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Abstract

Many problems in machine learning require an
estimate of the gradient of an expectation in dis-
crete random variables with respect to the sam-
pling distribution. This work is motivated by the
development of the Gumbel-Softmax family of
estimators, which use a temperature-controlled
relaxation of discrete variables. The state-of-the
art in this family, the Gumbel-Rao estimator uses
an extra internal sampling to reduce the variance,
which may be costly. We analyze this estima-
tor and show that it possesses a zero temperature
limit with a surprisingly simple closed form. The
limit estimator, called ZGR, has favorable bias
and variance properties, it is easy to implement
and computationally inexpensive. It decomposes
as the average of the straight through (ST) es-
timator and DARN estimator — two basic but
not very well performing on their own estimators.
We demonstrate that the simple ST-ZGR family
of estimators practically dominates in the bias-
variance tradeoffs the whole GR family while also
outperforming SOTA unbiased estimators.

1. Introduction

Discrete variables and discrete structures are important in
machine learning. For example, variational autoencoders
(VAEs) with binary latent states are helpful in semantic
hashing (Shen et al., 2018; Dadaneh et al., 2020; Nanculef
et al., 2020). Vector quantized VAEs (van den Oord et al.,
2017) are employed as low-level representations in deep
vision models (Mao et al., 2022). Another example is neu-
ral networks with discrete (binary or quantized) weights
and activations. They allow for a low-latency and energy
efficient inference, particularly important for edge devices.
Recent results indicate that quantized networks can achieve
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competitive accuracy with a better efficiency in various ap-
plications (Nie et al., 2022). VAEs and quantized networks
are two diverse examples that motivate our development
and the experimental benchmarks. Other potential applica-
tions include conditional computation (Bengio et al., 2013a;
Yang et al., 2019; Bulat et al., 2021) reinforcement learn-
ing (Yin et al., 2019), learning task-specific tree structures
for agglomerative neural networks (Choi et al., 2018), neural
architecture search (Chang et al., 2019) and more.

The learning problem in the presence of stochastic discrete
variables is often formulated as minimization of the ex-
pected loss. Its gradient-based optimization requires gradi-
ent of the expectation in the probabilities of random vari-
ables (or parameters of networks inferring these proba-
bilities). Unbiased gradient estimators have been devel-
oped (Williams, 1992; Grathwohl et al., 2018; Tucker et al.,
2017; Gu et al., 2016). These estimators work even for
non-differentiable losses, but their high variance is a major
limitation. More recent advances (Yin et al., 2019; Kool
et al., 2020; Dong et al., 2020; 2021; Dimitriev & Zhou,
2021a;b) reduce the variance by using several cleverly cou-
pled samples. However, the hierarchical / deep case has not
been addressed satisfactory. On one hand, due to depen-
dent random variables, the variance of gradient estimators
is typically much higher. On the other hand, extensions of
coupled sampling methods to networks with L layers of
discrete variables (e.g., Dong et al. 2020; Yin et al. 2019)
apply their base method in every layer, which requires in
each layer to evaluate all the remaining layers till the loss.
The computation complexity thus grows quadratically with
the number of dependency layers, making these methods
too costly for e.g. hierarchical VAEs or quantized networks
and practically infeasible for autoregressive models.

A different family of methods, fitting practical needs of
deep models better, exploits continuation arguments. It
includes ST variants (Bengio et al., 2013b; Shekhovtsov &
Yanush, 2021; Pervez et al., 2020) and Gumbel-Softmax
variants. These methods assume the loss function to be
differentiable and try to estimate the derivative with respect
to parameters of a discrete distribution from the derivative of
the loss function at a discrete sample. Such estimators can
be easily incorporated into back-propagation by adjusting
the forward and backward passes locally for every discrete
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variable. They are, in general, biased. The rationale though
is that it may be possible to obtain a low variance estimate
at a price of small bias, e.g. for a sufficiently smooth loss
function (Shekhovtsov & Yanush, 2021).

Gumbel Softmax (Jang et al., 2017; Maddison et al., 2017)
enable differentiability through discrete random variables
by relaxing them to continuous ones with a distribution ap-
proximating the original discrete distribution. The tightness
of the relaxation is controlled by the temperature parameter
t > 0. The bias can be reduced by decreasing the tempera-
ture, but the variance grows as O(1/t) (Shekhovtsov, 2021).
Gumbel-Softmax Straight-Through (GS-ST) heuristic (Jang
et al., 2017) uses the relaxed continuous samples only on the
backward pass while discretizing them on the forward pass.
The Gumbel-Rao (GR) estimator (Paulus et al., 2021) is a
recent improvement of GS-ST, which can substantially re-
duce its variance by local expectations. However, each local
expectation results in an intractable integration in multiple
variables, and has to be approximated by sampling. The
experiments (Paulus et al., 2021) suggest that this estimator
performs better at lower temperatures, which requires more
MC samples. Therefore the computation cost becomes a
significant obstacle.

In this work, inspired by the performance of GR at low
temperatures, we analyze its behavior in the cold limit, i.e.
t — 0. Note that there is no zero temperature limit estima-
tors corresponding to GS or GS-ST because their variance
explodes in the limit. It is not obvious therefore that GR
has such a limit estimator. We prove that it does and de-
note it as ZGR. In the case of binary variables we show
that ZGR has a simple analytic expression, matching the
already known DARN( %) estimator by Gregor et al. (2014)
(also re-discovered as importance reweighed ST by Pervez
et al. 2020). In the general categorical case we show that
ZGR can be expressed in closed form as %(ST+DARN),
for a specific variant of DARN, giving a simple and effi-
cient new estimator. We show that ZGR is unbiased for all
quadratic functions of categorical variables and experimen-
tally show that it achieves a useful bias-variance tradeoff.
We observe that both GR and ZGR outperform SOTA un-
biased estimators in the two considered applications. We
further demonstrate that the interpolated ST-ZGR family of
estimators practically dominates in the bias-variance trade-
offs the whole GR family while being drastically simpler.

2. Background

Let x be a categorical random variable taking values in
K ={0,... K — 1} with probabilities p(z; ) parametrized
by 7. Let ¢(x) € R be its embedding into a vector space.
Categorical variables are usually represented using the 1-hot
encoding, in this case ¢(x) represents one-hot embedding
while z itself will be used as an index. For binary and

quantized variables we will adopt the embedding ¢(x) = «.

Let £: R? — R be a differentiable loss function. For
brevity, let us use the shorthand £(z) = L(¢$(x)). The
elementary problem is to estimate the derivative (Jacobian)
of the expected loss

Ty = GEIL@)] = & X, L@)plesm). (D)
Hereafter the subscript of the Jacobian will denote the free
variable of differentiation. When extended to a network with
many (dependent) categorical variables, the problem be-
comes much more complex. We are interested in a stochas-
tic estimate and would like to interchange the derivative and
the expectation in (1) in order to use the “derivative at a
sample” as an estimate.

REINFORCE (Williams, 1992). The basic method to
achieve the interchange is using the log-derivative trick:

Y L(@)plan) = 3, L(x) EED 2)

= 2, Llajplzsn) HEFE = BIL(r) Heagen].

The respective estimate is J;i" = L(z) , where

dlog p(z;n)
dn

x ~ p(z;n). This estimator is clearly unbiased as IE[J,‘;F} =

Jy, but has a relatively high variance. As discussed above,

existing variance reduction techniques are not computation-

ally efficient for deep models.

Alternatively, one can try to use the reparameterization
trick (Kingma & Welling, 2013; Rezende et al., 2014). We
can often reparameterize p(x;7) as a parametric mapping
x = f,(z) with injected noises z following some fixed dis-
tribution, i.e. not depending on parameters. Then, we can
attempt the interchange:

?

E.[L(f1(2))] = Ez[5; £(fa(2))]. 3)

However, when f, (z) is not continuously differentiable,
which is the case when we reparameterize a discrete random
variable, this interchange does not need to hold. Neverthe-
less, it has proven efficient in practice to consider estimators
that smooth the reparameterization function f, or approxi-
mate the derivative at a discrete sample in some other way,
leading to an approximate interchange. Such estimators can
be easily extended to deep models of stochastic variables
by simply applying the elementary estimator whenever the
respective Jacobian is needed in backpropagation.

ST Let 6(n) = Elé(2)] = 3, é(a)p(a:n) - the mean

embedding in R? under the current dlstrlbutlon of z. In
particular, for one-hot embedding it is the vector of proba-
bilities p(z = -;n). The Straight-Through estimator is

ST = J, 45, “)
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where J, = %E(gﬁ(x)) at a random z ~ p(z;7n). Note
that there exist many empirical forms of ST estimators
in the literature. The present definition is the same as
by Gu et al. (2016) and is consistent with Hinton (2012)
and Shekhovtsov & Yanush (2021) in the binary case but is
different from, e.g., Bengio et al. (2013a).

DARN Gregor et al. (2014) propose the following estimator,
motivated by REINFORCE with an approximate linearization
of L(z):

IO = Jy(@(a) — g)tERED - (s)
where & ~ p(z;n), Jp = g5 L(6(x)) and ¢ € R? is a free
choice. When z is binary, the choice ¢ = + 3~ ¢(x), the
mean embedding under the uniform distribution, ensures
that the estimator is unbiased for any quadratic function.
However, for categorical variables no ¢ with such property
exist. Gu et al. (2016) experimentally tested several choices
for ¢ in the categorical case, including the mean embedding
® = ¢(n), and have found that none performed well.

GS The Gumbel-Softmax estimator (Jang et al., 2017) is a
relaxation of the Gumbel-argmax reparameterization. Let
0r = logp(z=k;n). Let Gy ~ Gumbel(0,1), &k € K,
where Gumbel(0, 1) is the Gumbel distribution with cdf
F(u) =e ¢ ". Then

x = argmax,, (0 + Gy,) (6)

is a sample from p(z; n). This gives a reparameterization in
terms of independent injected noises G (albeit not contin-
uously differentiable). A relaxation is obtained by using a
temperatured softmax instead of arg max. This construc-
tion assumes one-hot embedding ¢ and creates relaxed (con-
tinuous) samples in the simplex A% ~!. Formally, introduc-
ing temperature ¢, it can be written as

¢ = softmax((0 + G)/t) =: softmax;(8 + G); (7a)

_ dL(9) _ dL(g) dé
Jgs =5 = o (7b)

There are two practical concerns. First, the loss function
is evaluated at a relaxed sample, which may be inefficient,
e.g., for large expert models (Shazeer et al., 2017). Second,
in a large computation graph the use of relaxed samples can
offset all expectations needed for all other gradients. The
latter effect can be mitigated by using a smaller temperature,
causing relaxed samples ¢ to concentrate close to the corners
of the simplex. However, the variance of the estimator grows
as O(1) if ¢ is decreased towards zero (Shekhovtsov, 2021).

GS-ST The Straight-Through Gumbel-Softmax estimator
(Jang et al., 2017) is an empirical modification of GS. It
uses discrete samples in the forward pass and swaps in the
Jacobian of the continuous relaxation in the backward pass:

Gy ~ Gumbel(0,1), k € K; (8a)

x = argmaxy, (0 + Gr); (8b)

¢ = softmax, (6 + G); (8c)
Jgsst = @) dg. (8d)

Notice that the hard sample x and the relaxed sample b are
entangled through G. Although, x has the law of p(x;n)
as desired, not changing forward expectations, there still
remains bias in estimating the gradient in 6. To make the
bias smaller the temperature ¢ should be decreased, however,
the bias does not vanish even asymptotically while the vari-
ance still grows as O(1/t) (Shekhovtsov, 2021). Values of
t between 0.1 and 1 are used in practice (Jang et al., 2017).

GR Notice that the forward pass in GS-ST is fully deter-
mined by z alone and the value of G that generated that x
is needed only in the backward pass. Paulus et al. (2021)
proposed that the variance of GS-ST can be reduced by
computing the conditional expectation in G|z, leading to
the Gumbel-Rao estimator:

Jg" =Eq)u {JGGS—ST(G)} = d£(¢i¢¢§x))EG|x [%} 9)

Because the value of the loss £(x) and its gradient do not de-
pend on the specific realization of G|, enabling the equality
above, the expectation is localized and can be computed in
the backward pass. However, this expectation is in multi-
ple variables and is not analytically tractable. Paulus et al.
(2021) use Monte Carlo integration with M samples from
G|x. In their experiments they report improvement of the
mean squared error (MSE) of the estimator when the tem-
perature was decreasing from 1 down to 0.1. The trend
suggests that it would improve even further below ¢ = 0.1
provided that the conditional expectation is approximated
accurately enough. This also suggests that the variance does
not grow unbounded with decrease of the temperature in
contrast to O(1/t) asymptote for GS or GS-ST.

3. Analysis

Given the experimental evidence about GR estimator, we
took the challenge to study its cold asymptotic behav-
ior. The temperatured softmax in (37c) approaches a non-
differentiable arg max indicator in this limit and we have
to handle the limit of the GR estimator with care to obtain
correct results. We first analyze the binary case, where
derivations are substantially simpler. Proofs of all formal
claims can be found in Appendix A.

3.1. Binary Case

In the case with two categories we can simplify the initial
GS-ST estimator as follows. We assume x € {0,1} and
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¢(x) = x. The argmax trick can be expressed as z = [0; +
G1 > 0y + Go], where [-] is the Iverson bracket. Without
loss of generality we can assume that the distribution of
is parametrized as p(z=1; 1) = o(n), the logistic sigmoid
function!. Recalling that 8, = logp(x=Fk;n), we have
6, — 0y = n. Next, denoting Z = G; — Gy, we can write
the argmax trick compactly as x = [ + Z > 0]. Being
the difference of two Gumbel(0,1) variables, Z follows the
standard logistic distribution with cdf 0. The GR estimator
of derivative in 7 simplifies as

r=[n+2Z>0], Z~ Logistic(0,1); (10a)

&= ay(n + 2); (10b)
dL(x T

I — 2 3, a0

where o¢(u) = o(u/t) is the temperatured logistic sigmoid
function. Although there is no closed form, we can com-
pute (with a careful limit — integral interchange) the series
expansion around ¢ = 0.

Proposition 1.

Igr = £Spa) (3 + @ - Dart) + 0. (b

where py is the logistic density: pz(n) = o(n)o(—n) and
& = (2pz(n) —1)log(2).

Corollary 1. In the limit ¢ — 0 the GR estimator becomes
the simple binary DARN(%) estimator.

Using the same expansion, we can study the asymptotic bias
and variance of GR around ¢ = 0, which is detailed in Corol-
lary A.1. This asymptotic expansion allows to make some
predictions, In particular, for a linear objective L the bias is
O(t?) and the squared bias is O(t*). Therefore the MSE is
determined by the variance alone up to O(t*). The depen-
dence of variance on ¢ for a linear objective is negative in
the first order term. Therefore the temperature correspond-
ing to the minimum MSE will be non-zero. We can hope
nevertheless that the suboptimality of the limit estimator
will be small while there is clearly a gain in simplicity and
computation cost.

3.2. General Categorical Case

In the general categorical case, the analysis is more compli-
cated (exchange of the limit and a multivariate integral over
G|z), but gives novel and rather unexpected results.

Theorem 1 (ZGR). The Gumbel-Rao estimator for one-hot
embedding ¢ in the limit of zero temperature is given by
ifi #

ifi =2 (12

5(Jo, — Jg, )p(x=i;n)
3 2 (Js, — Js,)p(z=34;7)

#u

ZGR __
Jgt =

! Any other parametrization will result in just an extra determin-
istic Jacobian in the chain rule.

Proposition 2. ZGR estimator decomposes as

JTZIGR _ %(JTS]T + JSARN(J’(")))’ (13)

i.e., with the choice ¢ = ¢(n) in DARN.

This expression of ZGR is convenient to implement and gen-
eralizes to arbitrary embedding ¢ (since the change of the
embedding is just a linear transform). It can be verified that
in the binary case with the embedding ¢(z) = x, expression
(13) is exactly DARN(3) as was claimed in Corollary 1.

To summarize, the complete recipe for ZGR is as follows:
¢ =E[¢(x)] = 3, o(x)p(z;n); (14)
Sample x ~ p(z;n);

Jgon = SEGEN L (904 (6(x) — 6) i log plasn))-

Despite we have derived it from GS family, it needs neither
Gumbel noises nor the temperatured softmax and is efficient
for discrete distributions beyond categorical.

The decomposition into ST and DARN shows a surprising
connection. Neither ST nor DARN perform particularly
well in categorical VAEs on their own (Gu et al., 2016;
Paulus et al., 2021). However, ZGR, being effectively their
average, appears superior. So what is complementary in ST
and DARN? We show that ZGR has the following property,
truly extending the design principle of binary DARN( %) to
the categorical case:

Theorem 2. ZGR is unbiased for any quadratic loss func-
tion L.

Both ST and DARN(¢(7)) are unbiased for linear functions
and the theorem together with representation (13) implies
that their biases for quadratic functions are exactly opposite
and cancel off in ZGR. This unbiased property extends to
multiple variables as follows.

Corollary 2. Let z4,...,z, be independent categorical
variables and L(x1,...,x,) be such that for all 7 and all
configurations x the restriction £(x;) is a quadratic function.
Then ZGR is unbiased.

The unbiased property for quadratic functions gives us some
intuition about applicability limits of ZGR. Namely, if the
loss function is reasonably smooth, such that it can be ap-
proximated well by a quadratic function, we expect gradient
estimates to be accurate. Compared to ST, which is unbiased
for multilinear functions only, we hypothesize that ZGR can
capture interactions more accurately.

3.3. Variance Analysis

From the prior work and our results, the following theoreti-
cal comparison of variances can be established:
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Figure 1: Gradient estimation accuracy in VAE on MNIST-B, 16 variables 16 categories. Average (per parameter) squared
bias (leff) and variance (right) of gradient estimators versus temperature at a fixed parameter point (model snapshot after 10
epochs of training with RF(4)). Confidence intervals are 95% empirical intervals of 100 bootstrap samples.

Corollary 3. For any given number of MC samples M there
exists a small enough t > 0 such that

V[JZ9R] < V[JORMC] < V[ JOSST], (15)

Proof. We have V[J?®] — V[JR] for t — 0 while V[.JF]
< V[JORME] for any ¢, due to the variance of the MC integra-
tion, where the gap grows asymptotically as 1/¢. Therefore,
for a small enough ¢, V[J*®] — V[J*] is smaller than the
MC integration gap. This proves the first inequality in (15).
The second inequality follows because GR-MC is a Rao-
Blackwellization of GS-ST (an average over G|z, see Prop.
2 of Paulus et al. 2021). O]

Experimentally, we observe exactly this predicted behavior:
while the variance of GR-MC decreases with the number of
MC samples, for small enough temperatures it exceeds the
variance of ZGR (Fig. 1 (right), Fig. B.2). At the same time,
the asymptotic expansion of variance of GR in the binary
case (Corollary A.1) shows that the variance of GR may
have a positive or negative derivative in ¢ around 0. This
implies that we cannot strengthen the result to state that
there exists ¢t > 0 such that for all M the comparison (15)
would hold.

Unlike the variances, the biases of GS-ST, GR and GR-MC
are exactly the same. In contrast to GS, this common bias
has a floor due to the ST heuristic introduced in the GS-ST
step. From our analysis it follows that the common floor
is achieved by ZGR. This is experimentally clearly visible
in Fig. 1 (left), although we cannot theoretically guarantee
that the limit bias is the smallest amongst all ¢.

4. Experiments

We compare ZGR with Gumbel-Softmax (GS), Straight-
through Gumbel-Softmax (GS-ST) (Jang et al., 2017),
Gumbel-Rao with MC samples (GR-MC) (Paulus et al.,

2021) and the ST estimator (4). We also compare to the
REINFORCE with the leave-one-out baseline (Kool et al.,
2019) using M > 2 inner samples, denoted RF(M ), which
is a strong baseline amongst unbiased estimators. In some
tests we include unbiased ARSM (Yin et al., 2019), which
requires more computation than RF(4) but performs worse.
See Appendix B.2 for details of implementations.

4.1. Discrete Variational Autoencoders

We follow established benchmarks for evaluating gradient
estimators in discrete VAEs. We use MNIST data with a
fixed binarization (Yin et al., 2019) and Omniglot data with
dynamic binarization (Burda et al., 2016; Dong et al., 2021).
We use the encoder-decoder networks (Yin et al., 2019;
Dong et al., 2021), up to the following difference. We embed
categorical variables with 2° states as {—1, 1} vectors. This
allows to vary the number of categorical variables (V) and
categories (C) while keeping the total number of latent bits
the same, similar to Paulus et al. (2021). Full details can be
found in Appendix B.

4.1.1. ZERO TEMPERATURE LIMIT

First, we measure the gradient estimation accuracy at a
particular point of VAE training, comparing GS family of
estimators at different temperatures and aiming to replicate
Figure 2b of Paulus et al. (2021). Their plot shows a steady
decrease of MSE with the decrease of temperature down to
0.1 and we were expecting ZGR to achieve the lowest MSE.

As an evaluation point we take a VAE model after 10 epochs
of training with RF(4). The loss function is the average
ELBO of a fixed random mini-batch of size 200. While
measuring the variance of a gradient estimator is straight-
forward, measuring the bias requires a special care. Let
X € R be the estimate by the reference unbiased estima-
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Table 1: Nonlinear VAE training negative ELBO for static binary MNIST and the down-sampled and dynamically binarized
Omniglot. Each value is the mean over 3 random initializations and confidence intervals are &(max — min)/2 of the 3 runs.
Bold results are the three best ones per configuration. The test performance can be found in Table B.1.

MNIST-B Omniglot-28-D
Number of Categories & Categorical Variables Number of Categories & Categorical Variables
Method C2V192 C4 V96 C16 V48 C64 V32 C2V192 C4 V96 C16 V48 C64 V32
GS(t=0.1)  91.2+0.1 84.4+0.5 82.8£0.5 86.94+0.9 117.6+0.2 116.0+£0.2 117.040.1 120.640.2
GS-ST(t=0.1)  92.0+£04 854402 84.1+0.5 90.0+0.5 119.440.1 116.7+0.2 118.5+0.1 123.2+0.3
GR-MC(t=0.1,M=10)  88.840.2  82.7+0.1 81.0+0.1 82.4+0.1 116.6+0.2 114.6+0.1 115.7+0.1 117.84+0.2
GR-MC(t=0.1,M=100)  88.0+0.5 82.4+0.2 80.5+0.3 81.7+0.5 116.5+0.1 114.44+0.1 115.2+0.1 116.9+0.3
ZGR  88.6+0.2  83.0+0.1 80.6+0.4 81.9+0.1 116.6+0.4 114.5+0.1 1154+0.1 117.0+0.2
ST 105.040.2 105.44+0.1 106.0+£0.1 106.740.1 130.24+0.1 130.5+0.1 131.5+£0.2 132.0£0.1
RFM=2) 92.1£04  86.34+0.5 88.6+0.5 96.740.1 120.5404 118.8+0.1 122.0+0.3 127.5+0.4
RFM=4) 88.2+0.3 82.74+0.1 82.24+0.5 87.2+0.7 117.1+£0.1 115.8+0.2 117.940.1 120.740.1
94 150
5 = oRmc=10) 145 1 ool
g 1 —A— GR-MC(M=100) GS-ST(t=0.1)
> --- ZGR 140 A —¥— GR-MC(t=0.1,M=10)
2 907 ] —A— GR-MC(t=0.1,M=100)
> g 1354
Fesl 2 —e— ZGR
@ g 130 4 —+— RF(M=4)
:g 861 8 125 4
g 84 4 120
£ 115 4
00 01 02 03 04 05 06 07 08 09 10 10 20 30 40 50
Temperature hyperparameter t Time [min]

Figure 2: Training ELBO after 500 epochs of VAE training
(MNIST-B, C64 V32) with different choices of temperature.
The regret of ZGR w.r.t. GR-MC at the optimal temperature
is insignificant. The plot shows the mean from 5 random
initializations with confidence intervals 4(max — min)/2
of the 5 runs.

tor and Y € R? be the estimate by the tested estimator.
We want to measure the average over parameters (dimen-
sions of the gradient) squared bias, which can be written as
b? = Z||E[X] — E[Y]||%. We obtain n; = 10* independent
samples X; from RF(4) and ny = 10* independent sam-
ples Y; from the tested estimator and compute an unbiased
estimate of b%:

b2 = Llin — fell® — 2 — 2, (16)
where fi; is the sample mean of X and Vj is the average
(over dimensions) sample variance of X and jio and V5 are

likewise for Y.

The results are shown in Fig. 1. All of GS-ST and GR
estimators share the same bias, consistently with the the-
ory, but differ in variance. GS estimator is asymptotically
unbiased but the variance grows as O(1/t). We observe
that the variance is by several orders larger than the squared
bias. Respectively, MSE, being the sum of the variance and
the squared bias is practically indistinguishable from the
variance in Fig. 1 and has the opposite trend in comparison

Figure 3: Training loss versus time, VAE on Omniglot-28-
D (C64 V32). All methods run for 1000 epochs.

to the MSE analysis in (Paulus et al. 2021, Fig 2b.), which
we thus deem not reproducible / incorrect.

Note however, that the bias-variance tradeoff in learning
is more complex than in the MSE metric. The variance
corresponds to uncorrelated errors, evening out with more
SGD updates, while the bias is a systematic error which may
potentially accumulate. Common optimization methods use
exponentially weighted averaging of past gradients (mo-
mentum) as an effective way of variance reduction. Some
further variance reduction in SGD is possible (e.g., Johnson
& Zhang 2013), albeit at an extra memory cost. Therefore,
MSE metric is a poor proxy for the performance in the
training pipeline and we have to inspect the bias-variance
tradeoff of all estimators more carefully (see below).

ZGR still fulfills our expectations of the zero limit estimator:
it has the limiting bias, which is the lowest in the GR/GS-ST
family, and the limiting variance which is moderate.

4.1.2. TRAINING PERFORMANCE IN VAE

Next we compare the training performance in a setup closely
following prior work. In particular we use the same Adam
optimizer, batch size, learning rate and training duration
as (Dong et al., 2021; Dimitriev & Zhou, 2021a). Full
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Table 2: Hierarchical VAE training negative ELBO, same notation as in Table 1. The test performance in Table B.2 is
consistent with the training performance.

MNIST-B Omniglot-28-D
Method C2V192 C4 V96 C16 V48 C64 V32 | C2V192 C4 V96 C16 V48 C64 V32
GS(t=0.1) 117.9+£0.2 118704 126.7£0.1 136.0£0.0 | 140.2+0.4 145.0£0.4 151.9+0.0 162.6+0.2
GS-ST(t=0.1) 120.8+£0.9 121.4+0.2 129.7+0.2 139.0£0.1 | 146.44+0.3 147.840.1 154.0£0.1 164.0+0.2
GR(t=0.1,K=10) 117.0+£0.5 113.0+0.5 117.8+0.4 124.9+0.3 | 149.8£0.8 142.9+0.7 145.7+£0.3 152.44+0.0
GR(t=0.1,K=100) 118.3+0.8 111.2+0.5 115.0+0.4 121.24+0.4 | 150.6+0.6 141.8+0.2 143.3£0.4 149.6+0.5
ZGR 116.5+£0.7 111.8+0.1 115.6+0.2 122.0+£0.2 | 151.2+0.8 143.5+1.5 143.7+£0.2 149.3+0.3
ST 1254402 1259+£0.0 125240.1 125.2+0.1 | 146.3+0.1 146.7+£0.1 148.44+0.0 150.2+0.1
RF(M=2) 127.1£0.7  129.9+£03 137.3+0.7 146.1+0.5 | 147.1+£0.6 151.1£04 159.1£0.2 169.3+0.2
RF(M=4) 118.6+1.2 121.8£0.5 128.34+0.8 135.0+£1.6 | 141.9+0.5 146.1+£04 154.6+0.3 162.3+0.2

details can be found in Appendix B.3. Results for two
datasets and different splittings of latent bits into discrete
variables (from binary to 64-way categorical) are presented
in Table 1. We observe the following.

1) ST performs poorly — its bias is too high (c.f. Fig. 1).

2) ZGR performs no worse than GR-MC variants. In Fig. 2
we additionally verify that at no other temperature GR-MC
can achieve significantly better results.

3) ZGR outperforms RF(2) and RF(4), significantly so with
more categories. According to published results, recent
unbiased methods (Dong et al., 2021; Dimitriev & Zhou,
2021a) appear to improve only marginally over RF with an
equal number of samples, i.e. the difference is much smaller
than between ZGR and RF(2).

4) Finally, we measure the computation time per forward-
backward pass in Fig. 5 (leff) and observe that ZGR is
faster than both GR-MC and RF(2). The improvement in
speed over GR-MC may appear modest, however GR-MC
implementation takes advantage of palatalization and we
expect it to hit memory / compute bottlenecks when scaling
to larger models with more discrete variables, as already
seen in quantization Fig. 5 (right). In the training progress
versus computation time (Fig. 3) ZGR appears to be the
most efficient.

4.1.3. HIERARCHICAL VAES

Next, we test a hierarchical VAE model with two lay-
ers of stochastic binary latent representations, follow-
ing Grathwohl et al. (2018), with the encoder ¢(z|z) =
a(z1[2)q(z221) and decoder p(x]2) = p(x|z1)p(z125) and
the uniform prior p(z2). Each encoder layer is a linear
model that produces V x K logits with K = 2, from
which V' categorical variables are sampled and embedded as
vectors in {—1, 1}°. The decoder layers are likewise except
for the output layer, which is binary.

The results are presented in Table 2. We observed that the
differences in the variance between the methods are larger in
the beginning of the training and that optimizing this model

suffers from getting stuck in suboptimal points (a known
issue, e.g., Sgnderby et al. (2016)). The evidence supports
similar claims as for linear VAEs, except that for Omniglot
binary variables (C2), a different subset of methods reaches
good results: GS and RF(4) followed by ST.

4.2. Interpolation Between Simple Estimators

We have shown that ZRG performs well in the VAE experi-
ments, generally outperforming GS family of methods with
t=0.1 and matching the performance of GR-MC even with
a tuned temperature (Fig. 2). A peer reader may neverthe-
less be not convinced that the GS family can be replaced
by single ZGR. For example, GS estimators may employ
a temperature schedule and perhaps then outperform ZGR.
Furthermore, in other problems it may be beneficial to trade
more reduction in the variance for higher bias, which GS
family readily provides via tuning the temperature.

To address the above concerns we propose the following. We
craft a simple and cheap interpolated estimator using only
ST and DARN and show that the set of trade-offs it provides
is not worse than the whole GS family. Towards this end,
for p(x;n) = softmax(n) we define the temperatured ST
family Js T® _ J¢%7’7/t) and the interpolated ST(#)-ZGR
family:

(1 —a)ST(t) + aZGR for « € [0,1]. (17)

We notice that ST((=2) approximately matches GS-
ST(t=1).? Respectively, it is natural to consider ST-ZGR
with ¢t = 2 or t = 1 and varied o. The optimal design is
left to future work. We visualize the bias-variance tradeoffs
in Fig. 4 left (also in Fig. B.4 at different epochs). Empiri-
cally, we observe that there is little to no regret in using the
interpolated estimator over GR-MC. If one wishes to use a
temperature-scheduled GR-MC, we propose that there exist
an equivalent schedule of ST-ZGR with a similar or better
performance. A schedule of, e.g., GS-ST involves choosing
a monotone function, the starting and the terminal temper-

It can be seen that the GS family smooths the argmax
twice: once stochastically and once via softmax:(n + G) =
Elargmax(n + G + G')|G] for G’ ~ Gumbel(0, t).
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Figure 4: Bias-Variance diagrams. Left: non-linear VAE (C16 V16) at epoch 10. Right: quantized small network (8C5-
MP2-16C5-MP2-128FC-10FC) with ternary weights and activations at epoch 20 (see Appendix B.6). Empty circles and
squares mark temperatures t = 2 and ¢t = 1.1, respectively. The y-axis uses symlog scaling. While different estimators
with their hyperparameters can achieve different bias-variance tradeoffs, some choices a dominated by other estimators,
having strictly better bias or variance or both. In these examples, the set of non-dominated choices, the Pareto frontier, is
represented by families of simple estimators: temperatured ST and interpolated ST-ZGR; and by the unbiased estimator

with the lowest variance.
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Figure 5: Time [ms] of a forward-backward pass per batch on GPU (Nvidia Tesla P100). Left: VAE (C16 V16), batch size
200. Right: Quantized network (same as in the main experiment in Table 3) with 2 bits per weigh and activation, batch size
128. The time is measured after optimizing out Python and C++ calling overheads with CUDA Graphs in Pytorch 1.13.

atures (Jang et al., 2017). These hyperparameters have to
be found in practice by cross-validation. In particular, the
terminal temperature needs to be tuned: in Fig. 4 it is seen
that when decreasing the temperature below a certain point,
unknown in advance, the bias of GR-MC approaches a floor
while the variance continues to grow. We expect that with a
similar effort for cross-validation, one can find a schedule
for a from O to 1 in ST-ZGR that will perform not worse
than a scheduled GR-MC.

Note also that the gain in speed can be traded for an extra
variance reduction either by using several samples per SGD
step or just by making more SGD steps (with a smaller
learning rate and a larger momentum as appropriate).

4.3. Quantized Neural Networks

The mainstream progress in training quantized and binary
neural networks, following Hubara et al. (2017), has been

achieved so far using empirical variants of ST (with different
clamping rules, etc.) applied to deterministically quantized
models. A sound training approach is to consider a stochas-
tic relaxation, replacing all discrete weights and activations
by discrete random variables, leading in the binary case to
stochastic binary networks (Peters & Welling, 2018; Roth
et al., 2019; Shekhovtsov & Yanush, 2021).

We consider a parameter-efficient stochastic relaxation for
quantization (Louizos et al., 2019). In this model the distri-
bution of a quantized weight or activation x is defined by a
single real-valued input 7 via: = |7 + 2], where -]
rounds to the nearest integer in C and z is an injected noise.
Therefore z is a discrete integer variable with a distribution
determined by 7. In Appendix B.5 we give a comprehensive
evaluation of bias and variance of estimators for a single
such quantization unit. In a deep network, the pre-activation
input 17 depends on the weights of the current layer as well
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Table 3: FMNIST test error[%] in deterministic mode (no
injected noises at test time) for different bit-width per weigh
and activation (T denotes ternary). Hyperparameters are
selected on the validation set. Best two results in bold.
Reference test errors: ReLU 8.9% , Clamp 9.1%.

Weights [bits] / Activations [bits]

Method 2/2 T/T T/1 1/1
GS-ST(t=2) 82+04 82+00 8.6+03 8.6+03
GS-ST(t=1) 8.0+0.2 7.9+0.2 8.7+0.2  8.5+0.2
GS-ST(t=0.5) 83+£0.1 83£0.2 88+0.1 9.1+0.1
GR(t=0.5,K=10) 8.1£0.0 8.6+0.1 8.6+0.2 8.6+0.3
GR(t=0.1,K=10) 8.4+£0.1 84£0.1 9.1£0.1 8.8%0.2
ZGR 82+03 83+£0.1 874£03 8.840.1
ST 7.94+0.2 8.0+0.3 8.1+0.2 8.3+0.1
RF(M=2) 2534+0.6 28.2+0.7 37.5+1.5 352404
RF(M=4) 224407 245404 31.9+0.1 29.7+£04

as on the preceding activations, causing a hierarchical de-
pendence.

We train a convolutional network (32C5-MP2-64C5-MP2-
512FC-10FC) on FashionMNIST. We do not quantize the
input (it has 8 bit resolution in the dataset) and the first and
last weight matrices are quantized to 4 bits. All inner layer
weights and activations are quantized to 2 bits or below.
We evaluate training with triangular injected noise with
the density p(z) = max(0,1 — |z|). For GS-ST variants
we enable high temperatures (0.5, 1, 2) as recommended
by Louizos et al. (2019). See Appendix B.5 for details of
the experimental setup. The results are presented in Ta-
ble 3. And in Fig. 4 (right) we measured the bias-variance
tradeoff, using a smaller size network to make it feasible to
measure the bias accurately. Details of this experiment are
given in Appendix B.6. It is seen that methods differ more
substantially in their variance. The best results in Table 3
are obtained by methods with low variance, prominently
ST and GS-ST(t=1). Furthermore, the ranking of results
in Table 3 is roughly similar to the ranking by the variance
alone in Fig. 4 and Fig. B.3. In particular, variance of RF is
several orders larger than that of biased estimators and its
test accuracy in Table 3 is quite out of the competition. It
suggests that the bias of approximate methods is relatively
small in this application, not detrimental for optimization.
Regarding the performance of ZGR we observe that it still
outperforms GR-MC(¢=0.1) (consistently with Fig. 4 and
Fig. B.5). Both Table 3 and Fig. 4 support the claim that the
the simple ST-ZGR family can fully replace temperatured
GS, GS-ST and GR-MC families. The gain in speed is more
substantial than in VAE, Fig. 5 (right).

5. Discussion and Conclusion

We have conducted the following analysis of the GR estima-
tor. We theoretically showed that it has a zero temperature
limit and that the limit ZGR estimator has a simple closed

form. We studied its properties and connected to ST and
DARN estimators. Despite being the limit estimator, ZGR
retains nothing of the Gumbel-Softmax design. Indeed, the
hard sampling heuristic of GS-ST disposes of relaxed sam-
ples on the forward pass. The cold limit disposes of them
also on the backward pass. There remains neither Gumbels
nor softmax in the design. On the other side, we showed
that ZGR generalizes the key design property of DARN(%)
to the categorical case: it is unbiased for all quadratic func-
tions. We propose that such rationale can be put forward
directly for obtaining improved estimators.

We verified our theoretical findings experimentally by ac-
curately measuring the bias and variance of all estimators,
showing that ZGR is indeed the limit estimator with favor-
able bias and variance. In VAE we provided a refined bench-
marking between SOTA biased and unbiased estimators and
found out that a low bias is important in this setting and have
found ZGR to be highly competitive. We also conducted a
new benchmarking of SOTA biased and unbiased estima-
tors for relaxed quantization, which is a deep (hierarchical)
model of discrete random variables. We found out that in
this application, the bias is less important and methods with
the least variance achieve the best performance.

The practical utility of ZGR can be summarized as follows.
In VAEs it delivers the same performance in training as
GR-MC-100 and outperforms SOTA unbiased estimators
and ST. Here the gain is in the simplicity of design, im-
provement in speed and potentially better scalability. We
further demonstrated that the interpolated ST-ZGR family is
a decent replacement of the whole GR family, whatever bias-
variance tradeoff might be preferred. Another advantage of
simplicity is a potentially wider scope of applicability. ZGR
(or ST-ZGR) requires to compute only the mean embed-
ding and the probability of a sample. These probabilities
can be often computed faster than O(K). In quantization
with triangular noise they can be computed in O(1). A more
complex thought example is when p(x; 1) is Markov chain:
while the total number of states is exponential, making GS
estimators inapplicable, the probability of a sample and the
mean embedding (marginals) can be computed in linear
time in the chain length.

Our implementation of the described experiments is avail-
able for research purposes at https://gitlab.com/
shekhovt/zgr.
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Gumbel-Softmax Gradient Estimator)
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A. Proofs
A.1. Binary Case

Proposition 1.

JOR = If:(;;))pz(n) (% + (2z — 1)51t> + O(t?),
where py is the logistic density: pz(n) = o(n)o(—n) and &, = (2pz(n) — 1) log(2).

Proof. The conditional density p(z|z) is

p(z|z) = pz(2)[n+ 2z = 0]/p(z=1), ifz=1;
pz(2)[n+z < 0]/p(z=0), ifz=0.

Let us denote p(z=1) as just p. The GR estimator expands as

c .
o [EL Tl 2p(e)ds, itr =1
K %(2)) f;o oy(n+ z)p(z)dz, ifx=0.
Using the change of variables v = o4(n + z), with the inverse z = tlogit(v) — 7, we have
dv =oj(n+ 2)dz

and can write the estimator as

!/ l .
JOR = £2) (x fl pz(n — tlogitv)dv + (1 — z) [? pz(n — ﬂogltv)dv)-

p(x)

12

Y

(18)

19)

(20)

21



Note that pz (1 — tlogitv) is bounded above by a constant sup, pz(z) = 1. A constant is integrable on [0, 1]. By dominated
convergence theorem we can take the limits ¢ — 0 under the integral. In particular we can use

lim p (n — tlogit(v)) = pz(n) (22)

under the integral. In order to get a more detailed view, we make the Taylor series expansion of pz(n — tlogit(v)) and
substitute it under the integral. With the help of Mathematica (Wolfram Research, 2021) we obtain:

JOR = £y () (; + (22 — 1)e; log(2)t + Cg%th) +O0(), (23)

where ¢; = tanh(n/2) = 2p — 1 and ¢, = 1(1 — 3/(cosh(n) + 1)). O
Corollary 1. In the limit £ — 0 the GR estimator becomes the simple binary DARN(%) estimator.
Proof. From the series expansion, the limit £ — 0 is

= 358 p2(n) = 35501 - p), 24)

JGR

where p = (). It remains to show that it matches DARN as defined in (5). Note that 122E=1) — 5(py(1 — 5(p)) =

dn
p(1 —p)and %z:om) = —p(1 — p). By expanding the cases for x = 1 and 2 = 0 we verify that
(0 — 3) HBEE=LN) — Lp(1 — p), (25)
where 7 = 1. O

2
Corollary A.1. The mean and variance of the GR estimator (10) in the asymptote ¢ — 0 are:

BN = p(1 - p) (3(£/(1) + £/(0) + (£/(1) - £'(0)rt) + O(8), (26a)

VIISR] = (p(1 = p)* ($(a—b)2 + (a® = B?)eut) + O(F2), (26b)

where p = 0(n), a = Llél), b= ﬁl © and & = (2p — 1) log(2).

Proof. The mean of the estimator is computed from the series expansion up to the first order as
(% clt) + O(t?)
+(1- p) £9p, ) (% +-1at) + O(F2)

=pz(n) (3(£/(1) + £/(1)) + & (£/(1) = £1(0))2) + O). @

Since the GR estimator JG® () is a Bernoulli variable with values J5®(0) and J® (1) with probabilities p and 1 — p,
respectively, we can compute is variance simply as

(JSR(1) — JSR(0))*p(1 — p). (28)

Using that pz(n) = p(1 — p), the asymptotic expansion of variance up to first order in ¢ is

2
(p(1 = p))* (a3 +&at) = b(} = &18)) )+ O() (299)
—((—p)*(Aa—b) + (@t b)) +O(2), (20b)
swhere g = L) p — Ji/g), ¢1 = log(2)cy. The first order term is

301 = p))*(a® — vt (30)
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It could be positive or negative depending on the values of the derivatives and of p. Let us expand a,b and ¢; = tanh(n/2) =
2p — 1. We obtain, up to positive constants,

p(1=p)(f(1)*(1 —p)* = f'(0)*p*)(2p — 1)t. €2

We see that for the corner points, where p approaches either 0 or 1, this linear term is negative. In particular for a linear
objective we have f'(1) = f’(0) and the linear term becomes

—p(1—p)f'(1)*(2p — 1)t (32)

which is non-positive for any p and is zero for p = % O]

A.2. General Categorical Case

This case is significantly more difficult, as we are dealing with multivariate integration in X Gumbel variables. We will
make use of the following statistical relationship.

Lemma A.1. Let G1, ... G be independent standard Gumbel random variables. Then Z with components Z; = G; — G
fori=1... K — 1 has the multivariate logistic distribution (Malik & Abraham, 1973) with cdf

FZ(Z) = W (33)

Proof. The cdf and density of Gumbel(0, 1) distribution are given respectively by

Folz)=e*"; pala) =e @t (34)
The conditional distribution of Z; given G is Fy,jcy (2i]y) = ¢=¢ ™"’ The conditional joint distribution of Z given
Gk is respectively
K1 _e—(zitw) — —(2i+y) _, Bt . _eYS
Fric(zly) = 11 e =exp( Y, —e GitW) —exp(—e ¥ ) e ) =e , 35)
=1 =1 =1

where S = Zf:l e~ *'. The cdf of Z is obtained by computing the expectation of F'z|g,. in G:

Fp(z)= [ e~ "Se-trte gy = [ emumet(148) gy

=5 J 1+ 8)ev 9y = g [ e dv = g, (36)
where v = y — log(S + 1) and the last equality is by recognizing the Gumbel density under the integral. O

Theorem 1 (ZGR). The Gumbel-Rao estimator for one-hot embedding ¢ in the limit of zero temperature is given by

5(Jo, — Jo, )p(x=i;n) if i #
Jror = {5 g g o e (12)

i 3 Z( oM 45;)17(!17*],77) ifi=ux.

j#x
Proof. Let us restate the GR estimator:

Gy, ~ Gumbel(0,1), k € K; (37a)
X = argmax;, (0 + Gi); (37b)
¢ = softmax; (6 + G); (37c)
Jor = LGONE [%ﬂ (37d)

The probability space here is determined by G. Let P be the respective probability measure. X is a function of G and
is distributed with the pmf p(z) by the sampling procedure and therefore Po(X=x) = p(z). We can thus rewrite the
conditional expectation in (37d) as

JIX () = 2] G dFe(w)/Pa(X=0) = ity [ “GdFo(u), (38)

p(z
( )argmax(HJru):x
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where F is the joint cdf of G. The condition arg max;, (6 + Gx) = x can be expressed as
0; +G; — (0, +G,) <0, Vj+#u. 39)

Let us define 3; = 0; — 0, and Z; = G; — G, for j = 1... K. Note that 3, = Z, = 0 by this definition. Then the
constraint can be written as

7 < 8. (40)

The integrand ) expresses in variables 3, Z as
¢ = softmax; (6 + G) = softmax, (3 + Z). (41)

Let us denote Z_, = (Z;|j # «). The joint distribution of Z_, is the (K —1)-variate multivariate logistic distribution (Malik
& Abraham, 1973), as detailed in Lemma A.1, with cdf:

F fp) = e 42
Z g (Z ) 43, e = (42)
To simplify notation, we let Z,, have the discrete law with mass 1 at a single point z, = 0 = —f3, and extend Fz__ to the

full joint F'z accordingly. We then can rewrite the integral as

( f 35 9 softmax, (8 + 2)dFyz(z )) ﬁ. (43)

The Jacobian % softmax (58 + z) is a K x K matrix with indices (k, j) where the column j = x is zero by definition. Let
us consider one component of the above integral for j # x:

IkJ‘ = f 83 bOftmaXt(ﬁ—FZ)deZ( ) (44)
2<—p

We want to evaluate its limit for £ — 0. We cannot push the limit under the integral in this form, we need to transform it first.
To shorten the notation, let us denote a; = e(* T/t We change the variable z; by the mapping

TZZjHUj:(2+S) (45)

1+a +S

where S; = >~ ; a;. This mapping is monotone increasing and one-to one from (—oo, —f3) to (0, 1), therefore the
constraint z; < —f; will trivialize.

Let Ay, = softmax; (5 + z);. We can rewrite the integrand %dzj as follows:
J

dA" dz] = dA" dz] (A, depends on (3 in the same way as on z;)
leg‘; Sdv dAk dv. (46)
We will thus need to evaluate C; := ‘;‘31’? = ‘(ji‘;‘]’? % = ‘}iﬁ]’?‘ (%Z_)_l. For j = k we simply have
Av = by = a5V G = o5 (47)
For j # k we have
(iz?; = %juaajkﬁrsj = (1+a_jcrsj)2 (482)
= 0 +5) (el ~ i) = S s
C; = W?HS) (48¢c)
The integral I, ; with the change of variable z; — v; expresses as
[ Jo Citulwslzy)dvdFz (), (49)

zi<—Bi Vi#j
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where z-; = (z;|i # j) and
fewjlz—5) = pz; 12, (T (v;)|25)- (50)

The dependance of f; on ¢ is through 7', while C'; depends on ¢ and z-;. Note that f is a squashed density and is itself not a
density.

Next we show dominated convergence of h;(vj, z—;) = C; fi(vj]z-;) int — 0. If hy(v;, z;) converges point-wise and
bounded above by an integrable function, then the limit £ — 0 can be taken under the integral.

We show a constant bound on h(v;, 2-;) as follows. Note that |C;| < 1. We then have

|hi(vj,2-5) < sup  f(vjlz—;) =suppz; 2, (2j]2-)), (51

ve(0,1),2-;

which is the supremum of the conditional density of the standard multivariate distribution and is equal to some constant ¢
independent of ¢. The integral of a constant function c over (0, 1) x RE~! with respect to the measure dv;dFy._ J(z—)is e

The point-wise limit is as follows. For z satisfying the constraints z; + 3; < 0 strictly for i # j, z, we have

lim a; = lim eBitz)/t = and lim S; = 0. (52)
Therefore we have
% ifj =Fk;
tli_r}%C}-z 0 ifj£kNk#ux; (53)
—1 ifjAkANk=u.
The inverse of mapping 7" is given by the relations
a; = %, zj = —p; + tlog(a;). 54
It is seen that the limit of log(a;) is finite and therefore
lim 771 (v;) = —B;. (55)

t—0

and

lim fi(vjl2-;) = limpz; 1z, (T~ (v;)|2~5) = pz,|z-, (Hm T~ (v;)|2)

= pz,17_;(—Bjlz=5)- (56)

By dominated convergence theorem, we can now claim
limy_,ol; =0 if j #kand k # x. (57)

And elsewise, if j = kor k =z,
limy_yo I ; = [ Eapz2, (< Biley)dFz (25) = £5 55 Fz(2)| (58)
zi<—Bi Vi#j =

~ bl o = Py s = ol sofmax(d). e
= £3p(2)p(j), (60)

where the upper sign corresponds to the case 7 = k and the lower to k = x.

Let us denote I = lim;_,¢ I. Multiplying it with the incoming derivative Jy on the left, we obtain:

(JoD); = 5(Js; = Jo.)p(@)p(j)- (61)
And finally, multiplying (61) with the Jacobian 25 on the right per (43) and with the factor ﬁ per (38), we obtain
ZGR _ %(‘]@ — Jy,)p(i) if i # x;
Jéi - 1 . ip - (62)
-3 Zj#z(J@. —Jp,)p(j) ifi=zx.
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Proposition 2. ZGR estimator decomposes as

J’gGR — (J,,S]T‘FJ??ARN((E(W))), (13)

1
2

i.e., with the choice ¢ = ¢(n) in DARN.

Proof. Let p denote the vector of probabilities (p(z=Fk;n)|k = 0,..., K — 1). Recall that we have derived ZGR under the
assumption of on-hot embedding ¢, inherited from GS. In this case Jy¢(i) = Jy, and ¢p, = >, ¢(i)rp;i =

Note that ZGR (62) defines the gradient in the parametrization # used in Gumbel Rao and initially in Gumbel-Softmax,
while ST and DARN estimators are given by us with respect to 1. We need to bring these two to a common basis. We chose
to reconstruct JEGR because both JST and JII,)ARN are particularly simple:

ST = Tyb(i) = Ty, (63)
JOARN — (¢ — ¢)[w=i]/p(x) = (Jy, — Jop)[x=i] /p(2). (64)

Note, because p lies in the simplex, gradients in p are defined up to an additive constant to all coordinates. In other words
any such additive constant is irrelevant and will not affect the gradient in 7.

In order to reconstruct JZR we represent J{® = JZR P, where P is the Jacobian of softmax, given by
P = diag(p) — pp" = diag(p)({ — 1p"). (65)

We first note that JZR satisfies >, J5OR = 0 (as any gradient should, but not necessarily a stochastic estimator) and
therefore

JZGR JZGR( 1pT) — JOZGR dlag(p)_lP (66)
We obtained:
JZiGR — %(1']% - J¢a,) . le #+ T )
2 Z]’#JJ(‘]‘%‘ - J%)p(])/p(m) ifi =z,

up to a constant, i.e. adding the same number c to all components. We further add the constant %J% and obtain

JZGR _ %Jdn if i # ©68)
o 3760 = 3 2 j2a(Js; — Jo)0(3)/p(2) ifi ==,

Subtracting §.J5T, the reminder is £ JX® with
TyE = li=al iy 200 (Jo, — Jo,)p0)- (69)
Simplifying
YiraJon = Jo,)P() = 225 (Jo, — Jo,)0(G) = Jo, — 35 Jo,(5) (70)
we obtain
IR = [i=al 55 (o, = X2, Jusp(3))- 1)
and we see that JR® = JPARN with ¢ = p = ¢(n). O

Theorem 2. ZGR is unbiased for any quadratic loss function L.

Proof. Since ZGR estimator is linear in £ (estimate for a linear combination of two loss functions is the linear combination
of estimates), it is sufficient to prove the claim for one-hot embedding ¢ and some elementary functions forming a basis for
all quadratic functions. With one-hot embedding we have ¢(n); = p(x=i;n) = p;.
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Let us start with a linear monomial £(z) = ¢(z),. The expected loss is E[L(z)] = p(x=i;n). The true gradient is

Iy = qop(x=i;n). (72)
Substituting Jy, = [k=i] in ST we have
_ dL(¢(2)) dé(n) _ dé(n): _
Tt =G e = S = e (73)

This may come as a surprise for someone, but ST for a single categorical variable is exact (zero bias and zero variance). The
expectation of JPARN simplifies as follows for any ¢ and a linear loss function, ensuring that Jy is constant in x:

BIPAMN] = 52, p(2)J6(6(2) = 0) 5y TG = Jy o (9(2) — 9)LE2
=T X, Ox) BED — oL 5 plasn) = T, 950, (74)

Substituting J,, = [k=i] and $(n) = p we obtain

E[JDARN] — dp(z=in) _ g (75)

dn —Ym
reconfirming that DARN is unbiased for linear function of categorical variables as expected. It follows that & (J5T + JPARN)

is also unbiased.

Let us now consider the elementary quadratic function £(¢(z)) = ¢(x)? — ¢(x);. For all discrete assignments it is zero,
therefore the true gradient of its expected value is zero. We have

o (@) = {?(x)i ! Z ; z (76)
Therefore J5T = 0 for k # i and
E[J5T] = E[2¢(x); — 1] = 2p; — 1. (77)
For JDARN we have
TpRN = (Jg, (2) = Jo(2)p) 55 [2=i] (78)
= (1= pi)(20(2); — 1) 5y [2=i]- (79)
Its expectation is
(I —pi)(20i(i) — 1) =1 —p;. (80)
For JDARN — 0 for k # i we have
Tt = (T, (2) = Jo(2)p) g [2=F] (81a)
= —Jy (@)D [2=k] (81b)
= —pi(26(2); — 1) [v=k]. 8lc)
Its expectation is
—pi(2¢i(k) — 1) = pi. (82)

By subtracting p; from all ordinates of JP*"N, we obtain an equivalent (having identical derivative in 1) form where
E[JDARN] = 0 for all k # i and E[JPARN] = 1 — 2p;, which cancels with E[J5T].
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Next we consider a bilinear monomial in ¢: L(¢(x)) = ¢(z)16(x)2, where we have taken indices 1 and 2, without loss of
generality. Its is zero for all discrete assignments and therefore the gradient of its expectation is zero. We have

Jpniy = ¢2(z) = [2=2] (83a)
Jphis = ¢1(z) = [2=1]. (83b)
For ST we have J5'T = Jj; and
E[J5T] = pe, (84a)
E[JST] = p1, (84b)
E[J5T] =0, k#1,2. (84c)
For DARN part we have:
TPARN — [a=1] L (Jy, — Jg,p1 — J4,p2), (85a)
TN = [2=2] - (Jg, — Joup1 — Joup2), (85b)
TpAN = [a=k] o= (= Jg,p1 — Jgup2), Kk #1,2. (85¢)
In the expectation, substituting .Jy:
E[JIRARN] = [[»T:lﬂp%(@(l) = ¢2(1)p1 — ¢1(1)p2) = —p2, (86a)
E[JARN] = [[33:2}],%2(051(2) — 02(2)p1 — 91(2)p2) = —p1, (86b)
E[JpAN] = [a=k] - (= @2 (k)pr — ¢1(k)p2) = 0, Kk #1,2. (86¢)

This exactly cancels with ST.

The elementary functions we have considered form a basis in the space of all quadratic functions. By linearity argument,
JZCGR = 1(J5T 4 JPARN) js unbiased for all quadratic functions. O

B. Details of Experiments

Here we give detailed specifications of our experiments. The implementation of all experiments will be made publicly
available upon publication. During the review period, we will be happy to answer questions and share the code with
reviewers confidentially through the OpenReview platform.

B.1. Dataset

In quantized training we use MNIST' and FashionMNIST? datasets. Each contains 60000 training and 10000 test images.
We used 54000 images for training and 6000 for validation.

In VAE training, following the prior work, we use a decoder with Bernoulli output layer, which requires binary datasets.
MNIST-B is a binarized MNIST with a fixed threshold of 0.5, same as in (Yin et al., 2019). The original Omniglot dataset
is of the size 105 x 105 and contains binary images. However the established benchmarks use its down-sampled version (to
size 28 x 28), which is then dynamically sampled: binary pixel values are generated with probabilities proportional to the
original pixel values (Burda et al., 2016; Dong et al., 2021), which we denote as Omniglot-28-D. The down-scaled dataset
published by (Burda et al., 2016) was used, same as in the public implementation of (Dong et al., 2021). It contains about
24000 training images, which were split into training (90%) and validation (10%) parts and currently we are not using the
validation part.

B.2. Methods

ZGR for categorical variables can be implemented as shown in Fig. B.1. It is a plug-in estimator, meaning that it is sufficient
to use it for every tensor of categorical variables in a hierarchical model and the gradient in all parameters will be computed
by back-propagation automatically.

'nttp://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
*https://github.com/yburda/iwae/raw/master/datasets/OMNIGLOT/chardata.mat
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def ZGR(p:Tensor)->Tensor:
"""Returns a categorical sample from p [x,C] (over axis=-1) as one-hot vector, with
ZGR gradient.

nun

index = distributions.categorical.Categorical (probs=p) .sample ()

x = functional.one_hot (index, num_classes=p.shape[-1]) .to (p)
logpx = p.log().gather (-1, index.unsqueeze(-1))# log p(x)
dx_ST = p

dx_RE = (x - p.detach()) * logpx

dx = (dx_ST + dx_RE) / 2

return x + (dx - dx.detach()) # value of x with backprop through dx

Figure B.1: ZGR implementation in Pytorch for a general categorical variable.

Gumbel-Softmax (GS) and Straight-through Gumbel-Softmax (GS-ST) (Jang et al., 2017) are shipped with pytorch®.

For Gumbel-Rao with MC samples (GR-MC) we adopted the public reimplementation by nshepperd °, which is parallel
over MC-samples.

RF(M) we implemented according to (Kool et al., 2019), Eq. 8. The part of the computation relevant to the encoder is
propagated forward and backward only once. In the decoder we perform as many backward passes as forward, as this
reduces variance of the gradient in decoder parameters. In quantization our implementation performs a backward pass for
each forward pass.

For ARSM (Yin et al., 2019) we made own reimplementation, cross-checked with the authors tensor-flow implementation ©.
As with RF(M), we also performed a backward pass for each forward pass.

B.3. VAE

Model In our model each categorical variable is encoded as a vector of +1, corresponding to the bit representation of x,
similar to (Paulus et al., 2021). There is a fixed number of total hidden bits (192), which are split into several categorical
variables. For example 192 1b variables or 32 6-bit variables. This way the number of weights in the network stays constant.
The network architecture is adopted from (Yin et al., 2019):

Linear(784,512) — LReLU — Linear(512,256) — LReLU — Linear(256, D*K),

where in the last layer we have D of K-way categorical units and LReLU has a leaky coefficient of 0.2 (same as in (Dong
et al., 2021), default in tensorflow). The output of the encoder defines logits of the encoder Bernoulli model ¢(z;=1|x),
where z is the input binary image and z is the latent discrete state.

The decoder has exactly the reverse Linear-LReLU architecture and outputs logits of conditionally independent Bernoulli
generative model p(x;=1|z). We optimize the standard evidence lower bound (ELBO) (Kingma & Welling, 2013) with
prior distribution p(z) uniform and not learned.

We do not perform any special data-based initializations like subtracting data mean in the encoder in (Dong et al., 2021).

Optimization In the forward pass all methods produce a sample, from which a stochastic estimate of the gradient with
respect to the decoder parameters is readily computed by backpropagation through decoder. We compute the KL term in
ELBO analytically for a mini-batch and use its exact gradient. The estimation problem (1) occurs for the gradient of the data
term with respect to the encoder parameters, where the estimators through discrete variables are applied.

All methods, including GS that optimizes ELBO with relaxed samples, are evaluated by the correct ELBO with discrete
samples.

In the VAE experiments we measure the gradient accuracy and the training performance and do not make use of validation
or test sets. First, this is reasonable when comparing quality of gradient estimators, regardless generalization. Second, the
prior work (Dong et al., 2021) has verified that improvement in the training ELBO translates into improvement of the test

*Pytorch function torch. functional.gumbel_softmax
Shttps://github.com/nshepperd/gumbel-rao-pytorch
®https://github.com/ARM-gradient /ARSM
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ELBO and IWAE bounds.

Following (Dong et al., 2021) we train with Adam with learning rate 10~* using batch size 50. Furthermore we tried to
match the training time that of (Dong et al., 2021). For MNIST we perform 500 epochs, and for Omniglot-28-D we perform
1000 epochs, roughly equivalent in booth cases to their 500K iterations with batch size 50.

B.3.1. HIERARCHICAL VAE

Model The model extends the 2-layer linear hierarchical VAE model of Grathwohl et al. (2018) to categorical variables. As
above, each categorical variable is encoded as a vector of 11, corresponding to the bit representation of z. There is a fixed
number of total hidden bits in each layer (192), which are split into V' K -way categorical variables. The encoder ¢(z1|z) is
a linear mapping Linear(784,V*K). The encoder g(22|z1) is a linear mapping Linear(192,V*K). The decoders are likewise
in the reverse directions. The prior distribution p(22) is set to uniform and not learned.

Optimization We optimize the ELBO:

logp(x) > >°. ., a(z1]x)q(22|21)(log p(z[21) + log p(21]22) + log p(22) — log q(21|z) — log g(22]21)). 87

The expectations such as ) 0 q(22]21) log g(22|21) are computed in closed form. The optimization parameters are kept the
same with the VAE setup above.

B.4. Bias-Variance Analysis

‘We conducted the bias-variance analysis for VAE at different training stages. Namely, we trained the model using RF(4)
for 1, 10, 100, and 200 epochs and at each stage evaluated bias and variance of all gradient estimators. The model used 16
categorical variables of 16 categories (64 total latent bits). The estimates of the squared bias average and variance, both on
average over all network parameters, are obtained using 10000 samples of the reference RF(4) estimator and 10000 samples
of the evaluated estimator. The temperature range for GS family is [0.01, 2], uniformly in the log space. The temperature
range for ST(¢) family is [1, 8], uniformly in the log space. The range of « in ST-ZGR(«) family is [0, 1].

The results are displayed in Fig. B.2. At the very beginning of training, the picture looks substantially different in that there
is some bias reversal in GS-ST and derived estimators. However from epoch 10 and on the trends and relative ordering of
methods stabilizes, with only RF(4) slightly overtaking ZGR in variance. The different picture after 1 epoch suggests that it
would be beneficial in practice to warm-up the training with a few epochs using an estimator with lower variance.

B.5. Quantized Neural Networks

Experimental Setup In this experiment we train a convolutional network 32C5-MP2-64C5-MP2-512FC-10FC, closely
replicating the model evaluated by Louizos et al. (2019) for MNIST. Each activation quantization is preceded by batch
normalization (Ioffe & Szegedy, 2015).

All gradient estimators are working with the same network, parametrization and initialization. In the case of logistic
noise the noise standard deviation is learnable and is initialized to 1/3. All methods are applied with Adam optimizer for
200 epochs. For every method we select the bast validation performance with the grid search for the learning rate from
{1073,3.3-107%,10~*}. We used the step-wise learning rate schedule decreasing the learning rate 10 times at epochs 100
and 150. The whole procedure is repeated for 3 different initialization seeds and we report the mean test error over seeds
and £ (max — min)/2 over seeds.

For validation and testing, we evaluate the network in the ’deterministic’ mode, turning off all injected noises. This
corresponds to a simple deterministic quantized model to be deployed.

Single Unit Quantization We include the following toy experiment that well illustrates properties of different estimators.
We evaluate bias and variance of all estimators on a simple function of a single quantized variable. Let 1 be a real-valued
parameter. Let p(x; ) be given by the stochastic quantization model with K = 4 states and a particular noise type. Given
a test function £(x) we can compute the true gradient of E[£(x)]. For each estimator we draw 10* samples to compute
its mean and standard deviation for each value of 7. The results are presented in Fig. B.5. In this plot we show several
combinations of loss functions and noises. The test functions are: linear L(z) = z; quadratic L(z) = (z — ¢)* and
sigmoid L(x) = o(2(x—c)), where ¢ = (K —1)/2 is chosen for centering. The noises shown refer to the logistic noise with

std = 1/3 as used at initialization by Louizos et al. 2019 and the triangular noise with the density p(z) = max(0,1 — |z]).
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After 1 epoch of training
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Figure B.2: Gradient estimation accuracy in VAE on MNIST-B. Average (per parameter) squared bias (/eft) and variance
(right) of gradient estimators versus temperature for a model snapshot at a particular iteration of training with RF(4). VAE
network with 16 categorical variables with 16 categories.

Table B.1: Non-linear VAE test negative ELBO.

MNIST-B Omniglot-28-D
Method C2V192 C4V96 Cl6V48  C64V32 | C2VI192 C4V96 Cl6V48  C64 V32
GS(t=0.1) 94.7£0.1 86.8£0.4  84.2+0.6 87.9+£0.9 | 120.0+£0.2 118.1£0.2 118.9+0.1 122.2+0.2
GS-ST(t=0.1) 94.0+0.2 87.0£03  85.0+04  90.8+£0.5 | 121.3+£0.2 118.6£0.1 120.3+0.0 124.5+£0.4

GR(t=0.1,K=10) 92.5+£0.3 85.2+0.1 82.5+0.1 83.7+0.2 | 118.7£04 116.8+0.3 117.7+£0.2 119.8+0.3
GR(t=0.1,K=100)  92.5+0.7 85.2+0.1 82.2+0.4  83.24+0.6 | 118.8+0.1 116.4+0.1 117.1+0.1 118.840.2

ZGR 94.0+£0.1 86.2+0.2  82.5+0.3 83.4+0.0 | 119.0£0.3 116.6+0.2 117.3+£0.2 119.0+0.2
ST 105.3+0.4 105.8£0.4 106.2+0.3 107.0+£0.3 | 131.1+£0.1 131.4£0.1 132.2+0.0 132.7£0.2
RF(M=2) 97.5+£03 88.9+0.3 89.9+0.5 97.5£0.1 | 123.3£0.4 121.14+0.1 123.8+£0.3 128.9+0.3
RF(M=4) 99.1£0.1  87.6£0.1  84.3+0.5 89.0+£0.5 | 120.6+£0.1 118.4+0.3 120.1+£0.0 122.8+0.1

Table B.2: Hierarchical VAE test negative ELBO.

MNIST-B Omniglot-28-D
Method C2 V192 C4V96 Cl6V48  C64V32 | C2V192 C4Vo6 Cl6V48  C64 V32
GS(t=0.1) 123.7£0.7 120.8£0.4 128.840.3 138.14+0.3 | 141.2£0.2 146.1£0.5 152.5+0.1 162.24+0.2
GS-ST(t=0.1) 124.0£0.6 121.14£0.2 129.2+0.2 138.7£0.1 | 145.8£0.4 147.3+0.1 153.4+0.0 162.7+0.2

GR(t=0.1,M=10)  119.5+1.1 112.8+0.6 117.8£0.5 124.84+0.4 | 149.0+0.8 142.6+0.5 145.3+0.3 151.8+0.1
GR(t=0.1,M=100) 119.1+1.5 111.2+0.5 115.0£0.2 121.3+0.3 | 149.8+0.6 141.5+0.4 143.2+0.4 149.2+0.3

ZGR 118.2+2.2 111.8+0.0 115.6+0.2 121.9+0.3 | 150.3+0.8 143.2+1.5 143.6+0.3 149.1+04
ST 124.7£0.1 125.24+0.1 124.7+0.1 125.1£0.1 | 145.8£0.3 146.3+0.3 148.1+£0.1 149.84+0.0
RF(M=2) 129.3+£0.2 129.3+0.2 136.8£0.9 145.7+0.3 | 146.5+0.7 150.2+£0.2 158.0£0.3 168.0+0.4
RF(M=4) 120.4+£1.0 121.740.6 127.8+£0.7 134.7£1.6 | 141.6£0.7 145.6+0.5 153.8+0.4 161.3+0.2

The bias of the GS family quickly decreases with the temperature. ZRG estimator achieves the same expected value as
GS-ST in the limit of small temperature illustrated by GS-ST(t=0.1) and the variance comparable to that of GR(t=0.1,
M=100). We also verify that ZGR has zero bias for quadratic objectives as we have shown theoretically.
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Figure B.3: Quantization: average (per parameter) variance in the first layer of the network of different estimators along the
training trajectory of ZGR (ternary weights/activations, triangular noise).

B.6. Bias-Variance Analysis

The bias-variance analysis for quantization uses the following setup. In order to be able to measure bias with a sufficient
accuracy, we trained a small model 8C5-MP2-16C5-MP2-128FC-10FC with ternary weights and activations. The model is
trained using ZGR for 20 epochs. We estimate the squared bias and variance, both on average over parameters in layer O of
the network. Because of high variance of all estimators, the experiment required 4 - 10° samples of the reference method
RF(4) and 4 - 10* of each of the evaluated estimators per hyperparameter point. The temperature range for GS family is
[0.1, 2], uniformly in the log space. The temperature range for ST(t) family is [1, 8], uniformly in the log space. The range
of ain ST-ZGR(«) family is [0, 1]. In the plot Fig. 4 we show ST-ZGR interpolation between ST(t=1) and ZGR. It is
seen that ZGR achieves a smaller bias compared to ST but at a price of a substantial increase in the variance. To contrast it
to ST trend we also show ST < 1 for temperatures ranging in [1, 0.5], uniformly in the log space.

Additionally, we evaluate the variance of all methods in the full size model (which is easier to estimate accurately), during
the training in Fig. B.3.
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Figure B.4: Bias-variance tradeoff diagrams as in Fig. 4 during different training stages. Left: VAE, right: HVAE.
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