
REST: Efficient and Accelerated EEG Seizure Analysis
through Residual State Updates

Arshia Afzal 1 2 Grigorios Chrysos 3 Volkan Cevher * 2 Mahsa Shoaran * 1

Abstract
EEG-based seizure detection models face chal-
lenges in terms of inference speed and memory
efficiency, limiting their real-time implementa-
tion in clinical devices. This paper introduces
a novel graph-based residual state update mech-
anism (REST) for real-time EEG signal analy-
sis in applications such as epileptic seizure de-
tection. By leveraging a combination of graph
neural networks and recurrent structures, REST
efficiently captures both non-Euclidean geome-
try and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both
seizure detection and classification tasks. Notably,
REST achieves a remarkable 9-fold acceleration
in inference speed compared to state-of-the-art
models, while simultaneously demanding substan-
tially less memory than the smallest model em-
ployed for this task. These attributes position
REST as a promising candidate for real-time im-
plementation in clinical devices, such as Respon-
sive Neurostimulation or seizure alert systems.

1. Introduction
Brain disorders, including epilepsy, present substantial
challenges globally, prompting the need for innovative ap-
proaches in diagnosis and treatment. Recurrent seizures,
recognized as one of the most prevalent neurological emer-
gencies globally (Strein et al., 2019), impact approximately
50 million people worldwide (Beghi et al., 2019).

Detecting changes in the rhythms of brain activity through
the monitoring of electroencephalography (EEG) signal al-
lows us to pinpoint the onset zone and time of seizures
(Gotman, 1990; Siddiqui et al., 2020), making EEG an in-
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valuable and extensively utilized tool for seizure detection
and localization. Traditionally, neurological experts perform
these tasks, involving the time-consuming process of manu-
ally labeling periods spanning from hours to days for each
individual patient (Harrer et al., 2019; Ahmedt-Aristizabal
et al., 2020). Several studies have explored the application
of Machine Learning (ML) in seizure analysis, aiming to
simplify the handling of large seizure datasets for experts
(Tang et al., 2021; Ahmedt-Aristizabal et al., 2020; Covert
et al., 2019; Siddiqui et al., 2020). These studies predomi-
nantly focus on deep models, known for their accuracy and
suitability for clinical applications.

Taking inspiration from computer vision (Voulodimos et al.,
2018), many studies have applied different variations of
Convolutional Neural Networks (CNN) for seizure detec-
tion, as demonstrated in Saab et al. (2020). Various versions
of Graph Neural Networks (GNN) effectively capture non-
Euclidean geometry in datasets like EEG signals, contribut-
ing to enhanced seizure detection and classification (Li et al.,
2022; Tang et al., 2021; Ho & Armanfard, 2023). Addition-
ally, to enhance the performance of deep neural networks
and accounting for time-series nature of brain rhythms, dif-
ferent variations of Recurrent Neural Networks (RNN) have
been utilized in seizure analyses (Ahmedt-Aristizabal et al.,
2020).

While these models excel in achieving high accuracy in
seizure detection and classification tasks, they often struggle
with issues such as complexity, inefficient memory usage,
and slow inference speeds. One of the main reasons behind
this inefficiency lies in structures such as the gating mecha-
nism found in RNN models (e.g., Long Short-Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997) or the presence
of deep convolutional layers in CNNs and GNNs.

Both inference time and memory storage considerations be-
come critically important in the context of modern seizure
treatment devices like Responsive Neurostimulation (RNS)
and Deep Brain Stimulation (DBS) (Fisher & Velasco,
2014a; Sun & Morrell, 2014). These devices, which have
shown promise in suppressing seizure attacks, require a
small yet accurate ML model to trigger stimulation com-
mands for symptom suppression (Shoaran et al., 2016; Shin
et al., 2022). Furthermore, the model must exhibit low
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inference time in activating the stimulator to ensure its ef-
fectiveness (Fisher & Velasco, 2014b; Zhu et al., 2021). Un-
fortunately the aforementioned methods do not have such a
low inference.

In this study, we introduce REST, a graph-based residual
update mechanism designed to efficiently detect both spatial
and temporal information from EEG. REST captures spatio-
temporal dependencies in EEG signals without relying on
computationally expensive gating mechanisms commonly
found in existing models (Hochreiter & Schmidhuber, 1997;
Cho et al., 2014; Asif et al., 2020; Tang et al., 2021). The
ability to dynamically capture spatial information over time
and update the state accordingly contributes to the high
accuracy of REST in localizing and detecting seizures. No-
tably, REST attains comparable accuracy to state-of-the-art
models, while achieving significantly faster processing dur-
ing inference and substantially reducing computational and
memory overhead 1. Our contributions are as follows:

• We present a novel graph-based residual update mecha-
nism designed to capture spatio-temporal dependencies
in EEG signals.

• We enhance the model’s performance while maintain-
ing its small size and rapid detection and classification
speed using binary random masking the state and mul-
tiple state updates.

• Our model delivers predictions with an impressive in-
ference latency of 1.29ms. This unmatched inference
speed is achieved with a light memory footprint of
37KB.

• Our model is 14× smaller than the smallest compet-
itive models for seizure detection. Remarkably, our
architecture can match the performance of the state-
of-the-art deep neural networks with less than 10K
parameters.

2. Related Work
Many studies have attempted to develop ML and deep learn-
ing models for seizure detection (Siddiqui et al., 2020;
O’Shea et al., 2020; Saab et al., 2020) and classification
of seizure types (Ahmedt-Aristizabal et al., 2020; Iešmantas
& Alzbutas, 2020; Tang et al., 2021). Here, we examine
existing seizure detection and classification models, assess-
ing their strengths and limitations across three key aspects.
Firstly, we explore how these studies capture the spatio-
temporal features present in EEG. Secondly, we delve into
the inference speed and the impact of varying clip lengths on
seizure analysis. Lastly, we study the memory requirements
and model size of current models.

1Visit our web site at https://arshiaafzal.github.io/REST/

Spatio-Temporal Nature of EEG Signals: As introduced
earlier, the nature of EEG signals involves both spatial and
temporal components, which are pivotal for accurate analy-
sis in epilepsy studies. Notably, some studies, like Asif et al.
(2020), extract spectral features to represent temporal de-
pendencies, incorporating them into a CNN architecture. In
contrast, Saab et al. (2020) employ a CNN model that treats
EEG signals as multi-channel images, a methodology that
does not align with the time-series structure of EEG. Recent
advancements involve the utilization of various RNN vari-
ations or transformers (Vaswani et al., 2017) to effectively
capture temporal patterns in alignment with the intricate
dynamics of EEG signals.

RNNs capture temporal dependencies within time-series
data by mapping the input x(t) into a latent space h(t)
and employ recurrence within that space through linear or
non-linear transformations. Despite their effectiveness in
capturing time-series dependencies, RNNs suffer from a
significant challenge known as gradient vanishing. This
issue occurs during backpropagation, causing gradients to
diminish and hindering the effective learning of long-range
dependencies in sequential data. To address the vanish-
ing gradient problem (Pascanu et al., 2013), RNN variants
like LSTM (Hochreiter & Schmidhuber, 1997) or Gated
Reccurent Unit (GRU) (Cho et al., 2014) leverage gating
mechanisms, introducing different gates that contribute to
creating the next state h(t) from the current input x(t) and
the previous state h(t− 1). Thodoroff et al. (2016) used an
LSTM based model for seizure detection.

On the other hand, attention-based models or transformers
(Vaswani et al., 2017) are more complex than RNNs. Rather
than constructing an explicit state, they directly use previous
inputs to predict the future. However, this approach is more
memory-intensive and time-demanding due to the necessity
of retaining all prior inputs up to a specified time point
and storing weights for each input to construct the attention
matrix. Yan et al. (2022b) employed a transformer-based
model for the seizure detection task.

In the context of EEG analysis where spatial details are
critical at each time point, a common strategy is to utilize
a CNN or graph convolution network independently across
all time points, mapping them into a new feature space.
This approach is then complemented by RNN to capture
temporal dependencies. Ahmedt-Aristizabal et al. (2020)
further employ a CNN-LSTM model, effectively addressing
both spatial and temporal dependencies in EEG data.

Nevertheless, these approaches assume Euclidean geometry
for EEG signals, overlooking the natural geometry of elec-
trode placement (Figure 1 a) and brain network connectivity
(Tang et al., 2021). Recent studies exploit GNNs and graph-
based modeling to capture the non-Euclidean geometry of
EEG signals (Tang et al., 2021; Ho & Armanfard, 2023;
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Table 1. Comparison of seizure detection and classification meth-
ods. A) Capturing the non-Euclidean geometry of EEG signals. B)
Capturing the temporal behavior of EEG signals. C) Evaluated for
both short and long-term seizure detection. D) Runtime efficient
E) Memory efficient.

Method A B C D E
SeizureNet (Asif et al., 2020) ✗ ✔ ✗ ✗ ✗

Transformer (Yan et al.,
2022a)

✗ ✔ ✔ ✗ ✗

EEG-CGS (Ho & Arman-
fard, 2023)

✔ ✔ ✗ ✗ ✗

GGN (Li et al., 2022) ✔ ✔ ✔ ✗ ✗

LSTM (Hochreiter &
Schmidhuber, 1997)

✗ ✔ ✗ ✗ ✗

CNN-LSTM [1] (Ahmedt-
Aristizabal et al., 2020)

✗ ✔ ✗ ✗ ✗

CNN-LSTM [2] (Thodoroff
et al., 2016)

✗ ✔ ✗ ✗ ✗

DCRNN (Tang et al., 2021) ✔ ✔ ✔ ✗ ✗

REST (Ours) ✔ ✔ ✔ ✔ ✔

Covert et al., 2019; Li et al., 2022). For instance, Tang et al.
(2021) implement a self-supervised diffusion graph con-
volution model for both detection and classification tasks.
Similarly, Ho & Armanfard (2023) employ a self-supervised
graph network for channel anomaly detection. These stud-
ies (Ho & Armanfard, 2023; Tang et al., 2021) align more
closely with the dynamic changes in EEG rhythms by replac-
ing the weights of the RNN network with graph convolution
filters. This approach represents the evolution of spectral
features within each time point of the time-series data, offer-
ing a more integrated approach compared to the sequential
mapping from CNN to LSTM (Ahmedt-Aristizabal et al.,
2020).

Significance of Inference Time: Timely detection of
seizure events is essential for the efficacy of closed-loop
epileptic treatments such as RNS and DBS (Shoaran et al.,
2016). To the best of our knowledge, most previous studies
either overlook the importance of inference runtime or, as
observed in Asif et al. (2020), consider a 90ms delay for
giving predictions. This delay is still significant, especially
for edge devices like RNS and DBS. Furthermore, current
studies often evaluate models using a limited range of long
window sizes, typically exceeding 10 seconds or even 1
minute (Tang et al., 2021; Saab et al., 2020). However,
shorter window sizes are preferable for real-time seizure
detection and responsive intervention (Christou et al., 2022;
Zhu et al., 2020). The chosen window size influences a
model’s ability to localize seizures and its overall detection
performance. For instance, a model designed for extended
window sizes may lose accuracy in short-term seizure de-

tection scenarios, an aspect that has not been extensively
explored in the literature.

Memory Requirement in Seizure Detection Models:
While numerous studies have focused on enhancing the accu-
racy of seizure detection and classification tasks, the crucial
aspect of memory demand remains largely overlooked. For
instance, Tang et al. (2021) utilize 240K parameters with
complex gating units, Ho & Armanfard (2023) employ 58K
for channel anomaly detection, and Asif et al. (2020) ad-
dress seizure classification task with a substantial number of
45.94 Million parameters. These examples underscore the
need for an efficient model tailored for seizure detection and
classification problems, especially one suitable for resource-
constrained stimulation devices deployed at the edge, which
do not have access to extensive memory storage for model
weights and states (Zhu et al., 2020).

In Table 1, we present a summary of current models, high-
lighting their respective strengths and weaknesses.

3. Method
Below, we first formulate the tasks of seizure detection and
classification, outlining the graph representation of EEG
signals. Next, we describe the design of REST’s structure
using various updating strategies.

3.1. Seizure Detection and Classification Problem
Setting

Following the preprocessing of raw EEG signals and con-
structing the EEG graph, we obtain an EEG clip X and a
label y for both detection and classification tasks. Here,
X ∈ RT×M×N with N electrodes, T time points and M
features per node while y denotes the label. For detection,
the label is binary, whereas for classification, the label falls
within the range of {0,1,2,3,4} where each class represents
a unique seizure type 2. The goal for both tasks is to predict
the label y based on a given EEG clip X .

3.2. EEG Distance Graph Construction

For each EEG clip, we denote a graph as G = {V, E ,A}
where V = {v1, ..., vN} represents the nodes corresponding
to EEG electrodes, E represents the edges, and A ∈ RN×N

denotes the adjacency matrix of the graph where N is the
number of nodes which in case of EEG data it is the EEG
electrodes. We build a distance-based EEG graph (Fig-
ure 1a) that precisely represents the electrode placement
geometry in the standard 10/20 system (Jasper, 1958). Un-
like correlation graphs, our graph remains static over time,
reducing computations during inference, as the graph struc-

2The five seizure types include: focal, generalized non-specific,
complex partial, absence, and tonic-clonic.
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Figure 1. (a) EEG electrodes placement based on the 10/20 standard and its constructed distanced based EEG graph. Self edges are
not shown for better visualization. (b) The REST framework, where raw EEG signals undergo preprocessing and are structured as a
graph before feeding as input to the model. Following multiple (or single) updates, the model provides the detection or classification
result. (c) Single update mechanism of the proposed model. Dense represents the fully connected layer and GConv is the graph
convolution. See our web page for more visual results at https://arshiaafzal.github.io/REST/.

ture does not need to be constructed for each input (Ho &
Armanfard, 2023). Details regarding the choice of k and
visualization of distance graphs based on threshold values
can be found in Appendix H.

For a distance graph, the adjacency matrix is constructed us-
ing the distance between electrode locations, as in previous
studies (Tang et al., 2021; Li et al., 2022; Ho & Armanfard,
2023). As the EEG electrode placements are fixed, the adja-
cency matrix remains unchanged over time. Thus, for each
element aij ∈ A:

aij =

{
exp(− ||vi−vj ||2

σ2 ) if ||vi − vj || ≤ k,
0 if Otherwise,

(1)

where σ is the standard deviation of the distances and k is
the Gaussian kernel’s threshold (Shuman et al., 2013).

3.3. Residual State Update

Similar to RNNs, REST initially maps the input into a la-
tent space, evolving the state over time to reach the final
output. In contrast to RNNs, REST updates the state us-
ing a novel approach that avoids the complexity of gating
mechanisms like LSTM or GRU, efficiently addressing the
vanishing gradient problem with fewer parameters (details
in Appendix B). For mapping to the state space, REST em-
ploys a linear mapping represented as:

Ht = WXt + USt−1. (2)

Here, Xt ∈ RM×N represents the input, in our case, the
preprocessed EEG clip at time point t ∈ [1, ..., T ], and
St−1 ∈ RQ×N is the previous state of the model at time
point t− 1. W ∈ RQ×M and U ∈ RQ×Q are the weights
of the affine mapping, with Q being the state size, while
Ht ∈ RQ×N represents the state of REST prior to the up-
date. Inspired by He et al. (2016), REST uses a residual
mechanism to update its latent state:

St = Ht + δSt. (3)

Here, St is the next state of the model and δSt is the incre-
mental update for the model’s state. The critical aspect lies
in extracting δSt to align with the spatial changes in EEG
dynamics at each time point. For this purpose, we utilize
the graph convolution method introduced by Morris et al.
(2019). We opt for this graph convolution because of its
simple structure, which is suited for our application. The
graph convolution is defined as follows:

Ot
[:,i] = σ

(
Θ1H

t
[:,i] +Θ2

∑
j ̸=i

aijH
t
[:,j]

)
, (4)

where Ot ∈ RQ×N is the output of the convolutional filter
with Q features per node. Θ1,Θ2 ∈ RQ×Q parameterize the
first and second convolutional filters, aij represents the edge
(in this case, the adjacency matrix element) between node
i, j ∈ 1, . . . , N and σ is the activation function. We denote
the graph convolution in Equation (4) as GΘ(H

t). Note
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that in Equation (4), the summation is performed over the
neighbors of each node. Considering that for non-neighbor
nodes, aij = 0, we can simplify the sum by taking it over
all nodes, implicitly incorporating only the neighbor nodes.

The update for the state, δSt, leveraging the graph convolu-
tion, is expressed as follows:

δSt = GΘ(H
t). (5)

This approach aligns well with the spatial dynamics of EEG
signals. We refer to the process of updating the state of our
model using Equations (2), (3) and (5) as the update cell of
REST (Figure 1 - c).

3.4. Binary Random Mask: Continuous Dropout during
Inference

To combat overfitting in deep neural networks, Dropout
is commonly employed, randomly selecting model param-
eters during training and retaining all parameters during
test-time (Srivastava et al., 2014). Drawing inspiration from
a similar concept in Mordvintsev et al. (2020), we introduce
Binary Masking for state updates, preventing overfitting
while enabling the model to learn random state updates.
This approach prevent the model to overfit as well as accel-
erates inference during test-time by skipping computations
related to zero-masked feature points in the update. The
state update will simply change as follows:

St = Ht + δSt ⊙B. (6)

Here, ⊙ denotes the Hadamard product, and B ∈ RQ×N

is the binary mask with Bij ∼ B(p) from the Bernoulli
distribution, where Bij takes the value 1 with a probability
of p and can be treated as hyperparameter for the model
(more details about the masking during inference is located
at Appendix N).

3.5. Multiple Update Mechanism: Escaping the
Memory Requirements of Stacked RNN Layers

As widely recognized in neural networks, increasing the
depth enhances performance by enabling the extraction of
more general and complex features (Nakkiran et al., 2021).
However, this poses a challenge in RNNs, where each ad-
ditional layer increases memory requirements, not only for
storing extra weights but also for additional gates and states.

In our study, we tackle this challenge by modifying REST
to employ identical weights for state updates, thus facilitat-
ing multiple state updates. Although the graph convolution
layer appears repetitive, the effect of binary random mask
allows REST to learn to update a new part of the state dur-
ing each iteration. This adaptation allows REST to align
itself with the nature of these random updates, contributing

to increased performance and enhanced stability without
affecting memory requirements.

Thus, the Equations (2), (5) and (6) will be modified as
follows:

Ht
i = WXt + USt

i , (7)

St
i+1 = Ht

i + δSt
i ⊙B. (8)

Here, the index i denotes the current iteration during which
the model updates its state, and δSt

i = GΘ(H
t
i ). It is crucial

to emphasize Xt as the feature input at time point t to
prevent the model from diverging into a state and neglecting
the input during multiple updates (additional details are
provided in the Appendix G). To update the state for the next
time point, the final state obtained after multiple updates
becomes the initial state. For instance, after updating the
model’s state I times at time point t, the initial state for the
next time point t + 1 is set as the final state after the last
update at time point t (St+1

0 = St
I ). This enables the model

to effectively capture the temporal dynamics across different
time points. The proposed framework for the update cell is
illustrated in (Figure 1c).

Moreover, previous studies (Mordvintsev et al., 2020; Pa-
jouheshgar et al., 2023) have demonstrated that recurrently
updating the state of neural networks, similar to REST in
structure, for image and texture generation contributes to im-
proved stability. We hypothesize that a similar enhancement
can be achieved for seizure detection and classification.

4. REST & RNNs
To better understand the memory efficiency and speed ad-
vantages of REST during inference, we compare REST with
traditional RNNs. As mentioned in Related Work, RNNs
map the input x(t) to a hidden state h(t) and update this
state over time using the previous state h(t − 1) and the
current input x(t). We highlight the efficiency and connec-
tions between REST and other types of RNNs through the
following comparisons:

Single Update REST vs. Single-Layer RNN: First we
consider a single GRU as a representative of RNN models,
which leverages gating mechanisms to mitigate gradient
vanishing. For a simple GRU update, we have the following
set of equations:

r(t) = σ(Wr · [h(t− 1), x(t)]), (9)

z(t) = σ(Wz · [h(t− 1), x(t)]), (10)

h̃(t) = tanh(Wh · [r(t)⊙ h(t− 1), x(t)]), (11)

h(t) = (1− z(t))⊙ h(t− 1) + z(t)⊙ h̃(t). (12)

Here, h(t) is the hidden state at time t, x(t) is the input
at time t, σ is the sigmoid activation function, ⊙ denotes
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Table 2. Summary of TUSZ v.2.0.0 Train and Evaluation sets used in this study. Columns represent (from left to right): 1) total number
of EEG files 2) total Number of patients 3) total number of generalized non-specific (GN) 4) tonic-clonic (TC) 5) absence (AB) 6) focal
(FN), and 7) complex parietal (CP) seizure types in train and evaluation sets.

EEG-Files Patients Seizure Type Numbers (Seizure Type Sessions)
(% Seizures) (% Seizures) GN TC AB FN CP

Train 4664(5.34%) 579(36%) 335(152) 30(11) 50(15) 1516(496) 279(132)
Evaluation 881(5.82%) 43(79%) 185(54) 57(8) 50(1) 240(98) 108(32)

Table 3. Summary of CHB-MIT Train and Evaluation sets used in
this study.

Patients Seizures Recording (hours)
Train 18 154 732
Evaluation 3 19 91
Test 3 19 92.5

element-wise multiplication, [a, b] denotes the concatena-
tion of vectors a and b, and Wr,Wz,Wh represent the
weight matrices.

These equations describe how the hidden state h(t) is
updated over time based on the input and the preceding
state. Unlike REST, GRU relies on three different gates
(z(t), r(t), h̃(t)) for each state update, requiring twice as
much memory as REST, in addition to the storage required
for the weights utilized in generating these gates.

Despite GRU’s memory demands, it not only needs to com-
pute the next state (h(t)), but also three additional gates
(z(t), r(t), h̃(t)) as the next state depends on these gates.
In contrast, REST relies solely on the update result (δSt),
enabling it to rapidly derive the next state by adding it to the
previous state, without the need for additional gates.

Multi Random Update REST vs. Multi-Layer RNN:

The remarkable efficiency of REST becomes particularly
evident when comparing it with multi-layer RNN. In the
context of multi-layer GRU, reaching the final state involves
computing a set of equations (Equations (9) to (12)) for each
layer. This process introduces three times more latency per
layer, as each layer has three gates that must be computed
to obtain the next state. Furthermore, it requires additional
memory to store the hidden state of each layer, especially
since it is required for updating the final hidden state of the
last layer.

Contrastingly, REST distinguishes itself by reusing the same
set of weights for the update cell and state evolution. This
eliminates the need to store the previous state, as it evolves a
distinct state over iterations. Consequently, REST maintains
the same memory requirements as a single update, while
delivering more accurate results (as discussed in the next
section). It is worth mentioning that in the context of EEG

data, all fully connected layers will be replaced by graph
convolutions for both REST and GRU. For example, the
combination of GRU with diffusion graph convolution for
a traffic forecasting problem was undertaken by Li et al.
(2017). We also applied REST update techniques to tradi-
tional RNNs, with the results presented in Appendix K.

Connection of REST Update Cell to Gating Mechanism:

As shown in Equation (12), the state update of RNNs, such
as GRU, can be expressed as:

h(t) = h(t− 1) + z(t)⊙
(
h̃(t)− h(t− 1)

)
. (13)

This update shares similarities with the REST cell update
in Equation (6). Instead of learning both h̃(t) and h(t)
separately, the REST update directly learns h̃(t) − h(t −
1) as the residual update δSt. Additionally, the update
gate vector z(t) is replaced with binary random masking.
This substitution reduces the computational and memory
overhead required for building z(t) from the input x(t) and
hidden state h(t).

5. Empirical Results
5.1. Setup

Dataset: We used two extensive publicly available datasets
for the seizure detection and classification task: the Temple
University Hospital EEG Seizure Corpus (TUSZ) (Obeid &
Picone, 2016; Shah et al., 2018) and the Children’s Hospital
Boston (Goldberger et al., 2000) dataset. Below is a detailed
description of each dataset:

TUSZ This dataset includes a total of 5545 EEG files for
training and evaluation. These files encompass five differ-
ent seizure types. We incorporated all 19 channels for all
patients in the standard 10-20 system (Figure 1a).

CHB-MIT This dataset comprises recordings from 24 pa-
tients, with each patient having data from 9 to 42 sessions,
recorded at a sampling rate of 256Hz. The dataset contains
a total of 192 seizures. For our study, we included all 19
channels in the standard 10-20 system for the majority of
patients, and excluded sessions that had fewer or a higher
number of channels.

Preprocessing: In line with previous studies (Tang et al.,
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Table 4. Summary of models for seizure detection on the TUSZ dataset. AUROC of different models is represented along with their
memory demands and inference times.

Seizure Detection AUROC (%) Model Efficiency
Model 4-s 6-s 8-s 10-s 12-s 14-s Size(MB) #Param Inference(ms)
LSTM 75.5±0.3 76.1±0.07 80.1±0.3 70.43±0.02 77.9±0.06 74.24±0.2 2.147 536K 3.254
GRU 76.1±0.02 78.8±0.03 73.2±0.04 73.5±0.02 80.1±0.1 77.9±0.04 1.61 402K 2.12
ResNet-
LSTM

79.1±0.05 80.1±0.2 75.6±0.07 74.3±0.04 78.8±0.1 80.0±0.08 27.6 6.9M 6.78

ResNet-
Dilation-
LSTM

80.2±0.08 76.5±0.12 75.9±0.06 73.6±0.03 77.4±0.15 78.2±0.07 27.6 6.9M 6.78

CNN-LSTM 81.3±0.1 78.5±0.05 76.4±0.01 75.4±0.05 75.05±0.174.0±0.03 22.8 6M 5.624
DCRNN 79.7±0.01 82.1±0.04 80.1±0.04 80.0±0.06 82.5±0.1 80.12±0.04 0.884 126K 9.670
DCRNN
w/SS

83.0±0.08 81.8±0.05 82.7±0.1 82.1±0.03 85.6±0.2 84.0±0.01 1.319 330K 23.25

Transformer 83.0±0.02 82.1±0.03 82.2±0.04 85.5±0.07 86.0±0.03 85.1±0.02 0.80 120.3K 2.5
REST(DS) 75.3±0.2 67.0±0.03 72.2±0.07 74.1±0.1 70.6±0.04 70.0±0.04 0.037 8.4K 0.615
REST(RS) 79.4±0.03 81.1±0.01 81.0±0.08 81.8±0.02 80.1±0.1 78.1±0.4 0.037 8.4K 0.710
REST(RM) 82.4±0.04 82.2 ±0.05 82.7±0.1 83.6±0.2 83.4±0.09 82.0±0.1 0.037 8.4K 1.292

Table 5. Summary of models for seizure detection on the CHB-MIT dataset. AUROC of different models is represented along with their
memory demands and inference times.

Seizure Detection AUROC (%) Model Efficiency
Model 4-s 6-s 8-s 10-s 12-s Size(MB) #Param Inference(ms)
LSTM 85.5±0.2 84.1±0.4 81.0±0.2 75.2±0.03 73.5±0.08 2.691 627K 3.56
GRU 76.1±0.3 78.8±0.03 73.2±0.4 73.5±0.01 80.1±0.2 1.92 553K 2.42
ResNet-LSTM 77.6±0.2 82.1±0.14 79.9±0.3 76.8±0.4 81.4±0.17 29.1 7.2M 6.84
ResNet-
Dilation-LSTM

78.2±0.03 79.8±0.1 82.3±0.4 77.6±0.4 81.2±0.1 29.1 7.2M 6.84

CNN-LSTM 86.2±0.4 84.9±0.2 80.4±0.04 80.35±0.06 77.6±0.3 7.6M 30.23 6.432
DCRNN 88.7±0.3 80.0±0.02 86.8±0.06 88.8±0.3 86.5±0.3 0.591 147K 9.80
Transformer 80.1±0.2 82.3±0.6 82.2±0.04 85.5±0.01 86±0.17 0.25 52.4K 6.00
REST(DS) 89.1±0.2 88.5±0.08 90.1±0.1 86.3±0.03 87.8±0.5 0.037 9.3K 1.314
REST(RS) 92.3±0.1 88.7±0.06 92.1±0.03 93.5±0.02 91.5±0.02 0.037 9.3K 1.314
REST(RM) 96.7±0.2 92.3±0.04 91.4±0.1 89.2±0.4 91.6±0.03 0.037 9.3K 1.314

2021; Saab et al., 2020), we resample the EEG signals from
TUSZ dataset into 200Hz (256Hz for CHB-MIT dataset) to
have consistent sampling frequency among different EEGs.
Then, we extract non-overlapping window sizes with length
T leading to an EEG clip X ∈ RT×L×N with N = 19
nodes, L = 200 (L = 256 for CHB-MIT dataset) features
per node, and T time points. After applying the fast Fourier
transform on the second dimension of the EEG clip and
choosing the log amplitude of non-negative frequency com-
ponents, the final EEG clip fused as the input to the models
is X ∈ RT×M×N where M = 100 (M = 128 for CHB-
MIT dataset). Finally, the features for each node and time
point are z-normalized using the mean and variance calcu-
lated from 100 (128 for CHB-MIT dataset) feature points
along its axis. We examine the presence of a seizure within

an EEG clip in the detection task. For classification, we
start analyzing each clip 2 seconds before the seizure be-
gins and evaluate the outcomes within a clip duration of
T = 10 seconds. This approach aligns with the annota-
tions of seizure onset, as demonstrated in previous works
(Ahmedt-Aristizabal et al., 2020; Tang et al., 2021).

We evaluate models’ ability to perform detection
tasks across a range of window sizes, spanning from
{4,6,8,10,12,14} seconds for TUSZ and {4,6,8,10,12} sec-
onds for CHB-MIT. This allows us to evaluate their per-
formance in both short and long-term detection scenarios.
For seizure detection task, we used both the seizure and
background data, while for the classification task, only the
seizure data were used (details in Appendix A).
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Train-Evaluation Split: The original TUSZ Train-set was
randomly split into training and validation sets with a ra-
tio of 90/10. The TUSZ eval set served as a standardized
evaluation set, consistent with previous studies Tang et al.
(2021). Further details regarding the data split are provided
in Table 2. For the CHB-MIT dataset, since predefined splits
for training, evaluation, and testing are not provided, we
randomly selected 80% of the data for training, 10% for
evaluation, and 10% for testing. We ensured that patients in
each set are unique, preventing the model from being tested
on patients included in the training set (details at Table 3).

Baselines: To evaluate performance and runtime, we imple-
mented three key baselines widely used in seizure analysis:
DCRNN (Tang et al., 2021), with two versions of the model,
with and without self-supervision; CNN-LSTM (Ahmedt-
Aristizabal et al., 2020); LSTM (Hochreiter & Schmidhu-
ber, 1997); Transformer (Vaswani et al., 2017); GRU (Cho
et al., 2014); and two versions of the ResNet-LSTM model
as described in Lee et al. (2022).

Figure 2. AUROC comparison among various models for seizure
detection across different clip lengths on TUSZ dataset. A flatter
line indicates more consistent performance, with error bars repre-
senting variation across five random seeds. Higher values on the
y-axis correspond to increased accuracy. REST(RM) is shown as
bold green line to emphasise its stability.

REST architecture and training: REST was designed with
two graph convolution layers for state updates, the first
employing ReLU activation and the second utilizing a lin-
ear activation function (Figure 1c). We evaluate various
versions of REST: a) REST(DS) with a single determinis-
tic update without any masking, b) REST(RS) with a single
random update (utilizing binary random masking), and c)
REST(RM) with multiple random updates.

In the seizure detection task, both Binary Cross Entropy and
Mean Squared Error (MSE) loss were employed, with MSE
outperforming Binary Cross Entropy. This result stems
from the observation that Binary Cross Entropy prevents
residual updates from approaching zero (more details on

Appendix E). For seizure classification, the Cross-Entropy
loss was utilized.

Table 6. Classification Performance, model size and parameter
count for different models under the clip length of 10-s.

Model F1-Score Size(MB) Parameter(#)
LSTM 0.39 2.021 512K
GRU 0.44 1.92 553K
ResNet-
LSTM

0.58 30.3 7.5M

ResNet-
LSTM-
Dilation

0.50 30.3 7.5M

CNN-LSTM 0.47 23.9 6M
DCRNN 0.54 0.506 126K
DCRNN w/SS 0.62 1.40 332K
Transformer 0.54 0.25 53K
REST(DS) 0.51 0.034 8.6K
REST(RS) 0.57 0.034 8.6K
REST(RM) 0.60 0.034 8.6K

We trained all models with 5 different random seeds and
averaged the performance on evaluation set over different
runs. We utilized ADAM (Kingma & Ba, 2014) to optimize
the models’ parameters, conducting training on a single
NVIDIA A100 GPU with a batch size of 128 EEG clips.
Training times for all models across various clip lengths can
be found in the Appendix F.

Runtime Comparison: To ensure a fair comparison be-
tween different models, we adopted the following approach
for each model: We selected the optimal set of hyperparam-
eters for each clip length based on performance on the vali-
dation set. Here, inference time refers to the time required
for each model to provide predictions for one sample of the
test data, where each sample is an EEG clip with length
T ∈ {4, 6, 8, 10, 12, 14}. We also attempted to shrink the
baselines while maintain the same accuracy for both tasks
and the details are reported in Appendix I.

5.2. Experimental Results

Seizure Detection and Classification Accuracy: We eval-
uated the performance of all baseline models and REST
using the Area Under the Receiver Operating Character-
istic Curve (AUROC) for seizure detection and Weighted
F1-Score for seizure classification. Our model surpassed
all baselines significantly on the CHB-MIT dataset for all
different clip lengths. For the TUSZ dataset, it achieved
very close detection AUROC scores for all clip lengths com-
pared to DCRNN with self-supervision and the Transformer,
while outperforming them at clip lengths of 6 and 8 seconds.
Figure 2 suggests that multiple random updates improve the
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Figure 3. Performance comparison in seizure analysis across mod-
els on TUSZ dataset: a) Seizure detection AUROC vs. Model
size. b) Seizure classification weighted F1-score vs. model size. c)
Seizure detection AUROC vs. inference. d) Seizure classification
weighted F1-score vs. inference. The •s represents the accuracy on
evaluation set for different train/validation splits and ⋆s represent
the mean accuracy across different train/validation splits.

stability of REST as it leads to higher and more consistent
performance compared to other models. According to Fig-
ure 2, REST(RM) and DCRNN with self supervision exhibit
more stable performance over time across clip lengths, yield-
ing consistent results. Interestingly, CNN-LSTM achieved
higher performance in a small clip size of 4s, surpassing
DCRNN with graph convolution layers.

REST Enjoys an Exponentially Smaller Size: While main-
taining high accuracy, REST exhibits a size that is 14×
smaller than the smallest existing model for seizure detec-
tion and classification on TUSZ dataset. Table 4 highlights
that REST requires 38× fewer parameters than state-of-the-
art models (DCRNN w/SS) and over 697× fewer parameters
than the deep CNN-LSTM model for seizure analysis.

Figure 3 a-b showcases REST’s outstanding performance,
achieving an AUROC of 83.6% for seizure detection with
a clip length of 10 seconds. Additionally, REST secures
the second-highest F1-Score for seizure classification, trail-

ing only 2% below DCRNN w/SS but with a significantly
smaller size than all other baselines. The substantial gap
between REST’s size and the sizes of other baselines, de-
picted on the logarithmic scale in Figure 3 a-b, underscores
REST’s remarkable size advantage and potential for imple-
mentation on edge devices. The graph convolution layers
in REST efficiently capture both short and long-range com-
munication between nodes, ensuring high accuracy with a
compact model size. Moreover, using identical weights for
multiple random updates eliminates the need for additional
layers while enhancing the model’s accuracy and memory
efficiency.

Rapid Seizure Detection: REST(RM) achieves the fastest
inference speed among all models, being 20× faster than
DCRNN w/SS and 9× faster than DCRNN during infer-
ence, with only a minor AUROC drop of less than 2%
for seizure detection across various clip lengths for TUSZ
dataset. Moreover, REST, with multiple updates, requires
only 1.292 ms for seizure detection, which is three times
faster than the fastest baseline, LSTM, while being 13%
more accurate in delivering predictions (at 10-s clip length).
On the CHB-MIT dataset, REST outperforms all other base-
lines in the seizure detection task, being the only model with
an AUROC higher than 90%. It also significantly outper-
forms other baselines for the short clip length of 4 seconds,
which is crucial for real-time seizure detection (Zhu et al.,
2021).

In seizure classification, REST(RM) secures the second-
highest F1-Score (Table 6) and excels in providing the
fastest classification result within 1.51 ms (Figure 3 c-d).
Notably, it is three times faster than LSTM, while achiev-
ing 21% higher accuracy than LSTM. The swift prediction
capability of our model is attributed to its efficient design.
REST relies on a single affine mapping into the state space,
complemented by two computationally lightweight graph
convolutions.

6. Conclusion
In this work, we propose REST, a graph-based residual state
update mechanism for efficient seizure detection and classi-
fication tasks. Our model effectively captures both spatial
and temporal behaviors of EEG signals, achieving state-of-
the-art performance in seizure detection and classification.
With its shallow structure, REST boasts a fast inference
speed, making it 9 times faster than current models with a
comparable performance. Furthermore, REST exhibits re-
markable efficiency, requiring only 37KB of memory, which
is 14 times smaller than smallest existing models for seizure
analysis tasks. These advancements position REST as a
promising model for implementation on small, low-power
edge devices, particularly for applications in epilepsy treat-
ments like DBS and RNS.
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regarding its neurological aspects for deployment in such
devices.
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Appendix Introduction
The Appendix is organised as followes:

• Preprocessing details are outlined in Appendix A.

• The mathematical proof addressing the avoidance of gradient vanishing in our model is provided in Appendix B.

• Seizure analyses results are presented in Appendix C.

• Hyperparameter selection and training details for all models are discussed in Appendix D.

• The impact of BCE and MSE loss on training REST is compared in Appendix E.

• Training times are documented in Appendix F.

• Details explaining how REST avoids overfitting are shown in Appendix G.

• Differences between various graph structures are explored in Appendix H.

• Information about baseline compression is provided in Appendix I.

• F1-scores for seizure detection are presented in Appendix J.

• The effectiveness of binary random masking on different RNN variants is shown in Appendix K.

• Size comparisons for models with the same number of neurons are provided in Appendix L.

• Real-time evaluations of different models with overlapping windows are detailed in Appendix M.

• An ablation study on the inference performance of REST with and without binary random masking is presented in
Appendix N.

A. Details of Preprocessing
We initially performed general preprocessing on the EEG data followed by specific steps for each detection and classification
tasks:

A.1. TUSZ dataset

General Preprocessing: The EEG signals in the TUH EEG Corpus (TUSZ) dataset were initially sampled at various
frequencies. As a part of the preprocessing pipeline, all signals were uniformly resampled to 200 Hz. Subsequently,
EEG clips were extracted using the natural choice of one-second, non-overlapping windows, resulting in an EEG tensor
X ∈ RT×L×N , where T represents clip lengths (ranging from 4, 6, 8, 10, 12, to 14 seconds), N is the number of electrodes
(19), and L is the number of time samples (200). To harness the effectiveness of Fourier transform for neural EEG recordings,
fast Fourier transform was applied to extract frequency components for each node at each time point. The log-amplitude of
the frequencies was then computed and only non-negative frequency components were extracted similar to prior studies
(Tang et al., 2021; Ahmedt-Aristizabal et al., 2020) leading to EEG clip tensor of X ∈ RT×M×N with M=100. Last, we
have z-normalized the EEG clips across their second dimension for further analyses.

Preprocessing for Seizure Detection: For seizure detection after extracting EEG clips from the entire training set consisting
of 5545 sessions, a binary label was assigned, with y = 1 indicating the presence of at least one seizure within the clip and
y = 0 otherwise. To handle the issue of a substantial number of background clips in the dataset, non-seizure clips were
randomly selected to achieve a balanced representation with seizure clips in the training data. Also, the last clip was dropped
for each EEG data if the recording ends before the clip could reach it’s length.

Preprocessing for Seizure Classification: For seizure classification followed by Tang et al. (2021); Ahmedt-Aristizabal
et al. (2020) we have removed the background data and only processed the seizure clips. We have started 2 seconds before
the annotated seizure for tolerance in the annotations. Then we have labeled the clip y = 0 for general non-specific (GN),
y = 1 for combined tonic (TC), y = 2 for absence (AB), y = 3 for focal, and y = 4 for complex parietal (CP) seizures.
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Moreover, if seizure event is shorter than the clip length we have truncated the clip to avoid having multiple seizures in one
clip. Also, it is noteworthy that while the training set included simple partial seizures, these seizure types were absent in
the evaluation set. Therefore, we excluded simple parietal seizures from the classification task. Also, because the clips for
seizure classification may have different lengths we pad 0’s to the end of the clip to assure all samples share the same length.

A.2. CHB-MIT Dataset

For the CHB-MIT dataset, we randomly selected 18 patients for training, 3 for evaluation, and 3 for testing. We followed
the same preprocessing pipeline as described for the TUSZ dataset, with the exception of maintaining a uniform sampling
rate of 256Hz for all patients. For each 1-second time window, we have 256 samples of raw EEG data per channel. The
number of channels is consistent with the TUSZ dataset, comprising 19 channels, and we excluded any sessions with a
different number of channels.

We utilized the same frequency domain components for seizure detection. Unlike the TUSZ dataset, the CHB-MIT dataset
does not include seizure types for classification. The results are reported based on five different random seeds for the
train/test/evaluation splits (more details at Table 7).

Table 7. Details of sessions and number of seizures for each patient at CHB-MIT dataset.

Case Number of Seizures Number of Sessions Age
1 7 24 11
2 3 36 11
3 7 38 14
4 4 42 22
5 5 39 7
6 10 18 1.5
7 3 19 14.5
8 5 20 3.5
9 4 19 10
10 7 25 3
11 3 35 12
12 27 24 2
13 10 33 3
14 8 26 9
15 20 40 16
16 8 19 7
17 3 21 12
18 6 36 18
19 3 30 19
20 8 29 6
21 4 33 13
22 3 31 9
23 7 9 6
24 16 22 Unknown

B. Preventing Gradient Vanishing with Residual Update
In equations Equations (3) to (5), the model’s state is updated using a residual state update. When we take the derivative of
St−1 concerning the forward propagation of Equation (3), we get:

∂L
∂St−1

=
∂L
∂St

∂St

∂St−1
=

∂L
∂St

(
1 +

∂δSt

∂St−1

)
=

∂L
∂St

+
∂L
∂St

∂δSt

∂St−1
. (14)
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Here the L is the loss function to be minimized. This equation shows that the gradient of the previous state St−1 always has
a term ∂L

∂St directly added. This helps prevent the gradients of ∂L
∂St−1 from becoming too small, even when the gradients of

the previous updates are small, i.e., ∂L
∂St

∂δSt

∂St−1 .

C. ROC Curves and Confusion Matrices for Different Clip Lengths

Figure 4. ROC curves for different clip lengths among REST and baselines for TUSZ dataset.

Figure 5. Confusion Matrices for seizure classification task among different models.

D. Model Training and Hyperparameter Selection Details
Here are the details of training and hyperparameter selection for REST and baselines:

REST Hyperparameters: We optimized the following hyperparameters for REST based on the lowest validation error: a)
Number of neurons in each graph convolution layer within the range [16, 32, 64]; b) Initial learning rate within the range
[5e-4, 1e-4]; c) Success probability of the random binary mask within [0.1, 0.3, 0.5, 0.7, 1]. For multi-update REST, the
number of updates for each time point was randomly selected an inteager from the interval [1, 10]. We conducted training
for 500 epochs using a Multistep learning rate scheduler. Five experiments were run in PyTorch with different random seeds.
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DCRNN: We followed the hyperparameter tuning strategy from the original paper (Tang et al., 2021) for both DCRNN
with and without self-supervision tasks. The hyperparameter search on the validation set included: a) Initial learning rate
within the range [5e-5, 1e-3]; b) Number of Diffusion Convolutional Gated Recurrent Units (DCGRU) layers within the
range {2, 3, 4, 5} and hidden units within the range {32, 64, 128}; c) Maximum diffusion step K ∈ {2, 3, 4}; d) Dropout
probability in the last fully connected layer. For self-supervised pre-training, we utilized mean absolute error (MAE) as the
loss function. The models underwent training for 350 epochs with an initial learning rate of 5e-4, employing a maximum
diffusion step of 1 and 64 hidden units in both the encoder and decoder. Moreover, cosine annealing learning rate scheduler
(Loshchilov & Hutter, 2016) was used as scheduler.

CNN-LSTM: For the baseline CNN-LSTM, we adopt the identical model architecture outlined in Ahmedt-Aristizabal et al.
(2020). This configuration employes two stacked convolutional layers with 32 kernels of size 3 × 3, one max-pooling layer
of size 2 × 2, one fully-connected layer with an output neuron count of 512, two stacked LSTM layers with a hidden size of
128, and one additional fully connected layer.

LSTM: We employed two stacked RNN layers, each with 64 hidden units, and an additional fully connected layer for the
final prediction.

GRU: For the GRU model, we used same number of layers and hidden units as LSTM.

ResNet-LSTM: We followed two versions with and without dilation described at Lee et al. (2022).

Transformer: We implemented a two-layer multi-head attention mechanism with 64 embedding dimensions and 16 heads
for the transformer architecture. Additionally, we utilized time positional encoding as introduced by Vaswani et al. (2017)
for the original positional encoding.

For detection task for all models binary cross entropy loss was used exept for REST which MSE performs slightly higher
during the validation step. For classification task weighted binary cross entropy was employed due to the highly imbalancy
among different seizure types.

E. Comparison Between MSE and BCE loss for Training REST

REST was trained for seizure detection using both MSE and Binary Cross Entropy (BCE) loss functions. However, MSE
outperformed BCE in terms of stability and accuracy. This advantage is attributed to BCE’s tendency for unbounded growth
in classification logits, hindering residual updates and message passing between graph nodes, particularly in multi-update
scenarios, as discussed in Randazzo et al. (2020). As shown in Figure 4 MSE has less fluctuations and more stability in
validation error during training compared to BCE loss when training REST with multiple updates.

Table 8. Detection Performance of REST with BCE and MSE loss functions for clip length of 10s on validation set.

Seizure Detection performance
Loss Function AUROC
REST BCE 80.4
REST MSE 83.6

Figure 6. Validation loss of the model for BCE and MSE loss functions.
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F. Training Time
Bellow we report the time needed for training each model (Table 9). All the models were trained on the same NVIDIA
A100 GPU and the number of parameters and model size has reported at Tables 4 and 6. REST requires more training time
to adopt itself and converge to a stable point specially to adapt its update cell with multiple random updates

Table 9. Train time for seizure detection and classification tasks for different models among different clip lengths. Times are reported in
minutes.

Seizure Detection Seizure Classification
Model 4-s 6-s 8-s 10-s 12-s 14-s 10-s
LSTM 5 5 5 6 7 7 4
GRU 5 5 5 6 7 8 4
CNN-LSTM 8 8 8 9 9 10 5
ResNet-LSTM 9 9 10 10 12 12 6
ResNet-LSTM-Dilation 9 9 10 10 12 12 6
DCRNN 20 22 23 25 28 30 20
DCRNN w/SS 23 30 35 40 48 60 35
Transformer 12 12 13 14 14 16 8
REST(DS) 45 47 50 53 55 60 10
REST(RS) 45 47 50 53 55 60 10
REST(RM) 70 75 80 90 95 100 25

G. REST Combat Forgetting at Each Time Point
While updating REST specially when the update cell includes multiple updates REST avoids forgetting the input by updating
its state based on the affine mapping of the previous state and the input. As an example we consider two following setting:

Setting 1: Updating the state based on previous state only where first the state is initialized as St
i = WXt + USt

i and then
it will iteratively update the state St

i as follows:

δSt
i = GΘ(S

t
i ), (15)

St
i+1 = St

i + δSt
i ⊙B. (16)

Setting 2: Updating the state based on affine mapping of current input and previous state for iteratively update the state St
i

as follows:

Ht
i = WXt + USt

i (17)

δSt
i = GΘ(H

t
i ), (18)

St
i+1 = Ht

i + δSt
i ⊙B. (19)

In Setting 1, after mapping from the input to the state space, the state is updated only based on the previous state. This setup
poses a risk of the model forgetting information from the current input, especially if the update cell iteratively modifies the
state multiple times. This situation hinders state from converging to a stable point and simply diverges due to neglecting
the input data. In Setting 2, represented by REST’s update cell, the input plays a crucial role and is actively involved in
the iterative update process, as shown in equations Equations (17) to (19). This design prevents the model from forgetting
information from the current time input Xt, promoting convergence of the state to a more meaningful final state by utilizing
the input’s information throughout the updates.

As illustrated in Figure 7, Setting 1 fails to converge to a stable point, and the validation loss remains unchanged throughout
the training process.
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Figure 7. Validation loss of setting 1 and setting 2 mentioned in the Appendix F.

H. Comparison Between Different Gaussian Kernels Threshold for EEG Distance Graph
Here we illustrate different distance graph constructions based on different thresholds or the Gaussian kernel. The lower k
values (i.e. 0.6) results in missing connection between nodes and large k thresholds results in connecting nodes which are
far away. Similar to Tang et al. (2021) we also choose k = 0.9 as threshold which resembles the EEG montage (longitudinal
bipolar and transverse bipolar) (Acharya et al., 2016) and results in a reasonable node connection.

Figure 8. Illustration of distance based EEG graph constructed from different thresholds for the Gaussian kernel. k=0.9 was chosen for
this study.

I. Compressing Baseline Models
We tried to compress existing models for seizure detection and classification, achieving performance comparable to those
described in Tang et al. (2021). However, in case of LSTM and CNN-LSTM models shrinking the model size without a
significant performance drop proved challenging. We matched the performance reported in Tang et al. (2021) for DCRNN
and DCRNN w/SS models with only one diffusion convolution gated recurrent unit, and reduced the model size by half,
from 2.7 MB to less than 1 MB for DCRNN. Furthermore, for the seizure detection task, we achieved the same accuracy
with 126K parameters compared to the original paper’s 168,641 parameters.

For the classification task, the original paper (Tang et al., 2021) reported 280,964 parameters for DCRNN and 417,572
parameters for DCRNN w/SS. In our compressed models, we achieved 126K parameters for DCRNN and 330K for DCRNN
w/SS, successfully reducing the model size by a factor of 2 for DCRNN and a factor of 1.5 for DCRNN w/SS.

Despite successful reductions, the compressed models still possess a considerable number of parameters, especially in the
presence of a gating mechanism, highlighting the non-parameter efficiency and memory demands associated with existing
models for seizure detection.

J. F1-Score for Seizure detection
Below is the F1-score (weighted averaged) results for seizure detection task on TUSZ dataset.

18



REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates

Table 10. F1-Score for seizure detection across different time windows for various models.

Model 4-s 6-s 8-s 10-s 12-s 14-s
LSTM 82.3 69.9 79.5 80.5 72.7 73.2
CNN-LSTM 70.1 69.5 75.3 73.5 68.3 67.5
GRU 82.7 69.9 81.6 80.5 81.0 71.3
RestNet-LSTM 79.7 78.2 80.1 75.1 77.0 76.3
RestNet-Dilation-LSTM 80.5 80.4 79.0 76.6 75.0 74.6
Transformer 78.45 79.3 78.5 82.0 79.1 79.2
DCRNN 81.2 80.2 81.6 80.0 74.2 72.0
DCRNN W/SS 75.2 81.1 81.2 81.0 75.7 76.0
Rest(RS) 69.5 68.4 78.3 79.1 74.7 74.1
Rest(RM) 81.0 75.2 83.2 81.0 75.7 76.2

K. Binary Random Masking and Multiple Updates for Other RNNs
We conducted an ablation study to evaluate the performance of RNN baselines with single and multiple random updates, as
shown in Table 11.

Table 11. AUROC for seizure detection on a window size of 10s for the TUSZ dataset. Vanilla models are RNN variants without any
update techniques, while RM and RS are REST update strategies.

Model Vanilla RS RM
RNN 77.3 80.1 80.8
GRU 73.5 72.8 73.6
LSTM 70.4 74.5 74.7

As shown, the RNN variants can improve their performance in seizure detection tasks using REST update techniques.

L. Size Comparison with 64 Number of Neurons for all Models

Table 12. Size comparison of different models using an equal number of neurons (64). The table indicates the model size and parameter
count for REST and baseline models.

Model Parameters (#) Size (MB)
DCRNN w/SS 330K 1.319
DCRNN 126K 0.884
Transformer 48.3K 0.193
GRU 402K 1.61
ResNet-LSTM 7.5M 30.3
ResNet-LSTM-Dilation 7.5M 30.3
LSTM 536K 2.147
CNN-LSTM 6M 22.8
REST(DS) 27K 0.051
REST(RS) 27K 0.051
REST(RM) 27K 0.051

M. More Evaluation for Real-Time Detection
We followed the real-time seizure detection framework described by Lee et al. (2022), using a 4-second clip length for
seizure detection with a 3-second overlap between consecutive clips. We measured both the inference time and latency,
the latter being the delay between the actual onset of a seizure and the model’s detection. Low latency is crucial to avoid
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late detection of seizure events. As shown in Table 13, REST achieves the lowest latency alongside the Transformer model,
while also maintaining significantly lower inference times compared to all other baselines.

Table 13. Comparison of different models’ performance on real-time seizure detection with overlapping windows

Model AUCROC Latency (s) Inference (ms)
LSTM 75.5 0.31 3.254
GRU 76.1 0.4 2.12
RestNet-LSTM 79.1 0.3 6.78
RestNet-Dilation-LSTM 80.2 0.34 6.78
CNN-LSTM 81.3 0.26 5.624
DCRNN 79.7 0.25 9.67
Transformer 83 0.2 2.5
REST(DS) 75.3 0.23 0.615
REST(RS) 79.4 0.2 0.71
REST(RM) 82.4 0.25 1.29

N. REST W/O Binary Random Mask during Inference
We evaluated REST performance with and without masking over the inference in which similar to Srivastava et al. (2014)
strategy the mask was removed and the incremental state update was scaled using the success probability of the binary mask
(p).

Table 14. Performance metrics for seizure detection on 10-s clip length with and without inference mask

Model W/ Inference Mask W/O Inference Mask
REST (RS) 81.8 81.5
REST (RM) 83.6 82.9
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