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Abstract001

Vision-Language Models have made signif-002
icant progress on many perception-focused003
tasks. However, their progress on reasoning-004
focused tasks remains limited due to the lack005
of high-quality and diverse training data. In006
this work, we aim to address the scarcity of007
reasoning-focused multimodal datasets. We008
propose VisualWebInstruct, a novel approach009
that leverages search engines to create a di-010
verse and high-quality dataset spanning multi-011
ple disciplines, including mathematics, physics,012
finance, and chemistry, etc. Starting with a013
meticulously selected set of 30,000 seed im-014
ages, we employ Google Image Search to iden-015
tify websites containing similar images. We016
collect and process HTML data from over017
700K unique URLs. Through a pipeline of018
content extraction, filtering, and synthesis, we019
construct a dataset of approximately 900K020
question-answer (QA) pairs, with 40% con-021
sisting of visual QA pairs and the remaining022
comprising text-based QA pairs. Models fine-023
tuned on VisualWebInstruct demonstrate sig-024
nificant performance improvements: (1) fine-025
tuning on Llava-OV results in 10-20 absolute026
points improvement across benchmarks, and027
(2) fine-tuning from MAmmoTH-VL yields028
a 5 absolute points gain across benchmarks.029
Our best model, MAmmoTH-VL2, achieves030
the best known performance with SFT without031
RL within the 10B parameter class on MMMU-032
Pro (40.7), MathVerse (42.6), and DynaMath033
(55.7). These results highlight the effectiveness034
of our dataset in enhancing the reasoning capa-035
bilities of vision-language models for complex036
multimodal tasks.037

1 Introduction038

Vision-Language Models (VLMs) have shown039

progress in perceptual tasks like VQA (Antol et al.,040

2015) and DocVQA (Mathew et al., 2021), yet041

struggle with complex reasoning tasks such as042

MMMU (Yue et al., 2024) and MathVista (Lu043
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Figure 1: Overview of our automated data curation
approach and major experimental results.

et al., 2023). A major bottleneck is the scarcity 044

of reasoning-focused training data. Existing 045

datasets are limited by narrow focus on specific 046

image types (FigureQA (Kahou et al., 2017), 047

ChartQA (Masry et al., 2022)), reliance on syn- 048

thetic images (CLEVR (Johnson et al., 2017)), or 049

insufficient complexity (AI2D (Kembhavi et al., 050

2016), ScienceQA (Saikh et al., 2022)). 051

Inspired by WebInstruct (Yue et al., 2025), we 052

aim to mine naturally existing reasoning-focused 053

instruction data from the internet. However, di- 054

rectly applying WebInstruct’s approach to the mul- 055

timodal domain presents significant challenges. 056

While WebInstruct retrieves reasoning-focused text 057

data from Common Crawl, this method is infeasible 058

for multimodal content due to two key limitations: 059

(1) the absence of a comparable large-scale mul- 060

timodal database similar to Common Crawl, and 061

(2) the high unreliability of existing multimodal 062

information retrieval models. To overcome these 063

obstacles, as illustrated in Figure 1, we leverage 064

commercial web image search tools like Google 065

Image Search (Zhang and Rui, 2013), which of- 066

fer superior coverage and accuracy. Starting with 067

30,000 seed images across disciplines including 068
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Dataset Size Source & Domains Coverage

ScienceQA 21K Elementary and high school science Science Q&A, diagrams, K-12 Exam
IconQA 107K Abstract diagrams and visual reasoning Visual reasoning, diagrams
Geo170K 170K Synthesized from LLMs Geometry
CLEVR 700K Synthesized from rules Shapes
FigureQA 1.3M Synthesized from rules Bar, Line, Pie
ChartQA 23K Charts from Staista, Pew, etc Charts

Math360V 260K FigureQA, CLEVR, IconQA, etc Math reasoning, diagrams
Mulberry 260K Geo3K, IconQA, ChartQA, ScienceQA, etc Geo, Figure, Medical, K-12 Exam
Llava-CoT 100K ChartQA, AI2D, GeoQA, CLEVR, etc Geo, General VQA, K-12 Exam

VISUALWEBINSTRUCT 906K Internet (Homework Website, Forums, etc) All Above + College Exams

Table 1: Comparison between our dataset and the existing datasets. VISUALWEBINSTRUCT is the most diverse
dataset with very broad coverage of disciplines and image types.

Accounting, Chemistry, Mathematics, and Physics,069

we use these as queries to identify websites with070

similar visual content. During our extraction pro-071

cess, we discover that these websites contain not072

only visual QA content but also valuable text-only073

examples, which we intentionally preserve to en-074

hance model training across both modalities.075

Through subsequent extraction and refinement076

processes, including consistency verification and077

alignment with source content, we develop VI-078

SUALWEBINSTRUCT, containing approximately079

900K QA pairs (40% visual QA with 163,743080

unique images) that preserve both the visual and081

textual information necessary for complex rea-082

soning tasks. Table 1 compares VISUALWEBIN-083

STRUCT with other datasets in terms of source084

and coverage. Fine-tuning MAmmoTH-VL (Guo085

et al., 2024) on VISUALWEBINSTRUCT creates086

MAmmoTH-VL2, which achieves the best known087

performance with SFT without RL within the088

10B parameter class on complex reasoning bench-089

marks including MMMU-Pro-std (40.7%), MMVet090

(64.5%), and Dyna-Math (55.7%), outperforming091

competitors like InternVL2.5 (Chen et al., 2024)092

and Phi-4-Mini (Abouelenin et al., 2025).093

Our contributions can be summarized as follows:094

(1) We propose a scalable pipeline for acquiring095

high-quality multimodal reasoning data from the096

internet, ensuring both scalability and quality.097

(2) We introduce VISUALWEBINSTRUCT, a di-098

verse and comprehensive multimodal instruction099

dataset, which we will publicly release to the re-100

search community.101

(3) We develop MAmmoTH-VL2, a 7B-parameter102

vision-language model fine-tuned on VISUALWE-103

BINSTRUCT, achieving the best known perfor-104

mance with SFT without RL among models of105

comparable size and excelling in complex visual106

reasoning tasks. 107

2 Stage 1: Mining Data from the Internet 108

Our data mining pipeline follows a systematic ap- 109

proach to extract image-rich QA pairs from the in- 110

ternet. We begin with approximately 30K scientific 111

images as seed data spanning multiple disciplines. 112

We employ Google Image Search to identify vi- 113

sually similar content, gathering 758,490 unique 114

URLs. After filtering out irrelevant domains, we 115

construct accessibility trees for the relevant web- 116

sites to extract meaningful content, preserving both 117

textual and visual information while eliminating 118

non-essential elements. We then leverage the Gem- 119

ini 1.5 Flash model in a two-stage process: first to 120

automatically extract QA pairs from the accessi- 121

bility trees and then to filter these pairs based on 122

comprehensive quality criteria, including question 123

validity and image relevance, ensuring the educa- 124

tional value and integrity of the final dataset. 125

2.1 Seed Data collecting 126

Due to the limited availability of image-rich QA 127

datasets and the predominant focus on mathematics 128

in existing datasets, creating a comprehensive QA 129

dataset that incorporates diverse subjects and abun- 130

dant visual content is essential. Our seed dataset 131

consists of approximately 30,000 images, which 132

were crawled from Stemez1 in compliance with 133

copyright regulations. These images span mul- 134

tiple disciplines, including mathematics, physics, 135

accounting, chemistry, engineering, and biology, 136

ensuring both subject diversity and visual richness. 137

1https://stemez.com/subjects/science/
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Figure 2: Comprehensive Pipeline for VISUALWEBINSTRUCT Dataset Generation. The workflow illustrates our
multi-stage approach for creating high-quality multimodal instruction data. Stage 1: starting with seed images,
we leverage Google Image search to identify relevant webpages, which are processed into accessibility trees. The
raw QA pairs are extracted from the trees and refined through a post-processing step to ensure the vadality the
data. Stage 2: we first generat multiple synthesized answers for consistency filtering, then align these with original
web-sourced content to enhance the accuracy of the answers.

2.2 Google Image Searching138

Using the seed images, we conducted Google Im-139

age searches to find visually similar content across140

the web. Leveraging Google Lens (Figure 3), we141

collected approximately 60 URLs per image, re-142

sulting in a total of 1,747,634 URLs containing143

visually similar content. Many websites with non-144

permissive licenses implement anti-crawling mech-145

anisms, and we ensured compliance by avoiding146

data collection from such sources. We applied rig-147

orous deduplication and filtering, removing URLs148

from domains unlikely to contain educational con-149

tent (e.g., video platforms and image reposito-150

ries). This refinement yielded 758,490 unique,151

high-quality URLs for further processing. By us-152

ing images as primary search keys, we ensured153

strong visual and contextual connections between154

the collected data and our seed dataset, effectively155

preserving the original distribution while signifi-156

cantly expanding its coverage.157

2.3 Accessibility Tree Building158

After filtering out irrelevant domains, we processed159

the HTML content of each remaining URL to con-160

struct accessibility trees that capture essential tex-161

tual and visual information. As illustrated in Fig-162

ure 4, our implementation focuses on extracting163

meaningful text content and image elements while164

filtering out non-essential components such as nav-165

igation menus, advertisements, and auxiliary ele-166

ments. We developed a tree-based structure where167

each node represents either textual content or an168

image, preserving the hierarchical relationships169

present in the original HTML while removing un-170

necessary markup and styling information. The171

Query

Figure 3: Example of Google Lens search functionality
for circle geometry problems.

resulting accessibility trees provide a clean, hier- 172

archical representation of each webpage’s content, 173

making subsequent QA pair extraction more effi- 174

cient and reliable. 175

2.4 QA Pairs Extraction 176

After constructing accessibility trees, we use the 177

Gemini 1.5 Flash model to identify and extract 178

high-quality QA pairs from the web content. We de- 179

signed a structured prompt that instructs the model 180

to extract the complete text of the question, iden- 181

tify relevant images related to the question, and 182

extract the complete details of the solution while 183

preserving mathematical notation and step-by-step 184

explanations. This approach maintains the educa- 185

tional integrity of the extracted content by preserv- 186

ing its original formatting, mathematical expres- 187

sions, and logical structure, ensuring technical ac- 188

curacy throughout the extraction process. Through 189

this method, we extracted a total of 421,320 raw 190
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Question: In the following figure...

Option: A: 75, B: 60, C: 30, D: 45 

Text Answer: Chord AB subtends...

Figure 4: Example of an accessibility tree structure
extracted from an educational website.

QA pairs from the webpages, with approximately191

60% containing images.192

We then implemented a post-processing stage193

using the Gemini 1.5 Flash model to ensure dataset194

quality by evaluating both textual content and im-195

ages. Our evaluation framework assessed two key196

criteria: question validity and meaningfulness, as197

well as the relevance and clarity of question-related198

images. By prompting Gemini to verify whether199

images are properly referenced, clear, visible, and200

contribute to understanding the question, we es-201

tablished strict validation criteria for retaining QA202

pairs. This post-processing step significantly im-203

proved dataset quality by removing incomplete,204

unclear, or irrelevant content while preserving edu-205

cational integrity and effectiveness. Our analysis206

shows that out of 421,320 processed pairs, 361,015207

(85.7%) were valid, while 60,305 were filtered out208

as invalid. Similarly, out of 449,859 total images209

processed, 331,818 (73.76%) were deemed valid210

and relevant to their corresponding questions.211

3 Stage 2: Dataset Refinement212

After Stage 1, we obtain a large amount of raw213

data from the Internet. However, this data contains214

a notable level of noise. For instance, more than215

half of the questions lack corresponding answers216

due to various issues, such as (1) membership re-217

quirements, (2) interaction requirements, and (3)218

the absence of an answer. Thus, a second round219

of refinement is necessary to further improve the220

dataset quality. 221

3.1 Answer Refinement 222

We implemented a comprehensive refinement pro- 223

cess to ensure consistency and quality in our 224

dataset. This step was critical in addressing po- 225

tential variations or inconsistencies in the extracted 226

answers, thereby creating a high-fidelity dataset for 227

model training. 228

Our refinement methodology leveraged GPT- 229

4o’s capabilities in a two-stage process. First, 230

for each question and its associated images, we 231

prompted GPT-4o (Hurst et al., 2024)2 to gen- 232

erate four different answer variations. This ap- 233

proach allowed us to obtain multiple perspectives 234

on each question. Next, we employed GPT-4o 235

as an LLM judge to determine whether the syn- 236

thesized responses aligned with each other. As 237

illustrated in Figure 5, we evaluated whether the 238

conclusions were mutually consistent across these 239

responses. This evaluation was particularly impor- 240

tant for questions in domains such as mathematics 241

and physics, where precision and correctness are 242

paramount. Only when more than half of the syn- 243

thesized responses demonstrated consistency did 244

we retain the question along with the consistent 245

responses. This rigorous consistency check served 246

as an additional quality filter, ensuring that our 247

dataset contained highly accurate and unambigu- 248

ous answers that could be reliably used for training. 249

Through this refinement process, we success- 250

fully created a dataset in which all responses were 251

systematically generated by GPT-4o, ensuring a 252

consistent style and level of quality throughout 253

the collection. The resulting dataset comprises 254

1.04 million QA pairs spanning multiple disci- 255

plines, representing one of the largest collections of 256

consistency-verified multimodal instruction data. 257

3.2 Answer Alignment 258

The final step in our quality assurance process in- 259

volved answer alignment to further enhance accu- 260

racy. While the previous refinement step generated 261

consistent answers using GPT-4o, we recognized 262

the importance of validating these against authori- 263

tative content from the original web sources. 264

In this step, we used Gemini-2.0-Flash to mea- 265

sure the alignment between GPT-generated re- 266

sponses and the original extracted answers, if avail- 267

2We compared GPT-4o and Gemini-1.5 and found that
GPT-4o’s outputs were significantly more reliable. Therefore,
we adopted GPT-4o.
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Figure 5: Illustration of our consistency checking
methodology using LLM judge.

able. In cases where the comparison indicated in-268

consistency, we preserved the original web-sourced269

answer. Conversely, when the Gemini model de-270

termined strong alignment between the generated271

and web-sourced answers, we retained the GPT-272

generated version. Through this alignment process,273

we combined the consistency of model-generated274

content with the authority of original educational275

materials in a balanced manner.276

4 Dataset Statistics277

Knowledge Domain Distribution: The statistics278

presented in Table 2 illustrate the distribution of279

knowledge domains in our dataset, VISUALWE-280

BINSTRUCT. While the major categories are shown281

in the table, the "Others" category (6.60%) com-282

prises General Knowledge (2.45%), Computer Sci-283

ence (2.25%), Biology (1.40%), and humanities284

subjects, including Language/Literature (0.25%),285

Social Sciences (0.20%), and Arts (0.05%). This286

distribution reflects the dataset’s strong quantitative287

orientation while ensuring sufficient breadth.288

Educational Difficulty: Figure 6 presents the edu-289

cational difficulty distribution across different aca-290

demic levels. The dataset is primarily concentrated291

at middle school (40.1%) and high school (38.6%)292

levels, with a substantial portion at undergraduate293

level (18.0%). The relatively small proportions294

at elementary (3.0%) and graduate (0.2%) levels295

indicate that our dataset focuses on intermediate296

to advanced educational content rather than either297

very basic or highly specialized material, which298

aligns well with the typical difficulty range of rea-299

soning tasks in benchmarks.300

Pipeline Statistics: Table 3 summarizes the statis-301

tics after each step of the VISUALWEBINSTRUCT302

pipeline, showing the data progression through two303

main stages. Our approach effectively scaled the304

initial 30,000 seed images into a comprehensive305

multimodal instruction dataset containing 900K in-306

struction data. The final dataset includes 347,313 307

image-associated QA pairs (approximately 38% of 308

the total) supported by 163,743 unique images. 309

Human Evaluation: To assess the quality of our 310

dataset, we conducted human evaluation on 200 311

randomly sampled QA pairs, as shown in Fig- 312

ure 7. The results demonstrate high Question Clar- 313

ity (99.0%) and Image Relevance (95.5%), indi- 314

cating that our questions are well-formulated and 315

tightly connected to their associated images. For 316

answer quality, we observe solid metrics in An- 317

swer Accuracy (77.5%) and Answer Completeness 318

(82.0%), validating the effectiveness of our multi- 319

stage answer refinement process. 320

Dataset Integrity: We also conducted thorough 321

decontamination checking to ensure our training 322

dataset does not contain any data from the evalua- 323

tion benchmarks, thereby maintaining the integrity 324

of our experimental results.

Category Percentage Num of QA Pairs

Math 62.50% 566K
Physics 14.50% 132K
Finance 7.25% 66K
Chemistry 4.80% 43K
Engineering 4.35% 39K
Others 6.60% 60K

Table 2: Distribution of Categories

Level 1 (Elementary): 3.0%

40.1%Level 2 (Middle School)

38.6%

Level 3 (High School)

18.0%

Level 4 (Undergraduate)

Level 5 (Graduate): 0.2%

Figure 6: Educational difficulty distribution

325
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Figure 7: Human Evaluation Metrics
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Processing Stage Total QA Pairs Image-Associated QA Unique Questions Total Images Unique Images

Stage 1: Mining Data from the Internet

QA Pairs Extraction 421,320 248,643 421,320 552,269 362,728
Post-Processing 361,015 159,059 361,015 331,818 212,530

Stage 2: Dataset Refinement

Answer Refinement 1,041,598 407,218 257,201 577,455 167,493
Answer Alignment 906,160 347,313 257,201 475,099 163,743

Table 3: Statistics of different milestones in the data processing pipeline of VISUALWEBINSTRUCT.

5 Experiments326

We detail the training and evaluation details of our327

experiments in this section.328

5.1 Training Setup329

For our experiments, we directly employed a su-330

pervised fine-tuning (SFT) approach on an exist-331

ing MAmmoTH-VL checkpoint on our VISUAL-332

WEBINSTRUCT dataset. We refer to our resulting333

model as MAmmoTH-VL2. The architecture con-334

sists of a language tower based on Qwen2.5-7B-335

Instruct (Yang et al., 2024), a vision tower using336

SigLip (Zhai et al., 2023), and a projector mod-337

ule connecting these components, following Llava-338

OneVision (Liu et al., 2023a; Li et al., 2024a).339

To enhance data diversity, we employed a data340

mixing strategy that combined our VISUALWEBIN-341

STRUCT dataset with modified LLaVA-CoT (Xu342

et al., 2025) (with CoT prompting tags removed) in343

a 9:1 ratio, resulting in approximately 900K sam-344

ples from VISUALWEBINSTRUCT and 100K sam-345

ples from the modified LLaVA-CoT dataset. This346

mixing strategy empirically improved our model’s347

performance across diverse visual reasoning tasks.348

This fine-tuning approach enabled MAmmoTH-349

VL2 to leverage the strong multimodal founda-350

tion of MAmmoTH-VL while enhancing its perfor-351

mance on our targeted visual reasoning tasks that352

require multi-step deliberation with visual context.353

5.2 Evaluation Setup354

We evaluated MAmmoTH-VL2 on seven multi-355

modal reasoning benchmarks: MMMU, MMMU-356

Pro, MathVista, MMVet, MathVerse, and Dyna-357

math. Using greedy decoding in a zero-shot set-358

ting, we compared our model against three cate-359

gories of models: (1) closed-source models (GPT-360

4o, Gemini-1.5-Pro, Claude-3.5-Sonnet), (2) open-361

source vision-language models (e.g., Qwen2-VL,362

InternVL2.5), and (3) reasoning-enhanced vision-363

language models (e.g., Llava-CoT, Mulberry).364

5.3 Experimental Results 365

In this section, we evaluate our results from dif- 366

ferent perspectives. The table 4 presents the per- 367

formance of MAmmoTH-VL2 compared to various 368

multimodal models across seven benchmarks. Our 369

analysis reveals several important findings regard- 370

ing the effectiveness of models fine-tuned on VI- 371

SUALWEBINSTRUCT. 372

Overall Performance MAmmoTH-VL2 achieves 373

an average accuracy of 50.4% across all bench- 374

marks, outperforming other open-source vision- 375

language models of comparable size trained with 376

SFT. This represents a significant improvement 377

over standard vision-language models like Qwen2- 378

VL (43.8%), LLaVA-OV (40.8%), and Molmo 379

(37.5%). It even beats the very recent model like 380

InternVL2.5 (Chen et al., 2024) and Phi-4-mini- 381

Multimodal (Abouelenin et al., 2025). 382

Mathematical Reasoning Capabilities 383

MAmmoTH-VL2 demonstrates particularly 384

strong performance on mathematical reasoning 385

tasks. On MathVista, our model achieves 68.1% 386

accuracy, surpassing all the open-source and 387

closed-source models in the table. The model’s per- 388

formance on MathVerse (42.6%) and Dyna-Math 389

(55.7%) further confirms its enhanced capability 390

for visual reasoning. 391

Complex Reasoning Tasks On MMMU-Pro-std 392

with 10 options, MAmmoTH-VL2 achieves 40.7% 393

accuracy, showing a significant improvement over 394

other 7B models such as LLaVA-OV (29.5%) and 395

Qwen2-VL (37.0%). This demonstrates that our ap- 396

proach effectively enhances the model’s ability to 397

perform complex reasoning across diverse domains 398

beyond mathematics. 399

Comparison with Reasoning-Enhanced Models 400

Among the reasoning-enhanced vision-language 401

models like Llava-CoT, Mulberry (Yao et al., 2024), 402

LlamaV-o1 (Thawakar et al., 2025) and Insight- 403

V (Dong et al., 2024), MAmmoTH-VL2 demon- 404

strates competitive performance, achieving results 405
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Model Size MMMU MMMU-Pro MMMU-Pro MathVista MMVet MathVerse Dyna-Math Avg
val standard vision testmini test testmini test

Closed-sourced Models

GPT-4o - 69.1 54.0 49.7 63.8 76.2 50.2 63.7 61.0
Gemini-1.5-Pro - 59.1 49.4 65.8 63.9 64.0 41.2 64.8 58.3
Claude-3.5-Sonnet - 68.3 55.0 48.0 67.7 75.4 44.2 60.5 59.9

Open-source General Vision-Language Models

Molmo 8B 45.3 28.3 18.9 51.6 58.0 18.9 41.6 37.5
Llava-OV 7B 48.8 29.5 18.7 63.2 58.6 26.2 40.3 40.8
Llama-3.2-Inst 11B 50.7 33.0 23.7 51.5 59.3 31.6 40.5 41.5
Qwen2-VL 7B 52.1 37.0 26.9 58.2 62.0 28.2 42.1 43.8
MAmmoTH-VL 7B 50.8 33.2 25.3 66.0 62.3 34.2 44.7 45.2
InternVL2.5 7B 55.8 38.2 30.4 64.4 62.8 39.5 49.8 48.7
Phi-4-mini 5.6B 55.1 39.7 31.2 62.4 60.5 37.6 51.4 48.6
DeepSeek-VL2 27B 51.1 31.4 24.3 62.8 - - - -
Llava-CoT-L 11B 50.1 31.6 20.4 54.8 60.3 30.2 44.8 41.7
Llava-CoT-M 7B 51.4 33.0 23.7 63.8 58.6 39.4 48.3 45.5
LlamaV-o1 11B 49.1 31.5 22.4 54.4 63.6 - - -
Mulberry 7B 55.0 36.8 23.6 63.1 60.9 31.0 45.1 45.0
Insight-V 8B 50.2 30.7 20.5 59.9 60.8 28.7 47.8 42.6
MM-Eureka 8B 49.2 - - 67.1 60.7 40.4 - -

MAmmoTH-VL2 7B 54.7 40.7 26.3 68.1 64.5 42.6 55.7 50.4
∆ over SoTA -1.1 +1.0 -4.9 +2.1 +0.9 +3.1 +4.3 +1.7

Table 4: Evaluation Results of our model and other baseline models. Most of the baseline results are taken from
other papers. The best and second-best results across all open-source models are highlighted in bold and underlined.

Training Data MMMU MMMU-Pro MMMU-Pro MathVista MMVet MathVerse Dyna-Math Avg
val standard vision testmini test testmini test

Training from LLava-OV-mid

- 40.1 21.2 12.2 36.0 32.1 18.1 24.4 26.3
Llava-CoT 40.8 25.8 14.6 45.7 47.5 27.2 33.9 33.6
Ours 45.3 31.5 20.9 43.9 57.6 27.4 40.3 38.1
Ours+Llava-CoT 47.6 31.6 20.9 48.8 51.7 34.9 42.3 39.7

Training from MAmmoTH-VL

- 50.8 34.8 25.3 66.0 62.3 34.2 44.7 45.4
Llava-CoT 51.4 35.2 24.6 63.8 58.7 39.4 48.3 45.9
Ours 52.6 38.6 29.0 65.9 61.8 39.4 55.7 49.0
Ours+Llava-CoT 54.7 40.7 26.3 68.1 64.5 42.6 55.7 50.4

Table 5: Ablation Results of our experiments. We show experimental results from different backbones to show the
impact of consistency filtering and data mixing with Llava-CoT. The best performance is highlighted in bold.

Model MMMU MathVista MMLU-Pro GSM8K

MAmmoTH Variants

MAmmoTH-VL 50.8 66.0 27.7 67.9
Visual only 54.0 67.6 40.1 80.9
Visual + Text 54.7 68.1 44.5 84.2

Other Vision-Language Models

Qwen2-VL 52.1 58.2 34.4 78.4
InternVL2.5 55.8 64.4 46.0 72.4

Table 6: Performance comparison of MAmmoTH-VL
variants and other vision-language models.

comparable to or better than specialized models406

like LLaVA-CoT and Mulberry. For instance, on407

MMMU-Pro Vision, our model achieves 26.3%408

accuracy, outperforming LLaVA-CoTM’s 23.7%. 409

Notably, other reasoning-enhanced models often 410

utilize complex methodologies in either the training 411

or inference stage to enhance their chain-of-thought 412

abilities, which makes the development process 413

and deployment more complicated. In contrast, 414

MAmmoTH-VL2 achieves much better reasoning 415

capabilities through our straightforward SFT on 416

VISUALWEBINSTRUCT, offering a simpler yet ef- 417

fective solution compared to the other approaches. 418

These results confirm that fine-tuning on VI- 419

SUALWEBINSTRUCT significantly enhances the 420

model’s reasoning capabilities. The consistent 421

performance improvements across diverse bench- 422

marks from non math-related and math-related 423
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domains demonstrate the effectiveness of our ap-424

proach in developing more capable multimodal rea-425

soning models. We believe our dataset can be uti-426

lized to augment future vision-language models.427

5.4 Ablation Study428

Llava-CoT Contribution: Table 5 demonstrates429

the complementary nature of VISUALWEBIN-430

STRUCT and existing datasets. For Llava-OV-mid,431

the baseline (26.3% average) improves to 33.6%432

with Llava-CoT and 38.1% with VISUALWEBIN-433

STRUCT, while their combination achieves 39.7%.434

The stronger MAmmoTH-VL baseline (45.4%)435

improves to 49.0% with VISUALWEBINSTRUCT436

and 50.4% with the combined approach, show-437

ing significant gains across MMMU variants and438

Dyna-Math. These results highlight an impor-439

tant distinction: our pipeline and VISUALWEBIN-440

STRUCT dataset provide diverse real-world visual441

reasoning examples enhancing general capabilities,442

while a small portion (10%) of benchmark-aligned443

Llava-CoT helps bridge the distribution gap be-444

tween benchmarks and real-world educational con-445

tent—a standard practice in leading models like446

InternVL and Qwen-VL. The consistent pattern447

across both models demonstrates that our approach448

significantly improves visual reasoning regardless449

of model strength, with weaker models showing450

larger relative gains.451

Text-only Data Contribution: Our pipeline pro-452

duces both visual and text-only QA pairs, with453

text pairs constituting approximately 60% of our454

dataset. As shown in Table 6, including text QA455

pairs consistently improves performance across456

all benchmarks. This enhancement stems from457

two key factors: (1) the cognitive similarities be-458

tween text and visual reasoning within the same459

domain, enabling effective cross-modality knowl-460

edge transfer, and (2) prevention of catastrophic461

forgetting of text reasoning capabilities during vi-462

sual fine-tuning. The impact is particularly evident463

in text reasoning benchmarks, where our complete464

dataset improves GSM8K performance by +16.3%465

compared to visual-only training. This also aligns466

with approaches adopted by leading models like467

InternVL2.5, Qwen2-VL, and Phi-4-mini, all of468

which leverage mixed modality training data, un-469

derscoring that high-quality text data is essential470

for robust multimodal reasoning models.471

6 Related Works 472

6.1 Multimodal Instruction Data 473

Creating high-quality multimodal datasets remains 474

a significant challenge in advancing MLLMs. Cur- 475

rent approaches face critical limitations, partic- 476

ularly in balancing quality and scale. Human- 477

annotated datasets provide high-precision, contex- 478

tually appropriate data (Xu et al., 2024; Deitke 479

et al., 2024; McKinzie et al., 2024; Sun et al., 2023) 480

but suffer from prohibitive costs and scalability con- 481

straints. Meanwhile, methods leveraging existing 482

academic datasets (Tong et al., 2024; Liu et al., 483

2023b) offer more cost-effective alternatives but 484

lack the diversity and reasoning complexity needed 485

for advanced multimodal reasoning tasks. This lim- 486

itation is particularly evident in the scarcity of large- 487

scale, reasoning-focused multimodal datasets that 488

can be efficiently produced. Our work addresses 489

these challenges by proposing a novel, scalable 490

methodology for constructing multimodal instruc- 491

tion datasets that maintain both the quality and 492

reasoning complexity. 493

6.2 Multimodal Large Language Models 494

Multimodal Large Language Models have ad- 495

vanced with proprietary models like GPT-4o (Hurst 496

et al., 2024) and Gemini (Team et al., 2024) 497

achieving superior performance, while open- 498

source alternatives including LLaVA (Li et al., 499

2024b), MiniGPT-4 (Zhu et al., 2023), and Qwen- 500

VL (Wang et al., 2024) have progressed through 501

connector-based approaches (Li et al., 2023) and 502

various reasoning enhancement techniques (Xu 503

et al., 2025; Hu et al., 2024); however, these mod- 504

els face a critical limitation: the scarcity of large- 505

scale visual reasoning datasets (Bai et al., 2024), 506

which our work addresses by tackling the super- 507

vised fine-tuning data bottleneck while building on 508

the connector-training paradigm. 509

7 Conclusion 510

In this paper, we explore the possibility of con- 511

structing large-scale multimodal reasoning datasets 512

without relying on human annotation. We are the 513

first paper to utilize Google Image Search for min- 514

ing high-quality visual reasoning dataset. Our ap- 515

proach has been highly effective to achieve the best 516

known performance with SFT without RL. In the 517

future, we plan to work on multiple round of search 518

to further expand the dataset size. 519
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8 Limitations520

Despite the promising results achieved with VISU-521

ALWEBINSTRUCT, we acknowledge several limi-522

tations in our approach:523

Data Limitations: Our multi-stage filtering pro-524

cess, while thorough, cannot completely eliminate525

noise and inconsistencies inherent in web-sourced526

data. The web-based collection process introduces527

dependency on available online educational re-528

sources, which may vary in quality across domains.529

Additionally, there are notable distributional imbal-530

ances in our dataset, with mathematics represent-531

ing 62.50% of the content, potentially limiting the532

model’s capabilities in underrepresented domains533

such as biology (1.40%), humanities, and arts (un-534

der 0.5%). This imbalance reflects the availability535

of visual reasoning content on the web but may536

propagate existing biases in educational resource537

distribution.538

Methodological Limitations: Our pipeline relies539

on proprietary systems (Google Image Search) and540

LLM-based filtering (Gemini and GPT-4o), which541

could affect reproducibility and introduce biases542

from these foundation models. The multi-stage543

refinement process, while improving quality, may544

also inadvertently prioritize certain reasoning pat-545

terns or problem-solving approaches that align with546

the evaluation criteria of these models. Further-547

more, our consistency checking may occasionally548

filter out valid but unconventional or innovative549

solution methods.550

Evaluation Limitations: While our evaluation551

demonstrates significant improvements across mul-552

tiple benchmarks, the assessment primarily focuses553

on academic and structured reasoning tasks. Real-554

world visual reasoning often involves ambiguous,555

open-ended scenarios that may not be fully cap-556

tured by our current evaluation framework.557

Scalability and Accessibility: The computational558

resources required for the dataset construction, in-559

cluding web crawling, image search, content extrac-560

tion, and LLM-based filtering, may present barriers561

to reproducibility for research groups with limited562

computational resources.563

Future Work: To address these limitations, future564

work could focus on diversifying domain coverage565

through targeted data collection strategies, develop-566

ing more accessible and open-source alternatives567

for the dataset construction pipeline, and expand-568

ing evaluation frameworks to include more diverse569

and real-world reasoning scenarios. Investigating570

mechanisms to detect and mitigate potential biases 571

introduced during the dataset construction process 572

would also be valuable for improving the fairness 573

and robustness of visual reasoning models trained 574

on our dataset. 575
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Number of Images Distribution in VisualWebInstruct
Total Entries: 906160

B Pipeline Cost772

Stage Calls Cost($) Stage Calls Cost($)
QA Extract 758K 455 Answer Refine 1.81M 9,851
Post-Process 421K 168 Answer Align 257K 297

Table 7: Cost breakdown by pipeline stage.

Table 7 shows the cost breakdown of our VisualWebInstruct pipeline. The total investment of approx-773

imately $10,771 is highly cost-effective compared to traditional dataset creation methods. The largest774

expense is in the Answer Refinement stage ($9,851), which ensures high-quality instruction-answer pairs.775

The modest costs for QA Extraction ($455), Post-Processing ($168), and Answer Alignment ($297)776

highlight our automated pipeline’s efficiency. By leveraging web resources rather than creating data from777

scratch or using expensive human annotation, we achieve substantial cost savings while maintaining778

dataset quality and diversity. For context, contemporary multimodal AI model training often requires779

investments in the millions of dollars. Our pipeline’s total cost represents just a fraction of typical training780

budgets while effectively addressing a critical bottleneck in vision-language model development: the781

acquisition of high-quality multimodal reasoning data.782
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C Training Setup 783

Model Architecture Data Processing
Base Language Model Qwen/Qwen2.5-7B-Instruct Image Aspect Ratio anyres_max_4
Vision Encoder google/siglip-so400m-patch14-384 Image Grid Pinpoints (1x1),...,(6x6)
Vision-Language Connector MLP-based projector (2-layer with GELU) Group by Modality Enabled
Vision Select Layer -2 (second-to-last layer) Image Start/End Tokens Disabled
Patch Merge Type spatial_unpad Image Patch Token Disabled
Starting Checkpoint MAmmoTH-VL Lazy Preprocessing Enabled

Training Configuration Dataset Configuration
Training Epochs 1 Primary Dataset VisualWebInstruct
Batch Size 256 Additional Dataset LLaVA-CoT (9:1 ratio)
Maximum Sequence Length 8,192 tokens Prompt Template qwen_2_5
Learning Rate 1e-5 (language and projector)
Vision Tower Learning Rate 2e-6
Weight Decay 0.0
Warmup Ratio 0.03
LR Scheduler Cosine

Tunable Components Optimization
Language Model Enabled Distributed Training DeepSpeed Zero-3
Vision Tower Enabled TF32 Precision Enabled
MLP Adapter Enabled Mixed Precision BF16
Gradient Checkpointing Enabled TF32 Precision Enabled
Torch Compile Enabled (inductor)

Table 8: Training Configuration of MAmmoTH-VL2

D Evaluation Setup 784

D.1 Benchmark Descriptions 785

Benchmark Description
MMMU University-level problems across 30 disciplines; 11.5K questions requiring integration of visual

and textual information; college and graduate-level difficulty
MMMU-Pro
Vision

Focuses on visual reasoning abilities with more challenging visual components

MMMU-Pro
Standard

Extended version with more challenging problems and more distractor options (6-8 options vs.
4-5 in MMMU)

MathVista 6,141 problems across 6 categories and 24 subcategories; requires interpretation of charts,
diagrams, and visual scenes to solve mathematical problems

MMVet 200 questions assessing visual recognition, OCR, spatial reasoning, and chart understanding
across diverse contexts

MathVerse Emphasizes visual mathematical reasoning with minimal text hints; requires deriving mathemati-
cal insights primarily from visual content

Dynamath Problems requiring temporal reasoning, visual extrapolation, and understanding cause-effect
relationships in mathematical scenarios

GSM8k 8,500 high-quality grade school math word problems; tests multi-step mathematical reasoning
abilities requiring 2-8 steps to solve; focuses on arithmetic operations and logical problem-
solving

Dynamath Problems requiring temporal reasoning, visual extrapolation, and understanding cause-effect
relationships in mathematical scenarios

Table 9: Description of evaluation benchmarks used in our study.
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D.2 Model Categories786

Category Models Description

Closed-source
GPT-4o OpenAI’s multimodal model with strong visual understanding
Gemini-1.5-Pro Google’s advanced model with long-context capabilities
Claude-3.5-
Sonnet

Anthropic’s model known for nuanced reasoning

Open-source
Vision-Language

Molmo (8B) General-purpose vision-language model
LLaVA-OV
(7B)

Large Language and Vision Assistant with One Vision

Llama-3.2
(11B)

Meta’s multimodal model based on Llama architecture

Qwen2-VL
(7B)

Alibaba’s vision-language model built on Qwen2

MAmmoTH-
VL (7B)

Vision-language model with multilingual capabilities

InternVL2.5
(7B)

Enhanced visual understanding model

Phi-4-mini
(5.6B)

Microsoft’s compact multimodal model

DeepSeek-VL2 DeepSeek’s advanced vision-language model

Reasoning-Enhanced
Vision-Language

Llava-CoT-L
(11B)

LLaVA with chain-of-thought reasoning capabilities

Llava-CoTM
(7B)

Compact version of LLaVA-CoT based on MAmmoTH-VL

LlamaV-o1
(11B)

Vision-enhanced Llama with reasoning capabilities

Mulberry (7B) VLM optimized with tree search techniques
Insight-V (8B) Vision-language model with enhanced reasoning
MM-Eureka Multimodal model trained with reinforcement learning

Table 10: Categories and descriptions of models compared in our evaluation.

D.3 Evaluation Methodology787

Component Specification
Evaluation Framework LMMsEval
Decoding Strategy Greedy decoding (temperature = 0)
Evaluation Mode Zero-shot (no demonstration examples provided)
Metrics Accuracy scores for multiple-choice questions; exact match for short-

form answers
Answer Extraction Consistent regex-based answer parsing across all models
Hardware 8× NVIDIA A100 80GB GPUs for evaluation
Reporting Overall scores and subsection-specific performance where relevant; aver-

age score across all benchmarks for holistic evaluation

Table 11: Evaluation methodology used in our experiments.

E Failure Case Analysis of MAmmoTH-VL2788

Error Category Percentage (%)
Multi-step reasoning failures 48
Domain-specific terminology misunderstandings 32
Visual-textual integration errors 20

Table 12: Distribution of error categories from analysis of 100 random test examples.

Multi-step reasoning failures (48%) occur when models struggle with sequential dependencies in complex789

problems. Domain-specific terminology misunderstandings (32%) are particularly prevalent in specialized790

technical fields. Visual-textual integration errors (20%) happen when models fail to properly connect791

visual elements with corresponding text descriptions.792
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E.1 Prompt for Each Stage 793

QA Pairs Extraction
"""Analyze this webpage content and extract questions, images, and
complete solution details in Markdown format.
Please format your response as follows:
**Question 1:**
[complete question text]
**Images:**
* [First image URL if available]
* [Second image URL if available]
[continue for each additional image...]
**Solution:**
[Copy the complete solution text from the webpage, including all steps,
explanations, and calculations]
**Images in Solution:**
* [First image URL if available]
* [Second image URL if available]
[continue for each additional image...]
[repeat for each additional question...]
Requirements:
- Keep the complete solution text exactly as shown in the webpage
- Use Markdown formatting throughout the response
- Mark missing content as "Not found"
- For images, include URL only
- For multiple questions, number them sequentially
- Do not summarize or modify the solution text
- Preserve all mathematical notations and formulas
- Keep all step-by-step explanations intact
- Preserve all line breaks and indentation in solution text
- If there is no question in the content, mark it as "Not found"
- If the webpage is empty or missing, return nothing
Webpage content:
{Accessibility Tree}
"""
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QA Pairs Validation
"""Please analyze this question-answer pair and its images:
Question: complete question text
Solution: complete solution text
Your tasks:
1. Determine if the question is meaningful and valid.
2. For the question images (if any), determine if each is:
- Properly referenced in the question
- Clear and visible
- Actually helps understand the question

3. For the solution images (if any), determine if each is:
- Helps explain the solution

Notes:
- Image indices start from 0 (e.g., first image is index 0, second is index 1, etc.)
- Images should be marked as valid if they show the actual content being discussed
- Images should be marked as invalid only if they are:
* Completely irrelevant to the question/solution
* Corrupted or unreadable
* Duplicate or redundant

Question Images:
[Images loaded here] Solution Images (starting a new section, indexes reset to 0):
[Images loaded here] Please respond in this exact format:
QUESTION_VALID: [yes/no]
ANALYSIS: [Brief explanation of why the question is valid/invalid]
QUESTION_IMAGES: [comma-separated list of valid image indices starting from 0]
QUESTION_IMAGES_REASON: [Brief explanation for each image decision]
SOLUTION_IMAGES: [comma-separated list of valid image indices starting from 0]
SOLUTION_IMAGES_REASON: [Brief explanation for each image decision]

CRITICAL RESPONSE FORMAT INSTRUCTIONS:
- You MUST respond using EXACTLY this format with no additional text
- Use ONLY numeric indices for images, starting from 0
- If no images are valid, use an empty string
- Be precise and use actual numbers
- Always use numeric indices (0,1,2...)
- Use empty string for no images (e.g., "SOLUTION_IMAGES: ")
- Do not add explanatory text in the indices field
"""

Answer Refinement
"""Please solve the following problem step-by-step, providing a clear and comprehensive
explanation:
[PROBLEM]
Structure your response with numbered sections and subsections as follows:
(1) Key Components: - Identify the main elements or concepts in the problem - Explain their roles
or functions - Highlight important relationships between components
(2) Underlying Principles: - Describe the fundamental mechanisms or processes involved - Explain
relevant theories, frameworks, or systems - Connect these principles to the specific context of
the problem
(3) Step-by-Step Analysis: - Break down the problem into logical stages - For each stage, explain
what happens and why - Use clear cause-and-effect relationships to show progression
(4) Integration: - Connect the various elements to show how they work together - Explain interactions
between different processes or components - Demonstrate how these interactions lead to the overall
outcome
(5) Comprehensive Answer: - Provide a concise summary that directly answers the original question
- Include the most important points from your analysis - Ensure your answer is complete but
accessible
Throughout your explanation: - Use clear, precise language appropriate to the subject - Present
information in a logical sequence - Use bullet points for clarity when listing related items -
Connect each section to the central question being asked """
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Consistency Checking """Please analyze the consistency between the following answers to the same

question:

Question: [QUESTION_TEXT]

Answer 1: [ANSWER_1]

Answer 2: [ANSWER_2]

Answer 3: [ANSWER_3]

Answer 4: [ANSWER_4]

Your tasks:
1. Determine if more than half of the answers are consistent with each other in terms of:
- Final answer/conclusion (Do they reach the same result?)
- Reasoning process (Are the solution approaches compatible?)
- Key facts (Are factual claims consistent?)
- Calculations (Do calculations lead to the same results, if applicable?)

Notes:
- Focus on substantive consistency, not differences in wording
- For math/science questions, pay special attention to numerical results
- Answers reaching the same conclusion via different valid methods are consistent
- Mark as CONSISTENT only if more than half of the answers agree on the core solution
- Even if there are minor variations, if the key conclusions match, consider them consistent

Please respond in this exact format:

CONSISTENCY: [CONSISTENT/INCONSISTENT]

CONSISTENT_INDICES: [Comma-separated indices of consistent answers, e.g., "0,1,3"]

REASON: [Brief explanation why answers are consistent or inconsistent (1-2 sentences)]

CRITICAL RESPONSE FORMAT INSTRUCTIONS:
- You MUST respond using EXACTLY this format with no additional text
- Use ONLY "CONSISTENT" if more than half of the answers are consistent with each other
- Use "INCONSISTENT" if half or fewer answers are consistent with each other
- For CONSISTENT_INDICES, list the indices (starting from 0) of answers that form the consistent
group
- Provide a brief, concise explanation in the REASON field
"""

Answer Alignment
"""Given the question and the provided image(s), compare these two answers and determine if they
are aligned.
Question: question
GPT’s Answer: gptanswer
Real Answer: realanswer
Example of Aligned Answers:
Question: What is 2 + 2?
GPT Answer: 4
Real Answer: 4
Example of Misaligned Answers:
Question: What is derivative of x2?
GPT Answer: 2x + 1
Real Answer: 2x
Are these answers aligned? Respond with just ’Yes’ or ’No’ on the first line. Provide a brief
explanation on the second line."""
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E.2 Example of QA Pair794

E.2.1 Web Answer vs. GPT Answer795

Question: How many angles does a quadrilateral have? A. 1 B. 2 C. 3 D. 4

Web Answer: Right Answer is: D SOLUTION An angle is made up of two rays starting from a common 
initial point (or a common vertex). A quadrilateral has 4 angles. Consider quadrilateral ABCD. It 
can be seen here that there are 4 angles here; ∠ A , ∠ B , ∠ C and ∠ D .

GPT Answer1: To determine how many angles a quadrilateral has, let's reason through it step by step: 
1. **Definition of a Quadrilateral**: A quadrilateral is a polygon with four sides. 2. 
**Understanding Angles**: In any polygon, the number of angles is equal to the number of sides 
because each angle is formed where two sides meet. 3. **Applying the Definition**: Since a 
quadrilateral has four sides, by definition, it will also have four angles. 4. **Double-check 
with Examples**: Consider common examples of quadrilaterals like squares, rectangles, and 
diamonds—all these shapes have four angles. So, based on the above reasoning, the quadrilateral 
depicted in the image has four angles. Answer: D. 4

GPT Answer2: To determine how many angles a quadrilateral has, let's break it down step by step: 1. 
**Definition of a Quadrilateral**: A quadrilateral is a polygon with four sides. 2. **Interior 
Angles in a Quadrilateral**: By definition, any polygon with four sides (a quadrilateral) will 
have four interior angles. 3. **Examples and Properties**: - Consider a square, rectangle, or 
any general quadrilateral. Each has four corners, and at each corner, there is an angle formed 
between two sides. - A rectangle, for example, has four right angles. A rhombus has four angles, 
the sum of which is also 360 degrees. 4. **Summation of Angles**: The sum of the interior angles 
of any quadrilateral is 360 degrees. This sum indicates there must be four angles, as each angle 
contributes to this total. 5. **Checking against other Shapes**: - A triangle, which is a three-
sided polygon, has three angles. - Extending to more sides, a pentagon (five-sided polygon) has 
five angles. - This shows the number of angles is directly determined by the number of sides of 
the polygon. Based on the above reasoning, a quadrilateral has 4 angles. Hence, the correct 
answer is: `Answer: 4`

GPT Answer3: A quadrilateral is a polygon with four sides. By definition, a polygon has the same 
number of angles as it does sides. Therefore: 1. A quadrilateral has four sides. 2. Since it has 
four sides, it will also have four angles. Thus, a quadrilateral has four angles. Answer: D. 4

GPT Answer4: A quadrilateral is a polygon with four sides. By definition, any polygon with \( n \) 
sides will also have \( n \) angles. Since a quadrilateral has 4 sides, it must also have 4 
angles. Let's break this down: 1. Identify the shape: The given shape is a quadrilateral. 2. 
Determine the number of sides: A quadrilateral has 4 sides. 3. Determine the number of angles: In 
any polygon, the number of angles is equal to the number of sides. Therefore, a quadrilateral has 
4 angles. Answer: D. 4
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E.2.2 More Samples 796

Q: The inputs to the digital 
circuit are shown below. The 
output Y is Q: This experimental set up is 

used to prove essentiality of 
which of the following 
requirements of photosynthesis?

Q: Write F for the objects which 
has flat surface and C for 
curved surface.

Q: In the figure below, a single-
price unregulated monopoly will 
set price A- a B- b C- c D- d

Q: _ _ _ _ _ train ghost Q: You start with two slices of bread 
that are exactly the same. You toast 
slice B. Which slice weighs more now? 
(A) A (B) B (C) There is no difference

PHYSICS BIOLOGY

DAILY LIFE ECONOMICS

WORDPLAY SCIENCE

A: [reasoning] Final answer: -
**Answer: A**

A: [reasoning] 
**Answer: \(\overline{A 
\cdot B} + \overline{C}\)**

A: Ghost

A: [reasoning] 
Answer: C, F, C, F, C, C, F, C

A: [reasoning] 
Answer: Carbon dioxide

A: [reasoning] 
**Answer: C - c**

Q: The major product formed in 
the following reaction is 

A: [reasoning] 
Answer: \[\text{Ph-CH=CH-CO-CH}_3\]

Q: como se chama o polígono com 11 
lados, 11 vértices e 11 ângulos
internos?
A: [reasoning] 
Answer: Endecágono (ou Undecágono).

Q: Which of the four pairs shown 
below are directly proportional? 
Select all of the correct answers.

A: [reasoning] 
**Answer: Pair 1, Pair 3**

CHEMISTRY

PROPORTIONS

GEOMETRY

DRUG Q: How does this drug work? 

Q: Try and find all the G Major Scales, 
this would playing all the notes G A B 
C D E F G.

Q: The Laplace transform of 
the waveform shown in the 
below figure is

A: : [reasoning] 
Answer: \(\frac{e^{-s}}{s} + 
\frac{e^{-2s}}{s} -
\frac{2e^{-3s}}{s}\)

A: : [reasoning] 
Answer: Two complete G major scales are 
identified: 1st on the 3rd (G) string 
sequentially starting from open and 2nd 
beginning at 5th fret on the 4th (D) 
string proceeding sequentially up to 
the 12th fret.

A: : [reasoning] 
**Answer**: Zercepac blocks 
HER2 signals on cancer cells, 
stopping them from multiplying 
and calling blood vessels for 
nutrients. It also helps 
immune cells to recognize and 
attack cancer cells, slowing 
tumor growth and starving 
tumors.

CALCULAS MUSIC

Our pipeline naturally produces data across numerous disciplines beyond mathematics, reflecting 797

the natural distribution of educational material on the web. The dataset contains entirely novel content 798

not found in any existing multimodal datasets, offering a significant contribution of fresh educational 799

examples. 800
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