OpenDocAssistant: Language-Driven Document Automation and
Evaluation

Anonymous ACL submission

Abstract

Modern document processing tools remain in-
accessible to non-technical users due to steep
learning curves. This paper introduces Open-
DocAssistant, a natural language-driven docu-
ment automation system that addresses three
core challenges: multi-step instruction decom-
position, semantic-to-API mapping, and ef-
ficient execution under resource constraints.
Our three-stage architecture—planning, API
selection, and execution—uses large language
models (LLMs) to translate free-form instruc-
tions into document operations. The novel
RaAPI mechanism combines dense embedding
retrieval with LLM reasoning to bridge natural
language instructions to appropriate API calls.
Ablation studies show RaAPI’s critical role
(performance drops from 74.53% to 12.40%
without it) and robust handling of vague in-
structions (>0.86 consistency, >0.95 API sim-
ilarity). We evaluate six LLMs on OpenDo-
cEval (110 annotated sessions) using Achieve-
ment Rate (AR) and Average Number of APIs
(ANA). Large models achieve 74.53% AR on
complex tasks, while smaller models offer prac-
tical accuracy—efficiency trade-offs. This work
demonstrates LLMs’ potential to democratize
document automation through natural language
interfaces.

1 Introduction

Professional document processing software has
grown increasingly complex, often burying essen-
tial features within layered menus and imposing a
high cognitive load on non-expert users. While tra-
ditional interface optimizations can mitigate some
usability issues, they do not fundamentally resolve
the semantic gap between user intent and system
actions (Nielsen, 2023). The emergence of large
language models (LLMs) offers a transformative
opportunity: natural language interfaces can bridge
this gap by translating user instructions into pre-
cise, actionable commands. Empirical evidence

highlights this potential, with Microsoft reporting a
42% productivity boost in LLM-augmented office
tasks (Cambon et al., 2023) and MIT observing a
59% efficiency gain among business professionals
(Noy and Zhang, 2023).

Despite these advances, leveraging LLMs for
document automation remains challenging. First,
instruction understanding is non-trivial: complex
requests such as “merge cells and apply conditional
formatting” require systems to decompose and se-
quence multiple atomic actions, a process where
existing methods often falter, especially with nested
or composite operations (Zou et al., 2024). Second,
semantic alignment is difficult: mapping ambigu-
ous or underspecified instructions (e.g., “make the
table professional) to concrete API calls demands
sophisticated inference and contextual reasoning,
given the inherent mismatch between natural lan-
guage and formal APIs. Third, efficient execution
is essential: maintaining document state and ensur-
ing reliable operation under resource constraints
(such as sub-second latency on edge devices) calls
for frameworks that are both lightweight and robust,
which current solutions rarely achieve (MclIntosh
et al., 2024).

Moreover, the field lacks rigorous evaluation
standards. Most existing benchmarks focus on
single-turn tasks or use oversimplified metrics, fail-
ing to capture the complexity and continuity of real-
world document workflows (Fodor, 2025). This
results in inflated performance estimates that do
not reflect practical deployment scenarios.

To address these gaps, we introduce OpenDo-
cAssistant, a unified framework that advances both
methodology and evaluation for language-driven
document automation. Our system features a three-
stage pipeline: (1) planning, which decomposes
user instructions into executable steps; (2) API
selection, where we propose the novel RaAPI
(Retrieval-augmented API Selection) mechanism.
RaAPI uniquely integrates dense vector retrieval of

relevant APIs with LLM-based contextual reason-
ing, enabling accurate and flexible mapping from
natural language to formal API calls—a signifi-
cant improvement over prior approaches that rely
solely on retrieval or direct generation. (3) execu-
tion, which applies state-aware operations to the
document, ensuring consistency and correctness
throughout the workflow.

Complementing the system, we present Open-
DocEval, a comprehensive benchmark designed to
reflect real-world document automation challenges.
OpenDocEval introduces dual metrics: Achieve-
ment Rate (AR), measuring task success, and Av-
erage Number of APIs (ANA), quantifying execu-
tion efficiency. This dual perspective enables fair
comparison across both high-capacity LLMs and
lightweight models, and more accurately reflects
practical utility.

In summary, OpenDocAssistant and RaAPI to-
gether bridge the semantic and operational gaps
in document automation, while OpenDocEval pro-
vides the first rigorous, workflow-oriented evalu-
ation standard for this domain. Our experiments
demonstrate that this approach not only improves
accuracy and efficiency, but also broadens accessi-
bility to advanced document automation for a wider
range of users and deployment environments.

2 Related Work

2.1 LLMs for Document Processing

Recent advancements in LLMs have significantly
reshaped the landscape of document processing,
a longstanding focus area in NLP.With the rapid
advancement of LLMs, document-related appli-
cations have gained increasing attention. GPT-
3 demonstrated strong few-shot capabilities in
document generation and editing (Brown et al.,
2020), while evaluations of ChatGPT revealed
limitations in structured document manipulation,
particularly in layout and formatting comprehen-
sion (Winn, 2023). Despite promising capabili-
ties, general-purpose LLMs often lack deep un-
derstanding of document-specific structures and
workflows. Structure-aware pretraining approaches
such as LayoutLM (Xu et al., 2020) and its mul-
timodal extension LayoutLMv2 (Xu et al., 2021)
have been proposed to address this gap.

A growing direction involves integrating LLMs
with external APIs to enhance document opera-
tion capabilities. ToolFormer introduced a self-
supervised method for LLLMs to acquire tool use

abilities (Schick and Schiitze, 2023), while Tool-
LLM developed a framework for mastering thou-
sands of real-world APIs (Qin et al., 2023). Un-
like these methods, OpenDocAssistant specifically
addresses semantic-to-API mapping and execu-
tion challenges within complex document environ-
ments.

2.2 Document-Centric Evaluation
Benchmarks for LLMs

While advancements in LLM-based document pro-
cessing systems have been significant, a compre-
hensive evaluation framework is equally critical
to measure their practical effectiveness. There-
fore, we next review document-centric evaluation
benchmarks. Effective evaluation of LLMs in doc-
ument processing requires benchmarks that capture
domain-specific operational characteristics. While
multi-dimensional frameworks have assessed gen-
eral aspects such as accuracy, robustness, and effi-
ciency (MclIntosh et al., 2024), broader evaluations
highlight that no single dataset comprehensively
measures model capabilities (Banerjee et al., 2024).

Among recent efforts, benchmarks such as
DocBench (Zou et al., 2024) and PPTC (Guo et al.,
2023) have been proposed to address these evalu-
ation gaps. DocBench focuses on metadata ex-
traction, layout parsing, and multimodal under-
standing across static documents, while PPTC pio-
neers multi-turn PowerPoint creation and editing.
However, these benchmarks remain constrained:
PPTC supports short interactions (2.3 turns per ses-
sion) and employs basic state tracking, whereas
OpenDocAssistant handles longer sessions (aver-
aging 3.57 turns) with robust state management
via save_state() and load_state() functions,
enabling complex multi-turn manipulations. More-
over, PPTC emphasizes presentation-specific op-
erations, while our framework supports a broader
range of document types through modular API se-
lection.

Additionally, critiques point out that many
benchmarks rely on single-turn evaluations, failing
to emulate real-world multi-step workflows (Fodor,
2025), and enforce single gold-standard outputs,
overlooking the multiplicity of valid document so-
lutions (Mclntosh et al., 2024). These limitations
motivate the need for dynamic evaluation frame-
works like OpenDocEval that better reflect practical
document processing challenges.

3 OpenDocAssistant

3.1 System Overview

Modern document processing software’s complex-
ity creates accessibility barriers for non-technical
users, reducing productivity and hindering automa-
tion. OpenDocAssistant addresses this through
a three-stage framework: planning, API selec-
tion, and execution. As shown in Figure 1, plan-
ning decomposes instructions, API selection maps
them to operations via RaAPI (hybrid retrieval-
and-reasoning), and execution performs validated
actions. The system uses Qwen2-7B-Instruct for
semantic interpretation and python-docx for oper-
ations, enabling real-time error correction through
a closed-loop user interaction cycle (Ibrahimzada,
2024).

3.2 Planning Stage

The planning stage bridges user intent and exe-
cutable operations by breaking down complex in-
structions into ordered sequences of basic actions.
It uses structured prompt engineering and task-
specific templates to guide the LLM through a
three-step process: prompt construction, model in-
ference, and post-processing (Algorithm 1). For
example, “Create a document, add a title, then in-
sert a table” is decomposed into distinct actions,
leveraging the LLM’s ability to infer logical de-
pendencies (Ibrahimzada, 2024). The algorithm
operates in O(n+m), with LLM inference costing

O(n?).

3.3 Retrieval-Augmented API Selection
(RaAPI)

We propose RaAPI, a hybrid mechanism that
bridges natural language instructions and formal
API calls in OpenDocAssistant. RaAPI combines
dense vector retrieval with LLM-based contextual
reasoning to select and sequence APIs for user com-
mands.

The process begins with a retrieval phase,
where user instructions and API specifications
are encoded into dense vectors using the
text-embedding-ada-002 model. This trans-
forms both instructions and APl documentation
into a high-dimensional semantic space, where co-
sine similarity captures conceptual relationships
beyond keyword overlap:

Er-Ea,

=== ey
EL]] - || Eall

sim(/, A;)

Algorithm 1: Hierarchical Instruction
Decomposition

Input: Instruction I
Output: Ordered sequence of
sub-instructions S
1 if NotPlanningEnabled() then
2 return [I]; // No decomposition
required

3 template <+ FormatPrompt(I) ;
4 response < QuerylLanguageModel (template,
model) ;

5 subInstructions < ParseResponse(response)

6 if IsEmpty(subInstructions) then
7 return [I]; // Fallback if model
fails

8 S<—FilterAndNormalize(subInstructions)
9 S < EnrichWithContext(S, I);
10 return S ;

where E 7 and E 4, are the embeddings for instruc-
tion I and API candidate A;. To reduce latency, we
use a persistent embedding cache: pre-computed
embeddings are loaded if available, otherwise com-
puted and stored for future use.

Top-k API candidates are passed to an LLM
reasoning module. Prompted as a document au-
tomation assistant, the LLM receives APIs (sig-
natures, descriptions), strict output rules, checks,
and examples. A carefully designed prompt guides
the LLM to interpret complex requests, select rele-
vant APIs, extract/format parameters per signatures,
and produce a logically ordered, syntactically cor-
rect API call sequence. This prompt engineering
constrains LLM output to valid calls and encour-
ages reasoning about document structure, depen-
dencies, and parameters, as seen in codebase tem-
plates (src/api_selection.py).

The LLM’s multi-step, context-aware reasoning
analyzes instructions and retrieved APIs, break-
ing down complex requests into atomic opera-
tions. It maps these to relevant APIs using prompt
context and its knowledge. Parameters are ex-
tracted/formatted per API signatures, and the fi-
nal API sequence is generated in a single, strictly
formatted, logically ordered line. This handles am-
biguous, multi-step, or underspecified instructions
beyond retrieval’s scope. While the LLM doesn’t
manage document state, it generates API sequences

User Instruction

Instruction

~©

LLM
Planner

API Selection Layer

Position Relation Checker

API| Database

delete_page_numbers
move_docx_to_new_path
add_table
add_heading

Task-Oriented Prompts

Example Prompt API| Database

|

[

|

|

|

i [
Instruction delete_page_numbers
|

[

[

|

|

[

Vector Retrieval “— move_docx_to_new.path
+ Reasoning Prompt add_table
add_heading

Selected APl Sequence

API Selection
Layer

Selected API Sequence

LSS ®] Evaluated Document
1

1 def check_xxx(x_y):

! y_bottom =y [op - y_height
: return_x_[op < y_bottom

| def string_match(x_y):

! for attr in x_attributes:

: if x[attr] |= y[attr]:
\return False

e

Figure 1: System framework of OpenDocAssistant showing the three-stage design. (1) The Planning stage processes
instructions via task-specific templates. (2) The API selection stage combines vector retrieval and LLM reasoning.

(3) The Execution stage enforces validation rules.

executed by a stateful backend (word_executor),
ensuring correct document structure and order.
This interplay is essential for robust automation,
as LLM output is interpreted within the evolving
document’s context.

Algorithm 2 outlines the vector retrieval process.
The LLM then takes the sorted top-k APIs and
the original instruction to generate the final API
sequence. This hybrid design ensures both broad
coverage and precise, context-aware API selection,
which is essential for robust document automation.

3.4 Execution Stage

The execution stage converts API call sequences
into document edits via a hierarchical interface
covering text, tables, images, and formatting. A
state manager tracks the current document and
key elements, ensuring context-aware, sequential
operations. Multi-level error handling catches
exceptions per API call, normalizes error mes-
sages, and applies fallbacks for noncritical fail-
ures. Core principles—functional atomization, sen-
sible defaults, composability, and explicit state
feedback—underpin reliable execution and support
higher-level modules (Fowler, 2002).

4 OpenDocEval

The evaluation of LLMs in document processing
faces challenges in handling ambiguous instruc-

Algorithm 2: Vector-Based API Selec-
tion for Instruction Processing
Input: Instruction I, Candidate API set A
Output: Top-k most relevant APIs
1 embedding_I < GetEmbedding(I,
model="text-embedding-ada-002") ;
// Encode instruction
2 similaritylList <— [1; // Initialize
similarity scores
foreach api in A do
4 embedding_api <+ GetAPIEmbedding(api)

w

B

5 score < CosineSim(embedding_I,
embedding_api) ;

6 similaritylList.append((api,
score)) ;

7 sortedAPIs < SortByScore(similaritylList,
descending=True) ;
8 return TopK(sortedAPIs, k=10) ;

tions, complex API sequences, and diverse execu-
tion paths. Traditional single-point metrics fail to
capture model performance in knowledge-intensive
scenarios. We propose OpenDocEval—a structured
framework for assessing LLM capabilities in docu-
ment processing.

4.1 Evaluation Framework

Figure 2 shows the framework’s two-dimensional
structure: independent session units horizontally
and sequential interaction turns vertically. Each
turn follows a pipeline: instruction input, oper-
ation generation, execution, result comparison,
and metric computation. Formally, given instruc-
tions I = {iy,49,...,4,} and operations A =
{ay,a9,...,an}, the system learns a mapping
function f : I x Dj_; — S; that maps instruc-
tion ¢; and prior state [);_1 to operation sequence
S;, producing document state D; that satisfies user
intent.

4.2 Multidimensional Evaluation Metric
Framework

We introduce a hierarchical metric system evalu-
ating performance across functional accuracy and
computational efficiency.

Functional Metrics Achievement Rate (AR) is
the primary metric, assessing functional equiva-
lence between predicted and reference documents.
We report AR at two granularities:

¢ Task-level AR (AR,): Measures success
for individual tasks:

SV C(Dyy, Diyi)
Nr

ARtask = (2)

¢ Session-level AR (ARgession): Assesses suc-
Cess over entire sessions:

Z;yzsl C(Dp,j finals D1 j final)

ARsession = NS

3)

Efficiency Metrics We measure the Average
Number of APIs (ANA) to quantify operational
efficiency, with lower values indicating higher ef-
ficiency. We report ANA at both task and session
granularities:

e Task-level ANA (ANAyk): Average API
calls per task:

Nr
1
ANAtask = NiT Z |Az’ (4)
i=1

* Session-level ANA (ANAgegsion): Average to-
tal API calls per session:

Nsg T}

1
ANAsession = FS Z

| Ak)
=1 \ k=1

4.3 Test Set Design and Evaluation
Methodology

To rigorously evaluate document processing capa-
bilities, we constructed a comprehensive test set
comprising 110 sessions (84 for document creation,
26 for template editing) with 750 instructions. The
test set covers text, table, image, and hybrid op-
erations at varying complexity levels, with each
session maintaining contextual dependencies be-
tween instructions to evaluate model performance
stability. As shown in Table 1, our test set includes
diverse operation types and complexity levels, with
text operations being the most common (45.2% in
document creation, 61.5% in template editing) and
advanced tasks (4+ operations) constituting 40.5%
of document creation tasks.

Our evaluation process follows a three-stage
pipeline: (1) preparation, where we load test ses-
sions and generate reference documents; (2) exe-
cution, conducting both isolated and continuous
interactions; and (3) error analysis, categorizing
failures into selection, parameter, and execution
errors. This structured approach ensures repro-
ducibility and supports automated evaluation of
model performance.

S Experiment

This section presents a focused evaluation of Open-
DocAssistant, highlighting how model architecture,
the RaAPI mechanism, and task characteristics
jointly affect system performance. We detail the
experimental setup and present the primary perfor-
mance metrics.

5.1 Model Capability Evaluation

We benchmarked a range of models, both com-
mercial and open-source, with varying parameter
scales. The task-level and session-level results, in-
cluding Achievement Rate (AR) and Average Num-
ber of APIs (ANA), are summarized in Table 2.

5.2 Ablation and Robustness Study

We conducted comprehensive ablation studies and
targeted robustness tests using the deepseek-v3
model. These experiments assess the contribu-
tion of key components, especially the Retrieval-
augmented API Selection (RaAPI) mechanism, and
evaluate resilience to imperfect inputs. Perfor-
mance was measured across three primary scenar-
ios: the standard system evaluated on the robust
test set, the ablated system (without RaAPI) on a

8 v
|
o
|
|
)

° o o

0 0 -0
l

0 o
l
'

Q@ 0

I APl AP

Figure 2: OpenDocEval evaluation framework architecture. The framework is organized horizontally into three
independent session units (Sessions 1, 2, and 3) and vertically into sequential interaction turns (Tasks 1-1, 1-2,
etc.). Each column represents a different session evaluation approach. The middle section (Session 2) illustrates
the complete pipeline, with original documents being processed through API sequences to produce processed
documents. These are then compared against target documents to calculate both ANA and AR metrics. Blue circular

icons represent API operations executed for each task.

Characteristics Create_new_docs Edit_Word_template
Sessions 84 26
Avg. instructions/session 3.57 2.15

Document types

New documents

Existing templates

Operation type distribution (%)

Text operations 45.2 61.5
Table operations 32.1 23.1
Image operations 15.5 7.7
Hybrid operations 7.2 7.7
Complexity level distribution (%)

Basic (single operations) 21.4 30.8
Intermediate (2-3 operations) 38.1 53.8
Advanced (4+ operations) 40.5 154

Table 1: Dataset characteristics for document creation and editing.

standard test set, and the ablated system also on the
robust test set. Performance metrics (Task AR, Ses-
sion AR, Task ANA, Session ANA) are presented
in Table 3.

To further analyze robustness against input vari-
ations, we evaluated the system’s performance
on specific types of fuzzy instruction variants:
keyword-only, vague terms, and truncated inputs.
Table 4 presents the Document Consistency Rate
and High API Similarity Rate for both the standard
system (with RaAPI) and the ablated system (with-
out RaAPI) when subjected to these fuzzy tests.

6 Analysis and Discussion

This section analyzes the experimental results pre-
sented in Section 5, discussing model capabilities,
the impact of the RaAPI mechanism, system ro-
bustness, and error patterns.

6.1 Model Capability Analysis

6.1.1 Performance Overview

The results from Table 2 highlight significant
performance variations across different mod-
els. deepseek-v3 achieves the highest task-level
achievement rate (AR) at 74.53% and the best
session-level AR at 36.36%, while also main-
taining a low average number of APIs per task
(ANA) of 4.37, indicating efficient planning. In

Table 2: OpenDocEval results across different model variants. AR: Achievement Rate (%), ANA: Average Number

of APIs.
Models and Methods Task AR (%) Task ANA Session AR (%) Session ANA
gpt-4.1 70.00 4.21 31.82 34.66
gwen3-plus 60.93 4.64 3091 35.52
claude-3-7-sonnet 63.73 6.60 0.00 50.48
gemini-2.0-flash 59.87 5.45 12.73 41.73
deepseek-v3 74.53 4.37 36.36 33.44
lama3-70b 63.60 7.59 13.64 58.11
gwen3-14b 45.47 4.39 0.00 33.59
deepseek-r1-11ama-8b 37.33 11.25 0.00 86.07
qwen2.5-instruct-7b 33.60 13.22 0.00 101.09
deepseek-qwen2.5-math-7b 11.87 27.84 0.00 213.09

Table 3: Overall Performance Metrics for deepseek-v3 under Ablation and Robustness Scenarios.

Scenario Task AR (%) Task ANA Session AR (%) Session ANA
Standard System on Robust Test 60.93 4.54 21.00 17.46
Ablated System on Standard Test 12.40 1.60 0.00 12.37
Ablated System on Robust Test 10.40 1.60 0.00 14.27

contrast, deepseek-gqwen2.5-math-7b performs
worst, with only 11.87% task AR and 0% session
AR, and requires an average of 27.84 APIs per
task, reflecting inefficient decomposition and ex-
ecution. gpt-4.1 also demonstrates strong per-
formance, with a 70.00% task AR and the low-
est ANA (4.21), but its session AR drops to
31.82%. qwen3-plus and claude-3-7-sonnet
achieve moderate task ARs (60.93% and 63.73%,
respectively), but claude-3-7-sonnet fails to gen-
eralize to session-level tasks (0.00% session AR),
and gwen3-plus achieves 30.91% session AR.
gemini-2.0-flash shows a task AR of 59.87%
and session AR of 12.73%. A notable trend across
all models is the significant decline from task-level
to session-level AR, underscoring the challenge of
maintaining state and context across multiple turns.

6.1.2 Impact of Task Complexity and Model
Specialization

Task complexity critically impacts performance.
Simpler tasks show similar model performance,
but complexity widens gaps. For instance,
deepseek-v3 and gpt-4.1 maintain high ARs on
complex tasks, unlike qwen2.5-instruct-7b and
deepseek-gwen2.5-math-7b whose ARs drop be-
low 35%. Text operations generally outperform ta-
ble or image tasks, likely due to models’ language-

centric training. Editing, needing state recognition
and contextual changes, remains challenging. In
multi-turn editing, models often struggle with con-
sistency (e.g., updating charts post-table changes),
showing limits in current planning and state man-
agement.

While larger models often perform better, do-
main adaptation and planning are vital. Top models
generate concise API sequences for complex tasks,
shown by low ANA values (e.g., deepseek-v3:
4.37, gpt-4.1: 4.21 from Table 2), whereas
smaller models produce longer, inefficient chains
(e.g., deepseek-qwen2.5-math-7b: 27.84). For
example, deepseek-v3 merges tables in one pass,
while weaker models need multiple steps or fail
entirely. This underscores the need for both model
capability and robust API selection for reliable doc-
ument automation.

6.1.3 Error Analysis

To pinpoint system weaknesses, we analyze errors
across the three-stage pipeline. Figure 3 shows the
distribution: planning (42%), API selection (31%),
and execution (27%).

Planning errors often stem from difficulties in
decomposing nested instructions. API selection
errors arise when parameter mappings are ambigu-
ous or necessary context is missing. Execution

Table 4: Granular robustness test results on different types of fuzzy instructions for Full RaAPI and Ablated RaAPI

configurations.

Configuration Instruction Type Document Consistency (%) API Similarity (%)

Full RaAPI (under Fuzzy Test) keywords_only 2.4 0.8

vague_terms 86.4 95.1

truncated 10.4 2.8

Ablated RaAPI (under Fuzzy Test) keywords_only 32 0.8

vague_terms 87.6 96.4

truncated 10.1 1.9

M Planning
E API Selection
O Execution

Figure 3: Error distribution across pipeline stages.

errors typically occur due to invalid parameters
or incorrect operation ordering. These findings
suggest three primary directions for improvement:
(1) refining decomposition templates to better cap-
ture dependencies between sub-tasks, (2) enforcing
stricter type—context checks during API matching
to reduce ambiguity, and (3) strengthening state
validation at execution time to prevent cascading
erTors.

6.2 Ablation and Robustness Analysis

6.2.1 Impact of RaAPI and System
Robustness

The ablation studies (Table 3) demonstrate RaAPI’s
critical role in system performance. The standard
deepseek-v3 system achieves 60.93% Task AR
on the robust test set, showing resilience despite a
notable drop from its peak performance (74.53%
Task AR, 36.74% Session AR on standard tests).
Ablating the RaAPI mechanism leads to severe
degradation, with Task AR dropping to 12.40% on
standard tests and 10.40% on robust tests. This con-
trast highlights RaAPI’s essential role in enabling
accurate document manipulation. The low ANA
values (1.60) in ablated configurations indicate an
inability to generate complete API sequences.

6.2.2 Performance on Fuzzy Instructions

Robustness tests on fuzzy instructions (Table 4)
reveal that both full and ablated RaAPI configura-
tions handle vague terms well (Document Consis-
tency >86%) but struggle with keyword-only and

truncated instructions (Consistency <11%). The
similar performance patterns suggest that while
RaAPI is crucial for overall task success, neither
it nor the LLM alone can reliably handle highly
fragmented inputs. This indicates that improving
robustness against underspecified instructions re-
mains a key challenge, requiring enhanced under-
standing mechanisms beyond current implementa-
tions.

7 Conclusion

This paper presents OpenDocAssistant, a language-
driven document automation system that trans-
forms complex processing into natural language
interactions through a three-stage framework. Eval-
uations across 110 test sessions demonstrate its
effectiveness, achieving 74.53% Achievement Rate
with only 4.37 API calls per task. The plan-select-
execute paradigm represents a fundamental shift
in human-software interaction, with RaAPI prov-
ing essential (performance drops from 74.53% to
12.40% without it) and showing robust handling of
vague instructions (>0.86 consistency, >0.95 API
similarity). Future work will focus on multimodal
interactions, personalization, and broader software
applications.

Limitations

The current system has several limitations: reliance
on a single language model for planning and exe-
cution, performance constraints from underlying
APIs, challenges with ambiguous instructions (as
shown in robustness tests), dependency on high-
quality training data, and computational resource
requirements for inference.

References

Soumya Banerjee, Ananya Agarwal, and Eshan Singh.
2024. The vulnerability of language model bench-
marks: Do they accurately reflect true llm perfor-
mance? arXiv preprint.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, and 1 oth-
ers. 2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33.

A. Cambon, B. Hecht, B. Edelman, D. Ngwe, S. Jaffe,
A. Heger, and J. Teevan. 2023. Early llm-based
tools for enterprise information workers likely pro-
vide meaningful boosts to productivity. Technical
Report MSR-TR-2023-01, Microsoft Research.

J. Fodor. 2025. Line goes up? inherent limitations of
benchmarks for evaluating large language models.
arXiv preprint.

Martin Fowler. 2002. Patterns of Enterprise Application
Architecture. Addison-Wesley, Boston, MA.

Yuwei Guo, Zhenzhen Zhang, Yihan Liang, Dongdong
Zhao, and Nan Duan. 2023. Pptc benchmark: Eval-
uating large language models for powerpoint task
completion. arXiv preprint.

A. R. Ibrahimzada. 2024. Program decomposition
and translation with static analysis. Preprint,
arXiv:2401.12412.

T. R. Mclntosh, T. Susnjak, N. Arachchilage, T. Liu,
P. Watters, and M. N. Halgamuge. 2024. Inadequa-
cies of large language model benchmarks in the era
of generative artificial intelligence. arXiv preprint.

Jakob Nielsen. 2023. Chatgpt lifts business profession-
als’ productivity and improves work quality. Nielsen
Norman Group.

Shakked Noy and Whitney Zhang. 2023. Experimental
evidence on the productivity effects of generative ar-
tificial intelligence. MIT Economics Working Paper.

Yujia Qin, Shuming Liang, Yujia Ye, Kun Zhu, Linjie
Yan, Yujie Lu, and 1 others. 2023. Toolllm: Fa-
cilitating large language models to master 16000+
real-world apis. arXiv preprint.

Timo Schick and Hinrich Schiitze. 2023. Toolformer:
Language models can teach themselves to use tools.
In Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics, pages 293—
304.

Zach Winn. 2023. Study finds chatgpt boosts worker
productivity for some writing tasks. MIT News.

Yiheng Xu, Zihan Dai, Zhengyuan Li, Yang Gao, Jian-
feng Li, Bing Qin, and Tie-Yan Liu. 2021. Lay-
outlmv2: Multi-modal pre-training for document im-
age understanding. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics, pages 2579-2591.

Yiheng Xu, Minghao Yang, Lei Liu, Yujie Wang, Furu
Cao, and Yizhou Li. 2020. Layoutlm: Pre-training
of text and layout for document image understand-
ing. In Proceedings of the 26th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining,
pages 1192-1200.

A.Zou, W. Yu, H. Zhang, and 1 others. 2024. Docbench:
A benchmark for evaluating llm-based document
reading systems. arXiv preprint.

A Dataset Description

Our dataset consists of 100 document creation ses-
sions, each containing multiple tasks for creating
and editing Word documents. The dataset is or-
ganized into two versions: a standard version and
an API-lack version, allowing for comprehensive
evaluation of document automation capabilities.

Each session is stored in a JSON file (e.g.,
session_X. json) containing a sequence of tasks.
Each task includes a sequential identifier, natural
language command for document manipulation,
corresponding sequence of API calls to execute the
instruction, paths to initial and expected final docu-
ment states, and alternative versions for API-lack
scenarios.

The dataset encompasses a comprehensive range
of document operations, including document struc-
ture management (headers, footers, page numbers,
table of contents), content formatting (font styles,
colors, paragraph formatting), table operations (cre-
ation, cell content, headers), list management (or-
dered and unordered lists), hyperlink and reference
handling, and various document elements (water-
marks, line breaks, spacing).

The dataset comprises 100 sessions with an aver-
age of 7-8 tasks per session, resulting in over 700
unique instructions. It covers more than 20 differ-
ent types of API operations and includes various
document types such as meeting minutes, reports,
and forms.

The dataset was created through a systematic pro-
cess involving task design for realistic document
creation scenarios, instruction writing in Chinese,
API sequence generation for executable calls, docu-
ment state tracking for intermediate and final states,
and quality control for instruction-API mapping
accuracy.

The dataset supports comprehensive evaluation
scenarios, including task-level evaluation for indi-
vidual instruction execution accuracy, session-level
evaluation for complete document creation work-
flows, API-lack scenarios for testing robustness

https://arxiv.org/abs/2412.03597
https://arxiv.org/abs/2412.03597
https://arxiv.org/abs/2412.03597
https://arxiv.org/abs/2412.03597
https://arxiv.org/abs/2412.03597
https://arxiv.org/abs/2502.14318
https://arxiv.org/abs/2502.14318
https://arxiv.org/abs/2502.14318
https://arxiv.org/abs/2311.01767
https://arxiv.org/abs/2311.01767
https://arxiv.org/abs/2311.01767
https://arxiv.org/abs/2311.01767
https://arxiv.org/abs/2311.01767
https://arxiv.org/abs/2401.12412
https://arxiv.org/abs/2401.12412
https://arxiv.org/abs/2401.12412
https://arxiv.org/abs/2402.09880
https://arxiv.org/abs/2402.09880
https://arxiv.org/abs/2402.09880
https://arxiv.org/abs/2402.09880
https://arxiv.org/abs/2402.09880
https://www.nngroup.com/articles/chatgpt-productivity/
https://www.nngroup.com/articles/chatgpt-productivity/
https://www.nngroup.com/articles/chatgpt-productivity/
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://news.mit.edu/2023/study-chatgpt-productivity-white-collar-workers-0323
https://news.mit.edu/2023/study-chatgpt-productivity-white-collar-workers-0323
https://news.mit.edu/2023/study-chatgpt-productivity-white-collar-workers-0323
https://arxiv.org/abs/2407.10701
https://arxiv.org/abs/2407.10701
https://arxiv.org/abs/2407.10701
https://arxiv.org/abs/2407.10701
https://arxiv.org/abs/2407.10701

with limited API availability, and cross-version
comparison between standard and API-lack per-
formance.

B RaAPI and Planning Mechanisms

The RaAPI (Robust API Planning and Integration)
mechanism employs a hierarchical architecture for
document automation, consisting of three key com-
ponents. The API Selection Module utilizes a fine-
tuned LLM to map natural language instructions
to executable API sequences through a two-stage
process of instruction analysis and API mapping
with parameter validation. The State Management
component maintains document state through a
structured representation, tracking hierarchical ele-
ments, monitoring formatting and content modifica-
tions, and recording operation history for rollback
and validation. The Error Recovery system im-
plements robust error handling through API avail-
ability checking, fallback mechanisms for failed
operations, and state recovery for maintaining doc-
ument consistency.

The planning phase orchestrates document cre-
ation through a multi-step process. Task Decom-
position breaks down complex document creation
tasks into atomic operations, identifies dependen-
cies, and generates optimal execution order. The
LLM Prompting Strategy incorporates document
state and history through context-aware prompt-
ing, utilizes few-shot learning with example API
sequences, and employs chain-of-thought reason-
ing for complex operations. Execution Planning
generates validated API call sequences, handles
conditional operations based on document state,
and optimizes operation order for efficiency.

The system maintains document structure
through a comprehensive approach to hierarchical
representation, state tracking, and format consis-
tency. The hierarchical representation employs a
tree-based structure for document elements, man-
ages parent-child relationships for nested elements,
and implements position tracking for content in-
sertion. State tracking provides real-time updates
of document modifications, validates structural in-
tegrity, and resolves conflicts in concurrent oper-
ations. Format consistency is maintained through
style inheritance and propagation, format valida-
tion and correction, and cross-element reference
management.

10

	Introduction
	Related Work
	LLMs for Document Processing
	Document-Centric Evaluation Benchmarks for LLMs

	OpenDocAssistant
	System Overview
	Planning Stage
	Retrieval-Augmented API Selection (RaAPI)
	Execution Stage

	OpenDocEval
	Evaluation Framework
	Multidimensional Evaluation Metric Framework
	Test Set Design and Evaluation Methodology

	Experiment
	Model Capability Evaluation
	Ablation and Robustness Study

	Analysis and Discussion
	Model Capability Analysis
	Performance Overview
	Impact of Task Complexity and Model Specialization
	Error Analysis

	Ablation and Robustness Analysis
	Impact of RaAPI and System Robustness
	Performance on Fuzzy Instructions

	Conclusion
	Dataset Description
	RaAPI and Planning Mechanisms

