
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ALADDIN: JOINT PLACEMENT AND SCALING FOR
SLO-AWARE LLM SERVING

Anonymous authors
Paper under double-blind review

ABSTRACT

The demand for large language model (LLM) inference is gradually dominating
artificial intelligence workloads, creating an urgent need for cost-efficient infer-
ence serving. While prior work focuses on single-worker optimization, it often
overlooks cluster-level coordination across both queries and computing resources.
Scheduling requests without considering their uncertainty can lead to SLO viola-
tions or overprovisioning, resulting in excessive cost.
In this paper, we present Aladdin, a scheduler that co-adaptively places inference
queries and scales computing resources under probabilistic SLO constraints. Al-
addin explicitly models request-level uncertainty through stage-wise latency dis-
tributions, and places queries based on their statistical profiles to maximize per-
worker utilization. To improve robustness and cost-efficiency, we design a flex-
ible constraint interface that supports distribution-aware tail modeling and risk-
adjusted capacity allocation. Experiments show that Aladdin reduces serving cost
by up to 71% under the same SLO level compared to standard baselines, which
can translate to millions of dollars in annual savings.

1 INTRODUCTION

The rise of Large Language Models (LLMs) has rapidly transformed work and life OpenAI (2023),
with their inference increasingly dominating AI workloads. Unlike conventional DNNs He et al.
(2015), LLMs with billions of parameters require GPU memory and compute heavily, and GPU
shortages have become common in both public and private clouds new york times (2023) con-
sequently. Therefore, cost-efficient, scalable LLM serving becomes an urgent challenge. Recent
works improve LLM inference efficiency by batching and scheduling. Continuous batching Yu et al.
(2022); Kwon et al. (2023); Agrawal et al. (2023) improves GPU utilization but struggles with het-
erogeneous output lengths. FlexGen Sheng et al. (2023b) aggregates CPU and GPU resources to
reduce cost. Split-phase systems Patel et al. (2023); Zhong et al. (2024); Hu et al. (2024) decou-
ple prefill and decode, improving throughput, but rely on simple placement heuristics like JSQ or
power-of-two Hu et al. (2024). These methods optimize throughput, with SLO improvement as a
by-product. In parallel, classical SLO-aware serving Gujarati et al. (2020); Zhang et al. (2019);
Romero et al. (2021); Crankshaw et al. (2017) assumes predictable workloads, while cluster-level
scheduling work Grandl et al. (2014); Jyothi et al. (2016) focuses on traditional jobs with fixed re-
source profiles. These frameworks are inadequate for the heterogeneous, memory-intensive, and
delay-sensitive nature of LLM inference. Key challenges remain: (1) decoding KV cache can eas-
ily overflow under poor request placement; (2) decoding latency increases with token count even
at fixed batch sizes; (3) optimal worker configuration must account for both compute and memory
trade-offs. Existing approaches largely neglect these interactions.

This paper presents ALADDIN, a co-adaptive LLM serving system that jointly performs proba-
bilistic SLO-aware request placement and resource scaling. Aladdin models latency distributions at
a fine-grained stage level and leverages multi-dimensional constraints (e.g., KV cache, ATGT) to
minimize GPU cost. Unlike prior work, it guarantees SLO satisfaction across all queries and adapts
to dynamic workloads with provable efficiency. As shown in Figure 1, when LLM inference requests
arrive, Aladdin first predicts minimal computing resources by learning the optimal configuration of
serving workers based on the historical input-output length distributions and the request arriving
rate. Secondly, Based on the requests’ input and predicted output length, as well as the learned

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

batching performance models, we formulate the request placement to an online multi-dimensional
bin packing problem. Lastly, We monitor the ongoing requests of each worker and adjust the place-
ment of new arrivals to reduce the impact of output length prediction errors. Aladdin supports the
default setting vLLM Kwon et al. (2023) that does the prefill and decode in the same worker, as well
as the decoupled prefill and decode setting like Patel et al. (2023); Zhong et al. (2024); Hu et al.
(2024).

Users API

Request arrival
prediction

Input/output
distribution

Scheduler

Worker
2
…

Worker
1

Worker
N

Output
estimation

Workers

Batch performance trace

Adaptive worker reconfiguration

Batch inference
Perf. model

Figure 1: The overall architecture of co-adaptive scheduling

Overall, the main contributions of our paper are:

• We conduct an empirical study of the dynamic batching performance of prefill-decoding
LLM inference and deduce the accurate performance prediction model of LLM serving.

• We design a near-optimal online algorithm and a novel scheduler, Aladdin, to co-adaptively
place the queries and manage computing resources to fulfill all requests’ SLOs using min-
imal GPUs.

• We conducted a comprehensive evaluation of Aladdin, including the validation of our LLM
inference performance models on the A100 and V100 testbeds to establish its generality.
We evaluated Aladdin’s end-to-end performance with the real-world workload, which ar-
rived as a stream on GPU servers. Additionally, we conducted a large-scale simulation for
the high-demand LLM serving scenario.

2 BACKGROUND AND MOTIVATION

LLM Inference SLOs: In contrast to other DNN inference workloads Gujarati et al. (2020) that
have well-defined latency targets, LLM inference is a two-stage iterative process. The first stage
involves the generation of the initial token, which processes all prefilled tokens, while the second
stage is the decode stage, where tokens are generated iteratively one by one. LLM inference latency
depends on the output length. Although the time for generating the first token increases with the
number of prefilled tokens Agrawal et al. (2023), it remains predictable based on the length of the
prefilled tokens. Additionally, the first token generation is a single-round inference process without
iteration, so we have set a predetermined response deadline for time to the first token (TTFT).
For the decoding process, previous work Patel et al. (2023) adopts the time between tokens (TBT)
metric, constraining the latency between every token smaller than the target. However, the TBT
metric is an over-strict metric with less flexibility, and it does not directly affect the user’s quality
of experience. We introduce the quality of experience SLO using the average token generation time
(ATGT) metric ATGT = tdecode

lout−1 , where tdecode is the decode time of a request and lout − 1 is the
output length of the decode phase. This metric reflects the average time spent generating each token
during the decode stage. For example, the average reading speed for individuals is approximately
four words per second Brysbaert (2019). To ensure the delivery of quality service, the average token
generation time for each request must not exceed 0.2 seconds. Output Length Prediction: The
input and output lengths of requests have a huge impact on the decision of the inference requests
and worker configuration. However, when we make the request placement decisions, we only have

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: CDF of output length for different prompt Lengths from ShareGPT and llama2-13b-chat-
hf generated output.

the information for the input length of each request. There are some techniques to predict the
output length of each request. Previous work Zheng et al. (2023); Hu et al. (2024); Qiu et al.
(2024) proposed the response length perception that harnesses the output length prediction before
the execution ability of LLMs. They use historical data to fine-tune the LLM. However, there are
drawbacks to this methodology. Firstly, the overhead of using a LLM to predict the output length is
non-negligible because the output length prediction process is another inference. Although previous
work Hu et al. (2024) uses a smaller model to predict the output length for a larger LLM, the
prediction overhead is still significant. And the prediction of response length perception is out
of control. From our experiment result, the response length predicted by the fine-tuned models
is biased. Figure 2 presents the CDF of output length given the corresponding prompt length in
different ranges. Although the output length prediction error is inevitable in our request placement,
the prediction without bias can partially cancel the prediction error when we put requests in a batch.
Hence, we use the estimated output length of each input length in the historical data as the predicted
output length. This is the most naive output length predictor. Although the prediction error may be
high, this prediction method has a low overhead and is non-biased. In Section D, we address the
prediction error by designing a novel re-balancing algorithm. Note that the output length prediction
is not the main contribution of this paper. If there are accurate, non-biased, and low overhead output
length predictors in the future, the performance of Aladdin could be further improved.

3 CONTINUOUS BATCHING PERFORMANCE MODELING

In LLM inference, The transformer uses the given prompt (context) as the initial input and generates
additional tokens one by one. During the inference process, the transformer performs self-attention,
which requires the key-value (KV) vectors for each token (prompt and generated tokens) in the
current sequence. These vectors are stored in the GPU as two matrices (key matrix and value matrix)
during inference, often called the KV cache. At the beginning of an inference, the KV cache stores
the key and value matrices of the prompt tokens. During response generation, the KV vectors
associated with that token are appended to the KV cache matrices with each token generated. This
dynamic expansion leads to a linear relationship between the KV cache’s usage and the current
sequence size. This linear relationship signifies that the KV cache’s memory footprint increases
proportionally with the sequence length. So the KV cache usage of a request

kv = h(lin + lout) + j, (1)

where h and j are learnable coefficients, and r is the output tokens generated so far.

Iteration-level batching poses unique challenges. Not all requests can be batched together at any
iteration due to varying input shapes. Orca Yu et al. (2022) addresses this by proposing selective
batching. However, operators like Attention require inputs with identical shapes, leading to separate
calculations using cuBLAS NVIDIA (2023) routines for batch matrix multiplication. The separate
multiplications for each request result in a linear scaling of iteration time to the batch size. In default

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

settings like vLLM Kwon et al. (2023) or split-phase inference, one batch can only contain prefill or
decode. Since the query in the attention mechanism of the prefill process is a matrix that includes
all input tokens, the query of the decode process is a vector of the last generated token. The iteration
latency model of the prefill and decode batch is different.
Prefill iteration time. Since prompt processing is a computing-bottleneck process, a single request
with a reasonable input length can effectively saturate the worker’s computing power, which means
the batching effect has limited improvement to the throughput in the prefill process. Our preliminary
results indicate that the iteration time of the prefill batch is not affected by the batch size and is linear
with the total input length of all batched requests. The iteration time:

tpre = k1
∑

lin + c1, (2)

where the
∑

lin is the total input length of all requests in the prefill batch, k1 and c1 are the learnable
coefficients.
Decode iteration time. However, the token generation process has low compute utilization since
each query only generates one token in an iteration. With a fixed batch size, the iteration time linearly
increases as the average context length (the input length of the request and the tokens generated so
far) increases. Similarly, with the same average context length, the iteration time increases linearly
with the batch size. According to the experiment, the iteration time with a batch size of one (i.e.,
single request inference without batching) remains nearly constant. With this information, when we
haven’t reached the KV cache limit, the iteration time td is:

td = (k2lave + c2)b+ c3, b > 1, (3)

where b is the batch size, lave is the average context length among all requests. k and c are learnable
coefficients. In the scheduling algorithm design, given the ATGT SLO Tdec, the total input length is
limited by a function of batch size b:

ld ≤
1

k2
(−c2b+ Tdec − c3) , b > 1. (4)

Note that all coefficients in Eq. 4 are positive according to the batch inference scaling. And Tdec

must be greater than c3 because the decoding latency SLO we choose must be greater than the
individual request decoding latency without batching. From Eq. 4, we deduce that with a larger
batch size, the maximum total input length limit of all requests within the batch decreases.

4 CO-ADAPTIVE SCHEDULING

When requests arrive at the scheduler, our task is to determine how to use the minimum number of
GPUs to serve both newly submitted and ongoing requests while ensuring compliance with the SLO
requirements. This overarching objective can be deconstructed into several critical components:
(1) We need to determine the minimal GPU number required to serve the queries that fulfill the
SLO requirements. (2) Find the most efficient configuration of these GPUs, such as the number of
workers and the number of GPUs configured with each worker. (3) Decide how to place the requests
to each worker in a manner that optimizes the utilization of each worker.

It’s important to note that these three components are interconnected. When one decision is made,
the other two are simultaneously determined. For example, when we establish the total number
of GPUs, this decision implicitly dictates the optimized placement of GPUs and models on each
worker, as well as the optimization of request assignments to each worker. Conversely, if we can de-
vise a more effective strategy for worker configuration or request assignment that enhances resource
utilization, we can reduce the total resource requirements for a more cost-efficient service. Firstly,
Let’s look into the optimal single-worker configuration because the optimal configuration for each
worker is orthogonal to the request scheduling and worker number determination.

4.1 WORKER CONFIGURATION

In this paper, we consider the tensor parallelism distributed inference. The optimal worker configu-
ration is achieved at the optimal per-GPU throughput. With the different ranks of tensor parallelism,
the computing, communication, and KV cache capacity all impact the throughput. In the default

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

vLLM Kwon et al. (2023) setting, the prefill and decode processes share the same worker, but de-
code dominates since it generates tokens iteratively while prefill runs only once. We have to predict
the parallelism strategy with the most per-GPU throughput for decode phase. In tensor parallelism,
each GPU computes its split tensor locally, then aggregates results via All-reduce. The compute
time scales inversely with the number of GPUs:

tcompute =
k4
Ng

+ c4, (5)

where Ng is the number of GPUs per worker. The All-reduce communication overhead is
(Ng − 1)/Ng; while nearly constant for large Ng , it is non-negligible on modern servers (e.g.,
DGX A100/H100) with at most 8 GPUs, though intra-node bandwidth mitigates straggler effects.
The KV cache capacity is M = Ngmgpu−mmodel. Throughput may be limited either by KV cache
or by the iteration SLO: in the former case when KV cache is full, in the latter when the decode
iteration time reaches the ATGT latency limit.

The maximum per-GPU throughput of tensor parallelism rank N is:

Tmax = min

{
M

Ngmr(tcompute + tcomm)
,

B

NgTdecode

}
, (6)

where mr is the average per request KV cache demand learned from the historical data, and
tcompute + tcomm is the iteration time given the batch size M

mr
with Ng GPU per worker. Tdecode is

the ATGT SLO, and B is the batch size corresponding to the SLO. The optimal worker configura-
tion has Nopt

g GPUs that maximize Tmax. Note that with homogeneous GPUs, the optimal worker
configuration is independent of request arrival rate but depends on model size, context length, and
GPU compute and memory capacity. Thus, when adapting to varying workloads, each worker’s
configuration remains fixed.

4.2 REQUEST PLACEMENT POLICIES

We optimized the worker configuration to achieve maximum per-GPU throughput, and our next
objective is to minimize the number of workers required for LLM service. The placement of queries
to workers significantly affects efficiency of resource utilization. Figure 4 illustrates the suboptimal
of naive JSQ and reveals the optimal request placement strategy. In this example, requests need to
be placed to two workers with KV cache capacity of 9. If we adopt JSQ, two long prompt requests
will be placed to the same worker, while two long output requests will be placed to another worker.
Suppose a token requires 1 KV cache capacity. The max KV cache demand for both workers is 10
when requests finish generation, which exceeds the KV cache capacity of 9. Therefore, we need to
move requests to the waiting queue until there is available KV cache. However, with the optimal
request placement, a long prompt request and a long output request are placed in one worker. The
max KV cache demand for each worker is 7. We leverage the parameters notated in Table 2 in
Appendix B and the following information: (1) Learnable prefill time to total input tokens Eq. 2,
input tokens limit to batch size when constraining the decode iteration time Eq.4 and learnable
KV cache usage to token count Eq.1 functions for each group. (2) The current KV cache usage
m =

∑
kv and total KV cache M for each worker. (3) For each newly added request, we utilize the

known input prefill length linj and predicted output length lpredj . For ongoing requests, we take into
account the current length generated loutj .

The request scheduling with the constraints can be seen as a multi-dimensional bin packing problem.
We formulate it as a mixed integer programming (MIP) that schedules the new-arrived requests
between the scheduling heartbeat with different input/output lengths lin and lpreout , and we want to
minimize worker number W . Let xij be a binary variable that equals 1 if request j is scheduled
to Worker i, and 0 otherwise. Let yi be a binary variable that equals 1 if Worker i is used, and
0 otherwise. Assume I is the initial worker number larger than the optimal W . When there are
ongoing requests, for an ongoing request j, to prevent the unnecessary migration between workers,
the xij is kept the same as the current decoding worker. We also need to guarantee that the new
request’s prompt processing time won’t violate the token generation time SLO. The MIP problem

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

can be formulated as follows:

min

I∑
i=1

yi

s.t.
I∑

i=1

xij = 1, j = 1, 2, . . . , J, a

J∑
j=1

xij(l
in
j + γloutj) ≤ θld

 J∑
j=1

xij

 , i = 1, 2, . . . , I, b

tp

Jnew∑
j=1

xij l
in
j

 ≤ Tpre, i = 1, 2, . . . , I, c

tp

Jnew∑
j=1

xij l
in
j

 ≤ θmin(Tdecl
out
ij − tdecij), i = 1, . . . , I, d

 J∑
j=1

wjxij


k

≤M,k = 1, 2, . . . ,K, i = 1, 2, . . . , I, e

xij ≤ yi, i = 1, 2, . . . , I, j = 1, 2, . . . , J, f

xij ∈ {0, 1}, i = 1, 2, . . . , I, j = 1, 2, . . . , J, g

yi ∈ {0, 1}, i = 1, 2, . . . I. h

The constraints are: a Each request must be scheduled to one worker. b According to Eq. 3,
the iteration time is determined by both batch size and the total context length. Eq. 4 shows the
maximum total context length of all requests in one batch given the batch sizes. This constraint
ensures the ATGT SLO for the decode process. Since the iteration time increases as more tokens
are generated during decoding, the coefficient γ can be considered as a ”strictness knob” that tunes
the scheduling bound, 0 ≤ γ ≤ 1. When γ = 0, only the first iteration can meet the ATGT SLO.
When γ = 1, the last token generation time can meet the ATGT SLO. We normally set γ = 0.5 to
increase the worker utilization while guaranteeing the SLOs. c According to Eq. 2, the sum of all
new requests’ input is limited by the TTFT SLO. d Since the prefill of new requests preempts the
decode for ongoing requests, the prefill time of new requests can not exceed the time that ongoing
requests have saved compared with the ATGT limit. Reflecting on the limitation of the sum of new
requests’ input length. e The total KV cache demand of all the requests scheduled to each worker
cannot exceed the KV cache capacity M . K is the sequence length limit of the serving model. w is
the vector with length K that shows a request’s KV cache footprint. For example, for request j,

w =
[
kv(linj) kv(linj + 1) · · · kv(linj + lpredj) 0 · · · 0

]
,

where each element in the vector presents the KV cache demand of an iteration. The KV cache de-
mand for the first iteration includes the KV cache for input tokens. The KV cache demand increases
in the following iterations while output tokens are generated. The KV cache demand becomes zero
when the request j finishes. This constraint guarantees that for all scheduled iterations, the KV
cache demand will not exceed the KV cache capacity of the worker. f If a worker is used, it should
have at least one request scheduled. Otherwise, we don’t need this worker. g h All variables are
binary. Unused boxes will have yi = 0 and will not be counted in the objective function. 0 < θ < 1
in b d is another hyperparameter that adapts to the prediction error of output length. For example,
when θ is small, the constraints are tighter, so requests are less likely to violate the SLOs. However,
the drawback is that we need more workers for the serving.

Scheduling heuristic. The multi-dimensional bin-packing problem is NP-hard, so an efficient
heuristic is needed to approach optimal scheduling. Given that requests arrive in an online pat-
tern, we employ the best-fit algorithm for online bin packing Letchford (2002). It schedules each
arrived request to the worker with the maximum load and can guarantee the satisfaction of all SLO

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1: Request scheduling heuristic

1 Input: lin, lpred of the new request j. lin, lpred, lout of all ongoing requests. KV cache
capacity M for each worker. Worker number W . Performance models kv(t), titer(b, l), tpre(l).

2 Output: Worker i where job j be scheduled, xij = 1.
3 Initial: workerfound← False
4 Sort all bins on capacity norm from large to small.
5 for sorted bins i = 1, 2, . . . , I do
6 initial xij ← 0, i = 1, 2, . . . , I
7 xij=1
8 if b and c and d and e for i then
9 workerfound← True

10 return xij

11 if workerfound = False then
12 Open a new bin (I + 1) and add job j.
13 workerfound← True
14 return x(I+1)j = 1

constraints. Intuitively, this heuristic increases the utilization of each worker compared to other
scheduling algorithms, such as joining the shortest queue, thereby reducing the number of workers.

In the multi-dimensional bin packing problem, determining the metric for each worker’s load is
non-trivial. Using the batch size of each worker as the metric for its load is sub-optimal because
the input and output lengths of requests significantly influence each worker’s load. We propose
capacity norm, which is the L2 norm of batch size B and weighted context length

∑
(lin + γlout)

of all ongoing requests to rank all workers. The heuristic algorithm for scheduling an arriving request
is described in Algorithm 1.

To mitigate output length prediction errors, we design an error-aware rebalancing strategy that mon-
itors worker over-/under-utilization and dynamically redistributes requests. Details of error met-
rics and the rebalancing algorithm are provided in Appendix D. Implementation details are in Ap-
pendix E. For further details on Aladdin’s system design, including workflows for both continuous
and split-phase inference, please refer to Appendix F.

4.3 TAIL LATENCY REMARKS

The heuristics above admit a chance-constrained interpretation. We model per-request end-to-end
latency (TTFT/ATGT) as the sum of prefill, decode, and queueing stages, and enforce worker-level
tail guarantees. For worker j with placement vector aj , we consider a scheduling window with n
co-scheduled requests and let X ∈ Rn be the random vector of their per-request latencies. Define
Sj := a⊤j X, µj := E[Sj], and let Σ := Cov(X). We allocate a global violation budget δ ∈ (0, 1)
across workers via nonnegative weights {βj} with

∑
j βj ≤ 1, and set τj := βjδ. The tail factor

γ(·) maps a target tail probability to a one-sided bound like Cantelli or a normal quantile:

Pr
(
Sj ≥ µj + γ(τj)

√
a⊤j Σaj

)
≤ τj .

This template subsumes truncated-moment modeling for long outputs, covariance-aware bounds for
correlated requests, and dynamic risk allocation across workers. Instantiating Sj for TTFT or ATGT
ties our engineering knobs of batch sizing or worker configuration to explicit tail-risk controls.

Under mild conditions like non-degenerate variability and calibrated γ, the scheduler dominates
naive point estimate baselines since it never worsens the number of active workers or the SLO
attainment rate and is often strictly better. This bridges Sections 4.1, 4.2 with a tail-aware foundation.
Order statistic and CVaR refinements are deferred to the appendix.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2 4
Request arrival rate (Req/s)

0.0

0.2

0.4

0.6

0.8

1.0

SL
O

at
ta

in
m

en
t r

at
e

0.5 1.0 1.5 2.0
Request arrival rate (Req/s)

0.0

0.2

0.4

0.6

0.8

1.0

Default vLLM Aladdin best worker + JSQ Aladdin

(a) The end-to-end SLO attainment rate, (left):
LlaMa2-13b, (right): LlaMa2-70b

2 4
Request arrival rate (Req/s)

50

100

150

P9
9

AT
GT

 (m
s)

0.5 1.0 1.5 2.0
Request arrival rate (Req/s)

50

100

150

200

Default vLLM Aladdin best worker + JSQ Aladdin

(b) The end-to-end P99 ATGT, (left): LlaMa2-13b,
(right): LlaMa2-70b

Figure 3: End to end experiments on A100 testbed

5 EVALUATION

Our experimental setup details are provided in Appendix H. For the evaluation of Aladdin, we
validate the accuracy of our performance modeling for continuous batching inference in Appendix I.
Here, we examine the performance improvement achieved with Aladdin with different scenarios in
Section 5.1 and Appendix J due to page limit. We also provide the overhead analysis of Aladdin
in Appendix K. The primary information of our evaluation is as follows: (1) Aladdin accurately
predicts performance metrics with the maximum error less than 10%. (2) Aladdin reduces the GPU
number required by up to 71% and 60% compared with vanilla vLLM Kwon et al. (2023), and
split-phase inference engines Zhong et al. (2024); Patel et al. (2023)’s decode instances for the
same workload. (3) Although single-worker optimization techniques like chunked prefill Agrawal
et al. (2023) and split-phase inference Patel et al. (2023); Zhong et al. (2024) reduce the cost for
inference, the cost reduced by Aladdin is orthogonal to those techniques. Aladdin can be combined
with single-worker optimization techniques to improve the performance further.

Moreover, we have another three experiments, details in appendix, working on (1) different language
model other than LlaMa2, (2) comparison to the case with oracle output length prediction, and (3)
ablation of rebalancing.

5.1 END-TO-END PERFORMANCE

We evaluate Aladdin’s end-to-end performance by comparing it with baselines on our A100 and
V100 testbeds. In this experiment, requests arrived on Aladdin in a stream format following Poisson
distribution. We use ShareGPTteams (2023) dataset for the conversation content. The baseline we
select is the default vLLM, with all GPUs (4 GPUs) on each machine in one worker. Since the
performance improvement achieved by Aladdin is gained both from request placement and optimal
worker configuration, we configure vLLM with the optimal worker configuration and adopt JSQ for
the request placement to do the ablation study. Table 1 reveals the best worker configuration for
different models on different testbeds.

Table 1: Optimal worker configuration for different models and GPUs for ShareGPT dataset

Model A100 V100
(GPUs/worker) (GPUs/worker)

Llama2-70b-chat-hf 2 N/A
Llama2-13b-chat-hf 1 2
Llama2-7b-chat-hf 1 1

The results of A100 testbed are shown in Figure 3. For the LlaMa2-70b model, Aladdin reduces the
SLO violation rate by up to 3.5X compared with the default vLLM setting. Compared with the best
worker configuration with JSQ placement, Aladdin only improved the SLO attainment rate by up
to 19%. This is because there are totally two workers for the LlaMa2-70b model, which limits the
improvement in the SLO attainment rate. However, Aladdin significantly reduces the P99 ATGT by
up to 40% compared with JSQ, as shown in Figure 3b’s right side. The results for the LlaMa2-13b

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

model are distinct from the 70b model. The optimal worker configuration for the 13b on the A100
testbed is one GPU according to Table 1. There are four workers in total for the request placement.
So Aladdin improves the SLO attainment rate by up to 51% compared with JSQ, but only has minor
P99 ATGT improvement. The results of the V100 testbed are described in Figure 9. The difference
is when the request arrival rate is low, the P99 ATGT of baseline default vLLM output performs the
performance with optimal worker configuration. This is because when the arrival rate is low, the
batch effect is not significant, and the worker with more GPUs has higher computing power than
the worker with fewer GPUs. Nevertheless, in those arrival rates, both baselines and Aladdin fulfill
all requests SLOs. The higher ATGT won’t further improve the SLO attainment rate. Note that we
don’t include the P99 TTFT because vLLM Kwon et al. (2023) preempts the decode batch with the
prefill batch when new requests arrive, making the ATGT more easily violate the SLO.

5.2 SCOPES AND EXTENSIONS

This work evaluates the scheduling framework in a controlled single-model, single-node setting.
The formulation itself generalizes: each model induces its own stagewise latency and KV footprint,
and the same chance-constrained placement applies once these profiles are specified. Extending
the implementation to multi-model and multi-tenant deployments, including migration and fairness
mechanisms, is therefore a natural next step when the required system support is available.

The prototype currently runs on a single node. Multi-node and cross-region deployments introduce
interconnect and remote-KV effects that can be integrated into the same stagewise model, and val-
idating them will require larger clusters or cloud environments. Modern runtime mechanisms such
as paged attention, chunked prefilling, and KV streaming change slope parameters while preserv-
ing structural constraints; integrating these implementations and evaluating their impact is a natural
extension toward production systems.

Finally, production traces often exhibit richer nonstationarity and long-context behavior. The prob-
abilistic formulation already supports such variation through online residual tracking and risk bud-
geting, but a broader evaluation on production-like traces and the development of a full closed-loop
controller for maintaining a target tail-violation rate represent promising directions for future work.

6 RELATED WORK

Recent LLM inference studies span three directions: performance modeling, SLO specification,
and serving systems. Performance modeling. Prior work Narayanan et al. (2023) estimates pre-
fill/decode latency by FLOPs-based modeling for single queries, ignoring hardware and multi-query
interactions. DistServe Zhong et al. (2024) models batched latency under specific configurations, but
lacks input/output length generality. Our work extends modeling to dynamic batches with heteroge-
neous lengths, enabling more general scheduling. SLO specification. Existing systems Patel et al.
(2023); Zhong et al. (2024); Hu et al. (2024); Agrawal et al. (2024) adopt fixed TTFT or token-level
latency (TBT) targets, but the latter is overly strict and misaligned with perceived QoE Sheng et al.
(2023a). We instead propose ATGT as a more flexible and user-aligned SLO. Serving systems.
Application-level optimizations (e.g., continuous batching Yu et al. (2022), page attention Kwon
et al. (2023); Strati et al. (2024), chunked-prefill Agrawal et al. (2023; 2024)) focus on single-
worker efficiency. Worker-level approaches Patel et al. (2023); Zhong et al. (2024); Hu et al. (2024);
Oh et al. (2024) optimize intra-node GPU usage. Some works address query scheduling Liu et al.
(2024); Qiu et al. (2024), but without co-adaptive placement and resource scaling. Our work unifies
these aspects under a cost-aware, SLO-guaranteed framework.

7 CONCLUSION

We propose Aladdin, an adaptive LLM serving system that effectively scale and configures com-
puting resources and optimally places inference queries to minimize serving costs while fulfilling
SLOs. In this paper, we first deduce the performance models of the batched prefill and decode
phases in LLM inference. Then, we predict the minimal computing resources required along with
the corresponding worker configuration and request allocation. Results show that Aladdin reduced
LLM serving costs by up to 71% compared to state-of-the-art baselines.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Amey Agrawal, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S. Gulavani, and Ra-
machandran Ramjee. Sarathi: Efficient llm inference by piggybacking decodes with chunked
prefills, 2023.

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S. Gula-
vani, Alexey Tumanov, and Ramachandran Ramjee. Taming throughput-latency tradeoff in llm
inference with sarathi-serve, 2024.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. GQA: Training generalized multi-query transformer models from multi-head check-
points. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 4895–4901, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.298. URL
https://aclanthology.org/2023.emnlp-main.298.

Marc Brysbaert. How many words do we read per minute? a review and meta-analysis of reading
rate. Journal of memory and language, 109:104047, 2019.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gonzalez, and Ion Sto-
ica. Clipper: A Low-Latency online prediction serving system. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17), pp. 613–627, Boston, MA, March
2017. USENIX Association. ISBN 978-1-931971-37-9. URL https://www.usenix.org/
conference/nsdi17/technical-sessions/presentation/crankshaw.

Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and Aditya Akella.
Multi-resource packing for cluster schedulers. In Proceedings of the 2014 ACM Conference on
SIGCOMM, SIGCOMM ’14, pp. 455–466, New York, NY, USA, 2014. Association for Com-
puting Machinery. ISBN 9781450328364. doi: 10.1145/2619239.2626334. URL https:
//doi.org/10.1145/2619239.2626334.

Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir Vigfusson, and
Jonathan Mace. Serving DNNs like clockwork: Performance predictability from the bottom up.
In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20), pp.
443–462. USENIX Association, November 2020. ISBN 978-1-939133-19-9. URL https:
//www.usenix.org/conference/osdi20/presentation/gujarati.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015.

Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu, Shuang Chen, Hao Feng,
Chenxi Wang, Sa Wang, Yungang Bao, Ninghui Sun, and Yizhou Shan. Inference without inter-
ference: Disaggregate llm inference for mixed downstream workloads, 2024.

Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, Shravan Matthur Narayanamurthy, Alexey
Tumanov, Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru Krishnan, Janardhan Kulka-
rni, and Sriram Rao. Morpheus: Towards automated SLOs for enterprise clusters. In
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp.
117–134, Savannah, GA, November 2016. USENIX Association. ISBN 978-1-931971-33-1.
URL https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/jyothi.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language
model serving with pagedattention. In Proceedings of the 29th Symposium on Operating Sys-
tems Principles, SOSP ’23, pp. 611–626, New York, NY, USA, 2023. Association for Com-
puting Machinery. ISBN 9798400702297. doi: 10.1145/3600006.3613165. URL https:
//doi.org/10.1145/3600006.3613165.

10

https://aclanthology.org/2023.emnlp-main.298
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://doi.org/10.1145/2619239.2626334
https://doi.org/10.1145/2619239.2626334
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/jyothi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/jyothi
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Adam Letchford. Approximation algorithms: Vv vazirani, springer-verlag, 2001. Journal of the
Operational Research Society, 53:807–808, 07 2002. doi: 10.1057/palgrave.jors.2601377.

Jiachen Liu, Zhiyu Wu, Jae-Won Chung, Fan Lai, Myungjin Lee, and Mosharaf Chowdhury. Andes:
Defining and enhancing quality-of-experience in llm-based text streaming services, 2024.

Deepak Narayanan, Keshav Santhanam, Peter Henderson, Rishi Bommasani, Tony Lee, and Percy S
Liang. Cheaply estimating inference efficiency metrics for autoregressive transformer models. In
A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 66518–66538. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/d1a14493e5f84d6c6129414f0cd1a7c6-Paper-Conference.pdf.

The new york times. The desperate hunt for the a.i. boom’s most indispensable prize. https:
//www.nytimes.com/2023/08/16/technology/ai-gpu-chips-shortage.
html, 2023.

NVIDIA. cublas. https://docs.nvidia.com/cuda/cublas/index.html, 2023.

Hyungjun Oh, Kihong Kim, Jaemin Kim, Sungkyun Kim, Junyeol Lee, Du-seong Chang, and Ji-
won Seo. Exegpt: Constraint-aware resource scheduling for llm inference. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, ASPLOS ’24, pp. 369–384, New York, NY, USA, 2024. Associ-
ation for Computing Machinery. ISBN 9798400703850. doi: 10.1145/3620665.3640383. URL
https://doi.org/10.1145/3620665.3640383.

OpenAI. Gpts. https://openai.com/blog/introducing-gpts, 2023.

Pratyush Patel, Esha Choukse, Chaojie Zhang, Íñigo Goiri, Aashaka Shah, Saeed Maleki, and Ri-
cardo Bianchini. Splitwise: Efficient generative llm inference using phase splitting, 2023.

Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha, Chen Wang, Hubertus Franke,
Zbigniew T. Kalbarczyk, Tamer Başar, and Ravishankar K. Iyer. Efficient interactive llm serving
with proxy model-based sequence length prediction, 2024.

Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos Kozyrakis. INFaaS: Automated
model-less inference serving. In 2021 USENIX Annual Technical Conference (USENIX ATC
21), pp. 397–411. USENIX Association, July 2021. ISBN 978-1-939133-23-6. URL https:
//www.usenix.org/conference/atc21/presentation/romero.

Ying Sheng, Shiyi Cao, Dacheng Li, Banghua Zhu, Zhuohan Li, Danyang Zhuo, Joseph E. Gonza-
lez, and Ion Stoica. Fairness in serving large language models, 2023a.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y. Fu, Zhiqiang
Xie, Beidi Chen, Clark Barrett, Joseph E. Gonzalez, Percy Liang, Christopher Ré, Ion Stoica, and
Ce Zhang. Flexgen: High-throughput generative inference of large language models with a single
gpu, 2023b.

Foteini Strati, Sara Mcallister, Amar Phanishayee, Jakub Tarnawski, and Ana Klimovic. Déjàvu:
Kv-cache streaming for fast, fault-tolerant generative llm serving, 2024.

Sharegpt teams. Sharegpt. https://huggingface.co/datasets/anon8231489123/
ShareGPT_Vicuna_unfiltered, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/d1a14493e5f84d6c6129414f0cd1a7c6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d1a14493e5f84d6c6129414f0cd1a7c6-Paper-Conference.pdf
https://www.nytimes.com/2023/08/16/technology/ai-gpu-chips-shortage.html
https://www.nytimes.com/2023/08/16/technology/ai-gpu-chips-shortage.html
https://www.nytimes.com/2023/08/16/technology/ai-gpu-chips-shortage.html
https://docs.nvidia.com/cuda/cublas/index.html
https://doi.org/10.1145/3620665.3640383
https://openai.com/blog/introducing-gpts
https://www.usenix.org/conference/atc21/presentation/romero
https://www.usenix.org/conference/atc21/presentation/romero
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A
distributed serving system for Transformer-Based generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), pp. 521–538, Carlsbad, CA, July
2022. USENIX Association. ISBN 978-1-939133-28-1. URL https://www.usenix.org/
conference/osdi22/presentation/yu.

Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. MArk: Exploiting cloud services
for Cost-Effective, SLO-Aware machine learning inference serving. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pp. 1049–1062, Renton, WA, July 2019. USENIX As-
sociation. ISBN 978-1-939133-03-8. URL https://www.usenix.org/conference/
atc19/presentation/zhang-chengliang.

Zangwei Zheng, Xiaozhe Ren, Fuzhao Xue, Yang Luo, Xin Jiang, and Yang You. Response length
perception and sequence scheduling: An llm-empowered llm inference pipeline, 2023.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
Zhang. Distserve: Disaggregating prefill and decoding for goodput-optimized large language
model serving, 2024.

12

https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ADDITIONAL BACKGROUNDS

Batch Processing of LLM Requests: The demand for large language model (LLM) serving has
experienced exponential growth, making the efficient serving of LLM requests a critical challenge.
LLM serving places significant demands on GPU computing power and memory, which can be
prohibitively expensive. Previous work, such as Orca Yu et al. (2022) and vLLM Kwon et al. (2023),
have introduced dynamic continuous batching techniques for transformer-based generative models
to optimize GPU utilization. LLM generates responses iteratively, producing one token at a time and
using it as input for the next iteration. Importantly, these requests may have varying output lengths,
necessitating different numbers of iterations to complete. Traditional request-level batching methods
pose a disadvantage. Requests within the same batch must wait until all requests are finished before
results are returned. In contrast, continuous batching employs iteration-level scheduling, submitting
an iteration calculation to the execution engine with each token generation. This approach prevents
early-finish requests from waiting for the completion of other requests, improving GPU utilization.

There are challenges to improving the request placement and worker scaling.
Challenge 1: Heterogeneous phases of LLM inference. The transformer-based LLM inference
consists of prefilling and decoding stages. The prefill stage is the first iteration of an inference
request that processes all prompt tokens; it has more computing demand than the decoding process.
The decoding process is a memory-intensive stage compared with the prefill stage because of the
KV cache. These distinct features result in different performance models of prefilling and decoding
processes for each request. Given the requests with various input and output lengths, accurately
predicting the iteration time of batched prefill and decode is challenging.
Challenge 2: Worker performance prediction. The inference workload varies over time with high
uncertainty. Meanwhile, worker configuration and the number of workers directly affect the cost of
inference. Considering the request arrival pattern, we must take into account the worker’s computing
latency, KV cache capacity, and communication overhead. The search space for configurations is too
large to be explored by a naive enumeration approach. Accurately predicting optimal configurations
poses significant challenges.
Challenge 3: Handle the error of output length prediction. The output length prediction error
is inevitable. Therefore, reducing the impact of prediction errors on output length is crucial for
enhancing performance when assigning tasks to workers. Systems need to effectively react when
the prediction error is detected.

B NOTATIONS

Table 2: The inputs to Aladdin and decisions Aladdin makes

Inputs Notation Definition

kv(t) The KV cache usage to tokens function
ld(b) The input length limit to batch sizes
tp(l) The prefill iteration time function
mi The KV cache usage of Worker i, i ∈W
M The KV cache capacity of each worker
linj The input length of a request
lpredj The predicted output length of a request
lrealj The real output length of a request
loutj The output tokens a request generated so far
tdecj The time spent for decoding phase so far
Tpre The SLO of prefill latency

Outputs Notation Definition

W The total worker number
xij binary variable for request j
yi binary variable for Worker i

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C JSQ FOR REQUEST PLACEMENT

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
Req 1 Req 2 Req 3 Req 4

Prompt tokens Output tokens

1 1 1 1 1
3 3 3 3 3

2 2 2 2 2
4 4 4 4 4 4 4 4 4 42 2 2 2 2

1 1 1 1 1 3 3 3 3 3

Worker 1 Worker 2Worker 1 Worker 1 Worker 2

0

5

10

1 2 3 4 5

KV
 c

ac
he

Iterations

0

5

10

1 2 3 4 5
Iterations

0

5

10

1 2 3 4 5
Iterations

0

5

10

1 2 3 4 5
Iterations

Join Shortest Queue Optimal

KV cache capacity = 9 KV cache capacity = 9

Figure 4: An example illustrates the sub-optimal of JSQ for request placement.

D ADDRESSING PREDICTION ERRORS

The output length cannot be accurately predicted before execution. If we overestimate the output
length, worker utilization will be reduced. Conversely, there will be SLO violations. When an
ongoing request in a batch finishes earlier than predicted, we mark this worker as overestimated.
If an ongoing request’s output length is underestimated, i.e., the request hasn’t finished with the
predicted tokens, we mark this worker as underestimated and predict the output length again. Before
the execution of the new requests, we re-schedule new requests that have been scheduled to the
over-utilized workers to the under-utilized workers. We use le and be as the metrics to indicate the
estimation error of each worker, where le is the accumulated error of output length for outstanding
requests, and be is the error of batch size for each worker. If Request j is finished before the estimated
iteration, which means we overestimate the output length, we can calculate the output length over-
estimate error lrealj −lpredj . If we underestimate the output length of Request j, we predict the output
length l′predj again using conditional average output length when lrealj > lpredj with the same input
length linj . In the request scheduling, we use le and be as the indicators to balance the workload
between workers and reduce the effect of output length prediction error. The calculation for le, be,
and the re-balancing algorithm are described in Algorithm 2

E IMPLEMENTATION

Aladdin is specifically designed for single-model serving, eliminating any model cold start problem
for each worker. We adopt vLLM Kwon et al. (2023) for dynamic batch inference to optimize the
KV cache usage of each worker and make the KV cache usage more predictable. Aladdin’s request
scheduler is a scheduling layer on top of the vLLM inference engine. Users submit their requests
to the Aladdin frontend through the API interface. Aladdin routes and schedules the requests to
different workers through each server’s API interface. Note that Aladdin is a non-blocking system;
once a request is scheduled to a worker, it will start inference in the next iteration. Aladdin doesn’t
support request migration, which means once a request has been sent to a worker, we won’t migrate
it to another worker with the same duty.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2: Re-balancing with prediction error

1 Input: xij , l
pred
j , loutj , lrealj of Jold ongoing requests. xij , l

in
j , lpredj of Jnew new requests.

2 Output: Updated xij of new requests.
3 Initial: lei = bei = 0, i = 1, 2, . . . , I.
4 for worker i = 1, 2, . . . , I do
5 for ongoing job j = 1, 2, . . . , Ji on worker i do
6 /*Check if under estimate output length*/
7 if loutj > lpredj then
8 lei ← lei + l′predj

9 bei ← bei + 1

10 /*Check if over estimate output length*/
11 if lrealj < lpredj then
12 lei ← lei + lrealj − lpredj

13 bei ← bei − 1

14 Calculate the equivalent error function αil
e
i + βib

e
i + c1 = 0 of worker i, i = 1, 2, . . . , I.

according to Eq. 4.
15 /*Fix error by adjusting the new requests placement*/
16 if new request j from worker x to worker y then
17 bex ← bex − 1
18 bey ← bey + 1

19 lex ← lex − lpredj

20 ley ← ley + lpredj

21 /*Minimize the sum of the shortest distance between each worker’s error function and the
origin.*/

22 min(
∑ |ci|√

α2
i+β2

i

), i = 1, 2, . . . , I.

23 Return xij , j = 1, 2, . . . , Jnew

F SYSTEM DESIGN

Benefiting from the predictable nature of individual and batch LLM inference, we attempt to re-
veal the best way to serve requests that arrive as a stream from resource management and request
placement perspectives. In this section, we describe the system design of Aladdin for two variances
settings: default continuous batching and split-phase inference. The default continuous batching will
process the input tokens and generate output tokens in the same worker, represented by vLLM Kwon
et al. (2023). The split-phase inference refers to the inference setting that splits the prompt process-
ing and token generation into different working instances, and each instance only processes prompt
or generates output. This setting is represented by Splitwise Patel et al. (2023) and DistServe Zhong
et al. (2024).

F.1 SYSTEM WORKFLOW.

Default continuous batching. The Figure 5 illustrates the workflow of continuous batching infer-
ence scheduling. Firstly, users submit their LLM inference requests via the API as the first step 1 .
The request scheduler uses the bin packing heuristic to schedule the new requests according to their
input length and the predicted output length 2 . Lastly, the request scheduler continuously update
the performance model according to the worker’s execution traces 3 .
Split-phase inference. Figure 6 illustrates the workflow of split-phase inference. Users submit
requests through API 1 . We schedule the prefill of new requests based on their input lengths.
Since the prefill only involves one iteration, there is no queue for the prefill workers 2 . Next, the
decoding scheduler places the requests from prefill workers to decoding workers based on the pre-

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Users API

Bin packing
heuristic

Batch perf.
modeling

Scheduler

…

GPU

GPU
Worker 2

GPU

GPU
Worker 1

GPU

GPU
Worker W

Output
estimation

Workers

Figure 5: Workflow of Aladdin with default continuous batching

Users API

Bin packing
heuristic

Decode
modeling

Decode
Scheduler

…

GPU

GPU

GPU

GPU

GPU

GPU

Output
estimation

Decode workers

Bin packing
heuristic

Prefill perf.
modeling

Prefill
Scheduler

…

GPU

GPU

GPU

GPU

GPU

GPU

Prefill workers

Figure 6: Workflow of Aladdin with split-phase inference.

dicted output length and a learned performance model 3 . Finally, the prefill and decode schedulers
continuously update the performance model according to the workers’ execution traces 4 .

F.2 ADAPT TO CHANGING DEMAND

In every cluster heartbeat, we can reconfigure the cluster using change point detection. In LLM in-
ference, although users submit different queries and receive different answers, the input and output
lengths of LLM inference requests for the same model exhibit a strong pattern. From the SharGPT
dataset Chiang et al. (2023), we found that the input lengths of user queries follow a fixed distri-
bution, and the output lengths of the same LLM also follow a learnable distribution. According to
our experiment using Algorithm 1, when the arrival rate ra is larger than a lower bound R, the total
number of required workers Nw is linear with the request arrival rate ra.

Nw = ⌈k5ra + c5⌉, ra > R (7)

where k5 and c5 are learnable coefficients associated with the historical demand, and we round the
number of workers to the smallest integer larger than the function of ra. The reason R exists is
that when the arrival rate is lower, there are fewer requests arriving in the same heartbeat, which
cannot represent the real distributions of the input and output length. The standard error of the mean
SEM = σ√

n
is the metric for the difference between the sampled requests’ input and output lengths

and the total requests, where σ is the standard deviation of all requests’ input and output length and
n is the number of requests we place during a heartbeat. The smaller n is, the more error appears in
the prediction of Nw.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

200 400 600 800 1000
Input Length (tokens)

0

100

200

300

400

Pr
ef

ill
la

te
nc

y
(m

s)

70b-observe
70b-predict
13b-observe
13b-predict
7b-observe
7b-predict

(a) A100 testbed

200 400 600 800 1000
Input Length (tokens)

50

100

150

200

Pr
ef

ill
la

te
nc

y
(m

s)

13b-observe
13b-predict
7b-observe
7b-predict

(b) V100 testbed

Figure 7: Prefill latency

5 10 15 20 25 30 35
Batch Size

0

2500

5000

7500

10000

70b-observe
70b-predict

13b-observe
13b-predict

7b-observe
7b-predict

(a) A100 testbed

5 10 15 20 25 30
Batch Size

0

5000

10000

13b-observe
13b-predict

7b-observe
7b-predict

(b) V100 testbed

Figure 8: Decode context length limitation

With this model, we can predict the total number of workers required before placing all requests
to each worker. However, the scheduling time requirement of inference serving is in milliseconds.
In a high-demand situation, the scheduling overhead is too large to schedule the requests in the
target iteration for the centralized scheduler. We design a distributed scheduler for the high-demand
scenario that harnesses the pattern of input and output length of requests in Appendix L.

Note that in this paper, we focus on predicting the minimal GPU required for the varying arrival rate
without considering the cold start problem and the switching cost. Since the optimization of cluster
scheduling is orthogonal to the worker number prediction problem, we defer it to future work.

G TAIL LATENCY REMARKS

We consider a scheduling window on worker j with n co-scheduled requests. Let aj ∈ {0, 1}n
denote binary placement indicators (we also allow the relaxed aj ∈ Rn

+ for analysis), and let X ∈
Rn be the random vector of per-request end-to-end latencies (TTFT or ATGT) predicted by our
performance model. Define Sj := a⊤j X, µj := E[Sj] and Σ := Cov(X) so that Var(Sj) = a⊤j Σaj .
We allocate a global violation budget δ ∈ (0, 1) across workers with nonnegative weights {βj}
satisfying

∑
j βj ≤ 1, and set τj := βjδ. Unless stated otherwise, we do not assume independence;

covariances are estimated from traces or our stage-wise model. This appendix uses no notation that
conflicts with the main text.

For any random variable Y with mean µ and variance σ2 <∞, Cantelli’s inequality gives

Pr
(
Y − µ ≥ t

)
≤ σ2

σ2 + t2
for all t > 0.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Setting t =
√

1−τ
τ σ yields Pr

(
Y ≥ µ +

√
1−τ
τ σ

)
≤ τ . Applying this to Y = Sj with σ =√

a⊤j Σaj gives

Pr
(
Sj ≥ µj + γ(τj)

√
a⊤j Σaj

)
≤ τj , γ(τ) =

√
1−τ
τ .

To enforce a concrete SLO threshold Tj (for TTFT or ATGT), we further require

µj + γ(τj)
√

a⊤j Σaj ≤ Tj ,

which then implies Pr(Sj ≥ Tj) ≤ τj .

When a normal approximation is appropriate, we may instead take γ(τ) = z1−τ = Φ−1(1 − τ),
the (1 − τ)-quantile of the standard normal, which is also a valid one-sided bound under Gaussian
assumptions.

Let Ej := {Sj ≥ µj + γ(τj)
√
a⊤j Σaj}. By the union bound (Boole’s inequality),

Pr
(⋃

j

Ej
)
≤

∑
j

Pr(Ej) ≤
∑
j

τj =
∑
j

βjδ ≤ δ.

Thus
∑

j βj ≤ 1 is a sufficient condition to keep the cluster-level violation probability within the
global budget δ.

Instantiating Sj with TTFT or ATGT ties the chance constraints to concrete SLOs. Batch sizing
and request placement modify aj and hence both µj and a⊤j Σaj , while worker configuration al-
ters feasible aj through compute and memory limits especially the KV capacity. Our heuristic
rules (mixing long-prompt with long-output, capping decode iteration time, etc.) can be viewed as
variance-reducing choices for aj , which tighten the tail bound without increasing mean load.

If per-request latencies are weakly correlated, Σ is close to diagonal and

a⊤j Σaj ≈
n∑

k=1

a2jk Σkk.

If correlations exist like due to shared KV or interconnect contention, they are captured in Σ and
handled by the covariance-aware bound above. In practice we fit per-request means and Σ from
traces or our stage-wise model and apply shrinkage for robustness.

Under non-degenerate variability and calibrated γ, variance-aware mixing weakly improves tail fea-
sibility for a fixed mean load compared with grouping alike requests. Consequently, for a target
global budget δ, the chance-constrained scheduler does not worsen the number of active workers
nor the SLO-attainment rate relative to point-estimate baselines, and is often strictly better.

H EXPERIMENTAL SETUP

Testbed setup. We test the performance of Aladdin on high-end GPU servers with 4 A100 80GB
GPUs connected with PCIe. Each machine has two Intel Xeon Platinum 8380 processors and 512GB
RAM. To validate the generalization of Aladdin from both a computation perspective and communi-
cation perspective, we also evaluate Aladdin on the GPU servers with 4 V100 32GB GPUs connected
with NVLink. Each machine has two Intel Xeon Gold 6230 processors and 128GB RAM. We also
do a large-scale simulation for the high-demand request arrival situation.
Models and SLOs. Our target is to prove Aladdin reduces the cost for transformer-based LLMs. To
validate that Aladdin can accurately model the performance metrics of most models. We evaluate
Aladdin on Llama2 series Touvron et al. (2023) models from 7B to 70B. The model, testbed infor-
mation, and SLOs are shown in Table 3. Note that the prefill latency SLOs are the approximated
inference latency for the model’s context length (4096 tokens) for each testbed. The selection of
decode latency SLO is according to the individual request inference latency. We guarantee that the
batch inference latency of each request won’t exceed the individual inference latency for 1.3 times.
Workload. For the end-to-end performance evaluation in Section 5.1, we first collect the prompts

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0.5 1.0 1.5 2.0
Request arrival rate (Req/s)

0.0

0.2

0.4

0.6

0.8

1.0

SL
O

at
ta

in
m

en
t r

at
e

1 2 3
Request arrival rate (Req/s)

0.0

0.2

0.4

0.6

0.8

1.0

Default vLLM Aladdin best worker + JSQ Aladdin

(a) The end-to-end SLO attainment rate, (left):
LlaMa2-7b, (right): LlaMa2-13b

0.5 1.0 1.5 2.0
Request arrival rate (Req/s)

30

40

50

60

P9
9

AT
GT

 (m
s)

1 2 3
Request arrival rate (Req/s)

50

100

150

200

Default vLLM Aladdin best worker + JSQ Aladdin

(b) The end-to-end P99 ATGT, (left): LlaMa2-7b,
(right): LlaMa2-13b

Figure 9: End to end experiments on V100 testbed

from users of ShareGPT V3 unfiltered cleaned split dataset teams (2023), then submit the prompts
follows a Poisson distribution. The outputs are generated by each evaluated model with a tempera-
ture of 0 and a maximum output token limit of 2048. For the large-scale simulation in Section J, we
use the same prompts’ lengths as those collected from ShareGPT teams (2023) in Section 5.1 as the
prompt lengths. Then, we predict the output length based on the output length CDF of the responses
generated in Section 5.1’s end-to-end evaluations for each model.

Table 3: The LLM information and testbed allocation

Model Testbed Prefill Decode
SLO(ms) SLO(ms)

Llama2-chat 70b A100 1600 75
Llama2-chat 13b A100, V100 600, 800 30, 50
Llama2-chat 7b A100, V100 400, 800 15, 30

Because there is no available trace of LLM inference that includes the arrival time of each request,
we simulate the request arrival stream using a Poisson distribution. We need to validate that Aladdin
improves performance in both high-demand and low-demand scenarios. To evaluate the perfor-
mance of Aladdin with varying demands, we tune the average arrival rate λ to simulate different
request demands.
Metrics. Since our final target is to reduce the cost of the inference service, we use the number of
GPUs required to achieve a certain SLO attainment rate as the main metric. In Section J, we eval-
uate the total GPU number required with different request arrival rates. In Section 5.1, As the total
resources are limited for the real testbed evaluation, we evaluate the performance of Aladdin with
the SLO attainment rate and the P99 ATGT in different request arrival rates. The SLO is attained
when both TTFT and ATGT latency meet the requirement.
Baselines. Aladdin is a cluster-level scheduler. The performance improvement achieved by Aladdin
is orthogonal to the improvements achieved by single-server optimization techniques such as split-
phase inference Patel et al. (2023); Zhong et al. (2024) or page attention Kwon et al. (2023). These
single-server optimization techniques use naive cluster scheduling like JSQ. Previous work Hu et al.
(2024) adopts the power-of-two scheduling for request placement. However, it is suboptimal for
request placement and cannot guarantee a high SLO attainment rate. We compared Aladdin’s re-
quest placement with JSQ and power-of-two algorithms with different GPUs and different serving
scenarios.

I PERFORMANCE MODEL VALIDATION

Request placement and worker configuration depend on accurate predictions of performance met-
rics. In this section, we evaluate the model’s accuracy by comparing the predicted metrics to the
measured actual metrics.

In Section 3, we model the latency of prefill phase and decode phase separately because the two
phases have different characteristics. In the evaluation, we evaluate the prefill and decode latency

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25
0

50

100

150

200

250

300
GP

U
ne

ed
ed

LlaMa2-70b on A100 testbed
Default worker + JSQ
Aladdin worker+JSQ
Aladdin

0 5 10 15 20 25
0

50

100

150

200

250
LlaMa2-13b on A100 testbed

Default worker + JSQ
Aladdin worker+JSQ
Aladdin

0 5 10 15 20 25
Reuqest Arrival Rate (Req/s)

0

100

200

300

400

GP
U

ne
ed

ed

LlaMa2-13b on V100 testbed
Default worker + JSQ
Aladdin worker+JSQ
Aladdin

0 5 10 15 20 25
Reuqest Arrival Rate (Req/s)

0

200

400

600

LlaMa2-7b on V100 testbed
Default worker + JSQ
Aladdin worker+JSQ
Aladdin

Figure 10: Simulation of the total GPU number needed with the mixed prefill and decode setting.

0 500 1000 1500 2000 2500 3000 3500 4000
Context Length (tokens)

0

500

1000

1500

2000

2500

3000

KV
 c

ac
he

 u
sa

ge
 (M

iB
)

LlaMa2-70b-observe
LlaMa2-70b-predict
LlaMa2-13b-observe
LlaMa2-13b-predict
LlaMa2-7b-observe
LlaMa2-7b-predict

Figure 11: KV cache prediction and the observation.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25
0

50

100

150

GP
U

ne
ed

ed

LlaMa2-70b on A100 testbed
Power-of-Two
JSQ
Aladdin

0 5 10 15 20 25
0

20

40

60

80

100
LlaMa2-13b on A100 testbed

Power-of-Two
JSQ
Aladdin

0 5 10 15 20 25
Reuqest Arrival Rate (Req/s)

0

50

100

150

200

250

GP
U

ne
ed

ed

LlaMa2-13b on V100 testbed
Power-of-Two
JSQ
Aladdin

0 5 10 15 20 25
Reuqest Arrival Rate (Req/s)

0

50

100

150

200

250

300
LlaMa2-7b on V100 testbed

Power-of-Two
JSQ
Aladdin

Figure 12: Simulation of the total GPU number needed for the decode phase of the split-phase
inference setting

separately for different input and context lengths. In our prefill latency model, the prefill time of
a batch size only corresponds to the total input length of all requests in the batch, not related to
the batch size. In our experiment, we test different batch sizes 1, 2, 4, 8 with the same total input
length within a batch to validate this formulation. We only evaluated the LlaMa2-70b model on the
A100 testbed because our V100 testbed could not load the 70b model (around 140GB) even with
all GPUs (32GB*4). Figure 7a and Figure 7b shows the results on A100 and V100 testbeds. The
maximum prefill latency prediction error is less than 4%. The shaded area is the prediction interval,
which represents the estimation of the range in which future observations are likely to fall. Results
indicate the maximum error of the prediction interval compared with our prediction is less than 10
tokens.In the decode latency model, the iteration time is linear with respect to both the batch size
and the total context length within the batch, not related to the context length of each request in
the batch. This means that regardless of whether the context length of each request in a batch is
long or short, the decoding latency will be the same when the sum of the context lengths of all
requests and the batch size is the same. In our experiment, for the same batch size, we use the
same sum of context length but different context length distributions for all requests in a batch to
validate this formulation. Results are presented in Figure 8a and Figure 8b. Similar to the prefill
latency prediction, the prediction error is less than 5%. For the prediction interval, the error is less
than 300 tokens for all context tokens in the batch.The KV cache usage to the context length is the
most accurate metric in our performance models. According to Figure 11, the prediction error is
less than 1%, and the prediction interval is just aligned with the prediction model. Note that the
KV cache usage is not affected by the testbed; it is only related to the model. Generally speaking,
the larger the model is, the more KV cache is needed for the same context length. However, from
Figure 11, we can see that for the same context length, Llama2-13b requires more KV cache than
Llama2-70b. This is because Llama2 7b and 13b adopt multi-head attention, while the 70b model
adopts grouped-query attention Ainslie et al. (2023), which shares key and value pairs within each
group.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Arrival Rate (Req/s)

0

100

200

300

400

500

Sc
he

du
lin

g
Ov

er
he

ad
 (m

s)

Figure 13: The bin packing algorithm running time with different arrival rates

J LARGE-SCALE SIMULATION

We conducted a simulation for the high-demand request arrival scenario. In this simulation, we
evaluated Aladdin’s performance with split-phase inference and the default vLLM inference setting.
To show the direct cost savings of Aladdin, we simulate the GPU number required for P100 SLO-
guaranteed inference serving at the different request arrival rates.
Default Continuous Batching Inference. In Figure 10, we compared vLLM with baselines in
Section 5.1. Results indicate that Aladdin reduces the LLM serving cost by up to 71% and 40%
compared with the default vLLM and JSQ with Aladdin optimal workers.
Split-Phase Inference. Previous work Patel et al. (2023); Zhong et al. (2024); Hu et al. (2024)
split the prefill phase and decode phase into different instances. Split-phase serving maintains a
group of prefill workers and a group of decode workers, as shown in Figure 6. According to the
results of DistServe Zhong et al. (2024), the majority of GPU resources are scheduled for the decode
workers. Since the scheduling for prefill instances is trivial with known prompt lengths, we only
simulate the GPU number required for the decode phase instance. The baselines are JSQ adopted by
DistServe Zhong et al. (2024) and the Power-of-Two algorithm adopted by previous work Hu et al.
(2024). Results indicate that Aladdin reduces the GPU number required for the SLO-guaranteed
decode phase by up to 60% and 49% compared with JSQ and Power-of-Two algorithm.

K SCHEDULING OVERHEAD

The scheduling overhead can be a problem in high-demand scenarios. For the scheduling latency,
each scheduler’s scheduling latency is predictable based on the request arrival rate since the time
complexity of the best-fit bin packing algorithm is O(nlogn). Figure 13 shows the scheduling over-
head in centralized scheduling. According to the results, with a request arrival rate of around 25
requests per second as we adopted in Section J. The scheduling overhead is less than 50 ms, which
is acceptable. However, if the arrival rate is very high or the scheduling latency limit is very strict,
we can follow Appendix L to adopt the distributed grouped scheduling.

L DISTRIBUTED SCHEDULING

The scheduling time requirement of inference serving is in milliseconds. In a high-demand situation,
the scheduling overhead is too large to place the requests in the target iteration for the centralized
scheduler. We design a distributed scheduler for this case that harnesses the pattern of input and
output length of requests.

With a high arrival rate, the worker required for inference service is linear to the request arrival
rate as discussed in Section F.2. Hence we can randomly sample the arrived requests into groups

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

using round robin. Then for each group, we only place the requests within the group to the workers
corresponding to this group. While the arrival rate is ra, if Group i is corresponding to Ni workers,
the arrival rate of Group i is Ni

Nw
ra. For this distributed scheduling mechanism, the scheduling

demand of Group i is Ni

Nw
of the total demand. Therefore, the scheduling latency is reduced.

The selection of group numbers is non-trivial. With more request groups, the scheduling overhead
is low because each group has fewer requests. However, more workers are needed to fulfill the
SLOs because the workers’ utilization is reduced compared with centralized scheduling. Assume
half of the groups require one extra worker to fulfill the SLOs according to the probability that the
requests placed to these groups require more computing resources, to limit the resource error to less
than e in percentage, each group should be equipped with at least 1

2e workers. For example, if we
want the extra worker required for serving compared with centralized scheduling is 10%, then each
scheduling group should have at least five workers. For the scheduling latency, each scheduler’s
scheduling latency is predictable based on the request arrival rate since the time complexity of the
best-fit bin packing algorithm is O(nlogn). To guarantee both the scheduling latency and extra
resource error, the request arrival rate of each scheduling group ri is constrained by:

1

2e
≤ ri ≤ r(Ts), i = 1, 2, . . . , Ngroup,∑
ri = ra, i = 1, 2, . . . , Ngroup,

(8)

where Ngroup is the group number, Ts is the scheduling latency limit. The r(t) is the function of the
arrival rate limit to the scheduling latency.

With the distributed scheduling, the end-to-end co-adaptive scheduling of Aladdin is described in
Figure 14. The first step is to predict the optimal worker configuration according to Section 4.1
and the corresponding performance models based on Section 3. Given the request arrival rate, we
predict the total worker number Nw using Eq. 7 and search for the group number Ngroup using
Eq. 8. Then we use a round-robin router to route arriving requests to groups of schedulers. Finally,
each scheduler packs requests to their corresponding workers using Algorithm 1.

Round
robin router

worker
group 1

worker
group 2

worker
group N

request scheduler 1

request scheduler 2

request scheduler N

Time between heartbeat

Online bin
packing

Online bin
packing

Online bin
packing

Figure 14: Distributed scheduling using request sampling.

M ADDITIONAL EXPERIMENTS

In order to support the effectiveness of our framework, we add here some more experiments.

M.1 DIFFERENT MODEL

The evaluation is not only limited to the Llama2 model family. Even though the input/output length
distributions or performance characteristics, might be different for other modern architectures, the

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Request arrival rate (Req/s)

0.0

0.2

0.4

0.6

0.8

1.0
SL

O
at

ta
in

m
en

t r
at

e
Qwen3-30b-a3b (SLO)

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Request arrival rate (Req/s)

40

60

80

100

120

140

160

180

P9
9

AT
GT

 (m
s)

Qwen3-30b-a3b (P99 ATGT)
Default vLLM Aladdin best worker + JSQ Aladdin

Figure 15: qwen3 test using A100

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Request arrival rate (Req/s)

0.0

0.2

0.4

0.6

0.8

1.0

SL
O

at
ta

in
m

en
t r

at
e

Qwen3-30b-a3b (SLO)

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Request arrival rate (Req/s)

40

50

60

70

80

90

P9
9

AT
GT

 (m
s)

Qwen3-30b-a3b (P99 ATGT)
Aladdin Oracle output length predictor

Figure 16: compare with oracle output length predictor

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Request arrival rate (Req/s)

0.0

0.2

0.4

0.6

0.8

1.0

SL
O

at
ta

in
m

en
t r

at
e

Qwen3-30b-a3b (SLO)

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Request arrival rate (Req/s)

40

50

60

70

80

90

100

110

P9
9

AT
GT

 (m
s)

Qwen3-30b-a3b (P99 ATGT)
Aladdin with rebalancing Aladdin without rebalancing

Figure 17: with and without rebalancing

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

modeling structure depends only on token linearity and KV scaling. To claim generality, we test
Qwen3 Yang et al. (2025) on the same A100 testbed. From Figure 15 we can see that our algorithm
achieves a similar advantage than default on both SLO attainment rate and P99 ATGT, just as in the
Llama2 experiments. It validates that our proposed performance models and scheduling gains are
not specific to Llama2.

M.2 ORACLE PREDICTION

To clarify the role of prediction, we evaluate our algorithm with the output length oracle, in com-
parison to wtih our historical estimator. From Figure 16 we can see a lead of our algorithm over
oracle, especially in SLO attainment rate. This is because the current length prediction oracle incurs
a heavy latency.

M.3 ABLATION OF REBALANCING

In the last example, we evaluate the necessity of our rebalancing mechanism. Figure 17 shows
such a comparison, between Aladdin with and without rebalancing. The results shows that with
rebalancing, Aladdin performs non-negligibly better in SLO attainment rate and ATGT than without
rebalancing, over varying request arrival rate range.

25

	Introduction
	Background and Motivation
	Continuous Batching Performance Modeling
	Co-Adaptive Scheduling
	Worker Configuration
	Request Placement Policies
	Tail Latency Remarks

	Evaluation
	End-to-End Performance
	Scopes and extensions

	Related Work
	Conclusion
	Additional backgrounds
	Notations
	JSQ for request placement
	Addressing Prediction Errors
	Implementation
	System Design
	System Workflow.
	Adapt to Changing Demand

	Tail Latency Remarks
	Experimental Setup
	Performance Model Validation
	Large-Scale Simulation
	Scheduling Overhead
	Distributed Scheduling
	Additional Experiments
	Different Model
	Oracle Prediction
	Ablation of rebalancing

