k that fine-tunes the last k layers (details
in (Jia et al., 2022)), BITFIT (Zaken et al., 2022), and LORA-k (Hu et al., 2022). We refer the
readers to Section 2 for details of the baseline methods. We also define FULL as the full fine-tuning.

4.2 MAIN RESULTS

We first evaluate the effectiveness of our method by comparing SPT with baseline methods. The
results with ViT-B under supervised pre-training are presented in Table 1, and those under self-
supervised pre-training are presented in Table 2.
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Table 1: Comparison with the other visual parameter-efficient tuning methods on FGVC datasets
and VTAB-1k datasets using supervised ViT-B/16 pre-trained on ImageNet-21k (Dosovitskiy et al.,
2021). “Tuned/Total” denotes the fraction of the trainable parameters. Top-1 accuracy (%) and
inference speed (ms/img) are reported.

ViT-B/16 Total FGVC VTAB-1k Inference
(85.8M) params Tuned / Total Mean Acc. Tuned / Total Natural Specialized Structured Mean Acc. speed
FULL 24.02× 100% 88.5 100% 75.9 83.4 47.6 69.0 2.8

Addition-based methods
MLP-3 1.35× 1.50% 79.8 1.42% 67.8 72.8 30.6 57.1 2.9
PROMPT-SHALLOW 1.04× 0.31% 84.6 0.13% 76.8 79.7 47.0 67.8 3.7
PROMPT-DEEP 1.18× 0.98% 89.1 1.14% 78.5 82.4 55.0 72.0 3.8
ADAPTER-8 1.06× 0.39% 85.5 0.23% 79.0 84.1 58.5 73.9 2.9
ADAPTER-32 1.19× 0.95% 85.6 0.71% 79.6 84.0 58.3 74.0 2.9
NOAH - - - 0.50% 80.2 84.9 61.3 75.5 3.3

Reparameterization-based methods
LINEAR 1.02× 0.12% 79.3 0.04% 68.9 77.2 26.8 57.6

2.8

PARTIAL-1 3.00× 8.38% 82.6 8.30% 69.4 78.5 34.2 60.7
BITFIT 1.05× 0.13% 88.4 0.13% 73.3 78.3 44.1 65.2
LORA-8 1.07× 0.55% 86.0 0.23% 79.5 84.6 60.5 74.9
LORA-16 1.18× 0.90% 84.8 0.69% 79.8 84.9 60.2 75.0
SPT (Ours) 1.13× 0.66% 88.7 0.53% 81.8 85.8 60.8 76.1
SPT (Ours) 1.17× 0.91% 89.2 0.65% 81.8 85.9 61.1 76.3

Table 2: Comparison with the other visual parameter-efficient tuning methods on VTAB-1k datasets
using self-supervised ViT-B/16 pre-trained by MAE (He et al., 2022b) and MoCo v3 (Chen et al.,
2021). “Tuned / Total” denotes the fraction of the trainable parameters. Top-1 accuracy (%) is
reported.

ViT-B/16 Total VTAB-1k MAE VTAB-1k MoCo v3
(85.8M) Params Tuned / Total Natural Specialized Structured Mean Acc. Tuned / Total Natural Specialized Structured Mean Acc.

FULL 38.02× 100% 59.3 79.7 53.8 64.3 100% 72.0 84.7 42.0 69.6

Addition-based methods
ADAPTER-8 1.08× 0.23% 57.2 78.4 54.7 63.4 0.23% 27.6 70.9 48.4 49.0
ADAPTER-32 1.28× 0.95% 55.3 78.8 53.3 62.5 0.95% 29.2 73.4 49.8 50.8
PROMPT-SHALLOW 1.02× 0.12% 40.0 69.7 67.5 59.1 0.12% 67.3 82.3 37.6 62.4
PROMPT-DEEP 1.05× 0.48% 36.0 60.6 26.6 41.1 0.48% 70.3 83.0 42.4 65.2

Reparameterization-based methods
LINEAR 1.02× 0.12% 18.9 52.7 23.7 32.1 0.12% 67.5 81.1 30.3 59.6
PARTIAL-1 4.16× 8.30% 58.4 78.3 47.6 61.5 8.30% 72.3 84.6 47.9 68.3
BITFIT 1.06× 0.13% 54.6 75.7 47.7 59.3 0.13% 72.9 81.1 53.4 69.2
LORA-8 1.08× 0.23% 57.5 77.7 57.7 64.3 0.23% 21.2 66.7 45.1 44.3
LORA-16 1.28× 0.69% 57.3 77.1 59.9 64.8 0.69% 16.0 64.0 48.7 42.9
SPT (Ours) 1.15× 0.40% 61.6 78.7 56.7 65.7 0.39% 71.5 83.0 56.6 70.4
SPT (Ours) 1.20× 0.56% 61.7 78.7 57.8 66.1 0.51% 71.7 84.1 58.6 71.5

First, SPT outperforms full fine-tuning by remarkable margins with supervised pre-trained ViT-B.
As shown in Table 1, SPT has 7.3% higher mean top-1 accuracy on VTAB-1k than the full fine-
tuning with only 0.65% of the trainable parameters. With abundant data, SPT also outperforms the
full fine-tuning by 0.7% mean top-1 accuracy in FGVC datasets while saving 99.09% trainable pa-
rameters. Our conjecture is that the full fine-tuning is likely to overfit in our studied scenarios of
adapting a large pre-trained model to a small/medium target dataset. Second, SPT achieves better
overall performance than the SOTA VPT methods with supervised pre-trained ViT-B. For instance,
in Table 1, SPT with 0.53% proportion of the trainable parameters outperforms the best-performing
addition-based method NOAH with a similar amount of tuned parameters by 0.6% mean top-1
accuracy on VTAB-1k, without affecting the inference efficiency. SPT also achieves a 1.3% top-
1 accuracy gain with 0.04% less trainable parameters than LORA-16 that has the highest perfor-
mance within the reparameterization-based baselines. We speculate that the superiority of our SPT
comes from: 1) allocating the trainable parameters to more important task-specific positions with
our sensitivity criterion; 2) incorporating both unstructured and structured tuning, which achieves
higher flexibility and representational capability. Third, SPT bridges the gap for self-supervised pre-
trained backbones between the existing VPT approaches and the full fine-tuning as shown in Table 2.
VPT approaches generally exhibit inferior results than full fine-tuning with the self-supervised pre-
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Figure 3: (a) The domain gap vs. performance for the three dataset groups in VTAB-1k. We measure
the performance by the mean top-1 accuracy gain of our SPT against PROMPT-DEEP (Jia et al.,
2022). The domain gap is measured by Maximum Mean Discrepancy (MMD) distance (Tzeng et al.,
2014) between the averaged last-layer features of the pre-training images in ImageNet (Krizhevsky
et al., 2012) and the fine-tuning images. Employing the structured tuning improves the averaged
performance on the Structured datasets significantly. (b) Results for applying other popular VPT
modules to the positions identified by our sensitivity criterion on VTAB-1k. “TPS” refers to our
task-specific parameter sensitivity. Our criterion brings consistent performance gain.

trained backbones MAE and MoCo v3. We observe that our SPT consistently outperforms the full
fine-tuning with both pre-training strategies. Especially, SPT outperforms full fine-tuning for non-
neglectable margins of 1.8% and 1.9% top-1 accuracy on VTAB-1k dataset using only 0.56% and
0.51% trainable parameters for MAE and MoCo v3 pre-trained backbones, respectively. Together
with our observation in Sections A and B in appendix that: 1) parameters of a pre-trained backbone
are with diverse sensitivities to different tasks; 2) self-supervised pre-trained backbones have higher
sensitivity variance among the datasets, we conjecture that tailoring the task-specific trainable pa-
rameters with SPT can better handle the large variance of the important parameters across tasks and
enable accurate adaptation for the self-supervised pre-trained backbones. We report more multi-seed
results of our SPT in Table C.

4.3 ABLATION STUDY

Effect of structured and unstructured tuning. We investigate the effectiveness of combining
unstructured tuning with structured tuning described in Section 3.2. The results are presented in
Table 3. We observe that under similar fractions of trainable parameters, SPT without unstructured
tuning has 0.9% top-1 mean accuracy drop and SPT without structured tuning has a significant 2.4%
top-1 mean accuracy drop, suggesting both factors are essential for SPT’s superior performance
while structured tuning contributes more. Further investigating this phenomenon, we find that the
main difference lies in the performance for the Structured datasets in VTAB-1k as shown in Figure 3
(a). Figure 3 (a) also shows that Structured datasets have a larger domain gap to the pre-training
dataset than the other datasets (see examples in Section C in the appendix). Our structured tuning
updates all channels of a weight matrix efficiently with the low-rank reparameterization, which
mitigates the large domain gap for the Structured datasets due to its enhanced representational power.

Effect of the sensitivity criterion. We investigate the effectiveness of our sensitivity criterion de-
scribed in Section 3.1 by employing visual prompts in (Jia et al., 2022), adapter modules in (Houlsby
et al., 2019), and LoRA modules in (Hu et al., 2022) to the positions identified by our criterion. We
present the results in Figure 3 (b). It can be seen that our criterion brings 1.1%, 1.1%, and 0.4%
performance gains for PROMPT-DEEP, ADAPTER-32, and LORA-16, respectively. The consistent
performance gains demonstrate the superiority of our sensitivity to select task-specific important po-
sitions. It is also indicated that our criterion has wider applications and can be seamlessly combined
with the other VPT approaches.

Effect of the number of training samples C for sensitivity scores. We investigate the effect of
the number of training images C (Algorithm 1). We randomly sample the training samples when
C/N < 1.0 and report the median over three runs. The results are shown in Table 4. When varying
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Table 3: Ablate on the structured tuning and unstructured tuning for SPT on VTAB-1k (Zhai et al.,
2019b). Top-1 accuracy (%) is reported. We set different parameter constraints to align the fractions
of the trainable parameters for these cases.

Method Tuned / Total Natural Specialized Structured Mean Acc.

SPT 0.65% 81.8 85.9 61.1 76.3
SPT w/o unstructured 0.66% 81.1 85.1 60.1 75.4
SPT w/o structured 0.74% 80.9 84.9 55.8 73.9

Table 5: Cost comparison with full fine-tuning, PROMPT-DEEP (Jia et al., 2022), and LORA (Hu
et al., 2022). PROMPT-DEEP and SPT are evaluated with around 0.70% fractions of the trainable
parameters. We report the latency (ms/img) and the peak memory usage (GB).

Method Inference Latency (ms/img) Inference Memory (GB) Fine-tuning Memory (GB)

FULL 2.8 1.3 11.9
PROMPT-DEEP 3.8 1.9 13.2
LORA 2.8 1.3 8.2
SPT w/o unstructured 2.8 1.3 8.3
SPT 2.8 1.3 12.5

the ratio from 0.3 to 1.0, we get similar proportions of trainable parameters and find that half of the
training samples suffice getting the highest performance.

Table 4: Ablate on the num-
ber of training samples used to
get the sensitivity on VTAB-1k.
Top-1 accuracy (%) is reported.
C/N 0.3 0.5 0.7 1.0

Mean Acc. 76.1 76.3 76.3 76.3

Computational cost analysis. We investigate the computa-
tional cost of SPT by comparing it with the full fine-tuning,
the addition-based method PROMPT-DEEP (Jia et al., 2022), and
LoRA (Hu et al., 2022), which is evaluated on a single GeForce
3090 GPU. The results are presented in Table 5. We observe that
PROMPT-DEEP has inevitably higher inference latency and infer-
ence GPU memory due to the additional prompts. In contrast,
since the updated parameters after fine-tuning can be reparame-
terized and merged into the pre-trained model, our SPT and LORAare more efficient than PROMPT-
DEEP during inference. We observe that our SPT has higher fine-tuning memory than the full fine-
tuning and LORA which is taken up by masking the gradients in Eq. (4). Nevertheless, compared
to the pre-training, which takes thousands of TPUv3-core-days (Dosovitskiy et al., 2021), the fine-
tuning process for the total 19 datasets of the VTAB-1k benchmark only takes several GPU hours
and is computationally friendly. Therefore, we argue that slightly more fine-tuning memory (0.6 G
higher than the full fine-tuning) is affordable and saving fine-tuning memory is not the main pur-
pose of parameter-efficient tuning. Moreover, one can employ LoRA to the task-specific positions
found by our SPT (SPT w/o unstructured tuning) to achieve similar fine-tuning memory as LoRA
but higher performance (Figure 3 (b)).

5 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel visual parameter-efficient tuning approach for the adap-
tation of large pre-trained vision models to downstream tasks. Specifically, we have proposed a
criterion to quickly measure the importance of the pre-trained parameters for specific tasks during
fine-tuning. Based on the criterion, we have also proposed to tune the task-specific important weight
connections for accurate adaptation. To remedy the lack of representational power while achiev-
ing favorable tradeoff between parameter efficiency and accuracy, we have proposed to integrate
both structured and unstructured tuning, enabling the model to have high flexibility and transfer-
ability while being inference-efficient. Experimental results have demonstrated the effectiveness of
our proposed SPT on a total of 24 downstream tasks. Notably, we have shown that our approach
consistently bridges the gap between vanilla fine-tuning and VPT approaches for the backbones pre-
trained using MAE and MoCo v3 on VTAB-1k. In the future, we will explore employing SPT to
adapt large vision models to more downstream tasks, e.g., segmentation, detection, and pose esti-
mation. Another promising direction is to further enhance the parameter and inference efficiency by
simultaneously considering compressing these models. Finally, we will explore masking the gra-
dients in the unstructured tuning of our SPT in a hardware-friendly way to save fine-tuning GPU
memory consumption.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training of image transformers. In ICLR, 2022.

Sergi Caelles, Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Laura Leal-Taixé, Daniel Cremers, and Luc
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Appendix

A MORE TASK-SPECIFIC SENSITIVITY PATTERNS

We show more patterns of block-wise task-specific sensitivity for tasks sampled from VTAB-
1k (Zhai et al., 2019b) in Figures A, B, and C. We observe the similar trend that given a pre-trained
backbone, the important parameters for different tasks diverse greatly. This aligns with our motiva-
tion to tune task-specific parameters.

B COMPARISON ON SENSITIVITY VARIANCES ACROSS THE PRE-TRAINING
STRATEGIES

We further compare the variance of the task-specific sensitivities on VTAB-1k for backbones with
different pre-training strategies. We present the results in Figure D. We observe that the backbones
with self-supervised pre-training have a higher variance of sensitivities than the supervised pre-
trained ones across the 19 downstream tasks. Especially, the variance for MAE (He et al., 2022b)
is twice as large as the supervised pre-training strategy. We conjecture that our SPT yields higher
performance than the other methods since it can better handle the large variance and tailor suitable
trainable parameters for specific tasks.

Figure A: The block-wise parameter sensitivity with ViT-B (Dosovitskiy et al., 2021) backbone
under supervised pre-training for six sampled tasks from VTAB-1k.

C VISUALIZATION FOR DOMAIN GAPS

We visualize some sampled data for ImageNet, Natural tasks, and Structured tasks in Figure E
to show the domain gaps. The domain gap between the pre-training data and the samples from
Structured datasets is large as they mostly contain synthetic images. The visualization aligns with
our finding that structured tasks have large domain gaps in the pre-training data which is handled by
our SPT with structured tuning.
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Figure B: The block-wise parameter sensitivity with ViT-B backbone under MAE pre-training for
six sampled tasks from VTAB-1k.

Figure C: The block-wise parameter sensitivity with ViT-B backbone under MoCo v3 (Chen et al.,
2021) pre-training for six sampled tasks from VTAB-1k.

D SCALABILITY COMPARISON WITH LORA

We evaluate the scalability of our SPT and compare with LoRA. The results are shown in Figure D
(b). We observe that LoRA saturates quickly while our SPT has consistent performance gain when
the percentage of the trainable parameter increases. We conjecture that our SPT finds task-specific
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Top-1 Acc. (%)

Tuned / Total params (%)

(a)

Variance

Pre-training strategy

(b)

Figure D: (a) Comparison on the sensitivity variances across backbones with different pre-training
strategies on VTAB-1k. (b) Comparison on the scalability between our SPT and LoRA (Hu et al.,
2022) on VTAB-1k. LoRA saturates quickly while our SPT has consistent performance gain when
the percentage of the trainable parameter increases.

Table A: Per-task results on the VTAB-1k benchmark from Table 1. “Tuned / Total” denotes the
fraction of the trainable parameters. Top-1 accuracy (%) is reported.
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FULL 100% 68.9 87.7 64.3 97.2 86.9 87.4 38.8 75.9 79.7 95.7 84.2 73.9 83.4 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 47.6

Addition-based methods

MLP-3 1.50% 63.8 84.7 62.3 97.4 84.7 32.5 49.2 67.8 77.0 88.0 70.2 56.1 72.8 47.8 32.8 32.3 58.1 12.9 21.2 15.2 24.8 30.6
PROMPT-SHALLOW 0.31% 77.7 86.9 62.6 97.5 87.3 74.5 51.2 76.8 78.2 92.0 75.6 72.9 79.7 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 47.0
PROMPT-DEEP 0.98% 78.8 90.8 65.8 98.0 88.3 78.1 49.6 78.5 81.8 96.1 83.4 68.4 82.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 55.0
ADAPTER-8 0.39% 69.2 90.1 68.0 98.8 89.9 82.8 54.3 79.0 84.0 94.9 81.9 75.5 84.1 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6 58.5
ADAPTER-32 0.71% 68.7 92.2 69.8 98.9 90.3 84.2 53.0 79.6 83.2 95.4 83.2 74.3 84.0 81.9 63.9 48.7 80.6 76.2 47.6 30.8 36.4 58.3
NOAH 0.50% 69.6 92.7 70.2 99.1 90.4 86.1 53.7 80.2 84.4 95.4 83.9 75.8 84.9 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 61.3

Reparameterization-based methods

LINEAR 0.12% 63.4 85.0 63.2 97.0 86.3 36.6 51.0 68.9 78.5 87.5 68.6 74.0 77.2 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 26.8
PARTIAL-1 8.38% 66.8 85.9 62.5 97.3 85.5 37.6 50.6 69.4 78.6 89.8 72.5 73.3 78.5 41.5 34.3 33.9 61.0 31.3 32.8 16.3 22.4 34.2
BITFIT 0.13% 72.8 87.0 59.2 97.5 85.3 59.9 51.4 73.3 78.7 91.6 72.9 69.8 78.3 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 44.1
LORA-8 0.55% 67.1 91.4 69.4 98.8 90.4 85.3 54.0 79.5 84.9 95.3 84.4 73.6 84.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 60.5
LORA-16 0.90% 68.1 91.4 69.8 99.0 90.5 86.4 53.1 79.8 85.1 95.8 84.7 74.2 84.9 83.0 66.9 50.4 81.4 80.2 46.6 32.2 41.1 60.2
SPT 0.53% 73.9 93.2 72.1 99.3 91.3 86.8 55.9 81.8 86.6 95.8 85.8 75.2 85.9 83.9 69.9 52.5 81.7 81.7 48.3 31.0 40.1 61.1
Tuned / Total (%) 0.19% 0.47% 0.70% 0.47% 0.47% 0.71% 0.22% 0.46% 0.47% 0.93% 0.93% 0.69% 0.73% 0.70% 0.70% 0.70% 0.70% 0.70% 0.23% 0.70% 0.26% 0.59%
SPT 0.65% 73.9 93.2 72.1 99.4 91.3 86.9 55.9 81.8 86.6 95.8 85.2 75.2 85.7 83.9 69.9 51.5 81.7 80.6 48.3 30.2 40.1 60.8
Tuned / Total (%) 0.19% 0.47% 0.70% 0.70% 0.47% 0.71% 0.22% 0.46% 0.47% 0.93% 0.93% 0.69% 0.52% 0.70% 0.70% 0.70% 0.93% 0.70% 0.93% 0.93% 0.26% 0.73%

sensitive positions and adaptively combines unstructured and structured tuning granularities, thereby
better allocating the trainable parameters than LoRA.

E HYPER-PARAMETERS AND AUGMENTATIONS.

We follow (Jia et al., 2022) for the hyper-parameter settings on MLP-k, PROMPT-SHALLOW,
PROMPT-DEEP, PARTIAL-k, and BITFIT. For our SPT and the other methods, we use the AdamW
optimizer (Loshchilov & Hutter, 2018) with cosine learning rate decay, batch size 64, learning rate
1× 10−3, and weight decay 1× 10−4 following (Zhang et al., 2022). We also follow (Zhang et al.,
2022) to set the rank r for structured tuning in SPT as 8. For the hyper-parameters specific to our
SPT, we set the threshold σ = 0.2 in Eq. (4) by grid search on the validation set. The effect of
varying σ is analyzed in Section 4.3. Given the budget constraint τ on the number of trainable pa-
rameters (by default, less than 1%), we search for the optimal number since fewer parameters may
have better performance. Therefore, we follow (Jia et al., 2022) and conduct grid search on the
validation set. We search over {0.2M, 0.4M, 0.6M, 0.8M} and {0.2M, 0.4M, 0.6M, 0.8M, 1.0M}
for VTAB-1k datasets and FGVC datasets, respectively. The full results and details for the searched
number of trainable parameters for each task are presented in Table A and B of the appendix. We set
the number of training samples M used to calculate our parameter sensitivities to be 800 and 1,600
for VTAB-1k and FGVC datasets, respectively.

F EFFECT OF THE THRESHOLD HYPER-PARAMETER σ.

We investigate the effect of the threshold hyper-parameter σ (in Eq. (4)). The results are shown
in Table D under around 0.70% fractions of the trainable parameters. We see that when varying σ
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Table B: Per-task results on the FGVC benchmark from Table 1. “Tuned / Total” denotes the fraction
of the trainable parameters. Top-1 accuracy (%) is reported.

Tuned / Total CUB-200-2011 NABirds Oxford Flowers Stanford Dogs Stanford Cars Mean Acc.

FULL 100% 87.3 82.7 98.8 89.4 84.5 88.5

Addition-based methods

MLP-3 1.50% 85.1 77.3 97.9 84.9 53.8 79.8
PROMPT-SHALLOW 0.31% 86.7 78.8 98.4 90.7 68.7 84.6
PROMPT-DEEP 0.98% 88.5 84.2 99.0 90.2 83.6 89.1
ADAPTER-8 0.39% 87.3 84.3 98.4 88.8 68.4 85.5
ADAPTER-32 0.95% 87.2 84.3 98.5 89.6 68.4 85.6

Reparameterization-based methods

LINEAR 0.12% 85.3 75.9 97.9 86.2 51.3 79.3
PARTIAL-1 8.38% 85.6 77.8 98.2 85.5 66.2 82.6
BITFIT 0.13% 88.4 84.2 98.8 91.2 79.4 88.4
LORA-8 0.55% 84.9 79.0 98.1 88.1 79.8 86.0
LORA-16 0.90% 85.6 79.8 98.9 87.6 72.0 84.8
SPT 0.66% 88.5 82.4 98.7 89.8 83.9 88.7
Tuned / Total (%) 0.71% 0.70% 0.71% 0.47% 1.07% 0.66%
SPT 0.91% 88.5 82.8 99.0 89.8 85.7 89.2
Tuned / Total (%) 0.71% 1.14% 1.15% 0.47% 1.07% 0.91%

(a)

(e)

Flowers102 Pets Sun397

Clevr-CountDMLab sNORB-Azim

(b) (c)

(d) (f)

ImageNet

Figure E: Dataset samples from ImageNet, Natural tasks, and Structured tasks. We can observe that
the samples from Natural tasks in VTAB-1k ((a), (b), and (c)) have clearly smaller domain gaps to
the pre-training ImageNet (Krizhevsky et al., 2012) samples than the ones from Structured tasks in
VTAB-1k ((d), (e), and (f)).

Table C: Multi-seed results for our SPT with ViT-B/16 under supervised, MAE (He et al., 2022b),
and MoCo v3 (Chen et al., 2021) pre-training strategies. “Tuned / Total” denotes the fraction of
the trainable parameters. The mean and standard deviations of the Top-1 accuracy (%) with three
random seeds are reported.

Method Tuned / Total Natural Specialized Structured Mean Acc.
SPT, supervised 0.62±0.04 81.77±0.17 85.67±0.06 61.01±0.20 76.20±0.06
SPT, supervised 0.54±0.04 81.65±0.11 85.85±0.07 60.75±0.09 76.02±0.07
SPT, MAE 0.54±0.04 62.10±0.29 79.02±0.57 57.87±0.66 66.32±0.41
SPT, MAE 0.42±0.02 61.95±0.45 78.72±0.50 57.23±0.53 65.97±0.28
SPT, MoCo v3 0.56±0.06 72.26±0.45 84.38±0.25 58.58±0.20 71.74±0.22
SPT, MoCo v3 0.48±0.07 71.01±0.45 83.51±0.45 56.89±0.44 70.47±0.10

from 0.05 to 0.40, the performance only differs for 0.1-0.2% mean top-1 accuracy. While setting σ
to 0.80 has a significant performance drop. As a higher σ indicates employing more unstructured
tuning, we conjecture that allocating too many trainable parameters to unstructured tuning limits the
model’s representational capability. As σ = 0.2 achieves the best performance, we consistently use
σ = 0.2 for all experiments.
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Table D: Ablate on the threshold hyper-parameter σ for SPT on VTAB-1k. Top-1 accuracy (%) is
reported.

σ 0.05 0.10 0.20 0.40 0.80

Mean Acc. 76.1 76.2 76.3 76.2 73.9
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