Under review as a conference paper at ICLR 2026

ALADDIN: JOINT PLACEMENT AND SCALING FOR
SLO-AWARE LLLM SERVING

Anonymous authors
Paper under double-blind review

ABSTRACT

The demand for large language model (LLM) inference is gradually dominating
artificial intelligence workloads, creating an urgent need for cost-efficient infer-
ence serving. While prior work focuses on single-worker optimization, it often
overlooks cluster-level coordination across both queries and computing resources.
Scheduling requests without considering their uncertainty can lead to SLO viola-
tions or overprovisioning, resulting in excessive cost.

In this paper, we present Aladdin, a scheduler that co-adaptively places inference
queries and scales computing resources under probabilistic SLO constraints. Al-
addin explicitly models request-level uncertainty through stage-wise latency dis-
tributions, and places queries based on their statistical profiles to maximize per-
worker utilization. To improve robustness and cost-efficiency, we design a flex-
ible constraint interface that supports distribution-aware tail modeling and risk-
adjusted capacity allocation. Experiments show that Aladdin reduces serving cost
by up to 71% under the same SLO level compared to standard baselines, which
can translate to millions of dollars in annual savings.

1 INTRODUCTION

The rise of Large Language Models (LLMs) has rapidly transformed work and life (OpenAl| (2023),
with their inference increasingly dominating AI workloads. Unlike conventional DNNs [He et al.
(2015)), LLMs with billions of parameters require GPU memory and compute heavily, and GPU
shortages have become common in both public and private clouds new york times| (2023) con-
sequently. Therefore, cost-efficient, scalable LLM serving becomes an urgent challenge. Recent
works improve LLM inference efficiency by batching and scheduling. Continuous batching|Yu et al.
(2022); | Kwon et al.| (2023); |Agrawal et al.| (2023) improves GPU utilization but struggles with het-
erogeneous output lengths. FlexGen [Sheng et al.| (2023b) aggregates CPU and GPU resources to
reduce cost. Split-phase systems |Patel et al.| (2023)); [Zhong et al.| (2024); |[Hu et al.| (2024) decou-
ple prefill and decode, improving throughput, but rely on simple placement heuristics like JSQ or
power-of-two Hu et al.| (2024). These methods optimize throughput, with SLO improvement as a
by-product. In parallel, classical SLO-aware serving |Gujarati et al.| (2020); [Zhang et al.| (2019);
Romero et al.| (2021); |Crankshaw et al.| (2017) assumes predictable workloads, while cluster-level
scheduling work |Grandl et al.| (2014); Jyothi et al.| (2016) focuses on traditional jobs with fixed re-
source profiles. These frameworks are inadequate for the heterogeneous, memory-intensive, and
delay-sensitive nature of LLM inference. Key challenges remain: (1) decoding KV cache can eas-
ily overflow under poor request placement; (2) decoding latency increases with token count even
at fixed batch sizes; (3) optimal worker configuration must account for both compute and memory
trade-offs. Existing approaches largely neglect these interactions.

This paper presents ALADDIN, a co-adaptive LLM serving system that jointly performs proba-
bilistic SLO-aware request placement and resource scaling. Aladdin models latency distributions at
a fine-grained stage level and leverages multi-dimensional constraints (e.g., KV cache, ATGT) to
minimize GPU cost. Unlike prior work, it guarantees SLO satisfaction across all queries and adapts
to dynamic workloads with provable efficiency. As shown in Figure[T} when LLM inference requests
arrive, Aladdin first predicts minimal computing resources by learning the optimal configuration of
serving workers based on the historical input-output length distributions and the request arriving
rate. Secondly, Based on the requests’ input and predicted output length, as well as the learned

Under review as a conference paper at ICLR 2026

batching performance models, we formulate the request placement to an online multi-dimensional
bin packing problem. Lastly, We monitor the ongoing requests of each worker and adjust the place-
ment of new arrivals to reduce the impact of output length prediction errors. Aladdin supports the
default setting vLLM Kwon et al.|(2023) that does the prefill and decode in the same worker, as well
as the decoupled prefill and decode setting like |Patel et al.| (2023)); [Zhong et al.| (2024); Hu et al.
(2024).

Adaptive worker reconfiguration

Users APl / Scheduler \ Workers

' Output Worker

Request arrival
prediction

estimation i

Input/output
distribution

Batch inference
Perf. model

Worker
2
Worker
N

L

t 0]

Batch performance trace

Figure 1: The overall architecture of co-adaptive scheduling

Overall, the main contributions of our paper are:

* We conduct an empirical study of the dynamic batching performance of prefill-decoding
LLM inference and deduce the accurate performance prediction model of LLM serving.

* We design a near-optimal online algorithm and a novel scheduler, Aladdin, to co-adaptively
place the queries and manage computing resources to fulfill all requests’ SLOs using min-
imal GPUs.

* We conducted a comprehensive evaluation of Aladdin, including the validation of our LLM
inference performance models on the A100 and V100 testbeds to establish its generality.
We evaluated Aladdin’s end-to-end performance with the real-world workload, which ar-
rived as a stream on GPU servers. Additionally, we conducted a large-scale simulation for
the high-demand LLM serving scenario.

2 BACKGROUND AND MOTIVATION

LLM Inference SLOs: In contrast to other DNN inference workloads (Gujarati et al.| (2020) that
have well-defined latency targets, LLM inference is a two-stage iterative process. The first stage
involves the generation of the initial token, which processes all prefilled tokens, while the second
stage is the decode stage, where tokens are generated iteratively one by one. LLM inference latency
depends on the output length. Although the time for generating the first token increases with the
number of prefilled tokens |Agrawal et al.| (2023), it remains predictable based on the length of the
prefilled tokens. Additionally, the first token generation is a single-round inference process without
iteration, so we have set a predetermined response deadline for time to the first token (TTFT).
For the decoding process, previous work |[Patel et al.[(2023) adopts the time between tokens (TBT)
metric, constraining the latency between every token smaller than the target. However, the TBT
metric is an over-strict metric with less flexibility, and it does not directly affect the user’s quality
of experience. We introduce the quality of experience SLO using the average token generation time
(ATGT) metric ATGT = f‘:%_d‘f where tgecode 1S the decode time of a request and [,,,; — 1 is the
output length of the decode phase. This metric reflects the average time spent generating each token
during the decode stage. For example, the average reading speed for individuals is approximately
four words per second Brysbaert| (2019). To ensure the delivery of quality service, the average token
generation time for each request must not exceed 0.2 seconds. Output Length Prediction: The
input and output lengths of requests have a huge impact on the decision of the inference requests
and worker configuration. However, when we make the request placement decisions, we only have

Under review as a conference paper at ICLR 2026

CDF

CDF

\

CDF

Prompt Length (0, 20]

Prompt Length (20, 50]

X slope

CDF

\

X slope

0 500 1000 1500
Output Tokens

Prompt Length (50, 100]

2000

0 500 1000 1500
Output Tokens

Prompt Length (100, 200]

2000

X slope

CDF

\

X slope

0 500 1000 1500
Output Tokens

Prompt Length (200, 500]

2000

0 500 1000 1500
Output Tokens

2000

Prompt Length (500, 4096]
11

N

CDF

\

slope

0 500 1000 1500
Output Tokens

2000

0 500 1000 1500
Output Tokens

2000

Figure 2: CDF of output length for different prompt Lengths from ShareGPT and llama2-13b-chat-
hf generated output.

the information for the input length of each request. There are some techniques to predict the
output length of each request. Previous work |Zheng et al.| (2023); Hu et al.| (2024)); [Q1u et al.
(2024) proposed the response length perception that harnesses the output length prediction before
the execution ability of LLMs. They use historical data to fine-tune the LLM. However, there are
drawbacks to this methodology. Firstly, the overhead of using a LLM to predict the output length is
non-negligible because the output length prediction process is another inference. Although previous
work Hu et al,| (2024) uses a smaller model to predict the output length for a larger LLM, the
prediction overhead is still significant. And the prediction of response length perception is out
of control. From our experiment result, the response length predicted by the fine-tuned models
is biased. Figure [2| presents the CDF of output length given the corresponding prompt length in
different ranges. Although the output length prediction error is inevitable in our request placement,
the prediction without bias can partially cancel the prediction error when we put requests in a batch.
Hence, we use the estimated output length of each input length in the historical data as the predicted
output length. This is the most naive output length predictor. Although the prediction error may be
high, this prediction method has a low overhead and is non-biased. In Section [D] we address the
prediction error by designing a novel re-balancing algorithm. Note that the output length prediction
is not the main contribution of this paper. If there are accurate, non-biased, and low overhead output
length predictors in the future, the performance of Aladdin could be further improved.

3 CONTINUOUS BATCHING PERFORMANCE MODELING

In LLM inference, The transformer uses the given prompt (context) as the initial input and generates
additional tokens one by one. During the inference process, the transformer performs self-attention,
which requires the key-value (KV) vectors for each token (prompt and generated tokens) in the
current sequence. These vectors are stored in the GPU as two matrices (key matrix and value matrix)
during inference, often called the KV cache. At the beginning of an inference, the KV cache stores
the key and value matrices of the prompt tokens. During response generation, the KV vectors
associated with that token are appended to the KV cache matrices with each token generated. This
dynamic expansion leads to a linear relationship between the KV cache’s usage and the current
sequence size. This linear relationship signifies that the KV cache’s memory footprint increases
proportionally with the sequence length. So the KV cache usage of a request

kv = h(lm + lout) + 7 (1
where h and j are learnable coefficients, and r is the output tokens generated so far.

Iteration-level batching poses unique challenges. Not all requests can be batched together at any
iteration due to varying input shapes. Orca|Yu et al. (2022) addresses this by proposing selective
batching. However, operators like Attention require inputs with identical shapes, leading to separate
calculations using cuBLAS [NVIDIA| (2023) routines for batch matrix multiplication. The separate
multiplications for each request result in a linear scaling of iteration time to the batch size. In default

Under review as a conference paper at ICLR 2026

settings like vLLM Kwon et al.| (2023)) or split-phase inference, one batch can only contain prefill or
decode. Since the query in the attention mechanism of the prefill process is a matrix that includes
all input tokens, the query of the decode process is a vector of the last generated token. The iteration
latency model of the prefill and decode batch is different.

Prefill iteration time. Since prompt processing is a computing-bottleneck process, a single request
with a reasonable input length can effectively saturate the worker’s computing power, which means
the batching effect has limited improvement to the throughput in the prefill process. Our preliminary
results indicate that the iteration time of the prefill batch is not affected by the batch size and is linear
with the total input length of all batched requests. The iteration time:

tpre = k1 Y lin + c1, 2)

where the > [;n is the total input length of all requests in the prefill batch, k; and ¢; are the learnable
coefficients.

Decode iteration time. However, the token generation process has low compute utilization since
each query only generates one token in an iteration. With a fixed batch size, the iteration time linearly
increases as the average context length (the input length of the request and the tokens generated so
far) increases. Similarly, with the same average context length, the iteration time increases linearly
with the batch size. According to the experiment, the iteration time with a batch size of one (i.e.,
single request inference without batching) remains nearly constant. With this information, when we
haven’t reached the KV cache limit, the iteration time ¢ is:

td = (k2lave + CQ)b + cs3, b > la (3)

where b is the batch size, [,,. is the average context length among all requests. k£ and c are learnable
coefficients. In the scheduling algorithm design, given the ATGT SLO Ty, the total input length is
limited by a function of batch size b:

1
la < F(_02b+Tdec_CS)v b>1. “)
2
Note that all coefficients in Eq.] are positive according to the batch inference scaling. And T e,
must be greater than cs because the decoding latency SLO we choose must be greater than the
individual request decoding latency without batching. From Eq. 4] we deduce that with a larger
batch size, the maximum total input length limit of all requests within the batch decreases.

4 CO-ADAPTIVE SCHEDULING

When requests arrive at the scheduler, our task is to determine how to use the minimum number of
GPUs to serve both newly submitted and ongoing requests while ensuring compliance with the SLO
requirements. This overarching objective can be deconstructed into several critical components:
(1) We need to determine the minimal GPU number required to serve the queries that fulfill the
SLO requirements. (2) Find the most efficient configuration of these GPUs, such as the number of
workers and the number of GPUs configured with each worker. (3) Decide how to place the requests
to each worker in a manner that optimizes the utilization of each worker.

It’s important to note that these three components are interconnected. When one decision is made,
the other two are simultaneously determined. For example, when we establish the total number
of GPUs, this decision implicitly dictates the optimized placement of GPUs and models on each
worker, as well as the optimization of request assignments to each worker. Conversely, if we can de-
vise a more effective strategy for worker configuration or request assignment that enhances resource
utilization, we can reduce the total resource requirements for a more cost-efficient service. Firstly,
Let’s look into the optimal single-worker configuration because the optimal configuration for each
worker is orthogonal to the request scheduling and worker number determination.

4.1 WORKER CONFIGURATION

In this paper, we consider the tensor parallelism distributed inference. The optimal worker configu-
ration is achieved at the optimal per-GPU throughput. With the different ranks of tensor parallelism,
the computing, communication, and KV cache capacity all impact the throughput. In the default

Under review as a conference paper at ICLR 2026

vLLM Kwon et al.| (2023) setting, the prefill and decode processes share the same worker, but de-
code dominates since it generates tokens iteratively while prefill runs only once. We have to predict
the parallelism strategy with the most per-GPU throughput for decode phase. In tensor parallelism,
each GPU computes its split tensor locally, then aggregates results via All-reduce. The compute
time scales inversely with the number of GPUs:

k
tcompute = FLL + ¢y,)]
g

where N, is the number of GPUs per worker. The All-reduce communication overhead is
(Ng — 1)/Ng; while nearly constant for large NN, it is non-negligible on modern servers (e.g.,
DGX A100/H100) with at most 8 GPUs, though intra-node bandwidth mitigates straggler effects.
The KV cache capacity is M = Ngmgpy, — Mmoder- Throughput may be limited either by KV cache
or by the iteration SLO: in the former case when KV cache is full, in the latter when the decode
iteration time reaches the ATGT latency limit.

The maximum per-GPU throughput of tensor parallelism rank N is:

T) { M B } ©)
maz — TN) ’
Ngmr (tcompute + tcomm) NgTdecode

where m,. is the average per request KV cache demand learned from the historical data, and
teompute 1 tecomm 18 the iteration time given the batch s1ze L with Ny GPU per worker. Tjecode 18
the ATGT SLO, and B is the batch size corresponding to the SLO. The optimal worker configura-
tion has NV, 5” GPUs that maximize T},,,. Note that with homogeneous GPUs, the optimal worker
configuration is independent of request arrival rate but depends on model size, context length, and
GPU compute and memory capacity. Thus, when adapting to varying workloads, each worker’s
configuration remains fixed.

4.2 REQUEST PLACEMENT POLICIES

We optimized the worker configuration to achieve maximum per-GPU throughput, and our next
objective is to minimize the number of workers required for LLM service. The placement of queries
to workers significantly affects efficiency of resource utilization. Figure []illustrates the suboptimal
of naive JSQ and reveals the optimal request placement strategy. In this example, requests need to
be placed to two workers with KV cache capacity of 9. If we adopt JSQ, two long prompt requests
will be placed to the same worker, while two long output requests will be placed to another worker.
Suppose a token requires 1 KV cache capacity. The max KV cache demand for both workers is 10
when requests finish generation, which exceeds the KV cache capacity of 9. Therefore, we need to
move requests to the waiting queue until there is available KV cache. However, with the optimal
request placement, a long prompt request and a long output request are placed in one worker. The
max KV cache demand for each worker is 7. We leverage the parameters notated in Table [2] in
Appendix [B| and the following information: (1) Learnable prefill time to total input tokens Eq.
input tokens limit to batch size when constraining the decode iteration time Eq[4] and learnable
KV cache usage to token count Eq[I] functions for each group. (2) The current KV cache usage
m =Y kv and total KV cache M for each worker. (3) For each newly added request, we utilize the

known input prefill length l;” and predicted output length l? red For ongoing requests, we take into
account the current length generated l;-’“t.

The request scheduling with the constraints can be seen as a multi-dimensional bin packing problem.
We formulate it as a mixed integer programming (MIP) that schedules the new-arrived requests
between the scheduling heartbeat with different input/output lengths /;,, and {%, 7, and we want to
minimize worker number W. Let x;; be a binary variable that equals 1 if request j is scheduled
to Worker ¢, and 0 otherwise. Let y; be a binary variable that equals 1 if Worker ¢ is used, and
0 otherwise. Assume [is the initial worker number larger than the optimal W. When there are
ongoing requests, for an ongoing request 7, to prevent the unnecessary migration between workers,
the x;; is kept the same as the current decoding worker. We also need to guarantee that the new
request’s prompt processing time won’t violate the token generation time SLO. The MIP problem

Under review as a conference paper at ICLR 2026

can be formulated as follows:
I
min Z Yi
i=1

I
st Y my=1,=12,...,/J,
=1

J J
S apUr Aty <0t (D wg | i=1,2,.1,
j=1 j=1

J’VL ew

tp | Dl | < Tppeyi=1,2,....1,
j=1

J’VL ew

tp | D ali™ | < Omin(Taeddd" — %), i =1,..., 1,
j=1

J
S wimi| <Mk=12... Ki=12,...1,
j=1

k
2y <yni=12,....1j=1,2...,J,

z; €{0,1},i=1,2,...,1,7=1,2,...,J,
vy €{0,1},i=1,2,... 1.

o0 & @ & e ©

The constraints are: @ Each request must be scheduled to one worker. @ According to Eq. ,
the iteration time is determined by both batch size and the total context length. Eq. 4] shows the
maximum total context length of all requests in one batch given the batch sizes. This constraint
ensures the ATGT SLO for the decode process. Since the iteration time increases as more tokens
are generated during decoding, the coefficient v can be considered as a “strictness knob” that tunes
the scheduling bound, 0 < v < 1. When ~ = 0, only the first iteration can meet the ATGT SLO.
When « = 1, the last token generation time can meet the ATGT SLO. We normally set v = 0.5 to
increase the worker utilization while guaranteeing the SLOs. @ According to Eq. [2] the sum of all

new requests’ input is limited by the TTFT SLO. Since the prefill of new requests preempts the
decode for ongoing requests, the prefill time of new requests can not exceed the time that ongoing
requests have saved compared with the ATGT limit. Reflecting on the limitation of the sum of new
requests’ input length. @ The total KV cache demand of all the requests scheduled to each worker
cannot exceed the KV cache capacity M. K is the sequence length limit of the serving model. w is
the vector with length K that shows a request’s KV cache footprint. For example, for request 7,

W = [k‘v(l;”) kv(l;-" +1) - k‘v(lj—" + lé-w‘d) 0o - O} ,

where each element in the vector presents the KV cache demand of an iteration. The KV cache de-
mand for the first iteration includes the KV cache for input tokens. The KV cache demand increases
in the following iterations while output tokens are generated. The KV cache demand becomes zero
when the request j finishes. This constraint guarantees that for all scheduled iterations, the KV
cache demand will not exceed the KV cache capacity of the worker. @ If a worker is used, it should

have at least one request scheduled. Otherwise, we don’t need this worker. @@ All variables are
binary. Unused boxes will have y; = 0 and will not be counted in the objective function. 0 < § < 1
in Q@ is another hyperparameter that adapts to the prediction error of output length. For example,
when 6 is small, the constraints are tighter, so requests are less likely to violate the SLOs. However,
the drawback is that we need more workers for the serving.

Scheduling heuristic. The multi-dimensional bin-packing problem is NP-hard, so an efficient
heuristic is needed to approach optimal scheduling. Given that requests arrive in an online pat-
tern, we employ the best-fit algorithm for online bin packing [Letchford (2002)). It schedules each
arrived request to the worker with the maximum load and can guarantee the satisfaction of all SLO

© ® NS AW

[y
=)

11
12
13
14

Under review as a conference paper at ICLR 2026

Algorithm 1: Request scheduling heuristic

Input: [, [P"¢ of the new request . Lin, Ipred, lout Of all ongoing requests. KV cache

capacity M for each worker. Worker number W. Performance models kv(t), titer (D, 1), tpre(l).

Output: Worker 7 where job j be scheduled, z;; = 1.

Initial: workerfound < False

Sort all bins on capacity_norm from large to small.

for sorted bins i =1,2,...,1 do

initial Tij < O,Z = 17 2, ..

il'ij=1

if () and (¢) and (d) and () for i then
workerfound < True

L return z;;

1

9

if workerfound = False then

Open a new bin (I + 1) and add job j.
workerfound < T'rue

B return ¥y 1); =1

constraints. Intuitively, this heuristic increases the utilization of each worker compared to other
scheduling algorithms, such as joining the shortest queue, thereby reducing the number of workers.

In the multi-dimensional bin packing problem, determining the metric for each worker’s load is
non-trivial. Using the batch size of each worker as the metric for its load is sub-optimal because
the input and output lengths of requests significantly influence each worker’s load. We propose
capacity_norm, which is the L2 norm of batch size B and weighted context length > (L;y, + Vlout)
of all ongoing requests to rank all workers. The heuristic algorithm for scheduling an arriving request
is described in Algorithm]

To mitigate output length prediction errors, we design an error-aware rebalancing strategy that mon-
itors worker over-/under-utilization and dynamically redistributes requests. Details of error met-
rics and the rebalancing algorithm are provided in Appendix [D| Implementation details are in Ap-
pendix [E] For further details on Aladdin’s system design, including workflows for both continuous
and split-phase inference, please refer to Appendix [F}

4.3 TAIL LATENCY REMARKS

The heuristics above admit a chance-constrained interpretation. We model per-request end-to-end
latency (TTFT/ATGT) as the sum of prefill, decode, and queueing stages, and enforce worker-level
tail guarantees. For worker j with placement vector a;, we consider a scheduling window with n
co-scheduled requests and let X € R™ be the random vector of their per-request latencies. Define
S; = a; X, p; := E[S;], and let & := Cov(X). We allocate a global violation budget § € (0,1)
across workers via nonnegative weights {3;} with -, 8; < 1, and set 7; := j3;. The tail factor
~(-) maps a target tail probability to a one-sided bound like Cantelli or a normal quantile:

PY(SJ' > pj+ V(Tj)\/a}rxaj) = 7j-

This template subsumes truncated-moment modeling for long outputs, covariance-aware bounds for
correlated requests, and dynamic risk allocation across workers. Instantiating S; for TTFT or ATGT
ties our engineering knobs of batch sizing or worker configuration to explicit tail-risk controls.

Under mild conditions like non-degenerate variability and calibrated -y, the scheduler dominates
naive point estimate baselines since it never worsens the number of active workers or the SLO
attainment rate and is often strictly better. This bridges Sections @1} [4.2) with a tail-aware foundation.
Order statistic and CVaR refinements are deferred to the appendix.

Under review as a conference paper at ICLR 2026

—e— Default vLLM —e— Aladdin best worker + JSQ —— Aladdin —e— Default vLLM —e— Aladdin best worker + JSQ —— Aladdin
1.0 1.0 200
Q
cos8 0.8 = 150
€ £
g 0.6 0.6 = 150
< 8 100
Foa 0.4 <
£ 2 100
90.2 0.2 & 50
v ——12
0.0 0.0 —t 50
2 4 0.5 1.0 15 2.0 2 4 0.5 1.0 15 2.0
Request arrival rate (Req/s) Request arrival rate (Req/s) Request arrival rate (Req/s) Request arrival rate (Req/s)
(a) The end-to-end SLO attainment rate, (left): (b) The end-to-end P99 ATGT, (left): LlaMa2-13b,
LlaMa2-13b, (right): LlaMa2-70b (right): LlaMa2-70b

Figure 3: End to end experiments on A100 testbed

5 EVALUATION

Our experimental setup details are provided in Appendix [H} For the evaluation of Aladdin, we
validate the accuracy of our performance modeling for continuous batching inference in Appendix I}
Here, we examine the performance improvement achieved with Aladdin with different scenarios in
Section and Appendix [J| due to page limit. We also provide the overhead analysis of Aladdin
in Appendix [Kl The primary information of our evaluation is as follows: (1) Aladdin accurately
predicts performance metrics with the maximum error less than 10%. (2) Aladdin reduces the GPU
number required by up to 71% and 60% compared with vanilla vLLM [Kwon et al.| (2023), and
split-phase inference engines [Zhong et al.| (2024)); [Patel et al.| (2023)’s decode instances for the
same workload. (3) Although single-worker optimization techniques like chunked prefill |Agrawal
et al.| (2023) and split-phase inference |Patel et al.| (2023); [Zhong et al.| (2024) reduce the cost for
inference, the cost reduced by Aladdin is orthogonal to those techniques. Aladdin can be combined
with single-worker optimization techniques to improve the performance further.

Moreover, we have another three experiments, details in appendix, working on (1) different language
model other than LlaMa2, (2) comparison to the case with oracle output length prediction, and (3)
ablation of rebalancing.

5.1 END-TO-END PERFORMANCE

We evaluate Aladdin’s end-to-end performance by comparing it with baselines on our A100 and
V100 testbeds. In this experiment, requests arrived on Aladdin in a stream format following Poisson
distribution. We use ShareGPTiteams| (2023) dataset for the conversation content. The baseline we
select is the default vLLM, with all GPUs (4 GPUs) on each machine in one worker. Since the
performance improvement achieved by Aladdin is gained both from request placement and optimal
worker configuration, we configure vLLM with the optimal worker configuration and adopt JSQ for
the request placement to do the ablation study. Table [I] reveals the best worker configuration for
different models on different testbeds.

Table 1: Optimal worker configuration for different models and GPUs for ShareGPT dataset

Model A100 V100
(GPUs/worker) (GPUs/worker)
Llama2-70b-chat-hf 2 N/A
Llama2-13b-chat-hf 1 2
Llama2-7b-chat-hf 1 1

The results of A100 testbed are shown in Figure@ For the LlaMa2-70b model, Aladdin reduces the
SLO violation rate by up to 3.5X compared with the default vVLLM setting. Compared with the best
worker configuration with JSQ placement, Aladdin only improved the SLO attainment rate by up
to 19%. This is because there are totally two workers for the LlaMa2-70b model, which limits the
improvement in the SLO attainment rate. However, Aladdin significantly reduces the P99 ATGT by
up to 40% compared with JSQ, as shown in Figure s right side. The results for the LlaMa2-13b

Under review as a conference paper at ICLR 2026

model are distinct from the 70b model. The optimal worker configuration for the 13b on the A100
testbed is one GPU according to Table|l} There are four workers in total for the request placement.
So Aladdin improves the SLO attainment rate by up to 51% compared with JSQ, but only has minor
P99 ATGT improvement. The results of the V100 testbed are described in Figure[0] The difference
is when the request arrival rate is low, the P99 ATGT of baseline default vLLM output performs the
performance with optimal worker configuration. This is because when the arrival rate is low, the
batch effect is not significant, and the worker with more GPUs has higher computing power than
the worker with fewer GPUs. Nevertheless, in those arrival rates, both baselines and Aladdin fulfill
all requests SLOs. The higher ATGT won’t further improve the SLO attainment rate. Note that we
don’t include the P99 TTFT because vLLM |Kwon et al.| (2023)) preempts the decode batch with the
prefill batch when new requests arrive, making the ATGT more easily violate the SLO.

5.2 SCOPES AND EXTENSIONS

This work evaluates the scheduling framework in a controlled single-model, single-node setting.
The formulation itself generalizes: each model induces its own stagewise latency and KV footprint,
and the same chance-constrained placement applies once these profiles are specified. Extending
the implementation to multi-model and multi-tenant deployments, including migration and fairness
mechanisms, is therefore a natural next step when the required system support is available.

The prototype currently runs on a single node. Multi-node and cross-region deployments introduce
interconnect and remote-KV effects that can be integrated into the same stagewise model, and val-
idating them will require larger clusters or cloud environments. Modern runtime mechanisms such
as paged attention, chunked prefilling, and KV streaming change slope parameters while preserv-
ing structural constraints; integrating these implementations and evaluating their impact is a natural
extension toward production systems.

Finally, production traces often exhibit richer nonstationarity and long-context behavior. The prob-
abilistic formulation already supports such variation through online residual tracking and risk bud-
geting, but a broader evaluation on production-like traces and the development of a full closed-loop
controller for maintaining a target tail-violation rate represent promising directions for future work.

6 RELATED WORK

Recent LLM inference studies span three directions: performance modeling, SLO specification,
and serving systems. Performance modeling. Prior work [Narayanan et al.[(2023) estimates pre-
fill/decode latency by FLOPs-based modeling for single queries, ignoring hardware and multi-query
interactions. DistServe|Zhong et al.|(2024) models batched latency under specific configurations, but
lacks input/output length generality. Our work extends modeling to dynamic batches with heteroge-
neous lengths, enabling more general scheduling. SLO specification. Existing systems |Patel et al.
(2023)); Zhong et al.|(2024); Hu et al.|(2024); |Agrawal et al.|(2024) adopt fixed TTFT or token-level
latency (TBT) targets, but the latter is overly strict and misaligned with perceived QoE |Sheng et al.
(2023a). We instead propose ATGT as a more flexible and user-aligned SLO. Serving systems.
Application-level optimizations (e.g., continuous batching |Yu et al.| (2022), page attention [Kwon
et al.| (2023); Strati et al| (2024), chunked-prefill |Agrawal et al.| (2023} 2024)) focus on single-
worker efficiency. Worker-level approaches |Patel et al.| (2023);|Zhong et al.|(2024)); |Hu et al.| (2024);
Oh et al.| (2024) optimize intra-node GPU usage. Some works address query scheduling |[Liu et al.
(2024); |Q1u et al.|(2024), but without co-adaptive placement and resource scaling. Our work unifies
these aspects under a cost-aware, SLO-guaranteed framework.

7 CONCLUSION

We propose Aladdin, an adaptive LLM serving system that effectively scale and configures com-
puting resources and optimally places inference queries to minimize serving costs while fulfilling
SLOs. In this paper, we first deduce the performance models of the batched prefill and decode
phases in LLM inference. Then, we predict the minimal computing resources required along with
the corresponding worker configuration and request allocation. Results show that Aladdin reduced
LLM serving costs by up to 71% compared to state-of-the-art baselines.

Under review as a conference paper at ICLR 2026

REFERENCES

Amey Agrawal, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S. Gulavani, and Ra-
machandran Ramjee. Sarathi: Efficient llm inference by piggybacking decodes with chunked
prefills, 2023.

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S. Gula-
vani, Alexey Tumanov, and Ramachandran Ramjee. Taming throughput-latency tradeoff in llm
inference with sarathi-serve, 2024.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. GQA: Training generalized multi-query transformer models from multi-head check-
points. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 4895-4901, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.298. URL
https://aclanthology.org/2023.emnlp-main.298.

Marc Brysbaert. How many words do we read per minute? a review and meta-analysis of reading
rate. Journal of memory and language, 109:104047, 2019.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, lon Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//1lmsys.org/blog/2023-03-30-vicuna/.

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gonzalez, and Ion Sto-
ica. Clipper: A Low-Latency online prediction serving system. In /4th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17), pp. 613627, Boston, MA, March
2017. USENIX Association. ISBN 978-1-931971-37-9. URL https://www.usenix.org/
conference/nsdil7/technical-sessions/presentation/crankshaw.

Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and Aditya Akella.
Multi-resource packing for cluster schedulers. In Proceedings of the 2014 ACM Conference on
SIGCOMM, SIGCOMM 14, pp. 455-466, New York, NY, USA, 2014. Association for Com-
puting Machinery. ISBN 9781450328364. doi: 10.1145/2619239.2626334. URL https:
//dol.0org/10.1145/2619239.2626334.

Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir Vigfusson, and
Jonathan Mace. Serving DNNs like clockwork: Performance predictability from the bottom up.
In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20), pp.
443-462. USENIX Association, November 2020. ISBN 978-1-939133-19-9. URL https:
//www.usenix.org/conference/osdi20/presentation/gujaratil

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015.

Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu, Shuang Chen, Hao Feng,
Chenxi Wang, Sa Wang, Yungang Bao, Ninghui Sun, and Yizhou Shan. Inference without inter-
ference: Disaggregate llm inference for mixed downstream workloads, 2024.

Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, Shravan Matthur Narayanamurthy, Alexey
Tumanov, Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru Krishnan, Janardhan Kulka-
rni, and Sriram Rao. Morpheus: Towards automated SLOs for enterprise clusters. In
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp.
117-134, Savannah, GA, November 2016. USENIX Association. ISBN 978-1-931971-33-1.
URL https://www.usenix.org/conference/osdil6/technical-sessions/
presentation/jyothil

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language
model serving with pagedattention. In Proceedings of the 29th Symposium on Operating Sys-
tems Principles, SOSP ’23, pp. 611-626, New York, NY, USA, 2023. Association for Com-
puting Machinery. ISBN 9798400702297. doi: 10.1145/3600006.3613165. URL https:
//doi.org/10.1145/3600006.3613165.

10

https://aclanthology.org/2023.emnlp-main.298
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://doi.org/10.1145/2619239.2626334
https://doi.org/10.1145/2619239.2626334
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/jyothi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/jyothi
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165

Under review as a conference paper at ICLR 2026

Adam Letchford. Approximation algorithms: Vv vazirani, springer-verlag, 2001. Journal of the
Operational Research Society, 53:807-808, 07 2002. doi: 10.1057/palgrave.jors.2601377.

Jiachen Liu, Zhiyu Wu, Jae-Won Chung, Fan Lai, Myungjin Lee, and Mosharaf Chowdhury. Andes:
Defining and enhancing quality-of-experience in llm-based text streaming services, 2024.

Deepak Narayanan, Keshav Santhanam, Peter Henderson, Rishi Bommasani, Tony Lee, and Percy S
Liang. Cheaply estimating inference efficiency metrics for autoregressive transformer models. In
A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 66518-66538. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/d1al4493e5f84d6c6129414f0cdla’c6-Paper—Conference.pdf.

The new york times. The desperate hunt for the a.i. boom’s most indispensable prize. https:
//www.nytimes.com/2023/08/16/technology/ai—gpu—-chips—-shortage.
html} 2023.

NVIDIA. cublas. https://docs.nvidia.com/cuda/cublas/index.html, 2023.

Hyungjun Oh, Kihong Kim, Jaemin Kim, Sungkyun Kim, Junyeol Lee, Du-seong Chang, and Ji-
won Seo. Exegpt: Constraint-aware resource scheduling for llm inference. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, ASPLOS ’24, pp. 369-384, New York, NY, USA, 2024. Associ-
ation for Computing Machinery. ISBN 9798400703850. doi: 10.1145/3620665.3640383. URL
https://doi.org/10.1145/3620665.3640383.

OpenAl. Gpts. https://openai.com/blog/introducing-gpts), 2023.

Pratyush Patel, Esha Choukse, Chaojie Zhang, fﬁigo Goiri, Aashaka Shah, Saeed Maleki, and Ri-
cardo Bianchini. Splitwise: Efficient generative llm inference using phase splitting, 2023.

Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha, Chen Wang, Hubertus Franke,
Zbigniew T. Kalbarczyk, Tamer Basar, and Ravishankar K. Iyer. Efficient interactive llm serving
with proxy model-based sequence length prediction, 2024.

Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos Kozyrakis. INFaaS: Automated
model-less inference serving. In 2021 USENIX Annual Technical Conference (USENIX ATC
21), pp.- 397-411. USENIX Association, July 2021. ISBN 978-1-939133-23-6. URL https:

//www.usenix.org/conference/atc2l/presentation/romerol

Ying Sheng, Shiyi Cao, Dacheng Li, Banghua Zhu, Zhuohan Li, Danyang Zhuo, Joseph E. Gonza-
lez, and Ion Stoica. Fairness in serving large language models, 2023a.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y. Fu, Zhigiang
Xie, Beidi Chen, Clark Barrett, Joseph E. Gonzalez, Percy Liang, Christopher Ré, Ion Stoica, and
Ce Zhang. Flexgen: High-throughput generative inference of large language models with a single
gpu, 2023b.

Foteini Strati, Sara Mcallister, Amar Phanishayee, Jakub Tarnawski, and Ana Klimovic. Déjavu:
Kv-cache streaming for fast, fault-tolerant generative 1lm serving, 2024.

Sharegpt teams. Sharegpt. https://huggingface.co/datasets/anon8231489123/
ShareGPT_Vicuna_unfiltered, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/d1a14493e5f84d6c6129414f0cd1a7c6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d1a14493e5f84d6c6129414f0cd1a7c6-Paper-Conference.pdf
https://www.nytimes.com/2023/08/16/technology/ai-gpu-chips-shortage.html
https://www.nytimes.com/2023/08/16/technology/ai-gpu-chips-shortage.html
https://www.nytimes.com/2023/08/16/technology/ai-gpu-chips-shortage.html
https://docs.nvidia.com/cuda/cublas/index.html
https://doi.org/10.1145/3620665.3640383
https://openai.com/blog/introducing-gpts
https://www.usenix.org/conference/atc21/presentation/romero
https://www.usenix.org/conference/atc21/presentation/romero
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered

Under review as a conference paper at ICLR 2026

Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A
distributed serving system for Transformer-Based generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), pp. 521-538, Carlsbad, CA, July
2022. USENIX Association. ISBN 978-1-939133-28-1. URL https://www.usenix.org/
conference/osdi22/presentation/yul

Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. MArk: Exploiting cloud services
for Cost-Effective, SLO-Aware machine learning inference serving. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pp. 10491062, Renton, WA, July 2019. USENIX As-
sociation. ISBN 978-1-939133-03-8. URL https://www.usenix.org/conference/
atcl9/presentation/zhang-chengliangl

Zangwei Zheng, Xiaozhe Ren, Fuzhao Xue, Yang Luo, Xin Jiang, and Yang You. Response length
perception and sequence scheduling: An llm-empowered Ilm inference pipeline, 2023.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
Zhang. Distserve: Disaggregating prefill and decoding for goodput-optimized large language
model serving, 2024.

12

https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang

Under review as a conference paper at ICLR 2026

A ADDITIONAL BACKGROUNDS

Batch Processing of LLM Requests: The demand for large language model (LLM) serving has
experienced exponential growth, making the efficient serving of LLM requests a critical challenge.
LLM serving places significant demands on GPU computing power and memory, which can be
prohibitively expensive. Previous work, such as Orca|Yu et al.|(2022)) and vLLM Kwon et al.|(2023)),
have introduced dynamic continuous batching techniques for transformer-based generative models
to optimize GPU utilization. LLM generates responses iteratively, producing one token at a time and
using it as input for the next iteration. Importantly, these requests may have varying output lengths,
necessitating different numbers of iterations to complete. Traditional request-level batching methods
pose a disadvantage. Requests within the same batch must wait until all requests are finished before
results are returned. In contrast, continuous batching employs iteration-level scheduling, submitting
an iteration calculation to the execution engine with each token generation. This approach prevents
early-finish requests from waiting for the completion of other requests, improving GPU utilization.

There are challenges to improving the request placement and worker scaling.

Challenge 1: Heterogeneous phases of LLM inference. The transformer-based LLM inference
consists of prefilling and decoding stages. The prefill stage is the first iteration of an inference
request that processes all prompt tokens; it has more computing demand than the decoding process.
The decoding process is a memory-intensive stage compared with the prefill stage because of the
KV cache. These distinct features result in different performance models of prefilling and decoding
processes for each request. Given the requests with various input and output lengths, accurately
predicting the iteration time of batched prefill and decode is challenging.

Challenge 2: Worker performance prediction. The inference workload varies over time with high
uncertainty. Meanwhile, worker configuration and the number of workers directly affect the cost of
inference. Considering the request arrival pattern, we must take into account the worker’s computing
latency, KV cache capacity, and communication overhead. The search space for configurations is too
large to be explored by a naive enumeration approach. Accurately predicting optimal configurations
poses significant challenges.

Challenge 3: Handle the error of output length prediction. The output length prediction error
is inevitable. Therefore, reducing the impact of prediction errors on output length is crucial for
enhancing performance when assigning tasks to workers. Systems need to effectively react when
the prediction error is detected.

B NOTATIONS

Table 2: The inputs to Aladdin and decisions Aladdin makes

Inputs Notation Definition

ko(t) The KV cache usage to tokens function
1q(b) The input length limit to batch sizes
tp(1) The prefill iteration time function
m; The KV cache usage of Worker i, € W
M The KV cache capacity of each worker
l;” The input length of a request
[pred The predicted output length of a request
l;e‘” The real output length of a request
l;’“t The output tokens a request generated so far
t;-l“ The time spent for decoding phase so far
Tpre The SLO of prefill latency

Outputs Notation Definition
w The total worker number
Tij binary variable for request j
Yi binary variable for Worker ¢

13

Under review as a conference paper at ICLR 2026

C JSQ FOR REQUEST PLACEMENT

] Prompt tokens [l output tokens

Req 1 Req 2 Req 3 Req 4
11111 22222 33333 44444

11111 22222
33333 44444

11111 33333
22222 44444

Worker 1 Worker 2 Worker 1 Worker 2
— — KV cache capacity =9 — — KV cache capacity =9
Q10 _ g 10 ____ 10 _ _____ 10 ______
S 0 0 0 0
12345 12345 12345 12345
Iterations Iterations Iterations Iterations

| Join Shortest Queue |

Figure 4: An example illustrates the sub-optimal of JSQ for request placement.

D ADDRESSING PREDICTION ERRORS

The output length cannot be accurately predicted before execution. If we overestimate the output
length, worker utilization will be reduced. Conversely, there will be SLO violations. When an
ongoing request in a batch finishes earlier than predicted, we mark this worker as overestimated.
If an ongoing request’s output length is underestimated, i.e., the request hasn’t finished with the
predicted tokens, we mark this worker as underestimated and predict the output length again. Before
the execution of the new requests, we re-schedule new requests that have been scheduled to the
over-utilized workers to the under-utilized workers. We use [and b° as the metrics to indicate the
estimation error of each worker, where [° is the accumulated error of output length for outstanding
requests, and b° is the error of batch size for each worker. If Request j is finished before the estimated
iteration, which means we overestimate the output length, we can calculate the output length over-

estimate error l;e“l - l? "ed If we underestimate the output length of Request j, we predict the output

length l;p "? again using conditional average output length when rreat > 15 "4 with the same input

length l;“ In the request scheduling, we use [and b° as the indicators to balance the workload
between workers and reduce the effect of output length prediction error. The calculation for [¢, b°,
and the re-balancing algorithm are described in Algorithm 2]

E IMPLEMENTATION

Aladdin is specifically designed for single-model serving, eliminating any model cold start problem
for each worker. We adopt vLLM [Kwon et al| (2023)) for dynamic batch inference to optimize the
KV cache usage of each worker and make the KV cache usage more predictable. Aladdin’s request
scheduler is a scheduling layer on top of the vVLLM inference engine. Users submit their requests
to the Aladdin frontend through the API interface. Aladdin routes and schedules the requests to
different workers through each server’s API interface. Note that Aladdin is a non-blocking system;
once a request is scheduled to a worker, it will start inference in the next iteration. Aladdin doesn’t
support request migration, which means once a request has been sent to a worker, we won’t migrate
it to another worker with the same duty.

14

e o N AW N =

10
11
12
13

14

15
16
17
18

19
20

21

22

23

Under review as a conference paper at ICLR 2026

Algorithm 2: Re-balancing with prediction error

d
Input: z;;, 15"

Output: Updated x;; of new requests.
Initial: [{ =bf =0,7=1,2,...,1.
for workeri=1,2,...,1 do
for ongoing job j = 1,2,...,J; on worker i do
/*Check if under estimate output length*/
if 194 > 177 then
6+ 1§ + 177
b + bf +1
/*Check if over estimate output length*/
if 15eal < 1277 then
e real pred
[+ =1
by b5 —1

) : d
1948, 150 of Jo14 ongoing requests. i, 5", 157 of Jpew new requests.

Calculate the equivalent error function «;I§ + 3,0 + ¢1 = 0 of worker4,¢ =1,2,...,1.
according to Eq.[4]

/*Fix error by adjusting the new requests placement*/

if new request j from worker x to worker y then

be <+ be — 1
b« b5 + 1
16+ 1 — 17l

e e pred
ly — ly +1 ;
/*Minimize the sum of the shortest distance between each worker’s error function and the
origin.*/

: | :
min(d W),Z— 1,2,...,1.

Return z;;,7 = 1,2,..., Jpew

F SYSTEM DESIGN

Benefiting from the predictable nature of individual and batch LLM inference, we attempt to re-
veal the best way to serve requests that arrive as a stream from resource management and request
placement perspectives. In this section, we describe the system design of Aladdin for two variances
settings: default continuous batching and split-phase inference. The default continuous batching will
process the input tokens and generate output tokens in the same worker, represented by vLLM [Kwon
et al.|(2023). The split-phase inference refers to the inference setting that splits the prompt process-
ing and token generation into different working instances, and each instance only processes prompt
or generates output. This setting is represented by Splitwise |Patel et al.|(2023)) and DistServe|Zhong
et al.[(2024).

F.1 SYSTEM WORKFLOW.

Default continuous batching. The Figure [3illustrates the workflow of continuous batching infer-
ence scheduling. Firstly, users submit their LLM inference requests via the API as the first step @
The request scheduler uses the bin packing heuristic to schedule the new requests according to their
input length and the predicted output length @ Lastly, the request scheduler continuously update

the performance model according to the worker’s execution traces (3).

Split-phase inference. Figure [illustrates the workflow of split-phase inference. Users submit
requests through API @ We schedule the prefill of new requests based on their input lengths.
Since the prefill only involves one iteration, there is no queue for the prefill workers (2). Next, the
decoding scheduler places the requests from prefill workers to decoding workers based on the pre-

15

Under review as a conference paper at ICLR 2026

Workers

Users APl Scheduler J L
I /ﬁ
1

N Output
@ estimation
i

Bin packing
heuristic

i

Batch perf. r 1
modeling

1
1) T e
® 1

Figure 5: Workflow of Aladdin with default continuous batching

P
B3
5)
=
o
2
[N

Prefill workers Decode workers
Decode

Scheduler @ .

Output
estimation

Users APl Prefill
1

Scheduler @

[] Bin packing
- heuristic : N ! N .
[] ' i | Bin packing
a ! - . heuristic
s | = i
- i E _ Decode _
1 1 .
1 modeling
1
1

;|
Rl

Figure 6: Workflow of Aladdin with split-phase inference.

dicted output length and a learned performance model @ Finally, the prefill and decode schedulers
continuously update the performance model according to the workers’ execution traces @

F.2 ADAPT TO CHANGING DEMAND

In every cluster heartbeat, we can reconfigure the cluster using change point detection. In LLM in-
ference, although users submit different queries and receive different answers, the input and output
lengths of LLM inference requests for the same model exhibit a strong pattern. From the SharGPT
dataset (Chiang et al.|(2023), we found that the input lengths of user queries follow a fixed distri-
bution, and the output lengths of the same LLM also follow a learnable distribution. According to
our experiment using Algorithm [T} when the arrival rate r, is larger than a lower bound R, the total
number of required workers N, is linear with the request arrival rate r,.

Nw = |_k5ra + 05~|7 Tq > R (7)

where k5 and c5 are learnable coefficients associated with the historical demand, and we round the
number of workers to the smallest integer larger than the function of r,. The reason R exists is
that when the arrival rate is lower, there are fewer requests arriving in the same heartbeat, which
cannot represent the real distributions of the input and output length. The standard error of the mean
SEM = ﬁ is the metric for the difference between the sampled requests’ input and output lengths

and the total requests, where o is the standard deviation of all requests’ input and output length and
n is the number of requests we place during a heartbeat. The smaller n is, the more error appears in
the prediction of IV,,.

16

Under review as a conference paper at ICLR 2026

13b-observe 5
3200 —— 13b-predict \<
400 X 70b-observe £ 7b-observe
% —— 70b-predict > —— 7b-predict
E 13b-observe 2150
3300 —— 13b-predict g
S 7b-observe E
%200 —— 7b-predict % 100
= a
& 100 X
50
0 200 200 500 800 1000 200 400 600 800 1000
Input Length (tokens) Input Length (tokens)
(a) A100 testbed (b) V100 testbed
Figure 7: Prefill latency
X 70b-observe 13b-observe 7b-observe 13b-observe 7b-observe
—— 70b-predict —— 13b-predict —— 7b-predict —— 13b-predict —— 7b-predict
10000
7500 10000
5000
5000
2500
0 0
5 10 15 20 25 30 35 5 10 15 20 25 30
Batch Size Batch Size
(a) A100 testbed (b) V100 testbed

Figure 8: Decode context length limitation

With this model, we can predict the total number of workers required before placing all requests
to each worker. However, the scheduling time requirement of inference serving is in milliseconds.
In a high-demand situation, the scheduling overhead is too large to schedule the requests in the
target iteration for the centralized scheduler. We design a distributed scheduler for the high-demand
scenario that harnesses the pattern of input and output length of requests in Appendix [[]

Note that in this paper, we focus on predicting the minimal GPU required for the varying arrival rate
without considering the cold start problem and the switching cost. Since the optimization of cluster
scheduling is orthogonal to the worker number prediction problem, we defer it to future work.

G TAIL LATENCY REMARKS

We consider a scheduling window on worker j with n co-scheduled requests. Let a; € {0,1}"
denote binary placement indicators (we also allow the relaxed a; € R’} for analysis), and let X €
R™ be the random vector of per-request end-to-end latencies (TTFT or ATGT) predicted by our
performance model. Define S; := a; X, u; := E[S;] and ¥ := Cov(X) so that Var(S;) = a| Za;.
We allocate a global violation budget § € (0, 1) across workers with nonnegative weights {(; }
satisfying > y B; <1, and set 7; := (3;0. Unless stated otherwise, we do not assume independence;
covariances are estimated from traces or our stage-wise model. This appendix uses no notation that
conflicts with the main text.

For any random variable Y~ with mean and variance 02 < oo, Cantelli’s inequality gives

2

Pr(Yf,uZt) < forall t > 0.

o2 412

17

Under review as a conference paper at ICLR 2026

Setting t = (/3=T o yields Pr(Y > p+ /357 0) < 7. Applying this to Y = S; with o =

\/3 Zay gives
Pr(Sj > +’V(Tj)\/a]TZaj) <75, A1)= 1%

To enforce a concrete SLO threshold T; (for TTFT or ATGT), we further require

pi + ’Y(Tj)m < Ty,
which then implies Pr(S; > T;) < 7;.

When a normal approximation is appropriate, we may instead take (1) = z;_, = ®~}(1 — 7),
the (1 — 7)-quantile of the standard normal, which is also a valid one-sided bound under Gaussian
assumptions.

Let & :={S; > p; + (1) a;—Eaj}. By the union bound (Boole’s inequality),
PI‘(UEJ) S ZPF(EJ) S ZTj = Zﬂjé S 0.
J J J J

Thus > y B; < 1lis a sufficient condition to keep the cluster-level violation probability within the
global budget §.

Instantiating S; with TTFT or ATGT ties the chance constraints to concrete SLOs. Batch sizing
and request placement modify a; and hence both y; and al Ya;, while worker configuration al-
ters feasible a; through compute and memory limits especially the KV capacity. Our heuristic
rules (mixing long-prompt with long-output, capping decode iteration time, etc.) can be viewed as
variance-reducing choices for a;, which tighten the tail bound without increasing mean load.

If per-request latencies are weakly correlated, X is close to diagonal and

n

T N§ : 2

aj Zaj ~ ajk Zkk.
k=1

If correlations exist like due to shared KV or interconnect contention, they are captured in ¥ and
handled by the covariance-aware bound above. In practice we fit per-request means and X from
traces or our stage-wise model and apply shrinkage for robustness.

Under non-degenerate variability and calibrated v, variance-aware mixing weakly improves tail fea-
sibility for a fixed mean load compared with grouping alike requests. Consequently, for a target
global budget §, the chance-constrained scheduler does not worsen the number of active workers
nor the SLO-attainment rate relative to point-estimate baselines, and is often strictly better.

H EXPERIMENTAL SETUP

Testbed setup. We test the performance of Aladdin on high-end GPU servers with 4 A100 80GB
GPUs connected with PCle. Each machine has two Intel Xeon Platinum 8380 processors and 512GB
RAM. To validate the generalization of Aladdin from both a computation perspective and communi-
cation perspective, we also evaluate Aladdin on the GPU servers with 4 V100 32GB GPUs connected
with NVLink. Each machine has two Intel Xeon Gold 6230 processors and 128GB RAM. We also
do a large-scale simulation for the high-demand request arrival situation.

Models and SLOs. Our target is to prove Aladdin reduces the cost for transformer-based LLMs. To
validate that Aladdin can accurately model the performance metrics of most models. We evaluate
Aladdin on Llama2 series [Touvron et al.| (2023)) models from 7B to 70B. The model, testbed infor-
mation, and SLOs are shown in Table [3] Note that the prefill latency SLOs are the approximated
inference latency for the model’s context length (4096 tokens) for each testbed. The selection of
decode latency SLO is according to the individual request inference latency. We guarantee that the
batch inference latency of each request won’t exceed the individual inference latency for 1.3 times.
Workload. For the end-to-end performance evaluation in Section we first collect the prompts

18

Under review as a conference paper at ICLR 2026

—e— Default vLLM —e— Aladdin best worker + JSQ —— Aladdin —e— Default vLLM —e— Aladdin best worker + JSQ —— Aladdin
1.0 1.0 200
° 60
©08 0.8 =
£ Eso 150
é 0.6 0.6 5
S04 0.4 Z40 100
®© 3
So2 0.2 “30 — =
0.0 0.0 7M =
0.5 1.0 15 2.0 1 2 3 0.5 1.0 1.5 2.0 1 2 3
Request arrival rate (Req/s) Request arrival rate (Req/s) Request arrival rate (Req/s) Request arrival rate (Req/s)
(a) The end-to-end SLO attainment rate, (left): (b) The end-to-end P99 ATGT, (left): LlaMa2-7b,
LlaMa2-7b, (right): LlaMa2-13b (right): LlaMa2-13b

Figure 9: End to end experiments on V100 testbed

from users of ShareGPT_V3_unfiltered_cleaned_split dataset teams| (2023)), then submit the prompts
follows a Poisson distribution. The outputs are generated by each evaluated model with a tempera-
ture of 0 and a maximum output token limit of 2048. For the large-scale simulation in Section[J] we
use the same prompts’ lengths as those collected from ShareGPT [teams|(2023) in Section 5.1]as the
prompt lengths. Then, we predict the output length based on the output length CDF of the responses
generated in Section [5.1]s end-to-end evaluations for each model.

Table 3: The LLM information and testbed allocation

Prefill Decode
SLO(ms) SLO(ms)

Llama2-chat 70b A100 1600 75
Llama2-chat 13b A100, V100 600, 800 30, 50
Llama2-chat 7b A100, V100 400, 800 15,30

Model Testbed

Because there is no available trace of LLM inference that includes the arrival time of each request,
we simulate the request arrival stream using a Poisson distribution. We need to validate that Aladdin
improves performance in both high-demand and low-demand scenarios. To evaluate the perfor-
mance of Aladdin with varying demands, we tune the average arrival rate A\ to simulate different
request demands.

Metrics. Since our final target is to reduce the cost of the inference service, we use the number of
GPUs required to achieve a certain SLO attainment rate as the main metric. In Section[J]] we eval-
uate the total GPU number required with different request arrival rates. In Section As the total
resources are limited for the real testbed evaluation, we evaluate the performance of Aladdin with
the SLO attainment rate and the P99 ATGT in different request arrival rates. The SLO is attained
when both TTFT and ATGT latency meet the requirement.

Baselines. Aladdin is a cluster-level scheduler. The performance improvement achieved by Aladdin
is orthogonal to the improvements achieved by single-server optimization techniques such as split-
phase inference [Patel et al.| (2023)); Zhong et al.| (2024)) or page attention [Kwon et al.| (2023)). These
single-server optimization techniques use naive cluster scheduling like JSQ. Previous work Hu et al.
(2024) adopts the power-of-two scheduling for request placement. However, it is suboptimal for
request placement and cannot guarantee a high SLO attainment rate. We compared Aladdin’s re-
quest placement with JSQ and power-of-two algorithms with different GPUs and different serving
scenarios.

I PERFORMANCE MODEL VALIDATION

Request placement and worker configuration depend on accurate predictions of performance met-
rics. In this section, we evaluate the model’s accuracy by comparing the predicted metrics to the
measured actual metrics.

In Section [3] we model the latency of prefill phase and decode phase separately because the two
phases have different characteristics. In the evaluation, we evaluate the prefill and decode latency

19

Under review as a conference paper at ICLR 2026

LlaMa2-70b on A100 testbed LlaMa2-13b on A100 testbed
300 250
—e— Default worker + JSQ —e— Default worker + JSQ /‘
2501 —e— Aladdin worker+)SQ / 20041~ Aladdin worker+)SQ
© 2004 Aladdin —e— Aladdin
T 150
2150
2 100 A
& 100
50 501
0 5 10 15 20 25 0 5 10 15 20 25
LlaMa2-13b on V100 testbed LlaMa2-7b on V100 testbed
4001 o Default worker + JSQ —eo— Default worker +)SQ
—e— Aladdin worker+)SQ 6001 _o— Aladdin worker+)SQ
5 3001 —s— Aladdin —e— Aladdin
g 4001
c 200
o)
G 200
100
0 T T T T T T O T T T T T T
0 5 10 15 20 25 0 5 10 15 20 25
Reugest Arrival Rate (Req/s) Reugest Arrival Rate (Req/s)

Figure 10: Simulation of the total GPU number needed with the mixed prefill and decode setting.

3000{ X LlaMa2-70b-observe
—— LlaMa2-70b-predict
22500 X LlaMa2-13b-observe
;20007 —— LlaMa2-13b-predict
2 LlaMa2-7b-observe
5 15001 LlaMa2-7b-predict
<
& 10001
>
¥ 5004
0,

0 500 1000 1500 2000 2500 3000 3500 4000
Context Length (tokens)

Figure 11: KV cache prediction and the observation.

20

Under review as a conference paper at ICLR 2026

LlaMa2-70b on A100 testbed LlaMa2-13b on A100 testbed
—e— Power-of-Two 1001 —e— Power-of-Two
15071 —e— J5Q —— JSQ
° —e— Aladdin 801 —e— Aladdin
2
100 60 {
c
2 401
O 50/
201
0 5 10 15 20 25 0 5 10 15 20 25
LlaMa2-13b on V100 testbed LlaMa2-7b on V100 testbed
2501 —e— Power-of-Two 3001 —e— Power-of-Two
2004 —* JSQ 2501 —— JSQ
- —e— Aladdin —e— Aladdin
_GUJ 200+
3 1501
2 150 1
2 100
5] 1001
501 50 1
0 5 10 15 20 25 0 5 10 15 20 25
Reuqgest Arrival Rate (Req/s) Reuqgest Arrival Rate (Req/s)

Figure 12: Simulation of the total GPU number needed for the decode phase of the split-phase
inference setting

separately for different input and context lengths. In our prefill latency model, the prefill time of
a batch size only corresponds to the total input length of all requests in the batch, not related to
the batch size. In our experiment, we test different batch sizes 1, 2,4, 8 with the same total input
length within a batch to validate this formulation. We only evaluated the L1aMa2-70b model on the
A100 testbed because our V100 testbed could not load the 70b model (around 140GB) even with
all GPUs (32GB*4). Figure [7a) and Figure [7b| shows the results on A100 and V100 testbeds. The
maximum prefill latency prediction error is less than 4%. The shaded area is the prediction interval,
which represents the estimation of the range in which future observations are likely to fall. Results
indicate the maximum error of the prediction interval compared with our prediction is less than 10
tokens.In the decode latency model, the iteration time is linear with respect to both the batch size
and the total context length within the batch, not related to the context length of each request in
the batch. This means that regardless of whether the context length of each request in a batch is
long or short, the decoding latency will be the same when the sum of the context lengths of all
requests and the batch size is the same. In our experiment, for the same batch size, we use the
same sum of context length but different context length distributions for all requests in a batch to
validate this formulation. Results are presented in Figure [8a] and Figure [8b] Similar to the prefill
latency prediction, the prediction error is less than 5%. For the prediction interval, the error is less
than 300 tokens for all context tokens in the batch.The KV cache usage to the context length is the
most accurate metric in our performance models. According to Figure [T1] the prediction error is
less than 1%, and the prediction interval is just aligned with the prediction model. Note that the
KV cache usage is not affected by the testbed; it is only related to the model. Generally speaking,
the larger the model is, the more KV cache is needed for the same context length. However, from
Figure we can see that for the same context length, Llama2-13b requires more KV cache than
Llama2-70b. This is because Llama2 7b and 13b adopt multi-head attention, while the 70b model
adopts grouped-query attention |Ainslie et al.| (2023), which shares key and value pairs within each

group.

21

Under review as a conference paper at ICLR 2026

500

N w S
o o o
o o o

Scheduling Overhead (ms)
=
o
o

0 20 40 60 80 100
Arrival Rate (Req/s)

Figure 13: The bin packing algorithm running time with different arrival rates

J LARGE-SCALE SIMULATION

We conducted a simulation for the high-demand request arrival scenario. In this simulation, we
evaluated Aladdin’s performance with split-phase inference and the default vVLLM inference setting.
To show the direct cost savings of Aladdin, we simulate the GPU number required for P100 SLO-
guaranteed inference serving at the different request arrival rates.

Default Continuous Batching Inference. In Figure [[0] we compared vVLLM with baselines in
Section Results indicate that Aladdin reduces the LLM serving cost by up to 71% and 40%
compared with the default vLLM and JSQ with Aladdin optimal workers.

Split-Phase Inference. Previous work [Patel et al.| (2023); |[Zhong et al.| (2024); [Hu et al.| (2024)
split the prefill phase and decode phase into different instances. Split-phase serving maintains a
group of prefill workers and a group of decode workers, as shown in Figure [According to the
results of DistServe|Zhong et al.|(2024)), the majority of GPU resources are scheduled for the decode
workers. Since the scheduling for prefill instances is trivial with known prompt lengths, we only
simulate the GPU number required for the decode phase instance. The baselines are JSQ adopted by
DistServe Zhong et al.|(2024) and the Power-of-Two algorithm adopted by previous work |Hu et al.
(2024). Results indicate that Aladdin reduces the GPU number required for the SLO-guaranteed
decode phase by up to 60% and 49% compared with JSQ and Power-of-Two algorithm.

K SCHEDULING OVERHEAD

The scheduling overhead can be a problem in high-demand scenarios. For the scheduling latency,
each scheduler’s scheduling latency is predictable based on the request arrival rate since the time
complexity of the best-fit bin packing algorithm is O(nlogn). Figure [I3|shows the scheduling over-
head in centralized scheduling. According to the results, with a request arrival rate of around 25
requests per second as we adopted in Section [J| The scheduling overhead is less than 50 ms, which
is acceptable. However, if the arrival rate is very high or the scheduling latency limit is very strict,
we can follow Appendix [[]to adopt the distributed grouped scheduling.

L DISTRIBUTED SCHEDULING

The scheduling time requirement of inference serving is in milliseconds. In a high-demand situation,
the scheduling overhead is too large to place the requests in the target iteration for the centralized
scheduler. We design a distributed scheduler for this case that harnesses the pattern of input and
output length of requests.

With a high arrival rate, the worker required for inference service is linear to the request arrival
rate as discussed in Section Hence we can randomly sample the arrived requests into groups

22

Under review as a conference paper at ICLR 2026

using round robin. Then for each group, we only place the requests within the group to the workers
corresponding to this group. While the arrival rate is r,, if Group ¢ is corresponding to N; workers,

the arrival rate of Group 7 is f\\,’f 7. For this distributed scheduling mechanism, the scheduling

demand of Group ¢ is]]\y of the total demand. Therefore, the scheduling latency is reduced.

The selection of group numbers is non-trivial. With more request groups, the scheduling overhead
is low because each group has fewer requests. However, more workers are needed to fulfill the
SLOs because the workers’ utilization is reduced compared with centralized scheduling. Assume
half of the groups require one extra worker to fulfill the SLOs according to the probability that the
requests placed to these groups require more computing resources, to limit the resource error to less
than e in percentage, each group should be equipped with at least - 5. workers. For example, if we
want the extra worker required for serving compared with centralized scheduling is 10%, then each
scheduling group should have at least five workers. For the scheduling latency, each scheduler’s
scheduling latency is predictable based on the request arrival rate since the time complexity of the
best-fit bin packing algorithm is O(nlogn). To guarantee both the scheduling latency and extra
resource error, the request arrival rate of each scheduling group r; is constrained by:

1
— <rl <r(Ts), i=1,2,..., Ngroups

g Ty = Ta, i:1;27"'5Ng7‘0up7

where Ny o) is the group number, T is the scheduling latency limit. The (¢) is the function of the
arrival rate limit to the scheduling latency.

®)

With the distributed scheduling, the end-to-end co-adaptive scheduling of Aladdin is described in
Figure The first step is to predict the optimal worker configuration according to Section [4.1]
and the corresponding performance models based on Section [3] Given the request arrival rate, we
predict the total worker number N,, using Eq. |Z] and search for the group number N,y Using
Eq.[8] Then we use a round-robin router to route arriving requests to groups of schedulers. Finally,
each scheduler packs requests to their corresponding workers using Algorithm [T}

Time between heartbeat

e—

I I
repuest scheduIFr 1

worker
group 1

T]
| Online bin |
| packing |

1
reFuest schedul{er 2

Round | online bin | worker

robin router I packing | \) group 2

request schedulgr N

l Online bin
I packing
I

worker
group N

Figure 14: Distributed scheduling using request sampling.

M ADDITIONAL EXPERIMENTS

In order to support the effectiveness of our framework, we add here some more experiments.

M.1 DIFFERENT MODEL

The evaluation is not only limited to the Llama2 model family. Even though the input/output length
distributions or performance characteristics, might be different for other modern architectures, the

23

Under review as a conference paper at ICLR 2026

—e— Default vVLLM —4— Aladdin best worker + JSQ = —e— Aladdin
Qwen3-30b-a3b (SLO) Qwen3-30b-a3b (P99 ATGT)

1804

160 4

140 A

1204

100 4

801

60

SLO attainment rate
o o o o o -
o N B o © o
P99 ATGT (ms)

40

o

0.5 1.0 1.5 2.0 2.5 3.0 3.5 5 1.0 1.5 2.0 2.5 3.0 3.5
Request arrival rate (Req/s) Request arrival rate (Req/s)

Figure 15: qwen3 test using A100

—*— Aladdin —a— Oracle output length predictor
Qwen3-30b-a3b (SLO) Qwen3-30b-a3b (P99 ATGT)

SLO attainment rate
o o o o -
N B o © o
P99 ATGT (ms)
B w ()] ~ © o
o o o o o o

5

0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.5 1.0 1.5 2.0 2.5 3.0 3.
Request arrival rate (Req/s) Request arrival rate (Req/s)

Figure 16: compare with oracle output length predictor

—+— Aladdin with rebalancing —%— Aladdin without rebalancing
Qwen3-30b-a3b (SLO) Qwen3-30b-a3b (P99 ATGT)

1104

100 4

90 4

804

70

601

50 -

40

SLO attainment rate
o o o o o -
o N S o [} o
P99 ATGT (ms)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 5 1.0 1.5 2.0 2.5 3.0 3.5
Request arrival rate (Req/s) Request arrival rate (Req/s)

o

Figure 17: with and without rebalancing

24

Under review as a conference paper at ICLR 2026

modeling structure depends only on token linearity and KV scaling. To claim generality, we test
Qwen3 Yang et al.|(2025) on the same A100 testbed. From Figure|l15|we can see that our algorithm
achieves a similar advantage than default on both SLO attainment rate and P99 ATGT, just as in the
Llama2 experiments. It validates that our proposed performance models and scheduling gains are
not specific to Llama2.

M.2 ORACLE PREDICTION

To clarify the role of prediction, we evaluate our algorithm with the output length oracle, in com-
parison to wtih our historical estimator. From Figure [I6] we can see a lead of our algorithm over
oracle, especially in SLO attainment rate. This is because the current length prediction oracle incurs
a heavy latency.

M.3 ABLATION OF REBALANCING

In the last example, we evaluate the necessity of our rebalancing mechanism. Figure [17] shows
such a comparison, between Aladdin with and without rebalancing. The results shows that with
rebalancing, Aladdin performs non-negligibly better in SLO attainment rate and ATGT than without
rebalancing, over varying request arrival rate range.

25

	Introduction
	Background and Motivation
	Continuous Batching Performance Modeling
	Co-Adaptive Scheduling
	Worker Configuration
	Request Placement Policies
	Tail Latency Remarks

	Evaluation
	End-to-End Performance
	Scopes and extensions

	Related Work
	Conclusion
	Additional backgrounds
	Notations
	JSQ for request placement
	Addressing Prediction Errors
	Implementation
	System Design
	System Workflow.
	Adapt to Changing Demand

	Tail Latency Remarks
	Experimental Setup
	Performance Model Validation
	Large-Scale Simulation
	Scheduling Overhead
	Distributed Scheduling
	Additional Experiments
	Different Model
	Oracle Prediction
	Ablation of rebalancing

