
Not Just Pretty Pictures:
Toward Interventional Data Augmentation Using Text-to-Image Generators

Jianhao Yuan * 1 Francesco Pinto * 1 Adam Davies * 2 Philip Torr 1

Abstract
Neural image classifiers are known to undergo
severe performance degradation when exposed to
inputs that are sampled from environmental con-
ditions that differ from their training data. Given
the recent progress in Text-to-Image (T2I) gen-
eration, a natural question is how modern T2I
generators like Stable Diffusion can be used to
simulate arbitrary interventions over such envi-
ronmental factors in order to augment training
data and improve the robustness of downstream
classifiers. We experiment across a diverse col-
lection of benchmarks in Single Domain Gener-
alization (SDG), finding that current T2I gener-
ators can indeed be used as a powerful interven-
tional data augmentation mechanism, outperform-
ing previously state-of-the-art data augmentation
techniques across all datasets. More broadly, our
work demonstrates the utility of generative foun-
dation models in synthesizing interventional data
that can be used to train more robust machine
learning systems, facilitating the application of
such technologies in new domains.

1. Introduction
The success of deep image classifiers is largely built on
the assumption that the train and test data come from the
same domain – i.e., that they are independent and identically
distributed (i.i.d.) – but in real-world applications, small
changes in the environmental conditions under which the
image is captured can break this assumption, significantly
degrading their performance (Gulrajani & Lopez-Paz, 2020;
Wang et al., 2022a; Sakaridis et al., 2020). Since these
changes only affect the inputs (i.e., the covariates) in some
features without altering the labels, this form of distribution
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shift is also known as covariate shift (Quionero-Candela
et al., 2009). In the absence of more sophisticated tech-
niques to simulate the possibility of sampling data coming
from different environmental conditions, the employment
of complex augmentation pipelines integrating image trans-
formation primitives has been one of the most effective
techniques for this purpose.

Many types of augmentation primitives can be thought as
reproducing (often approximately) a controlled and targeted
manipulation of the domain-specific environmental condi-
tions in which the image was captured (e.g., illumination
or weather conditions) without affecting the label-related
features. As such, augmentations may be understood as an
automated, low-cost way of simulating interventions over
the environmental factors that are likely to change across
domains, turning observational data (i.e., with no inten-
tional manipulation of the environment) into approximated
interventional data (Ilse et al., 2021; Wang et al., 2022b).
Motivated by this principle, several works have theoreti-
cally conjectured the utility of an augmentation mechanism
capable of simulating arbitrary interventions (Ilse et al.,
2021; Wang et al., 2022c; Wang & Veitch, 2022; Gowda
et al., 2021). However, since it is not possible to target arbi-
trary interventions in the context of traditional augmentation
pipelines (e.g., it is not possible to hard-code a pixel-space
intervention to transform images of paintings into realistic
photos), prior work has instead focused on leveraging prior
knowledge about specific invariances expected to hold in
the target domains (Hong et al., 2021; Li et al., 2020; Ilse
et al., 2021) or targeting specific downstream applications
(Ouyang et al., 2022; Gowda et al., 2021).

Recently, powerful Text-to-Image (T2I) generative models
like Stable Diffusion (Rombach et al., 2021) have emerged
that can be used to synthesize new images (or edit existing
ones) using text prompts describing the desired output im-
age (see Figure 1). In this work, our goal is to study how
well such models can serve as general-purpose interven-
tional data augmentation (IDA) mechanisms by simulating
arbitrary interventions, either by editing existing images
or synthesising new ones using interventional prompts, al-
lowing one to effectively sample from the approximated
interventional distribution and augment existing training
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Figure 1. Using Text-to-Image Generators for Interventional Data Augmentation. In (a), given an interventional prompt written by
a user or LLM (and optionally, an image to edit), Text-to-Image generators simulate the described intervention by synthesising a new
image or edit an existing one to match the prompt. Here, the generator edits the input image to resemble the target domain. The resulting
manipulated images can be used to train more robust and generalizable models. In (b) (Single Domain Generalization), synthetic data are
generated to mimic potential target domains and combined with data from a given source domain to train a downstream classifier. In (c)
(Reducing Reliance on Spurious Features), synthetic data are generated to break the spurious correlation in a biased dataset and used to
train a downstream classifier.

datasets with the resulting generated images. Unlike pre-
vious approaches, these models can be used off-the-shelf
without requiring manual hard-coding of individual inter-
ventions or training on application-specific data: instead, it
is only necessary to describe the desired intervention via
language (e.g., simulating interventions over lighting condi-
tions by editing images with prompts like “a photo taken at
night” or “it is a cloudy day”). Several recent works have
studied the usefulness of synthetic data from T2I generators
(see, e.g., Bansal & Grover, 2023; Azizi et al., 2023; He
et al., 2023; Trabucco et al., 2023); but so far, their capacity
to augment existing datasets by simulating interventions has
only been studied in limited contexts. (See Appendix A
for a more detailed summary of related work and formal
problem specification.)

In this work, we systematically analyse the extent to which
modern T2I generators can perform general-purpose IDA.
We perform extensive experiments across several bench-
marks in Single Domain Generalization (SDG), a task which
allows us to precisely measure the utility of synthetic in-
terventional data “in the wild” where causal and environ-
mental variables must be disentangled in order to generalize
to novel, unseen domains. (We also experiment with an-
other such task, Reducing Reliance on Spurious Features
(RRSF), in Appendix B). We also experiment across sev-
eral key aspects of T2I synthesis and editing, including the
use of different interventional prompting strategies, condi-
tioning mechanisms, and post-hoc filtering techniques (see
Appendix D), finding that T2I generators substantially out-
perform existing state-of-the-art image augmentation meth-
ods, regardless of how we configure each of these aspects.

2. Simulating Interventions with
Text-to-Image Editing

2.1. Experimental Setting

Given some source training domain DS = XS × K and
some target domain DT = X T × K, our goal is to assess
how well T2I generators can approximately modify envi-
ronmental features ci to simulate DT while keeping causal
features for yi constant. As the most common approach to
image augmentation (including all baselines we consider)
involves editing pre-existing training images and adding
them to the training dataset rather than synthesising new
training data from scratch (Shorten & Khoshgoftaar, 2019),
we begin our analysis by studying the analogous setting
of T2I-enabled image editing using SDEdit (Meng et al.,
2021). For an image xSi ∈ XS of class yi, we aim to trans-
form it into x̂Ti such that it retains yi but appears to have
been sampled from X T . Each of the editing techniques
we consider are conditioned on a natural language prompt,
denoted zTi . For instance, if xSi represents a cartoon cat and
T = painting, zTi could be “a painting of a cat”. Using
the generator G, we transform xSi into x̂Ti = G(xSi , zTi ). For
all experiments, we use Stable Diffusion v1.5 (Rombach
et al., 2021) pre-trained on LAION-Aesthetics.1 Successful
transformations produce x̂Ti ∈ X̂ T with X̂ T ≈ X T . The
synthetic pairs D̂T = (x̂Ti , yi) are then combined with DS

to perform ERM via cross-entropy minimisation to train
the neural classifier (ResNet-18 and ResNet-50). In this

1LAION-Aesthetics is a subset of the LAION-5B dataset
(Schuhmann et al., 2022a) consisting of web-scraped text-image
pairs with high “aesthetic scores” (Schuhmann et al., 2022b).
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work, we focus on Single-Domain Generalization (SDG) as
a representative setting where access to a high-quality ap-
proximations of the intervened distributions can measurably
affect the performance of classifiers when training on both
DS and D̂T , as described below.

Experimental SDG Formulation Given data DS from a
source domain accessible at training time, the goal of SDG
is to achieve high performance on a set of datasets DTj with
j = 1, 2, ..., J sampled from different target domains (Qiao
et al., 2020). In this setting, the generator uses DS and
zTj

i to generate D̂Tj ≈ DTj . Following the standard eval-
uation procedure, we train a classifier on a single domain
of each benchmark (DS) and test it on the others (DTj ),
and report the average accuracy over the J target domains.
For our experiments, we consider four widely used bench-
marks that vary for type of domain shift, number of classes
and training samples: (1) PACS (Li et al., 2017), contain-
ing the domains art painting, cartoon, sketch,
and photo; (2) Office-Home (Venkateswara et al.,
2017), containing Art, Clipart, Product, and Real
World; and (3) NICO++ (Zhang et al., 2022), con-
taining autumn, dim, outdoor, grass, water, and
rock; and (4) DomainNet (Peng et al., 2019), contain-
ing clipart, infograph, painting, quickdraw,
real, and sketch. We provide a more detailed descrip-
tion of the training procedure and other aspects of the SDG
experiments in Appendix C.

Interventional Prompts Considering the fact that Stable
Diffusion is built on top of a text encoder that, like many
LLMs, can be sensitive to small differences in prompts that
are not generally meaningful to humans (see, e.g., Ribeiro
et al., 2020; Wang et al., 2021a; Moradi & Samwald, 2021),
we experiment with four distinct prompting strategies using
SDEdit to measure its sensitivity to variation in prompts:
(1) Minimal (M), sentences including only the domain label,
class label, and function words (articles or prepositions) as
necessary to make the prompt grammatically correct, like “a
domain of a class” (e.g., “a sketch of an elephant”); (2)
Domain expert (H), a collection of “handcrafted” prompts
authored by a human given only metadata descriptions pro-
vided by the respective benchmarks, without looking at any
samples form the target domain; and (3 & 4) Language
enhancement (LE), a collection of prompts generated by
T5 (Raffel et al., 2020), in two variants: one that deter-
ministically selects the highest-probability interventional
prompts (LEC), the other that favors diversity in prompt-
ing (LEM).2 (See Appendix F for further details on each
prompting strategy.)

2Note that, by design, none of the prompting strategies are
optimised to boost the reported metrics: they are generated in a way
that is independent from classifiers’ performance on downstream
tasks or the structure of the generator. See Appendix M for a
complete list of image-generation prompts used in experiments.

Baselines To evaluate the effectiveness of edited data from
T2I models, we compare their results with key augmenta-
tion baselines broadly representing different approaches in
the domain generalization literature (in addition to ERM):
(1) AugMix (Hendrycks et al., 2020), (2) RandAugment
(Cubuk et al., 2020), (3) CutOut (DeVries & Taylor, 2017),
and (4) PixMix (Hendrycks et al., 2022), which all com-
bine parametric transformations in complex pipelines to en-
hance model robustness. We also evaluate (5) ACVC (Cugu
et al., 2022), which combines parametric transformations
and augmentations in the Fourier domain for style mixing;
interpolation-based methods like (6) MixUp (Zhang et al.,
2017) and (7) CutMix (Yun et al., 2019); methods that train
generators to diversify training data (8) L2D (Wang et al.,
2021b); and adversarial data augmentation techniques like
(9) MEADA (Zhao et al., 2020) and (10) RSC (Huang et al.,
2020).

2.2. Results

As shown in Figure 2, SDEdit outperforms all baselines
regardless of the source domain (when averaging over target
domains). Specifically, across all the considered bench-
marks, using ResNet-50 with minimal prompt yields a 5%
improvement over the strongest baesline, PixMix, which in
turn outperforms ERM by just 1.10%. We find that, when
considering the performance on individual benchmarks, no
single baseline consistently outperforms the others. This
reinforces the observation that each of these techniques en-
codes different assumptions about the types of invariances
expected to hold in the test domain. For the largest-scale
dataset we consider, DomainNet, traditional data augmen-
tation methods fail to demonstrate a substantial performance
boost compared to ERM; but SDEdit is able to deliver a
strong average performance boost of 5.48%. Comparing
across all SDG datasets, SDEdit is the only method that
consistently outperforms ERM across all benchmarks. (For
a more detailed breakdown of all results figures, see Ap-
pendix C.)

We also find that the most sophisticated prompting strategy
does not usually perform best: in PACS, OfficeHome and
DomainNet, the Minimal (M) and Handcrafted (H) strate-
gies outperform LEM and LEC, indicating that including
additional details (e.g., specifying various styles of paint-
ings across multiple prompts) does not yield obvious bene-
fits, and may even degrade performance (e.g., by “injecting
noise” into the pipeline). However, in NICO++, LEM and
LEC show superior performance to (M) and (H), which may
be explained by the fact the domain labels for NICO are not
detailed enough for minimal prompts to be fully descriptive,
meaning that the additional details included in prompts can
be more beneficial in such contexts.
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Figure 2. Single Domain Generalization (SDG) Results. Average SDG test accuracies on the remaining target domains when training
ResNet-50 on each source domain (indicated on each axis) using the respective data augmentation methods. Baseline methods are
visualized with dashed lines, and SDEdit methods with solid lines.

Table 1. Average SDG Performance. The number reported is the
average Single Domain Generalization average of all domains in
each dataset, each serving as a single source domain. The best and
second-best performing methods are highlighted with bold and
underline, respectively.

PACS OfficeHome NICO++ DomainNet Average

ERM 61.96 61.94 69.95 25.26 54.78
MixUp 58.17 60.46 70.63 25.49 53.69
CutMix 58.50 57.16 67.03 24.47 51.79
AugMix 64.63 62.60 68.81 26.20 55.56

RandAugment 62.61 63.02 69.88 26.17 55.42
CutOut 60.87 60.03 69.23 24.90 53.76

RSC 64.58 59.10 67.37 23.32 53.59
MEADA 64.04 62.08 69.89 25.26 55.32
PixMix 67.12 61.43 69.48 25.53 55.89

L2D 68.89 58.37 65.19 24.75 54.30
ACVC 67.98 59.92 66.92 26.46 55.32

SDEdit(M) 76.43 64.66 71.12 31.94 61.04
SDEdit(H) 77.87 63.27 71.95 31.82 61.23

SDEdit(LEC) 76.38 63.43 73.69 31.44 61.24
SDEdit(LEM) 75.65 63.14 73.61 30.94 60.84

3. Further Investigation
Beyond Single Domain Generalization, we also investigate
the application of T2I generators to Reducing Reliance on
Spurious Features (RRSF) in Appendix B, finding that they
are similarly powerful in this context. To obtain a deeper un-
derstanding of how such generators can be most effectively
applied to such tasks, we analyze several key aspects of T2I
generation and data selection in Appendix D, including in-
terventional prompting strategies, conditioning mechanisms,
and post-hoc filtering. Among these experiments, our most
important findings are that (1) the conditioning mechanism
is the most important factor, and (2) some alternative con-
ditioning mechanisms consistently yield superior results
to those we observed with SDEdit. Finally, despite the
clear effectiveness of synthetic data from T2I generators
in improving robustness across each benchmark we consid-
ered, we still encountered several important limitations that

could hinder the application of these methods in some other
scenarios (explored in detail in Appendix E).

4. Conclusion
In this work, we study the usefulness of Text-to-Image (T2I)
generators in performing IDA to facilitate effective Single
Domain Generalization (SDG), finding that they perform
much better than traditional data augmentation techniques.
We also consider the usefulness of these methods in the
context of Reducing Reliance on Spurious Features (RRSF;
Appendix B), and examine how various aspects of T2I gen-
eration impact results for both tasks (Appendix D). More
broadly, we believe that utilizing generative foundation mod-
els (such as T2I generators) for interventional data augmen-
tation will play a key role in facilitating the robustness of
machine learning systems across a variety of new applica-
tions “in the wild”, and hope that our work will provide
important justification and guidance for future research in
this area.
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A. Problem Setting and Related Works
The Problem of Out-of-Domain Generalization Given
a data distribution P (x, y) = P (y|x)P (x) where x ∈ X ⊂
Rd, y ∈ K = {1, 2, . . . , |K|}, learning a classifier amounts
to estimating f̂(x) ≈ P (y|x) (i.e., predicting the conditional
distribution of the label y given a covariate x) using a la-
belled training set Dtrain = {(xi, yi)}Ni=1. Given the finite
amount of data available in Dtrain and the high dimensional-
ity of X , the samples in Dtrain are not representative of the
whole input space (i.e. xi ∈ X train ⊂ X ). When deployed
in the wild, the classifier will likely be exposed to inputs
sampled from regions of the input space not represented
in the training set, even when K is the same. Specifically,
we are in presence of covariate shift, a form of distribution
shift. It has been empirically observed that neural classi-
fiers’ performance significantly degrade in the presence of
covariate-shifted evaluation data (Gulrajani & Lopez-Paz,
2020; Wang et al., 2022a; Sakaridis et al., 2020; Pinto et al.,
2022a).

Several theoretical frameworks have been developed to
make the problem of out-of-domain (OOD) generalization
well-posed (Wang et al., 2022b; Wang & Veitch, 2022; Ilse
et al., 2021; Quionero-Candela et al., 2009) – in this work,
we default to the framework proposed by (Ilse et al., 2021).
In computer vision, the core principle is that pixel values
of image xi ∈ X are the result of a data generation process
that combines (unobserved) features hyi

and hci generated
by the label yi, and conditions described by a vector of
environmental variables ci ∈ C (Gowda et al., 2021; Ilse
et al., 2021). To make the problem more tractable, it is
often assumed it is possible to partition C into M domains
(i.e., C =

⋃M
j=1 Cj , Ck ∩ Ch = ∅,∀k ̸= h) based on how

similarly the environmental conditions impact x, so that the
contextual variables values and impact are summarised in
the discrete indices j (Arjovsky et al., 2019). For instance,
environmental variables could be aggregated to represent
similar illumination conditions or backgrounds. Further-
more, an unobserved spurious confounder s might correlate
both yi and ci. A high-performing classifier is likely to learn
these spurious correlations, as they are predictive of the la-
bel yi; but such correlations will (by definition) not hold
under all environmental conditions, damaging classifiers’
ability to generalize (Xiao et al., 2021; Geirhos et al., 2019).

Simulating Interventional Data for Out-of-Domain Gen-
eralization Prior works (Ilse et al., 2021; Wang et al.,
2022b) have proposed that such a problem is solvable by
performing interventions on ci (i.e., manipulating ci to break
such spurious correlations without changing yi). However,
direct collection of interventional data is usually quite diffi-

cult (e.g., collecting datasets portraying objects of the same
class in all environments of interest may be highly imprac-
tical). Identifying heuristic methods to disentangle causal
from environmental factors (usually by augmenting original
images from the source domain) has been a key compo-
nent of many leading approaches to domain generalization.
For example, CIRL (Lv et al., 2022) and ACVC (Cugu
et al., 2022) manipulate the amplitude component of the
image frequency spectrum of the Fourier transform (which
is presumed to approximately encode environmental infor-
mation), while others have used style transfer techniques to
perturb environmental factors while preserving image con-
tent (Hong et al., 2021; Li et al., 2020; Jackson et al., 2019),
or trained Cycle-GAN to preserve the causal factors in a
cyclic transformation between domains with different styles
(Wang et al., 2022b). Beyond methods explicitly attempt-
ing to disentangle these two components, (Ilse et al., 2021;
Gowda et al., 2021) understand augmentations as simulating
alterations of ci without affecting yi – for example, rotations
encode the belief that change of viewpoints should preserve
the class label. Importantly, these assumptions might not
hold in all applications (e.g., in digit classification, rotations
of more than 90 degrees can swap the ground-truth labels
of 6 and 9), so not all augmentations are valid for any given
application. Domain-agnostic data augmentation pipelines
(such as those proposed by Hendrycks et al. 2020; Cubuk
et al. 2020; DeVries & Taylor 2017; Hendrycks et al. 2022;
Cugu et al. 2022; Pinto et al. 2022b) can be understood
as hard-coding interventions over various features that are
expected to vary across novel environments; but such as-
sumptions may not hold across all possible domains. For
this reason, (Ilse et al., 2021) suggests a mechanism to select
parametric hand-crafted augmentations that have a greater
impact on environmental factors than causal factors.

Text-to-Image Generators With the recent rise of pow-
erful flexible T2I generative models (e.g., Nichol et al.,
2021; Rombach et al., 2021; Ramesh et al., 2021), a natu-
ral question is whether these models, which are capable of
synthesising images using natural-language prompts, could
be used to effectively implement IDA. That is, while some
hand-crafted parametric augmentations can be straightfor-
wardly implemented by a programmer to manipulate the
image directly in pixel space (e.g., lens distortion, chro-
matic aberration, vignetting, etc.), such methods many only
be able to approximate many augmentations (often with
much greater difficulty of implementation; e.g., introducing
realistic rain or snow) or may not be able to approximate
them at all (e.g., turning a cartoon into a photo, changing
the background of a scene, or modifying the material of an
object). On the other hand, modern T2I generators that have
been training on large amounts of weakly supervised data
can be used zero-shot to directly approximate such augmen-
tations (either from existing images or from scratch) using
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natural language, and have been observed to produce high
quality samples (Meng et al., 2021). Using such models
for IDA would be extremely convenient, as these editing
and synthesis abilities can be made available ”off-the-shelf”
without requiring any task-specific fine-tuning.

Data Augmentation with T2I Generators Contempo-
rary work has investigated how T2I generators can be used
to synthesize large-scale pre-training data (He et al., 2023;
Sariyildiz et al., 2023; Azizi et al., 2023), compensate for
the lack of training data in data-scarce environments (He
et al., 2023; Trabucco et al., 2023), and diagnose classifiers’
lack of robustness to covariate shift (Vendrow et al., 2023).
A related branch of research leverages synthetic data from
T2I generators for test-time adaptation, transferring OOD
samples to an approximation of the training domain as a
form of test-time adaptation (Yu et al., 2023; Gao et al.,
2022). Closest to our work, (Bansal & Grover, 2023) show
it is possible to use Stable Diffusion to generate synthetic
data that improves the robustness of classifiers trained on
ImageNet-1K (Deng et al., 2009) for multiple forms of dis-
tribution shift using an ensemble of generative prompts. In
this work, we focus on the utility of T2I-generated synthetic
data for training downstream classifiers, but depart from
standard ImageNet analyses in order to develop a deeper
understanding of how T2I generators can be used for IDA by
focusing on SDG and RRSF, allowing us to directly measure
the effectiveness of T2I-simulated interventions in these set-
tings across variable conditioning, prompting, and filtering
techniques.

B. Reducing Reliance on Spurious Features
(RRSF)

B.1. Experiment Setting

Sometimes the training data is collected from a domain DS

in which spurious features correlate with the labels. If a
classifier relies on such spurious features, it will be unable
to generalize to unseen test domains in which the spurious
feature is no longer predictive of the label (Xiao et al., 2021;
Geirhos et al., 2019). In this setting, the prompts zTi inten-
tionally perturb the spurious features to simulate domains
in which the spurious correlation is broken. We consider
three standard benchmarks: (1) ImageNet-9 (Xiao et al.,
2020) measures the over-reliance on background to pre-
dict the foreground (Background Bias), (2) Cue-Conflict
Stimuli (CCS) (Geirhos et al., 2018) assesses the over-
reliance on texture (Texture Bias), and (3) a subset of
CelebA (Xiao et al., 2020) evaluates over-reliance on spuri-
ous demographic features (Demographic Bias – in this case,
the spurious correlation between hair colour and gender in
CelebA). See Appendix B.2 for further details about each
dataset and associated indices measuring each form of bias.

B.2. Results

Depending on the type of spurious correlation to be ad-
dressed in each experiment, we prompt SDEdit in different
ways: for ImageNet-9 experiments, we handcraft prompts
that describe a wide variety of possible backgrounds and
randomise the combination of the object classes and back-
grounds; for CCS, we use prompts that induce the generator
to change the texture of the objects (e.g., turning them into
a sculpture of a specific material); and for Celeb-A, we ran-
domise the correlation between gender and hair colour. Our
results are displayed in Figure 3. We find that, although
several techniques are often assumed to perturb spurious
features in a way that is agnostic to the target domain, our
experiments indicate that this may not the case – instead,
baselines are (perhaps unsurprisingly) most effective when
their augmentation pipeline implicitly intervenes over the
corresponding spurious dependency. For example, PixMix
mixes the input images with fractals that alter their texture
(and often the background), but yields a worse Demographic
Bias than ERM. In contrast, SDEdit can perform the de-
sired augmentation based on the relevant spurious depen-
dency by simply describing it using interventional prompts,
which enables substantial improvements over ERM in all
settings. Such flexibility and ease-of-implementation with
respect to interventions of interest are key advantages.

In the three considered cases, the reliance on the spurious
correlation is measured as: (1) ImageNet-9 (Background
Bias): Gap, as defined in (Xiao et al., 2021), is the dif-
ference between the accuracies measured on the test sets
mixed same and mixed rand. (2) CCS Dataset (Tex-
ture Bias): Texture Bias, as defined in (Geirhos et al., 2019),
is the number of correct texture classifications over sum of
the true positive texture and shape classifications. In the
test CCS dataset, each image is synthesized with a texture
and subject from different classes (i.e texture: elephant,
class: cat). The true positive texture classification is the
percentage of cases in which the model predicts the texture
label correctly; similarly, true positive shape classification
is the percentage of correctly classified shape labels. (3)
CelebA-sub (Demographic Bias): RandGap and FlipGap
represent the accuracy gap between I.I.D distribution to
rand and flip respectively. The purpose is to measure
the reliance on the spurious feature both for the average
case (i.e., randomizing the spurious correlation in the test
set) and in the worst case (i.e., the test set flips the spurious
correlation). For all the three dataset each original image
sample will have four pre-generated augmented samples.
The comparison with all the baselines is in with ResNet-18
Tab. 2, Tab. 4, and Tab. 3.
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Figure 3. Performance on Breaking Spurious Correlations. Reliance on different image attributes in comparison with baselines (solid
lines) and OURS (dash lines) using ResNet-18. (Lower scores are better.)

Table 2. ImageNet-9 result with ResNet-18
I.I.D. Test Mixed Rand Mixed Same Gap (↓)

ERM 95.16 73.54 86.02 12.48
MixUp 94.62 67.63 83.91 16.28
CutMix 95.36 65.21 84.77 19.56
AugMix 95.16 74.73 87.72 12.99
RandAugment 96.69 78.20 90.44 12.25
CutOut 95.46 71.10 85.41 14.31
RSC 94.12 74.72 84.39 9.68
MEADA 95.56 74.74 87.43 12.69
PixMix 97.04 79.76 91.96 12.20
ACVC 93.97 76.38 88.16 11.77
L2D 92.84 73.04 84.10 11.06
SDEdit(H) 91.85 73.33 82.96 9.63
Text2Image(H) 90.12 69.63 75.8 6.17
ControlNet(H) 91.85 75.19 85.68 10.49
InstructPix2Pix 92.84 78.89 88.15 9.26
Retrieval 91.6 73.83 80.12 6.29

Table 3. Texture result with ResNet-18
I.I.D. Test Random Texture Bias (↓)

ERM 81.75 18.77 72.45
MixUp 77.36 19.23 71.69
CutMix 79.96 15.64 77.16
AugMix 82.2 20.08 72.42
RandAugment 83.09 18.9 72.2
CutOut 81.85 17.81 74.19
RSC 79.9 20.48 71.11
MEADA 81.97 19.5 71.14
PixMix 80.91 26.86 64.64
ACVC 81.13 29.33 59.25
L2D 80.06 23.55 62.12
SDEdit(H) 85.94 31.48 55.46
Text2Image(H) 86.44 35.23 51.21
ControlNet(H) 84.13 21.88 62.58
InstructPix2Pix 79.75 26.17 53.58
Retrieval 85.85 33.91 51.94

Table 4. CelebA-sub result with ResNet-18
I.I.D. Test Flip Random FlipGap (↓) RandGap (↓)

ERM 99.44 77.16 88.48 22.28 11.32
MixUp 99.16 79.4 88.86 19.76 9.46
CutMix 99.24 74.82 86.92 24.42 12.1
AugMix 99.56 76.42 87.82 23.14 11.4
RandAugment 99.04 77.62 88.96 21.42 11.34
CutOut 99.48 78.24 89.72 21.24 11.48
RSC 99.52 81.7 91.8 17.82 10.1
MEADA 99.48 77.24 89.08 22.24 11.84
ACVC 99.16 79.5 89.58 19.66 10.08
PixMix 99.32 76.62 88.34 22.7 11.72
L2D 99.12 81.96 90.96 17.16 9.0
Retrieval 98.6 77.9 89.3 20.7 11.4
SDEdit(H) 99.2 86.6 92.5 12.6 5.9
Text2Image(H) 98.8 90.0 93.6 8.8 3.6
ControlNet(H) 99.2 89.3 93.5 9.9 4.2
InstructPix2Pix 99.2 86.9 93.5 12.3 6.6

B.3. Hyperparameters

Training Hyperparameter For all the other baselines, we
use the value as proposed in their original papers or official
implementation.

Generator Hyperparameter For the two types of gen-
erative models, we use the hyperparameters for each
dataset as shown in Tab. 6. Hyperparameters are
tuned based on human judgement of few-shot image ma-
nipulation quality, without downstream task accuracy-
based evaluation. Unspecified hyperparameters are set
to their default value. For Stable Diffusion, We use
”Runmyml/stable-diffusion-v1-5" pre-trained
model. The training hyperparameters for setting are speci-
fied as shown in Tab. 5
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Table 5. Training Hyperparameters

PACS OfficeHome NICO++ ImageNet-9 Texture CelebA-sub
Epoch 50 50 50 30 30 30
Batch size 64 64 64 64 64 64
Warmup Epoch 5 5 5 5 5 5
Warmup Type sigmoid sigmoid sigmoid sigmoid sigmoid sigmoid
Weight Decay 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4
Nesterov True True True True True True
Learning rate 1e-3 3e-3 3e-3 1e-3 1e-3 1e-3
Scheduler Step Step Step Step Step Step
Decay Step 45 45 45 27 27 27
Learning rate decay 0.1 0.3 0.3 0.1 0.1 0.1

Table 6. Generator hyperparameters for each dataset

PACS OfficeHome NICO++ DomainNet ImageNet-9 CelebA Texture
Inference Step 30 30 30 30 30 30 30
Image Strength 0.75 0.75 0.75 0.75 0.75 0.75 0.75
Guidance Scale 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Sampler UniPC UniPC UniPC UniPC UniPC UniPC UniPC

C. Experiment Implementation
C.1. General Setup

Due to the speed limitation of generative models3, we pre-
generate all the augmentation images. For each image in
the training set, we randomly selected k text prompts from
the templates (see Appendix M). In the Single Domain
Generalization experiments, we choose k = 3 (for PACS
and OfficeHome) and k = 5 (for NICO++ and DomainNet)
prompts for each image (i.e., one prompt from each target
domain), whereas for the weakening spurious correlation
experiments, we choose k = 4 prompts for each image to
randomize the correlation between the causal and spurious
features. Then for each prompt one image will be generated
and saved as a corresponding augmented version of the
original image. At training time, for each training image in
the batch, one of its augmented versions will be randomly
selected from the k pre-generated intervened samples. The
general augmentation pipeline is shown in Algorithm 1.

On efficiency, we note that, given a dataset with N traing
samples, the generated interventional data will have a size
of N × k, where k ranges from 3 ∼ 5 (depending on the
experiment). As such, the number of generated samples is
generally low (given N is often of a few thousands) with
respect to the amount of samples generated by baseline aug-
mentation techniques (which is N × e where e represents

3Significant progress in generation speed has been performed
from the first versions of Stable Diffusion to the one we have been
using in this paper. Accelerating diffusion models is an active area
of research

Algorithm 1 Augmentation Algorithm

Input: Source Domain Dtrain = {(xi, yi)}Ni=1, Target Do-
main Prior Knowledge P(C test), PromptingStrategy.
GenerativeModel, Model f(θ, x)

Output: Trained f(·)
Pre-generation Stage :

1: for (xi, yi) in Dtrain do
2: # select k prompts for each original image
3: Prompts = []
4: for in range(k) do
5: Prompts.append(PromptingStrategy(yi,P(Dtest)))
6: end for
7: # generate one sample for each prompt
8: [x̂i]← GenerativeModel(Prompts , xi)
9: Save augmented samples in S = {xi : [x̂i]}Ni=1

10: end for
Training Stage :

11: for Batch (xi, yi)mi=1 in Dtrain do
12: (xi, x̂i)← Concat(xi, RandomSelect(S[xi]))
13: TrainingStep(xi, x̂i)
14: end for

the number of training epochs, and typically4 e >> k). Al-
though baselines produce more augmentations of the same
image, our technique requires fewer augmentations per im-
age to attain superior performance as SDEdit can inten-
tionally target specific types of interventions.

We report a few statistics about the training, validation and

4E.g., in our experiments, e = 50.
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Table 7. Single Domain Generalization (SDG) PACS result with
ResNet-18.

Art Photo Sketch Cartoon Average

ERM 74.8 39.67 48.12 72.37 58.74
MixUp 67.14 39.57 33.24 63.27 50.81
CutMix 68.46 36.5 31.99 67.2 51.04
AugMix 68.88 38.75 43.89 76.86 57.09
RandAugment 69.07 44.48 49.36 72.31 58.8
CutOut 69.19 37.77 40.72 71.77 54.86
RSC 71.18 41.04 46.56 72.17 57.74
MEADA 70.32 39.55 44.94 74.03 57.21
PixMix 69.49 47.5 54.72 77.06 62.19
L2D 84.07 51.06 50.94 77.12 65.8
ACVC 72.65 43.33 60.35 78.98 63.83

VQGAN-CLIP(M) 78.09 54.38 53.78 77.76 66.00

Retrieval 81.22 75.49 83.36 83.24 80.83
SDEdit(M) 82.27 58.87 72.76 81.93 73.96
SDEdit(H) 84.23 61.7 70.31 82.74 74.75
SDEdit(LEC) 81.08 62.04 62.19 82.18 71.87
SDEdit(LEM) 83.21 58.74 66.45 82.37 72.69
Text2Image(LEM) 80.59 68.82 83.58 85.27 79.56
Text2Image(M) 83.17 71.31 87.42 87.12 82.26
ControlNet(M) 77.07 54.64 75.78 81.81 72.32
Textual Inversion 78.57 67.67 68.66 83.9 74.7
InstructPix2Pix 76.08 56.22 50.79 78.39 65.37

test set sizes as well as the number of classes for each dataset
in Tab. 22. We use the model checkpoint of the last epoch
to measure the test accuracy. For the experiments, as typical
in the literature, we use pre-trained models on ImageNet for
the backbones. To reproduce the experiment, we make part
of our implementation available in the following anonymous
repository.

C.2. Single Domain Generalization

We set up the experiment under the standard Single Do-
main Generalization paradigm. For PACS, Office-Home,
NICO++, and DomainNet, we train a model for each
single domain and evaluate it on the remaining unseen
domains to measure the test accuracy. For the first two
datasets, we generate three augmented samples each one
of them corresponds to one target domain. For the latter
two, we similarly generate five. For all the datasets, we
use an image size of 224 × 224. The full experiment re-
sults with expanded test accuracy one each test domain
for PACS/OfficeHome/NICO++/DomainNet are shown in
Tab. 7/Tab. 9/Tab. 11/ Tab. 13 for ResNet-18; Tab. 8/Tab. 10
/ Tab. 12/Tab. 14 for ResNet-50. The visualised compari-
son between traditional data augmentation and generative
model-based image editing as well as comparison among
different types of conditional generation strategy is shown
in Figure 4 and Figure 5, respectively. An overall compari-
son between different editing techniques is also presented
in Tab. 15.

C.3. SDG Large Models Abalation

To show our method can scale to larger models, we perform
an ablation study with ConvNeXt-L (Liu et al., 2022) (198M
parameters) on PACS SDG experiment. As shown in Tab. 16
(average) Tab. 17 (detailed), we observe our method and
still outperform all the baselines by a considerable margin.
This proves the applicability of our method to different sizes
of models.

C.4. Effect of Accessing Multiple Source Domain

We also present further investigation on the effect of access-
ing multiple source domains, potentially including the target
test domain. We experimented on three settings: (a) MDG:
classifier trained on all but the target domain, which is the
standard set-up for multi-domain generalization, where mul-
tiple domains of source data are used for training and one
unseen domain is used for testing; (b) All: classifier trained
on all the domains, (c) Target: classifier trained only on the
target domain. As shown in Tab. 18, While ERM(Target/All)
achieves almost perfect performance, this is expected as the
training source domain includes the target test domain. Note
that the accuracy in the table below is not directly compa-
rable to SDG in the main paper since our main setting is
Single Domain Generalization (SDG), where we have a sin-
gle source domain for training, and the accuracy reported is
the average test accuracy on multiple unseen test domains.
However, here we have a single unseen target domain for
testing. To provide a direct comparison between ERM and
SDEdit, we experiment with SDEdit under the same setting
in MDG with a minimal prompt. We demonstrate under
MDG setting SDEdit also leads to significant performance
improvement in all unseen test domains.

D. Alternative Approaches
In the previous section, we show that SDEdit, one of the
simplest and most widely-adopted editing techniques, sub-
stantially outperforms traditional augmentation pipelines for
SDG and RRSF. However, there are several other ways we
can simulate interventions with T2I generators: by default,
such models can generate images using only text, with no
need to provide an input image to edit; and more sophisti-
cated image-editing techniques have also been developed
using different conditioning mechanisms. In Appendix D.1,
we investigate the use of these alternative generative ap-
proaches for the same tasks. Additionally, in Appendix D.2,
we consider (He et al., 2023)’s finding that filtering low-
quality image outputs can improve synthetic data from ear-
lier T2I generators, and study whether this is also true for
SDG and RRSF using more recent generators.
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Table 8. Single Domain Generalization (SDG) PACS result with ResNet-50. Columns are Single source domains; accuracies are the
average test accuracy of the three remaining target domains when training using the indicated source domain (best accuracies are in bold).

Art Photo Sketch Cartoon Average

ERM 74.44 48.78 50.89 73.74 61.96
MixUp 66.31 42.98 45.64 77.76 58.17
CutMix 72.53 40.03 44.72 76.72 58.5
AugMix 75.8 51.32 49.99 81.42 64.63
RandAugment 71.38 46.8 55.95 76.33 62.61
CutOut 76.67 42.69 48.93 75.2 60.87
RSC 73.15 53.47 51.11 80.58 64.58
MEADA 73.72 48.78 59.81 73.84 64.04
PixMix 77.33 55.58 52.42 83.15 67.12
L2D 77.33 58.41 58.14 81.7 68.89
ACVC 79.63 52.76 58.13 81.4 67.98

SDEdit(M) × 81.21 57.54 80.60 84.76 76.03
SDEdit(O-M) 82.59 65.44 79.3 83.64 77.74

Retrieval 82.36 76.24 87.0 86.01 82.9
SDEdit(M) 82.67 62.94 73.78 86.33 76.43
SDEdit(H) 83.68 64.22 78.95 84.63 77.87
SDEdit(LEC) 82.69 59.48 77.76 85.57 76.38
SDEdit(LEM) 84.11 59.1 73.39 86.0 75.65
Text2Image(LEM) 82.11 68.08 87.55 87.71 81.36
Text2Image(M) 84.15 72.9 90.51 87.34 83.72
ControlNet(M) 75.65 56.47 81.83 84.01 74.49
Textual Inversion 76.15 68.36 76.66 87.89 77.27
InstructPix2Pix 76.87 54.47 54.7 81.25 66.82
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Figure 4. Single Domain Generalization (SDG) Performance results in comparison with baselines (dashed lines) and OURS (solid
lines) using ResNet-18.

Figure 5. Comparison Between Different Condition Generation Strategy using ResNet-18.

Table 9. SDG OfficeHome result with ResNet-18.
Art Clipart Product Real Average

ERM 57.43 50.83 48.9 58.68 53.96
MixUp 50.41 43.19 41.24 51.89 46.68
CutMix 49.17 46.15 41.2 53.64 47.54
AugMix 56.86 54.12 52.02 60.12 55.78
RandAugment 58.07 55.32 52.02 60.82 56.56
CutOut 54.36 50.79 47.68 58.24 52.77
RSC 53.51 48.98 47.16 58.3 51.99
MEADA 57.0 53.2 48.81 59.21 54.55
PixMix 53.77 52.68 48.91 58.68 53.51
L2D 52.79 48.97 47.75 58.31 51.95
ACVC 54.3 51.32 47.69 56.25 52.39

Retrieval 65.02 63.55 60.51 64.32 63.35
SDEdit(M) 60.72 54.95 52.47 61.26 57.35
SDEdit(H) 58.15 55.12 51.94 61.24 56.61
SDEdit(LEC) 58.43 54.96 50.64 60.93 56.24
SDEdit(LEM) 57.27 53.97 49.02 60.5 55.19
Text2Image(LEM) 59.8 61.88 55.13 58.24 58.76
Text2Image(M) 62.77 64.57 57.51 61.2 61.51
ControlNet(M) 59.59 59.58 54.94 62.14 59.06
InstructPix2Pix 56.2 51.58 49.85 59.96 54.4

Table 10. SDG OfficeHome result with ResNet-50.
Art Clipart Product Real Average

ERM 63.62 61.32 56.85 65.99 61.94
MixUp 63.46 59.2 54.97 64.21 60.46
CutMix 59.3 54.45 51.9 63.0 57.16
AugMix 63.99 61.11 58.88 66.44 62.6
RandAugment 64.92 61.38 59.34 66.42 63.02
CutOut 62.15 58.24 55.77 63.98 60.03
RSC 60.91 56.86 54.21 64.41 59.1
MEADA 64.48 61.6 57.34 64.89 62.08
PixMix 63.54 60.34 57.29 64.54 61.43
L2D 60.79 55.01 54.76 62.93 58.37
ACVC 62.33 57.76 55.59 64.02 59.92

Retrieval 71.15 71.46 67.21 70.73 70.14
SDEdit(M) 67.08 64.48 60.01 67.06 64.66
SDEdit(H) 64.55 63.05 58.99 66.48 63.27
SDEdit(LEC) 65.96 63.12 58.6 66.03 63.43
SDEdit(LEM) 64.86 62.88 58.46 66.37 63.14
Text2Image(LEM) 65.72 68.8 62.61 64.09 65.31
Text2Image(M) 68.6 71.11 63.83 66.98 67.63
ControlNet(M) 66.52 66.65 62.12 66.47 65.44
InstructPix2Pix 63.34 60.39 58.43 67.13 62.32
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Figure 6. Visualization of selected samples from PACS. Recall that Retrieval and Text2Image do not take the Original image
into account, but SDEdit, ControlNet, and InstructPix2Pix do.

Table 11. SDG NICO++ Result with ResNet-18.
autumn dim grass outdoor rock water Average

ERM 57.07 60.95 62.4 61.82 58.52 65.04 60.97
RandAugment 57.19 60.51 61.23 61.77 58.67 64.08 60.57
AugMix 56.19 59.18 61.29 60.72 58.1 63.16 59.77
MixUp 57.15 59.52 62.77 62.71 59.47 65.36 61.16
CutOut 57.42 59.07 60.33 61.07 58.48 62.5 59.81
PixMix 57.55 58.38 61.36 61.62 58.68 63.85 60.24
RSC 54.61 57.47 60.14 60.25 57.32 61.86 58.61
ACVC 53.43 54.91 58.94 59.07 56.11 58.67 56.85
MEADA 57.7 60.17 62.32 62.27 59.53 64.52 61.09
L2D 51.88 53.79 57.15 58.48 53.92 58.55 55.63
Retrieval 56.69 60.31 61.58 62.51 58.06 63.57 60.45
SDEdit(M) 58.17 60.48 62.72 62.16 59.95 64.66 61.36
SDEdit(H) 59.14 61.48 63.95 64.14 60.84 66.15 62.62
SDEdit(LEC) 62.54 65.97 67.01 67.85 64.15 69.85 66.23
SDEdit(LEM) 62.11 65.11 66.12 67.25 63.49 69.43 65.59
Text2Image(M) 58.89 63.79 63.56 64.85 58.9 66.3 62.72
ControlNet(M) 58.36 62.43 64.13 63.29 59.49 65.12 62.14
InstructPix2Pix 57.01 58.36 61.53 61.76 58.59 63.73 60.16

Table 12. SDG NICO++ Result with ResNet-50.
autumn dim grass outdoor rock water Average

ERM 66.74 70.37 72.05 71.3 66.58 72.64 69.95
RandAugment 67.23 71.43 70.81 70.62 66.47 72.71 69.88
AugMix 66.18 69.21 70.03 70.22 65.51 71.72 68.81
MixUp 67.6 70.3 72.47 72.26 67.12 74.01 70.63
CutMix 62.82 67.6 69.39 69.01 63.59 69.78 67.03
CutOut 66.76 69.34 70.13 70.13 66.67 72.33 69.23
PixMix 66.99 68.75 69.57 71.72 67.1 72.75 69.48
RSC 63.96 67.69 68.48 69.21 63.96 70.94 67.37
ACVC 63.74 67.48 67.73 68.71 63.89 69.95 66.92
MEADA 67.47 69.99 71.72 71.31 65.76 73.06 69.89
L2D 61.81 64.44 66.78 66.67 63.42 68.02 65.19
SDEdit(M) × 67.90 71.42 72.61 72.32 67.10 73.79 70.90
Retrieval 67.39 72.16 71.53 71.83 66.19 73.45 70.42
SDEdit(M) 68.28 71.42 72.68 72.31 67.95 74.07 71.12
SDEdit(H) 69.13 72.13 73.64 73.33 68.46 75.03 71.95
SDEdit(LEC) 70.21 74.68 75.05 75.54 69.74 76.89 73.69
SDEdit(LEM) 70.36 74.4 74.48 75.09 69.83 77.47 73.61
Text2Image(M) 68.14 72.67 72.63 73.77 66.88 75.17 71.54
ControlNet(M) 67.69 72.64 73.19 72.84 67.73 74.92 71.5
InstructPix2Pix 66.86 70.35 72.02 71.95 67.13 73.31 70.27

Table 13. SDG DomainNet Result with ResNet-18.
clipart infograph painting quickdraw real sketch Average

ACVC 25.31 19.86 25.23 8.0 27.49 26.84 22.12
AugMix 25.58 19.09 24.74 7.41 26.41 27.03 21.71
CutMix 23.56 17.83 23.0 4.33 25.36 25.04 19.85
CutOut 24.44 19.27 24.16 6.03 25.45 25.31 20.78
ERM 24.29 19.93 24.32 6.08 25.42 25.54 20.93
L2D 23.55 17.26 23.69 6.24 26.33 24.17 20.21
MEADA 24.6 20.06 24.5 6.17 25.52 25.56 21.07
MixUp 24.25 19.46 23.31 5.51 26.18 25.34 20.68
PixMix 26.39 19.18 25.28 3.49 27.9 24.89 21.19
RSC 22.92 18.21 22.52 6.11 24.72 23.59 19.68
RandAugment 25.99 18.88 25.12 6.83 27.08 25.71 21.60

SDEdit(H) 28.03 31.68 29.27 12.66 29.78 31.22 27.11
SDEdit(LEC) 27.33 30.56 28.96 11.35 29.6 30.65 26.41
SDEdit(LEM) 27.16 29.92 28.97 10.74 29.6 30.12 26.08
SDEdit(M) 27.88 31.62 29.57 12.3 30.03 30.94 27.06
Text2Image(M) 34.12 35.32 31.68 36.13 33.21 36.43 34.48
ControlNet(M) 28.19 23.40 27.59 18.81 29.28 31.62 26.48

Table 14. SDG DomainNet Result with ResNet-50.
clipart infograph painting quickdraw real sketch Average

ACVC 29.84 26.72 29.86 8.96 31.88 31.47 26.46
AugMix 30.04 26.1 29.48 8.92 31.07 31.61 26.20
CutMix 28.9 24.29 27.92 5.99 29.97 29.75 24.47
CutOut 28.98 25.8 28.71 6.6 29.96 29.36 24.90
ERM 29.06 27.07 28.87 6.92 29.85 29.8 25.26
L2D 28.15 23.85 28.61 7.12 31.25 29.53 24.75
MEADA 29.09 26.77 28.81 6.81 30.06 30.05 25.26
MixUp 29.34 26.89 29.17 6.46 30.66 30.42 25.50
PixMix 30.77 26.96 29.95 3.68 32.94 28.87 25.53
RSC 26.89 24.12 26.48 5.79 28.7 27.96 23.32
RandAugment 30.28 26.51 29.96 8.31 31.82 30.14 26.17

SDEdit(H) 32.89 37.95 33.99 15.89 34.45 35.77 31.82
SDEdit(LEC) 32.35 37.14 33.83 15.62 34.32 35.39 31.44
SDEdit(LEM) 31.84 36.75 33.72 13.88 34.19 35.24 30.94
SDEdit(M) 33.09 38.13 33.99 15.86 34.64 35.94 31.94
InstructPix2Pix 30.63 27.29 30.04 14.70 32.27 30.99 27.65
ControlNet(M) 32.66 30.72 31.93 14.92 33.66 36.15 30.01
Text2Image(M) 39.05 41.28 36.78 48.422 38.18 40.89 40.77

Table 15. Comparison Between Editing and Condition Strate-
gies.

PACS OfficeHome NICO DomainNet

SDEdit(M) 76.43 64.66 71.12 31.94
Text2Image(M) 83.72 67.63 71.54 40.77
ControlNet(M) 74.49 65.44 71.50 30.01
InstructPix2Pix 66.82 62.32 70.27 27.65

Retrieval 82.90 70.14 70.42 31.07
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Table 16. SDG PACS result with ConvNeXt-L.
Art Photo Sketch Cartoon Average

ERM 79.8 60.62 50.76 86.53 69.43
AugMix 82.03 59.95 74.62 86.41 75.75
RandAugment 74.17 56.5 72.06 84.36 71.77
MixUp 79.82 60.74 55.45 84.35 70.09
CutMix 79.8 51.13 65.45 88.22 71.15
CutOut 81.41 55.55 71.8 85.16 73.48
RSC 84.26 55.3 76.15 86.13 75.46
MEADA 80.43 63.82 70.51 83.97 74.68
ACVC 83.68 68.86 77.99 85.03 78.89
PixMix 83.18 68.39 66.32 85.4 75.82
L2D 86.03 75.9 69.84 89.37 80.28
SDEdit(M) 86.53 74.5 89.22 88.98 84.81
SDEdit(H) 88.31 81.64 86.3 88.19 86.11
SDEdit(LEC) 87.7 75.05 85.77 87.04 83.89
SDEdit(LEM) 87.14 81.16 79.26 86.31 83.47

D.1. Conditioning Mechanisms

Despite the impressive performance of SDEdit, we ob-
serve several cases in which such a simple editing technique
is not sufficient to simulate the desired intervention (e.g.,
see the second row of Figure 6). This might depend on
the fact SDEdit initializes the diffusion process from an
embedding of the image being edited, which may be too con-
straining to obtain the desired manipulation.5 However, sev-
eral other conditioning mechanisms exist. We consider three
other forms of conditioning that may be suitable for our goal:
Text2Image, ControlNet and InstructPix2Pix.
With Text2Image we refer to the native ability of Stable
Diffusion of generating images by conditioning only on
the text: the diffusion process is initialised with random
noise, and the prompt embeddings are used to condition the
attention matrices in the denoising steps, steering the diffu-
sion in order to yield an output that matches the description
given by the prompt. ControlNet (Zhang et al., 2023)
induces stronger spatial consistency between the original
and the augmented image by using an additional network
that has been trained to condition the generative process
on spatial guidance (“Canny edges”; Canny, 1986). Fi-
nally, InstructPix2Pix (Brooks et al., 2022) aims to
improve diffusion models’ ability to follow editing instruc-
tions by fine-tuning it on tuples of original images, editing
instructions, and desired editing outputs.

Single Domain Generalization In Figure 7, we see that
conditioning can have a large impact on performance. First,
we observe that InstructPix2Pix underperforms with
respect to other conditioning mechanisms in most cases.
This may be related to the fact that its training set (which
is distilled from Stable Diffusion) contains a limited vari-
ety of samples that may supply an inadequate implemen-

5Indeed, we observe this phenomenon persists across different
hyperparameter settings controlling the strength of conditioning.

tation of a general interventional mechanism. Although
ControlNet allows for a better spatial control, its perfor-
mance is similar to or lower than SDEdit in most cases.
This might be expected when considering that this eval-
uation task does not particularly benefit from the preser-
vation of spatial features. More surprisingly, we see that
Text2Image can be an extremely effective conditioning
technique. The success of this approach indicates that con-
ditioning on an image may often be a hindrance in approxi-
mating the desired domain.

Reducing Reliance on Spurious Features All condition-
ing techniques are useful in reducing classifier bias. In
the aggregate, Text2Image is most effective in doing so
across all benchmarks; whereas other conditioning mech-
anisms have varying strengths and weaknesses across the
different tasks. For instance, ControlNet’s ability to pre-
serve the spatial features (i.e., the edges) of an image while
modifying other aspects (in this case, the hair colour) yields
second-best performance in CelebA, as the Canny edge de-
tector is designed to omit information about the texture of
objects. While InstructPix2Pix is second-best in re-
moving overreliance on texture and background, it is not
as effective as ControlNet on CelebA. Finally, SDEdit
shows middling performance across all benchmarks: it never
performs best (or second-best), but it also never performs
the worst.

Retrieval Is Not (Always) Enough. The strong perfor-
mance we observe when removing source images from
the generative process (i.e., substituting SDEdit for
Text2Image) suggests that Stable Diffusion’s effective-
ness is higher when sampling from its approximation of the
intervened distribution without starting from an input image.
This raises the question of whether using Stable Diffusion
to generate images is actually necessary: might we achieve
similar results by simply using interventional prompts to
retrieve relevant images directly from its original training
dataset? To answer this question, we configure a retrieval
baseline to compare the results of generating images and
retrieving images from Stable Diffusion’s training set us-
ing a simple image retrieval system,6 querying it with the
same minimal prompt that is used to generate images (see
Figure 11).

We observe large differences between the behaviors of the
Retrieval method across the tasks we consider. In SDG,
retrieval proves to be an extremely effective technique as
shown in Figure 7. For example, Retrieval outper-
forms all other methods on OfficeHome; and on PACS it
proves to be only marginally inferior to Text2Image(M).
This is likely because Stable Diffusion’s training data

6Accessible at https://rom1504.github.io/
clip-retrieval.
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Table 17. PACS result with ConvNeXt-L
Source Domain art photo sketch cartoon

Target Domain photo sketch cartoon art sketch cartoon art photo cartoon art photo sketch
ERM 98.86 71.93 68.6 75.78 51.39 54.69 40.82 53.65 57.81 89.75 93.65 76.2
AugMix 97.96 77.6 70.52 75.93 42.35 61.56 77.34 67.6 78.92 88.96 93.11 77.17
RandAugment 97.9 61.29 63.31 77.73 37.54 54.22 71.97 70.36 73.85 86.52 93.89 72.66
MixUp 99.04 68.57 71.84 81.1 43.62 57.51 49.46 54.91 61.99 85.35 95.93 71.77
CutMix 99.1 70.2 70.09 76.76 30.54 46.08 60.21 66.95 69.2 90.09 96.47 78.09
CutOut 98.62 74.32 71.29 76.32 39.09 51.24 72.51 70.36 72.53 86.62 93.11 75.74
RSC 98.98 79.54 74.27 76.61 40.75 48.55 69.34 80.96 78.16 85.35 93.77 79.28
MEADA 98.92 72.66 69.71 76.27 52.56 62.63 61.08 76.77 73.68 86.96 92.99 71.95
ACVC 98.08 80.53 72.44 81.84 65.44 59.3 83.69 74.01 76.28 87.3 92.93 74.85
L2D 98.98 83.1 76.02 80.86 80.02 66.81 68.6 68.86 72.06 91.55 97.13 79.43
PixMix 99.46 75.16 74.91 79.98 62.26 62.93 62.84 65.27 70.86 86.13 92.1 77.98
SDEdit(M) 99.34 76.43 83.83 82.96 64.04 76.49 87.79 92.28 87.59 91.06 97.19 78.7
SDEdit(H) 99.1 81.67 84.17 85.89 78.54 80.5 82.86 92.69 83.36 91.06 96.11 77.4
SDEdit(LEC) 98.26 82.59 82.25 85.64 67.96 71.54 85.4 92.93 78.97 87.94 94.61 78.57
SDEdit(LEM) 99.4 79.33 82.68 86.77 74.42 82.3 77.64 84.19 75.94 87.35 95.09 76.48

Figure 7. SDG Results by Conditioning Mechanism. Results are reported following the same format as Figure 2.

Table 18. Impact of Assessing Multiple Real/Synthetic Domain.
Art Photo Sketch Cartoon Average

ERM (Target) 99.65 99.94 99.64 99.66 99.72
ERM (All) 99.71 99.70 99.84 99.60 99.74
ERM (MDG) 80.01 96.28 73.86 76.28 81.61
OURS(MDG) 87.5 95.75 79.21 85.2 86.91

contains ample data from the classes and domains cov-
ered by these benchmarks and it is relatively easy to re-
trieve this data. On the other hand, for NICO++ and Do-
mainNet, the retrieval baseline performance is inferior to
Text2Image(M). However, when Reducing Reliance
on Spurious Features, Retrieval underperforms with
respect to most generative techniques. This disagreement
suggests that both retrieval and generative approaches are
of interest and worth pursuing for different applications and
different downstream tasks, as both have their own unique
advantages and disadvantages. Indeed, beyond performance

figures, there are also important practical distinctions be-
tween the two. In favor of retrieval, retrieved images do not
generally contain unrealistic artifacts; and once the retrieval
engine has been deployed, it can be significantly faster than
generation. However, such deployment requires massive
storage resources (> 200TB) and relies on highly efficient
indexing and computing infrastructure. In contrast, gen-
erative models are significantly more compact in terms of
storage (the version of Stable Diffusion we use is ∼ 8GB)
and do not require a dedicated infrastructure to be run. Fi-
nally, we observe that modern generators can effectively
produce samples that combine concepts from their training
data in new ways: in Appendix L.1, we compare images
generated with prompts combining such concepts against
images retrieved with the same prompts.

D.2. Post-hoc Filtering

Although the quality of the generated samples of state-of-
the-art diffusion models is impressive, failure cases may

18



Not Just Pretty Pictures

Figure 8. CLIP Filtering Results. SDG accuracies averaged across all test domains for different conditioning strategies (boxes in bold)
and CLIP filtering proportions (colors).

still occur and low-quality samples may be generated. Since
such samples have been observed to harm the performance
on downstream tasks, (He et al., 2023) and (Vendrow et al.,
2023) deploy post-hoc filtering using CLIP (Radford et al.,
2021) to discard them. In the case of IDA, the generated
sample may fail at capturing either the specified class, the
conditions of the environment we aim to simulate, or both.
Therefore, we filter images that do not exhibit a high enough
CLIP similarity score with respect to both prompts: one de-
scribing the class, the other describing the domain (“An
image of a class” and “domain”, respectively). Before
training, we remove the samples with scores lower than a
given percentile threshold and provide our results in Fig-
ure 8. Unlike (He et al., 2023; Vendrow et al., 2023), we
do not find that CLIP filtering yields consistent and sub-
stantial improvements. This may be due to the improved
performance of newer generators or the fact that we are
considering different tasks (SDG and RRSF). For further
details, full results, and selected examples, see Appendix G.

D.3. Precisely Describing the Target Domain Is Not
Necessary.

As noted above, Stable Diffusion is trained on a massive
pre-training corpus of weakly-supervised data scraped from
the web, which means it has likely been trained on samples
that resemble a number of the considered test distributions.
By comparison, while the baselines we consider do make
limited assumptions about the type of interventions they
perform (and therefore yield better or worse performance
depending on whether those interventions correspond to the
covariate shift from the source domain to test domain – see
our RRSF analysis below), they do not have comparable
access to approximations of the test domain. For this rea-
son, we perform an experiment to “level the playing field”
in order to better assess the usefulness of SDEdit as an
interventional mechanism by avoiding generating data re-
sembling the test domain. Given a single training domain

from the original dataset and a chosen test domain, we
use SDEdit to transform the training data to all domains
except the test domain (SDEdit(M)×), use it for IDA train-
ing, and measure accuracy on the test domain. Fixing a
test domain, we repeat this experiment for each possible
choice of the training domain, and report the average ac-
curacy on the held-out test domain. In this case, we are
measuring SDEdit’s capacity to simulate interventions for
SDG even when knowledge about the chosen test domain
is not used in synthesising interventional data. From our
results (reported in Tab. 19), we observe that the generative
model-based methods still substantially outperform the data
augmentation baselines, with only a marginal drop in perfor-
mance with respect to the case in which the target domain
is approximated by Stable Diffusion (SDEdit(M)✓). This
indicates that the interventions simulated by Stable Diffu-
sion are useful even when knowledge about the test domain
is not available.

E. Limitations and Future Works
While we observe the effectiveness of synthetic data from
generative models in improving robustness across various
challenging benchmarks, we still encounter several lim-
itations. First, there are several failure modes of differ-
ent conditioning mechanisms (such as ControlNet and
InstructPix2Pix) and their potential sub-optimal im-
pact on RRSF. (See Appendix L.4 for qualitative exam-
ples of failure cases where target domains are either out-
of-distribution with respect to Stable Diffusion’s training
domain or cannot be easily described via natural-language
prompts.) Additionally, the computational cost is one poten-
tial bottleneck: although the inference speed of generative
models has greatly improved over time – and, if current
trends continue, might be attenuated to the point of irrele-
vance – it remains a concern for current applications. (See
Appendix J for further discussion.)
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Table 19. SDG PACS result with ResNet-50. Columns are indi-
vidual source domains; accuracies are the average test accuracy
of the three remaining target domains when training using the
indicated source domain. The lower part of the table highlights the
comparison between accessing (✓) or not accessing (×) synthetic
target domains.

Art Photo Sketch Cartoon Average

ERM 74.44 48.78 50.89 73.74 61.96
MixUp 66.31 42.98 45.64 77.76 58.17
CutMix 72.53 40.03 44.72 76.72 58.50
AugMix 75.80 51.32 49.99 81.42 64.63
RandAugment 71.38 46.80 55.95 76.33 62.61
CutOut 76.67 42.69 48.93 75.2 60.87
RSC 73.15 53.47 51.11 80.58 64.58
MEADA 73.72 48.78 59.81 73.84 64.04
PixMix 77.33 55.58 52.42 83.15 67.12
L2D 77.33 58.41 58.14 81.70 68.89
ACVC 79.63 52.76 58.13 81.40 67.98

SDEdit(M) × 81.21 57.54 80.60 84.76 76.03
SDEdit(M) ✓ 82.67 62.94 73.78 86.33 76.43

Furthermore, although we currently focus only on image
classification, we note that all the methods we explore in this
work are also applicable to other computer vision tasks such
as object detection, instance segmentation, and semantic
segmentation. While T2I-based interventional data augmen-
tation can theoretically be applied to these tasks, implement-
ing it successfully presents new challenges. Specifically, our
approach currently only requires conditioning on domain
and class labels via natural language interventional prompts,
but extending this method to object detection and segmen-
tation tasks would necessitate additional conditioning on
pre-specified spatial information, such as bounding boxes or
segmentation maps, as explored by (Wu et al., 2023; Nguyen
et al., 2023).

F. Prompting Strategies
Hwere we detail how the prompts were obtained.

• Domain expert (H): a collection of 1-8 simple “hand-
crafted” prompts per image domain (e.g., “an ink pen
sketch of a(n) class”), authored by a human given
only the domain descriptions provided by the respec-
tive benchmarks, without looking at any samples from
the target domain.

• Language enhancement (LE): following (He et al.,
2023), we use the T5 language model (Raffel et al.,
2020) fine-tuned on CommonGen (Lin et al., 2020)7

to generate 1-8 prompts using only the domain and
class labels as inputs. Two strategies, Conservative
(LEC) and Moderate (LEM), are used: LEC determinis-

7https://huggingface.co/mrm8488/
t5-base-finetuned-common_gen

tically generates consistent, high-probability outputs;
and LEM is built to balance prompt diversity with qual-
ity. For both strategies, we use a T5 (Raffel et al.,
2020) model that is pre-trained on both unsupervised
language modeling of web text and supervised text-to-
text language modeling tasks8, then fine-tuned on Com-
monGen9 (Lin et al., 2020). (We refer to this model
as T5CG.) CommonGen is a constrained-generation
task whose objective is to generate a sentence describ-
ing a commonplace scenario that contains all words10

provided in an input word set. For example, given
the words {dog, frisbee, catch, throw}, an acceptable
output is “The dog catches the frisbee when the boy
throws it.” (Lin et al., 2020) We always provide T5CG
with a text input containing only a domain label and
class label; for example, given a PACS image with do-
main sketch and class elephant, we simply feed
T5CG “sketch elephant” as input. For n number of
prompts we will use to generate images, in LEC, we
simply use beam search decoding to generate prompts
with 4n beams and select the top-n highest probability
beams. In LEM, we use a conjunction of top-k and
top-p (nucleus) sampling, with k = 50 and p = 0.95,
returning n sampled prompts. We experimented with
other decoding configurations, but found that increas-
ing prompt diversity (e.g., by increasing k, lowering
p, or increasing temperature) consistently came at the
cost of prompt quality.

• Textual Inversion (Gal et al., 2022): Given a set of
images that share a common feature (e.g., belonging
to the same class), this method learns an embedding in
the text space that represents that feature. This embed-
ding can be used to condition the generative process,
thereby enhancing the generator’s capability to repro-
duce that feature. Due to the computational cost associ-
ated with the additional training phase required by this
approach, we limit its application to PACS. As shown
in Tab. 7 and Tab. 8, Texual Inversion achieves 74.70%
and 77.27% average accuracy for SDG. While outper-
forming all baseline methods, it is inferior to other
relatively low-cost generative model-based strategies.

In order to yield the best IDA performance from a given
T2I model, future work might consider strategies for di-
rectly optimising prompts or utilizing human-in-the-loop
prompt “debugging”, as we discuss in Appendices H and I
(respectively).

8Pre-trained model (not directly used in experiments): https:
//huggingface.co/t5-base

9Fine-tuned model used in experiments:
https://huggingface.co/mrm8488/
t5-base-finetuned-common_gen

10Synonyms and inflected forms are also allowed (e.g., given
input “eat”, outputs containing “consume” or “eaten” are valid).
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G. CLIP Filtering Details
For each image in the generated dataset, we compute its
CLIP similarity with respect to both prompts. Since the
distributions of similarity scores can differ in scale and lo-
cation, we cannot simply average the two scores in order to
quantify how well a sample represents a class and a domain.
Therefore, we sort the scores to produce two rankings and as-
sociate each image to the average of the percentile rank with
respect to both prompts. We then discard a fixed amount
of images with the lowest average percentile rank. (See
Appendix G.1 for an example of top- and bottom-ranked
images.) After filtering out the worst 10%, 25%, or 50%
of synthetic images, we train our classifier on the remain-
ing data. The results are displayed in Figure 8. We find
filtering to not yield consistent improvements across all the
considered cases.

G.1. CLIP Filtering Examples

Figure 9 displays the best-matching (top) and worst-
matching (bottom) synthetic images generated with
SDEdit using LEM of class dog and domain cartoon
according to their average percentile rank of CLIP similarity
scores with the prompts “an image of a dog” and “a car-
toon”. In general, we observe that the images on the top do
indeed appear to be cartoons and contain dogs (if somewhat
disfigured in a few cases); whereas it seems that most of
the images on the bottom either resemble photos of dogs
(images 2, 4, 5, 6, and 8) or cartoons (images 1, 3, and 7),
but do not generally seem to match both the target domain
and the correct class.

H. Fully automated applications
We examine a basic implementation of a fully-automated
augmentation pipeline in the language enhancement (LE)
experiments described above, finding that it sometimes
achieved performance on-par with or exceeding that of the
expert-handcrafted prompts. However, this language model
is optimised to generate simple sentences describing com-
monplace scenarios (see Appendix F), not image-generation
prompts. Thus, it is possible that fine-tuning language
models to generate prompts that are better optimised for
downstream T2I generators may yield superior results to
expert-handcrafted prompts in many scenarios, making this
approach a promising direction for future work. Another
approach to improve fully-automated prompting involves
continuous prompt optimisation (also known as “prompt
tuning” or “soft prompting”). Recently, these methods have
been shown to outperform human-interpretable prompts for
a variety of natural-language (Li & Liang, 2021; Liu et al.,
2021; Min et al., 2022; Khashabi et al., 2022) and vision-
and-language (Gal et al., 2022; Zhou et al., 2022) tasks.
These methods are not directly applicable to domain gen-

eralization because they require labelled samples to learn
continuous prompts; but we suggest that they may be a
promising fully-automated approach to domain adaptation
tasks11 where prompt interpretability is not necessary (cf.
(Khashabi et al., 2022)).

I. Human-in-the-Loop Applications
I.1. Prompt interpretability enables human-in-the-loop

debugging

Specifying interventions with natural language makes it pos-
sible to flexibly specify the type of manipulations desired. In
the future, we expect practitioners could iteratively improve
the collection of prompts to achieve improved performance.

We begin with a small set of handcrafted prompts (the ones
used for the results reported in the main paper) and observe
a decrease in texture bias of 5.44%. Reasoning on the task
at hand and the desired effect of the augmentations, we
expand the prompts set to cover a broader range of textures
to further decrease texture bias by an additional 2.84% (see
Appendix M and Tab. 3).

More generally, it is possible to “debug” augmentations by
directly analysing prompts and modifying them to better
reflect the desired intervention (which is possible with zero
exposure to the target domain, or before augmented images
are even generated). For example, the top prompts generated
by LEM for OfficeHome’s art domain and computer
class include “art on a computer”, “a man is working on a
computer with a piece of art on it”, etc., indicating that LEM
generated prompts describing scenarios where both the class
and domain label refer to individual objects in a visual scene.
In Appendix I.1, we describe a few simple steps that can
automatically filter out many such prompts12, illustrating the
flexibility of the natural-language augmentation interface.

LEM is prone to generating prompts that treat OfficeHome
(Venkateswara et al., 2017) domain labels as objects, not as
visual domains or styles. Fortunately, the interpretability of
natural-language prompts that makes it possible for us to
diagnose this problem also enables us to filter out many such
prompts. One approach is to map domain labels to the visual
conditions they denote: for example, the Product label
may be replaced with “white background”, Real World
with “photograph”, etc. However, this solution requires
some knowledge about test domains, which may not al-

11I.e., where an unlabeled sample of the target domain is avail-
able to facilitate learning of the environmental features of the target
domain (Ghifary et al., 2016).

12However, as our LE experiments are explicitly intended to
operate fully autonomously (i.e., with no human intervention or
supervision), we do not carry out a full-scale “debugged” version
of this experiment – all reported OfficeHome results are from the
“buggy” prompts.
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Figure 9. CLIP Filtering Examples. The most-similar (top) and least-similar (bottom) eight images according to their average percentile
rank of CLIP similarity scores computed with respect to the provided prompts.

ways be available. Alternatively, image-related keywords
like “image”, “depict”, or “style” can be included in the
input issued to T5CG, and outputs which do not place these
additional terms in the same minimal noun phrase as the
domain label can be removed (e.g., “an artistic depiction of
a computer” or “a product image of a candle” would be kept,
whereas “art depicted on a computer” or “a product and an
image of a candle” would be excluded)13. While both of
these strategies require limited human oversight to success-
fully “debug” prompts, more sophisticated fully-automated
augmentation pipelines might learn to make such changes
on their own, e.g., by integrating downstream image clas-
sifier accuracy as feedback to fine-tune prompt-generation
models.

I.2. Other human-in-the-loop applications

The usage of T2I generators to approximate interventions
facilitates a variety of novel use cases. For example, con-
sider a “human-in-the-loop” (HITL) application context,
where humans are available to provide interactive feedback
to a model. In the HITL active learning paradigm, hu-
man experts perform the role of “oracles” that a model may
“query” to provide labels of highly uncertain or novel inputs
(Mosqueira-Rey et al., 2022). In contrast, the “human-in-
the-loop debugging” paradigm elaborated above implements
the interactive machine teaching paradigm (Ramos et al.,
2020), which treats human collaborators as teachers that
may provide interactive feedback to update the “curricu-
lum”14 of images used to train a model. For example, a
human collaborator may observe that a model tends to per-

13For clarity, T5CG can replace input terms with inflected forms
in generated prompts, e.g., allowing input terms “art” and “depict”
to occur as “artistic” and “depiction” (respectively) in outputs.

14Note that, in our case, a curriculum is defined in terms of the
domains from which training examples are drawn, not the order in
which they are presented (cf. (Bengio et al., 2009)).

form poorly in the context of a given target domain, or that
generated images do not capture some important stylistic
properties of the domain. In response, they may easily
compose or revise image-generation prompts with explicit
reference to important features of the target domain. Criti-
cally, our approach allows human teachers to directly update
visual curricula using natural language, providing models
with feedback in much the same terms as one would a human
student. We believe that the intuitiveness and efficiency of
this approach makes it a promising approach to domain gen-
eralization, shifting the burden of the problem from human
domain knowledge to natural language and thus enabling
human collaborators to interactively instruct models without
prerequisite domain expertise.

In particular, we argue that this benefit is particularly salient
in the context of test-driven software engineering prac-
tice. Rather than blindly assuming that the performance
on application-independent benchmarks will transfer to
application-specific cases, engineers need to extensively
document (often through natural language) the potential
use cases and test conditions. The ability to directly spec-
ify these criteria via natural-language augmentations, or
even directly reuse the documentation to generate training
data, could be invaluable for controlling, predicting, and
understanding the behavior of vision models in real-world
applications.

J. Computational Expense
Although the inference speed of generative models has
greatly improved over time, we found that SD is still too
slow to generate synthetic data on-the-fly during training,
so we pre-generate and store augmented data to amortise
the generation cost when experimenting on different archi-
tectures and training procedures. For each sample in DS ,
we randomly selected k text prompts, and for each prompt,
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one augmented image was generated and stored. At train-
ing time, for each training image in the batch, one of its
augmented versions will be randomly selected from the k
pre-generated intervened samples. The general statistics of
computational expense of each type of generative model on
an NVIDIA A40 GPU and generator with hyperparameters
specified for OfficeHome experiment are as follows: Stable
Diffusion 1.5 took up ∼ 8GB of VRAM (for inference – we
do not compute gradients for any experiments) and required
∼ 0.5 seconds per sample generated on average. In ad-
dition to our qualitative assessments, we have conducted a
quantitative comparison of various data generation methods,
focusing on the time efficiency aspect. Specifically, we mea-
sured the time required to complete an epoch on the PACS
dataset using a ResNet18 model. The results, detailed in
Tab. 20, reveal that the online augmentation speed of our
method is on par with other parametric data augmentation
methods and notably faster than learning-based methods.
It’s important to note that while the offline generation time
for our method is approximately 4 hours on a single A40
GPU, this process is a one-time requirement and can be
performed offline. Consequently, once the data is generated,
it can be reused multiple times, thereby offsetting the initial
time investment.

K. Further Experiments on Generative Models
K.1. Manipulating only the environmental features is

important

It is important to observe that the T2I generator can manip-
ulate not only the environmental features but also the class-
related ones. When the manipulated class-related features
still resemble those of the original training set, the issue is
alleviated. However, it is important for future generators to
allow stronger control over which features are manipulated
and which not through language. In some cases, a potential
solution could be to provide a mask that indicates which
are the environmental features to be manipulated. To exem-
plify the importance of controlling mainly the environmental
variables, we show that, when the inpainting capabilities
of Stable Diffusion can leverage ground-truth background
masks to preserve the foreground area, this further improves
the performance of our method on ImageNet-9 as shown in
Tab. 21

L. Augmentation Samples
L.1. What kind of interventions can the generator

approximate?

In our experiments, we have shown that the way current
T2I generators approximate interventions is sufficient to
achieve good performance on standard benchmarks. The
way T2I generators learn to approximate such manipulations

is by leveraging large amounts of weakly-supervised data.
Stable Diffusion trains on text-image pairs scraped from
the web with minimal post-processing (weak supervision):
this is significantly less expensive than manually providing
class and domain labels (with the added effort of controlling
the environmental conditions). A natural question is then
whether generators can approximate forms of interventions
that are not represented in the training set. This would
require them to combine learned concepts in novel ways.
We answer this question through a simple experiment: we
compare the results of generating images and retrieving
images from the training set through a search engine15 (see
Figure 11). Although the individual entities specified in the
prompts are in the training set, we were unable to retrieve
any images depicting the specific combination of entities
and relations between them that was specified in the prompt.
Since the dataset we are querying is huge (> 200TB, which
can be impossible to store in lack of extremely expensive
hardware), it is infeasible to give a certain answer about
whether a sample representing the query is present or not in
it. Additionally, the system leverages CLIP embeddings to
search for images similar to the query, so small differences
in queries sometimes return highly variable results. For this
reason, we try a variety of queries in an attempt to return
images similar to the one that the generator produced to
increase our confidence about the absence of a given image.
While the first two examples (”A corgi with a hat under
water” and ”A blue peacock cooking bacon in the kitchen”)
might be unlikely to occur in daily life, they might still
occur in the context of captioning creative artworks (e.g.,
captioning of frames of animation movies or collage) and
be useful to alleviate the reliance on spurious features (e.g.,
by perturbing the background or location in which an object
is found). The last two examples (”A cup in the amazon
forest” and ”A clock in the rain”) exemplify much more
common observations from the real world, that we could
not retrieve from the training set. We also show SD can
meaningfully manipulate synthetic images that cannot be
found in the training set (see Figure 13).

L.2. Qualitative examples of the augmented images

In Figure 12 we show additional examples of editing pro-
duced by Stable Diffusion. As it can be observed, Stable
Diffusion may unintentionally manipulate features associ-
ated to the class label, without changing it. For instance,
the augmented variants House and the Dog pictures in Fig-
ure 12 significantly change their structure (e.g., structure
of the house or breed of the dog), while preserving some
similarities. Notice, this behavior is actually required when
translating from domains with insufficient class-relevant in-
formation (e.g., when translating from a pencil sketch to a

15Search Engine can be accessed through https://
rom1504.github.io/clip-retrieval
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Table 20. Quantitative Comparison on Computation Time

ERM AugMix RandAugment MixUp CutMix RSC L2D ACVC MEADA OURS (online)

Time (s) 14.2 33.1 42.7 27.3 28.4 18.0 41.1 127.8 92.2 21.2

Figure 10. Interventional samples generated by Stable Diffusion. For each group of four images, the leftmost image is the original image,
and the three images on the right are augmented samples with text prompts indicated.

Figure 11. Comparison between Search Engine retrieval result and Stable Diffusion manipulation results. Images on the left are generated
with Stable Diffusion; images on the right are retrieved from LAION-5B by querying the search engine with the prompt indicated below
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Figure 12. Stable Diffusion manipulation for in-distribution samples with prompt indicated below. For each group of images of four, the
first image on the left is the original image, and the rest three are manipulated images

Figure 13. Stable Diffusion manipulation out-distribution samples with prompt indicated below. For each group of images of four, the first
image is generated with prompt indicated from scratch, and the rest three are manipulated base on that.

Figure 14. Text Inversion manipulation results for dramatically out-of-distribution data to Stable Diffusion training domain, as a domain
adaptation approach. For each case, four sample images are randomly selected from the target test domain, and a style token S∗ is learnt
with text inversion and used as a style prompt to augment the original training domain image. Images are manipulated with the Text
Inversion prompt from the left first original image in each group of four images. The samples from top to bottom are 1) Histological
image from Camelyon-17 (Bandi et al., 2018) 2) Cell image from RxRx1 (Taylor et al., 2019) 3) Wheat image from GlobalWheat (David
et al., 2020; 2021).
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Table 21. Inpainting Result on ImageNet-9

in mixed rand mixed same gap
ERM 95.06 71.85 83.58 11.73
SDEdit(H) 95.06 77.65 85.8 8.15
Inpaint(H) 96.05 80.62 87.16 6.54

Table 22. Dataset Statistics
No.train No.validation No.test No.classes

PACS 8977 1014 9991 7
Officehome 14032 1556 15588 65
NICO++ 61289 7661 15322 60
DomainNet 410657 18000 157918 345
ImageNet-9 2835 405 810 9
Texture 9600 1600 1280 16
CelebA-sub 5000 500 1000 2

Figure 15. Number of samples generated for each prompt against
test accuracy. The test accuracy is based on SDEdit(M) with
ResNet-18 trained on Photo source domain.

photo or painting, generators must infer color information).

L.3. The more the (synthetic) data, the better?

While in our framework the diversity of interventional sam-
ples is controlled by prompting strategy, a natural question is
whether generating more samples can be beneficial. There-
fore, for the PACS experiment, we ablate the amount of
images we generate for each target domain. As shown in
Figure 15, increasing the amount of generated images up to
6 per-domain produces a 1.52% increase in the performance.
Adding more data seems to degrade the performance. Note
that, to ensure a fair comparison and disentangle the effect
of having more data, we fix the number of samples seen
across all iterations of the training procedure to be the same
across all data points in the figure (i.e., the same batch size
and training epoch, but more synthetic data sampled from a
larger pre-generated candidate set). We leave to future work
understanding whether this is due to the shift induced by
the inevitable artifacts or low-quality images that might be
produced when increasing the amount of generated samples
or by the potentially low variety in the generated results.

L.4. Qualitative examples of failures

In Figure 14 we present three failure cases of Stable Diffu-
sion. In the first row, we observe Stable Diffusion fails at
manipulating histological input images from the Camelyon-
17 (Bandi et al., 2018) and the RxRx1 (Taylor et al., 2019)
datasets. Camelyon-17 images contain tumoral and non-
tumoral tissue captured in different environments. Since
the changes between domains are hard to describe through
language, we use Text inversion in order to learn how to
transform from the source to the target domains. As it can
be seen, Stable Diffusion fails to produce realistic samples
in this setting, probably because the input images and text
are well out-of-domain. A less severe failure occurs on
RxRx1 (second row), which represents HUVEC cells. In
this case, the generated images still result in a distortion of
the input that makes them unrealistic. For the GlobalWheat
(David et al., 2020; 2021) dataset, it is apparent that while
Stable Diffusion can generate plants but it does not repro-
duce the specific species depicted in the original input and
sometimes produces completely unrealistic instantiations of
plants. This failure is particularly bad considering its train-
ing set contains several images of wheat crops; however, in
those images, the crops are not captured from the angle in
which they are captured in GlobalWheat (thus inducing a
distribution shift). These failures suggest future research
should be directed towards improving the ability of T2I gen-
erators to manipulate only the environmental variables for
out-of-domain data, under the assumption a few text and
image pairs from these unknown domains can be leveraged.
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L.5. The Domain Shift between Target Domain and
Synthetic Target Domain

Sometimes the target domain description cannot fully repre-
sent the domain features as prompts to the generative model.
For example, we observe the ”Sketch” domain of the PACS
dataset and the synthetic ”Sketch” Domain is visually dif-
ferent as shown in Figure 16. This is mainly due to the bias
in specific dataset collection processes and also the bias in
the training data of the generative model, which introduces
the discrepancy in understanding of some natural language
concepts.

Figure 16. Comparison between ”Sketch” domain in PACS and
Stable Diffusion Synthetic Data. Top: Sample sketch images from
PACS dataset. Bottom: Sample synthetic data generated with
SDEdit.

To further investigate the distributional mismatch and its
relationship to classifier generalization , we have performed
additional quantitative analysis to show . We utilized the
Fréchet Inception Distance (FID) score (Heusel et al., 2017),
calculated with a pre-trained InceptionV3 model, to quan-
tify the distribution shift between training and target out-
of-distribution (OOD) test samples. As shown in the table
below, we measured the FID between the training samples
of each method and the target PACS test set, as indicated
in the column names. As shown in Tab. 23 We observe
that the methods with the lowest FID score (Text2Image
and Retrieval) yield classifiers with the highest accuracies,
and that training on the original data (i.e., ERM) yields the
lowest accuracy. These indicate a general negative correla-
tion between distribution mismatch and generalization (as
measured by the average test accuracy under SDG). How-
ever, we note that the FID scores are also very close among
all generative methods, which makes FID a less sensitive
metric to reflect the generalization of downstream classi-
fiers. We hypothesize that this variation is due to the limited
capacity of FID to reflect a more fine-grained distribution
shift, indicating an important future research direction.

L.6. Duplication Check

To ensure that the synthetic images used for augmentation do
not cause data leakage, we have included additional visual
duplication checks. Specifically, we leverage a pre-trained

ResNet50 model to extract image features and calculate
the cosine similarity between the training and test samples.
We set a similarity threshold of 0.9, considering sample
pairs above this threshold as potential duplicates. We report
the proportion of such instances as shown in Tab. 24 and
visually inspect the most similar pairs, finding no evidence
of duplication.

M. Image-Generation Prompts
We list the actual prompts used in all settings. The language
enhancement prompts can either be generated by users fol-
lowing hint and language model specified in Sec. 2.2, or see
our repo under prompt directory.

M.1. PACS

PACS: prompt is set in format “[TEMPLATE] of [CLASS
LABEL]”. The templates are as follows:

1. Minimal: {’art painting’:[’an art painting of’],’sketch’:[’a
sketch of’],’cartoon’:[’a cartoon of’],’photo’:[’a photo of’]}
2. Hand-crafted: ’art painting’: [’an oil painting of’, ’a
painting of’, ’a fresco of’, ’a colourful painting of’, ’an
abstract painting of’, ’a naturalistic painting of’, ’a stylised
painting of’, ’a watercolor painting of’, ’an impressionist
painting of’, ’a cubist painting of’, ’an expressionist paint-
ing of’,’an artistic painting of’], ’sketch’:[’an ink pen sketch
of’, ’a charcoal sketch of’, ’a black and white sketch’, ’a
pencil sketch of’, ’a rough sketch of’, ’a kid sketch of’, ’a
notebook sketch of’,’a simple quick sketch of’], ’photo’: [’a
photo of’, ’a picture of’, ’a polaroid photo of’, ’a black and
white photo of’, ’a colourful photo of’, ’a realistic photo
of’], ’cartoon’: [’an anime drawing of’, ’a cartoon of’, ’a
colorful cartoon of’, ’a black and white cartoon of’, ’a sim-
ple cartoon of’, ’a disney cartoon of’, ’a kid cartoon style
of’]
3. Language Enhancement Moderate/Conservative: Gener-
ate with hint and language model specified in Sec. 2.2

M.2. OfficeHome

1. Minimal: ’Art’:[’an art image of’],’Clipart’:[’a clipart
image of’],’Product’:[’an product image of ’],’Real
World’:[’a real world image of’]
2. Handcrafted: ’Art’:[’a sketch of’, ’a painting
of’, ’an artistic image of’],’Clipart’:[’a clipart image
of’],’Product’:[’an image without background of ’],’Real
World’:[’a realistic photo of’]
3. Language Enhancement Moderate/Conservative:
Generate with hint and language model specified in Sec. 2.2
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Table 23. FID scores between PACS training data by augmentation method and target SDG test set, compared against average SDG test
accuracy when training ResNet18

Method Art Photo Sketch Cartoon Average Distribution Shift Average Accuracy

No Augmentation (ERM) 264.2 311.7 358.0 221.7 288.9 58.74
SDEdit(M) 250.1 296.9 354.3 210.1 277.8 72.69
ControlNet(M) 249.8 294.9 354.4 210.9 277.5 72.32
Text2Image(M) 251.3 291.1 353.6 211.3 276.8 82.26
Retrieval(M) 249.0 294.6 354.0 210.2 276.9 80.83

Table 24. Proportion of image pairs in augmented training set and
PACS test set with feature similarity higher than 0.9

Art Photo Sketch Cartoon

SDEdit(M) 0.10% 0.53% 1.13% 0.68%
Text2Image(M) 0.03% 0.55% 1.10% 0.56%
ControlNet(M) 0.04% 0.53% 1.22% 0.63%
Retrieval(M) 0.07% 0.68% 1.19% 0.64%

M.3. NICO++

1. Minimal: {’autumn’:[’autumn’],’dim’:[’dim’],
’grass’:[’grass’],’outdoor’:[’outdoor’],’rock’:[’rock’],
’water’:[’water’]}
2. Hand-crafted: ’autumn’: [’in autumn’, ’autumn’,
’autumn with fallen leaves’], ’dim’:[’during sunset’,’in
the evening’,’twilight’], ’grass’: [’on grass’,’on grass
meadow’, ’with grass’], ’outdoor’: [’in outdoor envi-
ronment’,’outdoor’, ’in wild environment’], ’rock’:[’on
the rock’,’rock’,’with rock’], ’water’:[’in water’,’under
water’,’water’]
3. Language Enhancement Moderate/Conservative:
Generate with hint and language model specified in Sec. 2.2

M.4. DomainNet

1.Minimal: ’real’: [’a photo of’], ’clipart’: [’a clipart of’],
’sketch’: [’a sketch of’], ’infograph’: [’a infograph of’],
’quickdraw’: [’a quickdraw of’], ’painting’: [’a painting
of’]
2.Hand-crafted = ’real’: [’a photo of’, ’realistic photo of’],
’clipart’: [’a clipart of’, ’a prodcut image of’], ’sketch’: [’a
sketch of’], ’infograph’: [’a infograph of’], ’quickdraw’:
[’a quickdraw of’], ’painting’: [’a painting of’]
3. Language Enhancement Moderate/Conservative:
Generate with hint and language model specified in Sec. 2.2

M.5. ImageNet-9

1. Hand-crafted:background:[” in a parking lot”, ” on a
sidewalk”, ” on a tree root”, ” on the branch of a tree”, ” in

an aquarium”, ” in front of a reef”, ” on the grass”, ” on a
sofa”, ” in the sky”, ” in front of a cloud”, ” in a forest”, ” on
a rock”, ” in front of a red-brick wall”, ” in a living room”,
” in a school class”, ” in a garden”, ” on the street”, ” in a
river”, ” in a wetland”, ” held by a person”, ” on the top of a
mountain”, ” in a nest”, ” in the desert”, ” on a meadow”, ”
on the beach”, ” in the ocean”, ” in a plastic container”, ” in
a box”, ” at a restaurant”, ” on a house roof”, ” in front of a
chair”, ” on the floor”, ” in the lake”, ” in the woods”, ” in
a snowy landscape”, ” in a rain puddle”, ” on a table”, ” in
front of a window”, ” in a store”, ” in a blurred backround”]

M.6. CelebA-sub

1. Hand-crafted experiment:
”blonde”:[”male”],”non-blonde”:[”female”]

M.7. Texture

We apply human-in-the-loop to iteratively improve the qual-
ity of prompt and augmentation in Texture dataset. We start
with a set of heuristic prompt as original version. Then
based on the image generated, we add more representative
prompts to further diversity the texture features. As shown
in Tab. 3, by iteratively improving prompts, we achieve a
final 8.28% improvement more than 5.44% of the initial
improvement with respect to ERM.

1. Hand-crafted Final Version:
texture:[’pointillism’,’rubin statue’, ’rusty
statue’,’ceramic’,’vaporwave’,’stained glass’,’wood
statue’,’metal statue’,’bronze statue’,’iron statue’,’marble
statue’,’stone statue’,’mosaic’,’furry’,’corel draw’,’simple
sketch’,’stroke drawing’, ’black ink paint-
ing’,’silhouette painting’,’black pen sketch’,’quickdraw
sketch’,’grainy’,’surreal art’,’oil painting’,’fresco’, ’natu-
ralistic painting’, ’stylised painting’, ’watercolor painting’,
’impressionist painting’, ’cubist painting’, ’expressionist
painting’,’artistic painting’]

2. Hand-crafted Original Version:
texture:[’corel draw’,’simple sketch’,’stroke drawing’,
’black ink painting’,’silhouette painting’,’black pen
sketch’,’quickdraw sketch’,’grainy’,’surreal art’,’oil paint-
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ing’,’fresco’, ’naturalistic painting’, ’stylised painting’,
’watercolor painting’, ’impressionist painting’, ’cubist
painting’, ’expressionist painting’,’artistic painting’]

29


