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Abstract001

Modern document processing tools remain in-002
accessible to non-technical users due to steep003
learning curves. This paper introduces Open-004
DocAssistant, a natural language-driven docu-005
ment automation system that addresses three006
core challenges: multi-step instruction decom-007
position, semantic-to-API mapping, and ef-008
ficient execution under resource constraints.009
Our three-stage architecture—planning, API010
selection, and execution—uses large language011
models (LLMs) to translate free-form instruc-012
tions into document operations. The novel013
RaAPI mechanism combines dense embedding014
retrieval with LLM reasoning to bridge natural015
language instructions to appropriate API calls.016
Ablation studies show RaAPI’s critical role017
(performance drops from 74.53% to 12.40%018
without it) and robust handling of vague in-019
structions (>0.86 consistency, >0.95 API sim-020
ilarity). We evaluate six LLMs on OpenDo-021
cEval (110 annotated sessions) using Achieve-022
ment Rate (AR) and Average Number of APIs023
(ANA). Large models achieve 74.53% AR on024
complex tasks, while smaller models offer prac-025
tical accuracy–efficiency trade-offs. This work026
demonstrates LLMs’ potential to democratize027
document automation through natural language028
interfaces.029

1 Introduction030

Professional document processing software has031

grown increasingly complex, often burying essen-032

tial features within layered menus and imposing a033

high cognitive load on non-expert users. While tra-034

ditional interface optimizations can mitigate some035

usability issues, they do not fundamentally resolve036

the semantic gap between user intent and system037

actions (Nielsen, 2023). The emergence of large038

language models (LLMs) offers a transformative039

opportunity: natural language interfaces can bridge040

this gap by translating user instructions into pre-041

cise, actionable commands. Empirical evidence042

highlights this potential, with Microsoft reporting a 043

42% productivity boost in LLM-augmented office 044

tasks (Cambon et al., 2023) and MIT observing a 045

59% efficiency gain among business professionals 046

(Noy and Zhang, 2023). 047

Despite these advances, leveraging LLMs for 048

document automation remains challenging. First, 049

instruction understanding is non-trivial: complex 050

requests such as “merge cells and apply conditional 051

formatting” require systems to decompose and se- 052

quence multiple atomic actions, a process where 053

existing methods often falter, especially with nested 054

or composite operations (Zou et al., 2024). Second, 055

semantic alignment is difficult: mapping ambigu- 056

ous or underspecified instructions (e.g., “make the 057

table professional”) to concrete API calls demands 058

sophisticated inference and contextual reasoning, 059

given the inherent mismatch between natural lan- 060

guage and formal APIs. Third, efficient execution 061

is essential: maintaining document state and ensur- 062

ing reliable operation under resource constraints 063

(such as sub-second latency on edge devices) calls 064

for frameworks that are both lightweight and robust, 065

which current solutions rarely achieve (McIntosh 066

et al., 2024). 067

Moreover, the field lacks rigorous evaluation 068

standards. Most existing benchmarks focus on 069

single-turn tasks or use oversimplified metrics, fail- 070

ing to capture the complexity and continuity of real- 071

world document workflows (Fodor, 2025). This 072

results in inflated performance estimates that do 073

not reflect practical deployment scenarios. 074

To address these gaps, we introduce OpenDo- 075

cAssistant, a unified framework that advances both 076

methodology and evaluation for language-driven 077

document automation. Our system features a three- 078

stage pipeline: (1) planning, which decomposes 079

user instructions into executable steps; (2) API 080

selection, where we propose the novel RaAPI 081

(Retrieval-augmented API Selection) mechanism. 082

RaAPI uniquely integrates dense vector retrieval of 083
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relevant APIs with LLM-based contextual reason-084

ing, enabling accurate and flexible mapping from085

natural language to formal API calls—a signifi-086

cant improvement over prior approaches that rely087

solely on retrieval or direct generation. (3) execu-088

tion, which applies state-aware operations to the089

document, ensuring consistency and correctness090

throughout the workflow.091

Complementing the system, we present Open-092

DocEval, a comprehensive benchmark designed to093

reflect real-world document automation challenges.094

OpenDocEval introduces dual metrics: Achieve-095

ment Rate (AR), measuring task success, and Av-096

erage Number of APIs (ANA), quantifying execu-097

tion efficiency. This dual perspective enables fair098

comparison across both high-capacity LLMs and099

lightweight models, and more accurately reflects100

practical utility.101

In summary, OpenDocAssistant and RaAPI to-102

gether bridge the semantic and operational gaps103

in document automation, while OpenDocEval pro-104

vides the first rigorous, workflow-oriented evalu-105

ation standard for this domain. Our experiments106

demonstrate that this approach not only improves107

accuracy and efficiency, but also broadens accessi-108

bility to advanced document automation for a wider109

range of users and deployment environments.110

2 Related Work111

2.1 LLMs for Document Processing112

Recent advancements in LLMs have significantly113

reshaped the landscape of document processing,114

a longstanding focus area in NLP.With the rapid115

advancement of LLMs, document-related appli-116

cations have gained increasing attention. GPT-117

3 demonstrated strong few-shot capabilities in118

document generation and editing (Brown et al.,119

2020), while evaluations of ChatGPT revealed120

limitations in structured document manipulation,121

particularly in layout and formatting comprehen-122

sion (Winn, 2023). Despite promising capabili-123

ties, general-purpose LLMs often lack deep un-124

derstanding of document-specific structures and125

workflows. Structure-aware pretraining approaches126

such as LayoutLM (Xu et al., 2020) and its mul-127

timodal extension LayoutLMv2 (Xu et al., 2021)128

have been proposed to address this gap.129

A growing direction involves integrating LLMs130

with external APIs to enhance document opera-131

tion capabilities. ToolFormer introduced a self-132

supervised method for LLMs to acquire tool use133

abilities (Schick and Schütze, 2023), while Tool- 134

LLM developed a framework for mastering thou- 135

sands of real-world APIs (Qin et al., 2023). Un- 136

like these methods, OpenDocAssistant specifically 137

addresses semantic-to-API mapping and execu- 138

tion challenges within complex document environ- 139

ments. 140

2.2 Document-Centric Evaluation 141

Benchmarks for LLMs 142

While advancements in LLM-based document pro- 143

cessing systems have been significant, a compre- 144

hensive evaluation framework is equally critical 145

to measure their practical effectiveness. There- 146

fore, we next review document-centric evaluation 147

benchmarks. Effective evaluation of LLMs in doc- 148

ument processing requires benchmarks that capture 149

domain-specific operational characteristics. While 150

multi-dimensional frameworks have assessed gen- 151

eral aspects such as accuracy, robustness, and effi- 152

ciency (McIntosh et al., 2024), broader evaluations 153

highlight that no single dataset comprehensively 154

measures model capabilities (Banerjee et al., 2024). 155

Among recent efforts, benchmarks such as 156

DocBench (Zou et al., 2024) and PPTC (Guo et al., 157

2023) have been proposed to address these evalu- 158

ation gaps. DocBench focuses on metadata ex- 159

traction, layout parsing, and multimodal under- 160

standing across static documents, while PPTC pio- 161

neers multi-turn PowerPoint creation and editing. 162

However, these benchmarks remain constrained: 163

PPTC supports short interactions (2.3 turns per ses- 164

sion) and employs basic state tracking, whereas 165

OpenDocAssistant handles longer sessions (aver- 166

aging 3.57 turns) with robust state management 167

via save_state() and load_state() functions, 168

enabling complex multi-turn manipulations. More- 169

over, PPTC emphasizes presentation-specific op- 170

erations, while our framework supports a broader 171

range of document types through modular API se- 172

lection. 173

Additionally, critiques point out that many 174

benchmarks rely on single-turn evaluations, failing 175

to emulate real-world multi-step workflows (Fodor, 176

2025), and enforce single gold-standard outputs, 177

overlooking the multiplicity of valid document so- 178

lutions (McIntosh et al., 2024). These limitations 179

motivate the need for dynamic evaluation frame- 180

works like OpenDocEval that better reflect practical 181

document processing challenges. 182
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3 OpenDocAssistant183

3.1 System Overview184

Modern document processing software’s complex-185

ity creates accessibility barriers for non-technical186

users, reducing productivity and hindering automa-187

tion. OpenDocAssistant addresses this through188

a three-stage framework: planning, API selec-189

tion, and execution. As shown in Figure 1, plan-190

ning decomposes instructions, API selection maps191

them to operations via RaAPI (hybrid retrieval-192

and-reasoning), and execution performs validated193

actions. The system uses Qwen2-7B-Instruct for194

semantic interpretation and python-docx for oper-195

ations, enabling real-time error correction through196

a closed-loop user interaction cycle (Ibrahimzada,197

2024).198

3.2 Planning Stage199

The planning stage bridges user intent and exe-200

cutable operations by breaking down complex in-201

structions into ordered sequences of basic actions.202

It uses structured prompt engineering and task-203

specific templates to guide the LLM through a204

three-step process: prompt construction, model in-205

ference, and post-processing (Algorithm 1). For206

example, “Create a document, add a title, then in-207

sert a table” is decomposed into distinct actions,208

leveraging the LLM’s ability to infer logical de-209

pendencies (Ibrahimzada, 2024). The algorithm210

operates in O(n+m), with LLM inference costing211

O(n2).212

3.3 Retrieval-Augmented API Selection213

(RaAPI)214

We propose RaAPI, a hybrid mechanism that215

bridges natural language instructions and formal216

API calls in OpenDocAssistant. RaAPI combines217

dense vector retrieval with LLM-based contextual218

reasoning to select and sequence APIs for user com-219

mands.220

The process begins with a retrieval phase,221

where user instructions and API specifications222

are encoded into dense vectors using the223

text-embedding-ada-002 model. This trans-224

forms both instructions and API documentation225

into a high-dimensional semantic space, where co-226

sine similarity captures conceptual relationships227

beyond keyword overlap:228

sim(I, Ai) =
E⃗I · E⃗Ai

||E⃗I || · ||E⃗Ai ||
(1)229

Algorithm 1: Hierarchical Instruction
Decomposition

Input: Instruction I
Output: Ordered sequence of

sub-instructions S
1 if NotPlanningEnabled() then
2 return [I] ; // No decomposition

required

3 template← FormatPrompt(I) ;
4 response← QueryLanguageModel(template,

model) ;
5 subInstructions← ParseResponse(response)

;
6 if IsEmpty(subInstructions) then
7 return [I] ; // Fallback if model

fails

8 S← FilterAndNormalize(subInstructions)
;

9 S← EnrichWithContext(S, I) ;
10 return S ;

where E⃗I and E⃗Ai are the embeddings for instruc- 230

tion I and API candidate Ai. To reduce latency, we 231

use a persistent embedding cache: pre-computed 232

embeddings are loaded if available, otherwise com- 233

puted and stored for future use. 234

Top-k API candidates are passed to an LLM 235

reasoning module. Prompted as a document au- 236

tomation assistant, the LLM receives APIs (sig- 237

natures, descriptions), strict output rules, checks, 238

and examples. A carefully designed prompt guides 239

the LLM to interpret complex requests, select rele- 240

vant APIs, extract/format parameters per signatures, 241

and produce a logically ordered, syntactically cor- 242

rect API call sequence. This prompt engineering 243

constrains LLM output to valid calls and encour- 244

ages reasoning about document structure, depen- 245

dencies, and parameters, as seen in codebase tem- 246

plates (src/api_selection.py). 247

The LLM’s multi-step, context-aware reasoning 248

analyzes instructions and retrieved APIs, break- 249

ing down complex requests into atomic opera- 250

tions. It maps these to relevant APIs using prompt 251

context and its knowledge. Parameters are ex- 252

tracted/formatted per API signatures, and the fi- 253

nal API sequence is generated in a single, strictly 254

formatted, logically ordered line. This handles am- 255

biguous, multi-step, or underspecified instructions 256

beyond retrieval’s scope. While the LLM doesn’t 257

manage document state, it generates API sequences 258
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Figure 1: System framework of OpenDocAssistant showing the three-stage design. (1) The Planning stage processes
instructions via task-specific templates. (2) The API selection stage combines vector retrieval and LLM reasoning.
(3) The Execution stage enforces validation rules.

executed by a stateful backend (word_executor),259

ensuring correct document structure and order.260

This interplay is essential for robust automation,261

as LLM output is interpreted within the evolving262

document’s context.263

Algorithm 2 outlines the vector retrieval process.264

The LLM then takes the sorted top-k APIs and265

the original instruction to generate the final API266

sequence. This hybrid design ensures both broad267

coverage and precise, context-aware API selection,268

which is essential for robust document automation.269

3.4 Execution Stage270

The execution stage converts API call sequences271

into document edits via a hierarchical interface272

covering text, tables, images, and formatting. A273

state manager tracks the current document and274

key elements, ensuring context-aware, sequential275

operations. Multi-level error handling catches276

exceptions per API call, normalizes error mes-277

sages, and applies fallbacks for noncritical fail-278

ures. Core principles—functional atomization, sen-279

sible defaults, composability, and explicit state280

feedback—underpin reliable execution and support281

higher-level modules (Fowler, 2002).282

4 OpenDocEval283

The evaluation of LLMs in document processing284

faces challenges in handling ambiguous instruc-285

Algorithm 2: Vector-Based API Selec-
tion for Instruction Processing

Input: Instruction I, Candidate API set A
Output: Top-k most relevant APIs

1 embedding_I← GetEmbedding(I,
model="text-embedding-ada-002") ;
// Encode instruction

2 similarityList← [] ; // Initialize
similarity scores

3 foreach api in A do
4 embedding_api← GetAPIEmbedding(api)

;
5 score← CosineSim(embedding_I,

embedding_api) ;
6 similarityList.append((api,

score)) ;

7 sortedAPIs← SortByScore(similarityList,
descending=True) ;

8 return TopK(sortedAPIs, k=10) ;

tions, complex API sequences, and diverse execu- 286

tion paths. Traditional single-point metrics fail to 287

capture model performance in knowledge-intensive 288

scenarios. We propose OpenDocEval—a structured 289

framework for assessing LLM capabilities in docu- 290

ment processing. 291
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4.1 Evaluation Framework292

Figure 2 shows the framework’s two-dimensional293

structure: independent session units horizontally294

and sequential interaction turns vertically. Each295

turn follows a pipeline: instruction input, oper-296

ation generation, execution, result comparison,297

and metric computation. Formally, given instruc-298

tions I = {i1, i2, . . . , in} and operations A =299

{a1, a2, . . . , am}, the system learns a mapping300

function f : I × Dj−1 → Sj that maps instruc-301

tion ij and prior state Dj−1 to operation sequence302

Sj , producing document state Dj that satisfies user303

intent.304

4.2 Multidimensional Evaluation Metric305

Framework306

We introduce a hierarchical metric system evalu-307

ating performance across functional accuracy and308

computational efficiency.309

Functional Metrics Achievement Rate (AR) is310

the primary metric, assessing functional equiva-311

lence between predicted and reference documents.312

We report AR at two granularities:313

• Task-level AR (ARtask): Measures success314

for individual tasks:315

ARtask =

∑NT
i=1C(Dp,i, Dl,i)

NT
(2)316

• Session-level AR (ARsession): Assesses suc-317

cess over entire sessions:318

ARsession =

∑NS
j=1C(Dp,j,final, Dl,j,final)

NS
(3)319

Efficiency Metrics We measure the Average320

Number of APIs (ANA) to quantify operational321

efficiency, with lower values indicating higher ef-322

ficiency. We report ANA at both task and session323

granularities:324

• Task-level ANA (ANAtask): Average API325

calls per task:326

ANAtask =
1

NT

NT∑
i=1

|Ai| (4)327

• Session-level ANA (ANAsession): Average to-328

tal API calls per session:329

ANAsession =
1

NS

NS∑
j=1

 Tj∑
k=1

|Aj,k|

 (5)330

4.3 Test Set Design and Evaluation 331

Methodology 332

To rigorously evaluate document processing capa- 333

bilities, we constructed a comprehensive test set 334

comprising 110 sessions (84 for document creation, 335

26 for template editing) with 750 instructions. The 336

test set covers text, table, image, and hybrid op- 337

erations at varying complexity levels, with each 338

session maintaining contextual dependencies be- 339

tween instructions to evaluate model performance 340

stability. As shown in Table 1, our test set includes 341

diverse operation types and complexity levels, with 342

text operations being the most common (45.2% in 343

document creation, 61.5% in template editing) and 344

advanced tasks (4+ operations) constituting 40.5% 345

of document creation tasks. 346

Our evaluation process follows a three-stage 347

pipeline: (1) preparation, where we load test ses- 348

sions and generate reference documents; (2) exe- 349

cution, conducting both isolated and continuous 350

interactions; and (3) error analysis, categorizing 351

failures into selection, parameter, and execution 352

errors. This structured approach ensures repro- 353

ducibility and supports automated evaluation of 354

model performance. 355

5 Experiment 356

This section presents a focused evaluation of Open- 357

DocAssistant, highlighting how model architecture, 358

the RaAPI mechanism, and task characteristics 359

jointly affect system performance. We detail the 360

experimental setup and present the primary perfor- 361

mance metrics. 362

5.1 Model Capability Evaluation 363

We benchmarked a range of models, both com- 364

mercial and open-source, with varying parameter 365

scales. The task-level and session-level results, in- 366

cluding Achievement Rate (AR) and Average Num- 367

ber of APIs (ANA), are summarized in Table 2. 368

5.2 Ablation and Robustness Study 369

We conducted comprehensive ablation studies and 370

targeted robustness tests using the deepseek-v3 371

model. These experiments assess the contribu- 372

tion of key components, especially the Retrieval- 373

augmented API Selection (RaAPI) mechanism, and 374

evaluate resilience to imperfect inputs. Perfor- 375

mance was measured across three primary scenar- 376

ios: the standard system evaluated on the robust 377

test set, the ablated system (without RaAPI) on a 378

5



Figure 2: OpenDocEval evaluation framework architecture. The framework is organized horizontally into three
independent session units (Sessions 1, 2, and 3) and vertically into sequential interaction turns (Tasks 1-1, 1-2,
etc.). Each column represents a different session evaluation approach. The middle section (Session 2) illustrates
the complete pipeline, with original documents being processed through API sequences to produce processed
documents. These are then compared against target documents to calculate both ANA and AR metrics. Blue circular
icons represent API operations executed for each task.

Characteristics Create_new_docs Edit_Word_template
Sessions 84 26
Avg. instructions/session 3.57 2.15
Document types New documents Existing templates
Operation type distribution (%)
Text operations 45.2 61.5
Table operations 32.1 23.1
Image operations 15.5 7.7
Hybrid operations 7.2 7.7
Complexity level distribution (%)
Basic (single operations) 21.4 30.8
Intermediate (2–3 operations) 38.1 53.8
Advanced (4+ operations) 40.5 15.4

Table 1: Dataset characteristics for document creation and editing.

standard test set, and the ablated system also on the379

robust test set. Performance metrics (Task AR, Ses-380

sion AR, Task ANA, Session ANA) are presented381

in Table 3.382

To further analyze robustness against input vari-383

ations, we evaluated the system’s performance384

on specific types of fuzzy instruction variants:385

keyword-only, vague terms, and truncated inputs.386

Table 4 presents the Document Consistency Rate387

and High API Similarity Rate for both the standard388

system (with RaAPI) and the ablated system (with-389

out RaAPI) when subjected to these fuzzy tests.390

6 Analysis and Discussion 391

This section analyzes the experimental results pre- 392

sented in Section 5, discussing model capabilities, 393

the impact of the RaAPI mechanism, system ro- 394

bustness, and error patterns. 395

6.1 Model Capability Analysis 396

6.1.1 Performance Overview 397

The results from Table 2 highlight significant 398

performance variations across different mod- 399

els. deepseek-v3 achieves the highest task-level 400

achievement rate (AR) at 74.53% and the best 401

session-level AR at 36.36%, while also main- 402

taining a low average number of APIs per task 403

(ANA) of 4.37, indicating efficient planning. In 404
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Table 2: OpenDocEval results across different model variants. AR: Achievement Rate (%), ANA: Average Number
of APIs.

Models and Methods Task AR (%) Task ANA Session AR (%) Session ANA

gpt-4.1 70.00 4.21 31.82 34.66
qwen3-plus 60.93 4.64 30.91 35.52
claude-3-7-sonnet 63.73 6.60 0.00 50.48
gemini-2.0-flash 59.87 5.45 12.73 41.73

deepseek-v3 74.53 4.37 36.36 33.44
lama3-70b 63.60 7.59 13.64 58.11
qwen3-14b 45.47 4.39 0.00 33.59
deepseek-r1-llama-8b 37.33 11.25 0.00 86.07
qwen2.5-instruct-7b 33.60 13.22 0.00 101.09
deepseek-qwen2.5-math-7b 11.87 27.84 0.00 213.09

Table 3: Overall Performance Metrics for deepseek-v3 under Ablation and Robustness Scenarios.

Scenario Task AR (%) Task ANA Session AR (%) Session ANA

Standard System on Robust Test 60.93 4.54 21.00 17.46
Ablated System on Standard Test 12.40 1.60 0.00 12.37
Ablated System on Robust Test 10.40 1.60 0.00 14.27

contrast, deepseek-qwen2.5-math-7b performs405

worst, with only 11.87% task AR and 0% session406

AR, and requires an average of 27.84 APIs per407

task, reflecting inefficient decomposition and ex-408

ecution. gpt-4.1 also demonstrates strong per-409

formance, with a 70.00% task AR and the low-410

est ANA (4.21), but its session AR drops to411

31.82%. qwen3-plus and claude-3-7-sonnet412

achieve moderate task ARs (60.93% and 63.73%,413

respectively), but claude-3-7-sonnet fails to gen-414

eralize to session-level tasks (0.00% session AR),415

and qwen3-plus achieves 30.91% session AR.416

gemini-2.0-flash shows a task AR of 59.87%417

and session AR of 12.73%. A notable trend across418

all models is the significant decline from task-level419

to session-level AR, underscoring the challenge of420

maintaining state and context across multiple turns.421

6.1.2 Impact of Task Complexity and Model422

Specialization423

Task complexity critically impacts performance.424

Simpler tasks show similar model performance,425

but complexity widens gaps. For instance,426

deepseek-v3 and gpt-4.1 maintain high ARs on427

complex tasks, unlike qwen2.5-instruct-7b and428

deepseek-qwen2.5-math-7b whose ARs drop be-429

low 35%. Text operations generally outperform ta-430

ble or image tasks, likely due to models’ language-431

centric training. Editing, needing state recognition 432

and contextual changes, remains challenging. In 433

multi-turn editing, models often struggle with con- 434

sistency (e.g., updating charts post-table changes), 435

showing limits in current planning and state man- 436

agement. 437

While larger models often perform better, do- 438

main adaptation and planning are vital. Top models 439

generate concise API sequences for complex tasks, 440

shown by low ANA values (e.g., deepseek-v3: 441

4.37, gpt-4.1: 4.21 from Table 2), whereas 442

smaller models produce longer, inefficient chains 443

(e.g., deepseek-qwen2.5-math-7b: 27.84). For 444

example, deepseek-v3 merges tables in one pass, 445

while weaker models need multiple steps or fail 446

entirely. This underscores the need for both model 447

capability and robust API selection for reliable doc- 448

ument automation. 449

6.1.3 Error Analysis 450

To pinpoint system weaknesses, we analyze errors 451

across the three-stage pipeline. Figure 3 shows the 452

distribution: planning (42%), API selection (31%), 453

and execution (27%). 454

Planning errors often stem from difficulties in 455

decomposing nested instructions. API selection 456

errors arise when parameter mappings are ambigu- 457

ous or necessary context is missing. Execution 458
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Table 4: Granular robustness test results on different types of fuzzy instructions for Full RaAPI and Ablated RaAPI
configurations.

Configuration Instruction Type Document Consistency (%) API Similarity (%)

Full RaAPI (under Fuzzy Test) keywords_only 2.4 0.8
vague_terms 86.4 95.1

truncated 10.4 2.8

Ablated RaAPI (under Fuzzy Test) keywords_only 3.2 0.8
vague_terms 87.6 96.4

truncated 10.1 1.9

42%

31% 27%

Planning
API Selection
Execution

Figure 3: Error distribution across pipeline stages.

errors typically occur due to invalid parameters459

or incorrect operation ordering. These findings460

suggest three primary directions for improvement:461

(1) refining decomposition templates to better cap-462

ture dependencies between sub-tasks, (2) enforcing463

stricter type–context checks during API matching464

to reduce ambiguity, and (3) strengthening state465

validation at execution time to prevent cascading466

errors.467

6.2 Ablation and Robustness Analysis468

6.2.1 Impact of RaAPI and System469

Robustness470

The ablation studies (Table 3) demonstrate RaAPI’s471

critical role in system performance. The standard472

deepseek-v3 system achieves 60.93% Task AR473

on the robust test set, showing resilience despite a474

notable drop from its peak performance (74.53%475

Task AR, 36.74% Session AR on standard tests).476

Ablating the RaAPI mechanism leads to severe477

degradation, with Task AR dropping to 12.40% on478

standard tests and 10.40% on robust tests. This con-479

trast highlights RaAPI’s essential role in enabling480

accurate document manipulation. The low ANA481

values (1.60) in ablated configurations indicate an482

inability to generate complete API sequences.483

6.2.2 Performance on Fuzzy Instructions484

Robustness tests on fuzzy instructions (Table 4)485

reveal that both full and ablated RaAPI configura-486

tions handle vague terms well (Document Consis-487

tency >86%) but struggle with keyword-only and488

truncated instructions (Consistency <11%). The 489

similar performance patterns suggest that while 490

RaAPI is crucial for overall task success, neither 491

it nor the LLM alone can reliably handle highly 492

fragmented inputs. This indicates that improving 493

robustness against underspecified instructions re- 494

mains a key challenge, requiring enhanced under- 495

standing mechanisms beyond current implementa- 496

tions. 497

7 Conclusion 498

This paper presents OpenDocAssistant, a language- 499

driven document automation system that trans- 500

forms complex processing into natural language 501

interactions through a three-stage framework. Eval- 502

uations across 110 test sessions demonstrate its 503

effectiveness, achieving 74.53% Achievement Rate 504

with only 4.37 API calls per task. The plan-select- 505

execute paradigm represents a fundamental shift 506

in human-software interaction, with RaAPI prov- 507

ing essential (performance drops from 74.53% to 508

12.40% without it) and showing robust handling of 509

vague instructions (>0.86 consistency, >0.95 API 510

similarity). Future work will focus on multimodal 511

interactions, personalization, and broader software 512

applications. 513

Limitations 514

The current system has several limitations: reliance 515

on a single language model for planning and exe- 516

cution, performance constraints from underlying 517

APIs, challenges with ambiguous instructions (as 518

shown in robustness tests), dependency on high- 519

quality training data, and computational resource 520

requirements for inference. 521
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A Dataset Description 585

Our dataset consists of 100 document creation ses- 586

sions, each containing multiple tasks for creating 587

and editing Word documents. The dataset is or- 588

ganized into two versions: a standard version and 589

an API-lack version, allowing for comprehensive 590

evaluation of document automation capabilities. 591

Each session is stored in a JSON file (e.g., 592

session_X.json) containing a sequence of tasks. 593

Each task includes a sequential identifier, natural 594

language command for document manipulation, 595

corresponding sequence of API calls to execute the 596

instruction, paths to initial and expected final docu- 597

ment states, and alternative versions for API-lack 598

scenarios. 599

The dataset encompasses a comprehensive range 600

of document operations, including document struc- 601

ture management (headers, footers, page numbers, 602

table of contents), content formatting (font styles, 603

colors, paragraph formatting), table operations (cre- 604

ation, cell content, headers), list management (or- 605

dered and unordered lists), hyperlink and reference 606

handling, and various document elements (water- 607

marks, line breaks, spacing). 608

The dataset comprises 100 sessions with an aver- 609

age of 7-8 tasks per session, resulting in over 700 610

unique instructions. It covers more than 20 differ- 611

ent types of API operations and includes various 612

document types such as meeting minutes, reports, 613

and forms. 614

The dataset was created through a systematic pro- 615

cess involving task design for realistic document 616

creation scenarios, instruction writing in Chinese, 617

API sequence generation for executable calls, docu- 618

ment state tracking for intermediate and final states, 619

and quality control for instruction-API mapping 620

accuracy. 621

The dataset supports comprehensive evaluation 622

scenarios, including task-level evaluation for indi- 623

vidual instruction execution accuracy, session-level 624

evaluation for complete document creation work- 625

flows, API-lack scenarios for testing robustness 626
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with limited API availability, and cross-version627

comparison between standard and API-lack per-628

formance.629

B RaAPI and Planning Mechanisms630

The RaAPI (Robust API Planning and Integration)631

mechanism employs a hierarchical architecture for632

document automation, consisting of three key com-633

ponents. The API Selection Module utilizes a fine-634

tuned LLM to map natural language instructions635

to executable API sequences through a two-stage636

process of instruction analysis and API mapping637

with parameter validation. The State Management638

component maintains document state through a639

structured representation, tracking hierarchical ele-640

ments, monitoring formatting and content modifica-641

tions, and recording operation history for rollback642

and validation. The Error Recovery system im-643

plements robust error handling through API avail-644

ability checking, fallback mechanisms for failed645

operations, and state recovery for maintaining doc-646

ument consistency.647

The planning phase orchestrates document cre-648

ation through a multi-step process. Task Decom-649

position breaks down complex document creation650

tasks into atomic operations, identifies dependen-651

cies, and generates optimal execution order. The652

LLM Prompting Strategy incorporates document653

state and history through context-aware prompt-654

ing, utilizes few-shot learning with example API655

sequences, and employs chain-of-thought reason-656

ing for complex operations. Execution Planning657

generates validated API call sequences, handles658

conditional operations based on document state,659

and optimizes operation order for efficiency.660

The system maintains document structure661

through a comprehensive approach to hierarchical662

representation, state tracking, and format consis-663

tency. The hierarchical representation employs a664

tree-based structure for document elements, man-665

ages parent-child relationships for nested elements,666

and implements position tracking for content in-667

sertion. State tracking provides real-time updates668

of document modifications, validates structural in-669

tegrity, and resolves conflicts in concurrent oper-670

ations. Format consistency is maintained through671

style inheritance and propagation, format valida-672

tion and correction, and cross-element reference673

management.674
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