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Abstract
We propose a optimistic model-based algorithm, dubbed SMRL, for finite-
horizon episodic reinforcement learning (RL) when the transition model is
specified by exponential family distributions with d parameters and the re-
ward is bounded and known. SMRL uses score matching, an unnormalized
density estimation technique that enables efficient estimation of the model
parameter by ridge regression. SMRL achieves Õ(d

√
H3T ) regret, whereH

is the length of each episode and T is the total number of interactions.

NB: extended abstract.

1 Introduction
This paper studies the regret minimization problem for finite horizon, episodic reinforcement
learning (RL) with infinitely large state and action spaces. Empirically, RL has achieved
success in diverse domains, even when the problem size (measured in the number of states
and actions) explodes [19, 26, 14]. The key to developing sample-efficient algorithms is to
leverage function approximation, enabling us to generalize across different state-action pairs.
Much theoretical progress has been made towards understanding function approximation
in RL. Existing theory typically requires strong linearity assumptions on transition dynamics
[e.g., 34, 12, 5, 20] or action-value functions [e.g., 16, 36] of the Markov Decision Process
(MDP). However, most real world problems are nonlinear, and our theoretical understanding
of these settings remains limited. Thus, we ask the question:

Can we design provably efficient RL algorithms in nonlinear environments?

Recently, Chowdhury et al. [7] introduced a nonlinear setting where the state-transition
measures are finitely parameterized exponential family models, and they proposed to
estimate model parameters via maximum likelihood estimation (MLE). The exponential
family is a well-studied and powerful statistical framework, so it is a natural model class to
consider beyond linear models. Chowdhury et al. study transition models of the form:

PW0
(s′|s, a) = q(s′) exp (〈ψ(s′),W0φ(s, a)〉 − Zsa(W0)) , (1)

where ψ ∈ Rdψ and φ ∈ Rdφ are known feature mappings, q is a known base measure, Zsa is
the log partition function, andW0 is the unknown parameter to be learned. This transition
model class covers, as special cases, linear dynamical systems, as well as its nonlinear
generalizations [17, 13]. Linear dynamical systems with quadratic rewards, i.e., the linear
quadratic regulator (LQR), have received much attention recently as an important testbench
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for RL in unknown, complex environments [10, 27, 13]. Thus, the work of Chowdhury et al.
is a crucial step in bridging the gap between RL and continuous control.

However, MLE has several shortcomings. In order to estimate the parameter W0 in (1),
MLE requires estimating the log partition function Zsa, which is computationally intensive.
Practical implementations for MLE which estimate the log partition function via Markov
Chain Monte Carlo (MCMC) methods can be slow and induce approximation errors [6].
These approximation errors can propagate in undesirable ways to the algorithm’s planning
procedure. Since the MLE Ŵ cannot be computed in closed form, Chowdhury et al. leave
their estimator implicitly defined as solutions of the likelihood equations. As is typical
for upper confidence RL (UCRL) algorithms, one constructs high probability confidence
sets around the estimator. Due to the challenging modeling assumption, Chowdhury et al.
employ confidence sets which are sums of KL divergences taken over the dataset.

In this work, we bypass these difficulties by instead proposing to learn the model parameters
with score matching, an unnormalized density estimation technique introduced by Hyvärinen
[11]. Score matching provides an explicit, easily computable closed form estimator for the
model parameters by solving a certain ridge regression problem (Theorem 1). Moreover, we
can employ high probability confidence sets which are ellipsoids centered at the estimator,
a standard component in prior theoretical work on linear bandits and linear MDPs [e.g.,
1, 12].

Our main results are as follows:

• We extend prior work on the score matching estimator in the i.i.d. setting by proving
nonasymptotic concentration guarantees for non-i.i.d. data (Theorem 2).

• We design a model-based algorithm, dubbed SMRL, which achieves regret of
Õ(d
√
H3T ), with mild polynomial dependence on the problem constants (The-

orem 3). Here, d = dψ×dφ is the total number of parameters ofW0,H is the episode
length, and T is the total number of interactions. In each episode, SMRL uses score
matching as a computationally efficient subroutine to estimate model parameters
from data. It then constructs elliptic confidence regions around the estimator which
contain the true parameter with high probability and chooses policies optimistically
based on such confidence regions.1

Our regret guarantee matches that of Exp-UCRL, the model-based algorithm proposed
by Chowdhury et al.. When specialized to the nonlinear dynamical system setting with
bounded costs and features, score matching and MLE are equivalent estimators. Here, the
recent work of Kakade et al. [13] gives a tighter guarantee of Õ(

√
dφ(dφ + dψ +H)H2T );

however we stress that our analysis applies to a broader class of models. Broadly speaking,
we view score matching and MLE as complementary estimation techniques; while MLE
relies on less assumptions, score matching enjoys computational efficiency and allows us to
simplify both the algorithm and proofs. A detailed comparison is deferred to Section 4.

Definitions and Notation. For a vector x ∈ Rd, we let ‖x‖ := ‖x‖2 denote the `2 norm.
For a matrixM ∈ Rn×d, we denote vec (M) ∈ Rnd to be the vectorized version ofM . For
a matrixM , we also denote ‖M‖2 to be the operator norm and ‖M‖F to be the Frobenius
norm, i.e., ‖M‖F := ‖vec (M)‖. We also let ei ∈ Rd and Eij ∈ Rn×d denote the canonical
basis vectors and matrices respectively. For positive semidefinite matrices A,B, we let
A � B to be B −A � 0. For positive semidefinite matrix A and vector x we define ‖x‖A :=√
x>Ax. For any n ∈ N, we let [n] := {1, 2, . . . , n}. For a twice differentiable function

f : Rm 7→ Rn and any i ∈ [m], we let ∂if(x) :=
(

∂
∂xi

f1(x), . . . , ∂
∂xi

fn(x)
)>
∈ Rn and

∂2
i f(x) :=

(
∂2

∂x2
i
f1(x), . . . , ∂

2

∂x2
i
fn(x)

)>
∈ Rn.

1Optimistic planning is hard in the worst case, and developing fast approximation algorithms is an
active area of research. This work assumes computational oracle access to such a planner.
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2 Problem Statement
We consider the setting of an episodic Markov Decision Process, denoted by
MDP(S,A, H,P, r), where S is the state space, A is the action space, H ∈ N is the hori-
zon length of each episode, P is state transition probability measure, and r : S ×A 7→ R is
the reward function.
The agent interacts with the episodic MDP as follows. At the beginning of each episode, a
state s1 is chosen by an adversary and revealed to the agent. For each step h ∈ [H], the agent
observes the state sh and plays action ah ∈ A. Afterwards, they observe reward rh(sh, ah),
and the MDP evolves to a new state sh+1 ∼ P (· | sh, ah). The episode terminates at state
sH+1 after which the world resets. The goal of the agent is to maximize their cumulative
rewards through interactions with the MDP.
Now we define the policy function, value function, and action-value function which will be
central to our results. A policy function is a collection of functions π := {πh : S 7→ A}h∈[H]

which determine the agent’s strategy for interacting with the world, i.e., when presented
with state s at step h, the agent will play πh(s). For every policy π, we can define a value
function V πP,h : S 7→ R, which is the expected value of the cumulative future rewards when
the agent plays policy π starting from state s in step h, and the world transitions according
to P. In this paper, we include P in the subscript since we will analyze value functions for
different models; if clear from context, we will drop the subscript P. Specifically, we have:

V πP,h(s) := EP

[
H∑

h′=h

rh′ (sh′ , ah′)

∣∣∣∣∣ sh = s, ah:H ∼ π

]
, ∀s ∈ S, h ∈ [H].

Similarly, we define the action-value functions QπP,h(s, a) : S × A 7→ R to be the expected
value of cumulative rewards starting from a state-action pair in step h, following π afterwards:

QπP,h(s, a) := EP

[
H∑

h′=h

rh′ (sh′ , ah′)

∣∣∣∣∣ sh = s, ah = a, ah+1:H ∼ π

]
, ∀(s, a) ∈ S×A, h ∈ [H].

An optimal policy π? is defined to be the policy such that the corresponding value function
V π

?

P,h(s) is maximized at every state s ∈ S and step h ∈ [H]. Without loss of generality, it
suffices to consider deterministic policies [32]. Given knowledge of the MDP (S,A, H,P, r),
the agent can compute the optimal value function and action-value function via dynamic
programming [31]; then the optimal policy can be computed as the policy that acts greedily
with respect to the optional action-value function, i.e., π?h(s) = arg maxa∈AQ

?
P,h(s, a).

In the online setting, we will measure the performance of an agent interacting with the MDP
overK episodes via the notion of regret. In every episode k ∈ [K], an adversary presents
the agent with a state sk1 , and the agent then chooses a policy πk. The regret overK episodes
is the expected suboptimality of the agent’s choice of policy πk compared to the optimal
policy π?:

R(K) :=

K∑
k=1

(
V π

?

1 (sk1)− V π
k

1 (sk1)
)
.

Implicit in the notationR(K) are the adversary’s choice of initial states; our results for regret
will hold for any sequence of adversarially chosen {sk1}k∈[K]. We will also denote T := KH
as the total number of interactions the agent makes with the world.

2.1 Exponential Family Transition Model
In this paper, we propose a model-based approach to online RL, meaning that in every
episode, the agent will explicitly estimate the model P in order to pick their policy πk. We
consider the following family of transition models from [7]. Therefore, the goal of the RL
algorithm will be to achieve sublinear (in T) regret when run on MDPs satisfying Assumption 1.

Assumption 1. Suppose S ⊆ Rds and A is any arbitrary action set. Let feature mappings
ψ : S 7→ Rdψ and φ : S ×A 7→ Rdφ , as well as base measure q : S → R be known to the learner.
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The state transition measures are conditional exponential family models, parameterized by
an unknown matrixW0 ∈ Rdψ×dφ :

PW0
(s′|s, a) = q(s′) exp (〈ψ(s′),W0φ(s, a)〉 − Zsa(W0)) , (2)

where

W0 ∈ W :=

{
W ∈ Rdψ×dφ :

∫
S
q(s′) exp(〈ψ(s′),Wφ(s, a)〉) ds′ <∞, ∀(s, a) ∈ S ×A

}
.

Here, Zsa(·) is the log-partition function, which is completely determined once ψ, φ, and q are
specified. In addition, we assume that the reward function r : S ×A 7→ R is bounded a.s. in
[0, 1] and known to the learner.

Along with this assumption, we introduce a notational convention. Given some real or
vector-valued measurable function f(s′), we will write EWsaf(s′) to denote the expected
value of f when s′ is drawn from the conditional distribution PW (·|s, a), i.e. EWsaf(s′) :=∫
S f(s′)PW (s′|s, a)ds′.

2.2 Relationship to (Non)linear Dynamical Systems
We now describe how Assumption 1 generalizes the previously studied model class of
(non)linear dynamical systems which have been explored in reinforcement learning and
control theory literature.

First, we take a step back and describe linear dynamical systems (LDS), which govern the
transition dynamics of the LQR problem.2 An LDS is defined by the following transition
dynamics:

s′ = As+Ba+ ε, where ε ∼ N (0,Σ).

where s, s′ ∈ Rds , a ∈ Rda , A,B are appropriately sized parameter matrices, and Σ ∈
Rds×ds is a known covariance matrix. The problem of estimating (A,B), known as system
identification, has a long history.

Recently, system identification and regret minimization have been studied for nonlinear
generalizations of LDS [17, 13]. In this paper, we refer to this setting as the nonlinear dynamical
system (or nonLDS for short).3 The nonLDS is described by the state transition model:

s′ = W0φ(s, a) + ε, where ε ∼ N (0,Σ).

By setting φ(s, a) = [s, a]> andW0 = [AB], we recover the classical linear dynamical system.
We note that nonLDS (and by extension the LDS) are special cases of Assumption 1. This
can be seen by writing out the probability density function of the multivariate gaussian
distribution to get:

q(s′) =
1

(2π)ds/2 det(Σ)1/2
·exp

(
−1

2
‖s′‖2Σ−1

)
, ψ(s′) = Σ−1s′, Zsa(W0) =

1

2
‖W0φ(s, a)‖2Σ−1 .

Lastly, we note that Assumption 1 is more general than that of the nonLDS, whose base
measure q(·) and feature mapping ψ(·) must take a specific form given by the multivariate
gaussian distribution. Assumption 1 gives extra flexibility in the functions q, ψ, and φ, which
can be regarded as design choices for the practitioner. For example, one can pick the mapping
ψ to be some polynomial in s′, or even the output of a neural network which captures the
relevant features for the transition to s′; this is not permitted under the nonLDS setting.
The contribution of this paper (as well as Chowdhury et al.) is to show provably efficient
guarantees for a class of problems which subsumes nonLDS.

2Strictly speaking, our results do not handle unbounded costs, so they do not apply to the LQR
problem.

3Kakade et al. [13] study a infinite dimensional version of this model, which they call the kernelized
nonlinear regulator.
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3 Model Estimation via Score Matching
In this section, we present the score matching method, the subroutine in our RL algorithm
that estimates model parameters. We also introduce structural assumptions that enable us
to derive a nonasymptotic concentration guarantee for the score matching estimator.

Hyvärinen [11] proposed score matching as an alternative to minimizing the log likelihood.
Score matching minimizes the Fischer divergence, which is the expected squared distance be-
tween the score functions ∇s′ logPW (s′|s, a). Specifically, we define the divergence between
PW0

and PW for fixed (s, a) as:

J(PW0
(·|s, a)‖PW (·|s, a)) :=

1

2

∫
S
PW0

(s′|s, a)

∥∥∥∥∇s′ log
PW0(s′|s, a)

PW (s′|s, a)

∥∥∥∥2

ds′. (3)

Before proceeding with the exposition of the score matching estimator, we list standard
regularity conditions that are required for the analysis of score matching [cf., 29, 4].

(A) S is a non-empty open subset of Rds with piecewise smooth boundary ∂S := S − S ,
where S is the closure of S.

(B) (Differentiability): ψ(·) is twice continuously differentiable on S with respect to each
coordinate i ∈ [ds], and ∂jiψ(s) is continuously extensible to S for all j ∈ {1, 2}, i ∈
[ds].

(C) (Boundary Condition): For all (s, a) ∈ S ×A and i ∈ [ds], as s′ → ∂S, we have:

‖∂iψ(s′)‖PW0(s′|s, a) = o(‖s′‖1−ds).

(D) (Integrability): For all i ∈ [ds], (s, a) ∈ S ×A, let psa := PW0
(·|s, a). Then:

‖∂iψ(s′)‖ ∈ L2(S, psa),
∥∥∂2

i ψ(s′)
∥∥ ∈ L1(S, psa), ‖∂iψ(s′)‖ ∂i log q(s′) ∈ L1(S, psa).

The key insight of Hyvärinen is that via an integration by parts trick, the divergence can
be rewritten in a more amenable form. Essentially, these regularity conditions allow us to
rewrite the conditional score function J(W ) := J(PW0

(·|s, a)‖PW (·|s, a)) as:

J(W ) =
1

2

∫
S
PW0

(s′|s, a) ·
ds∑
i=1

[
(∂i logPW (s′|s, a))2 + 2∂2

i logPW (s′|s, a)
]
ds′ + C, (4)

where C does not depend on the parameterW .

We make the crucial point that (4) can be estimated with samples without requiring computation
of the partition function, since the partition function vanishes when taking partial derivatives
with respect to s′. This gives rise to an empirical score matching loss for a dataset D =
{(st, at, s′t)}t∈[n]:

Ĵn(W ) :=
1

2

n∑
t=1

ds∑
i=1

(
(∂i logPW (s′t|st, at))2 + 2∂2

i logPW (s′t|st, at)
)
.

Furthermore, for any regularizer λ > 0, we can define the empirical score matching estimator
Ŵn,λ := arg minW Ĵ(W ) + λ

2 ‖W‖
2
F . (When the value of λ is understood, we will drop it in

the subscript.)

The following theorem gives a closed form expression for the empirical score matching
estimator, when specialized to densities given by Assumption 1.

Theorem 1. For a dataset D = {(st, at, s′t)}t∈[n], we have:

Ĵn(W ) =
1

2

〈
vec (W ) , V̂nvec (W )

〉
+
〈
vec (W ) , b̂n

〉
+ C,
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where:

V̂n :=

n∑
t=1

ds∑
i=1

vec
(
∂iψ(s′t)φ(st, at)

>) vec (∂iψ(s′t)φ(st, at)
>)> ∈ Rdψdφ×dψdφ ,

b̂n := vec

(
n∑
t=1

ds∑
i=1

(
∂i log q(s′t)∂iψ(s′t) + ∂2

i ψ(s′t)
)
φ(st, at)

>

)
∈ Rdψdφ ,

and C does not depend onW . In addition, the score matching estimator can be computed as:

vec
(
Ŵn,λ

)
= −(V̂n + λI)−1b̂n. (5)

Theorem 1 is a typical result in score matching literature, and can be derived as a corollary
of [4, Thm. 3].

For the rest of the paper, it is useful to derive matrix expressions for V̂n and b̂n. We define
the following functions:

Φ(s, a) := [E11φ(s, a), E12φ(s, a), . . . Eijφ(s, a), . . . Edψ·dφφ(s, a)]> ∈ Rdψdφ×dψ ,

C(s′) :=

ds∑
i=1

∂iψ(s′)∂iψ(s′)> ∈ Rdψ×dψ , ξ(s′) :=

ds∑
i=1

∂i log q(s′)∂iψ(s′) + ∂2
i ψ(s′) ∈ Rdψ .

In addition, we use the subscript t to denote the value of the above expressions on sample
(st, at, s

′
t). We succintly represent V̂n and b̂n as V̂n =

∑n
t=1 ΦtCtΦ

>
t and b̂n =

∑n
t=1 Φtξt.

Computational Efficiency. Wemake a few remarks on the computation of the score match-
ing estimator. From Theorem 1, we see that computing Ŵn does not require estimation of
the log-partition function Zsa. The objective is a quadratic function inW , which we can solve
for via Equation (5).

However, Equation (5) requires us to invert a dφdψ×dφdψ matrix, which takes timeO(d3
φd

3
ψ)

and memory O(d2
φd

2
ψ). This can be disappointing from a practical perspective, where the

dimensionality of φ and ψ can be large. Several additional considerations may remedy this:

• Using the representer theorem, it is possible to show that Ŵ is the solution of
a linear system of n · dS variables, thus taking time O(n3d3

S) and space O(n2d2
S),

[see e.g., 4, Thm. 1]. One can further reduce the dependence on n using Nyström
approximations [30].

• If we are in the structured setting whereW0 =
∑d
i=1 θiAi, where θ ∈ Rd is unknown

but the matrices Ai ∈ Rdψ×dφ are known. Theorem 1 can be adapted to this setting,
and solving for θ̂n will take time O(d3) and space O(d2).

Concentration Guarantee. We provide nonasymptotic concentration guarantees for the
score matching estimator Ŵ under some structural assumptions.
Assumption 2.

(i) For any (s, a) ∈ S ×A and s′ ∼ PW0
(·|s, a): we have ξ(s′) is Bψ-subgaussian.

(ii) For any (s, a) ∈ S × A and s′ ∼ PW0
(·|s, a): we have C(s′)W0φ(s, a) is Bc-

subgaussian.
(iii) For any s′ ∈ S: α1I � C(s′) � α2I .

(iv) For any (s, a) ∈ S ×A: EW0
sa ψ(s′)ψ(s′)> − EW0

sa ψ(s′)EW0
sa ψ(s′)> ≤ κI .

The conditions in Assumption 2 are mostly adapted from prior work [29, 4, 7], with suitable
modifications to accomodate our non-i.i.d. setting.
For now, we discuss when Assumption 2 holds. It is easy to see that Assumption 2 holds
for nonLDS (take Σ = σ2I) with Bψ = σ−6, Bc = 0, α1 = α2 = σ−4, and κ = σ−2. In fact, a
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broader class of models are covered under Assumption 2 that go beyond the nonLDS. For
example, consider the setting when q(s′) = exp(−α−1

∑
i∈[ds]

|s′i|
α

) for some fixed α ∈ (1, 2];
ψ(s′) : Rds → Rds is an elementwise function f : R→ R with 0 < µ ≤ f ′ ≤ L and |f ′′| ≤ D;
‖W0‖ ≤ B? and ‖φ(s, a)‖ ≤ Bφ for all (s, a) ∈ S × A. While we are unable to provide a
formal mathematical proof that Assumption 2 is always satisfied here, we note that the
conditions seem to hold experimentally for many choices for α and f . We leave developing a
better understanding of the necessary and sufficient conditions for score-matching to future
work.
We can provide the following concentration guarantee.
Theorem 2. Suppose Assumption 1 and 2 and regularity conditions (A)-(D) hold. Let {Ft}∞t=1
be a filtration such that (st, at) is Ft measurable, s′t is Ft+1 measurable, and s′t ∼ PW0

(·|st, at).
For any δ ∈ (0, 1) and λ > 0, let:

βn :=

√
2(Bψ +Bc)

α2
1

·

√
log

det(λ−1V̂n + I)1/2

δ
+
√
λ ‖W0‖F .

With probability at least 1 − δ, the score matching estimators Ŵn,λ satisfy:∥∥∥vec(Ŵn,λ

)
− vec (W0)

∥∥∥
V̂n+λI

≤ βn, for all n ∈ N.

Theorem 2 is a self-normalized concentration guarantee, since the parameter error is rescaled
by a data-dependent term V̂n + λI . The proof relies on the method of mixtures argument
developed in the linear bandit literature [see e.g., 1, 15].

4 Algorithm and Main Result
In this section, we present our main results, which introduce the Score Matching for RL
(SMRL) algorithm (Algorithm 1) and provide regret guarantees.

Algorithm Specification. Our algorithmworks as follows. In each episode k = 1, 2, . . . ,K,
we compute a elliptic confidence set Wk centered at our score matching estimator. In
particular, we consider the n := (k − 1)H state transitions D = {st, at, s′t}nt=1 the agent has
observed up until the beginning of episode k and run the score matching estimator to get
the prediction:

Ŵk := arg min
W

Ĵ(W ) +
λ

2
‖W‖2F , using (5).

In discussing our RL algorithm and its regret guarantees, we choose to index Ŵ and V̂ by k
rather than n to emphasize that these quantities are computed once per episode. We also
drop the subscript λ because it is fixed across the run of the algorithm.
Next, we define the confidence set:

Wk :=

{
W ∈ Rdψ×dφ :

∥∥∥vec(Ŵk

)
− vec (W )

∥∥∥
V̂k+λI

≤ βk
}
, (6)

where

βk :=

√
2(Bψ +Bc)

α2
1

·

√
log

det(λ−1V̂k + I)1/2

δ/2
+
√
λB?,

and B? is some known upper bound on ‖W0‖F .

Once the agent computes the confidence setWk, they observe a new state sk1 and compute an
optimistic policy πk (line 5-6), which is the optimal policy with respect to the “best model”
inWk. As long asW0 ∈ Wk, the optimistic planning procedure gives us an overestimate of
the true value function V ?P,1(sk1), ensuring sufficient exploration of the MDP. Lastly, the agent
runs policy πk on the MDP to collect a new trajectory of data, which is added to the dataset
D.

7



Algorithm 1 Score Matching for RL (SMRL)
1: Input: Regularizer λ and constants Bψ, Bc, B?, κ, α1.
2: Initialize: starting confidence setW1 = Rdψ×dφ , confidence widths {βk}k≥1, dataset
D = ∅.

3: for episode k = 1, 2, 3, · · · ,K do
4: Planning:
5: Observe initial state sk1
6: Choose the optimistic policy: πk = arg maxπ maxW∈Wk

V πPW ,1(sk1)
7: Execution:
8: Execute πk to get a trajectory {skh, akh, rkh, skh+1}h∈[H], and add it to D.
9: Solve for score matching estimator Ŵk = argminW Ĵ(W ) + λ

2
‖W‖2

F via (5)
10: Update confidence set Wk+1 via (6)

Computational Complexity. Algorithm 1 has two main components: model estimation
(line 9) via score matching and optimistic planning (line 6). We have already discussed in
Section 3 that the model estimation can be computed efficiently.

Planning is a different story. We note that planning with a known model, i.e., solving the
problem πk = arg maxπ V

π
PW ,1(sk1), is already challenging for our setting without imposing

further structure. Planning with a knownmodel can be approximated with model predictive
control [18, 33]. Furthermore, even with access to a planning oracle, optimistic planning
is known to be NP-hard in the worst case [9]. In this work, we assume computational
oracle access to the optimistic planner that solves (line 6) and leave developing efficient
approximation algorithms to future work. One alternative to optimistic planning is to
employ posterior sampling methods in conjunction with (approximate) planning oracles;
the Bayesian regret can be theoretically analyzed using well-established techniques [see e.g.,
21, 7].4 Other ideas are to use noise augmented MDPs [24] or Randomized Least-Squares
Value Iteration (RLSVI) [22, 23, 25, 35, 2].

Regret Guarantee. We now provide our main result, which is a
√
T -regret guarantee on

the performance of SMRL.

Theorem 3 (SMRL Regret Guarantee). Suppose Assumptions 1 and 2 and regularity conditions
(A)-(D) hold. Set λ := 1/B2

? and fix δ ∈ (0, 1). Then with probability at least 1− δ:

R(K) ≤ C

√
γK+1 ·

(
2κ(Bψ +Bc)

α3
1

(γK+1 + log 2/δ) +
κ

α1
+H

)
·
√
H2T + 2H

√
2T log 2/δ,

where C is an absolute constant and γK+1 := log det(λ−1V̂K+1 + I). If we additionally as-
sume that ‖φ(s, a)‖ ≤ Bφ, then R(K) ≤ Õ(dψdφ ·

√
H3T ), where the Õ hides log factors and

poly(κ,Bψ, Bc, α
−1
1 ).

A few remarks are in order. Our regret guarantee depends on the number of model pa-
rameters dψ · dφ and not on the state and action space sizes, thus making our algorithm
sample-efficient in large-scale environments where |S| and |A| are infinite. Additionally, it
is easy to redo the analysis when the parameter matrix is structured, i.e.,W0 =

∑d
i=1 θiAi,

to see that the regret guarantee depends on d instead of dψ × dφ. Thus, we can recover the
same regret guarantee of Õ(d

√
H3T ) that Chowdhury et al. provide.

On the more technical side, in Theorem 3, we require φ to be a bounded feature mapping,
which linear dynamical systems do not satisfy in general (recall φ = [s, a]>, and s, a can
have unbounded norm). We need this to provide a bound on a certain “information gain”
quantity γk = log det(λ−1V̂k + I) [cf., 28, 13]; however, the bounded φ assumption can be

4While we conjecture that a Bayesian regret guarantee should be possible, getting a frequentist
guarantee (as we do) for a posterior sampling method in our setting could be difficult. See e.g., results
for tabular MDPs [3].
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substantially weakened because our proof only requires
∑H
h=1 ‖φh‖

2 to be bounded in every
episode with high probability. In particular, if one restricts to controllable policies which do
not blow up norm of the state [see e.g., 8], then the information gain term can be bounded.

Score Matching vs MLE. Score matching and MLE can be viewed as complementary
techniques for density estimation; we highlight the relative pros and cons of SMRL vs
Exp-UCRL.
In general, Exp-UCRL can be applied to more settings than score matching, due to the fact
that scorematching requires regularity conditions (A)-(D)that are needed for the derivation
of (4). In particular, we require S to be a Euclidean space and the feature vector ψ : S → Rdψ
to be a twice-differentiable mapping. In this sense, the scope of SMRL is more limited
than that of Exp-UCRL. For example, while tabular and factored MDPs can be modeled as
exponential family transitions via the softmax parameterization,5 we cannot prove regret
guarantees for SMRL due to the differentiability requirement. Since the MLE estimator of
Chowdhury et al. can be computed in poly(S,A) time, in the tabular and factored MDP
settings we would prefer to run Exp-UCRL.
Among models given by Assumption 1 where both score matching and MLE can be applied,
score matching is preferred because the estimator can be computed in closed form as the
solution to a ridge regression problem, and elliptic confidence sets can be constructed around
it using Theorem 2. For the MLE, this is not possible in general. Chowdhury et al. implicitly
define the estimator as the solution to the likelihood equations, and their confidence set is
constructed in a complicated fashion, in terms of sums of KL divergences taken over the
dataset. Thus, while we are unable to claim overall computational tractability of Algorithm 1
due to the computational difficulty of optimistic planning, score matching enables us to
estimate model parameters efficiently, an improvement from Exp-UCRL.
We now compare the regret guarantee of Theorem 3 with previous results. We achieve the
same order-wise guarantee as Chowdhury et al.(Thm. 2) of Õ(dφdψ ·

√
H3T ). In terms of

problem constants, both bounds depend on
√
κ, but we (1) require the constants Bψ and Bc,

(2) replace dependence on strict convexity of the log partition function with the parameter
α1.
In the nonLDS setting, score matching and MLE are equivalent, so we can directly
compare the results of Chowdhury et al. and Kakade et al. with ours. For illus-
trative purposes, consider when the noise covariance is Σ = σ2I and the reg-
ularization parameter λ := σ2/B2

? (as is done in Kakade et al.). Theorem 3
gives us a regret guarantee of Õ

(√
dφdψ · (σ4dφdψ +H)H2T

)
, while a bound of

Õ

(√
dφdψ (σ2 + dφdψ)

(
1 + σ−4B2

?B
2
φH
)
H2T

)
can be derived for Chowdhury et al.’s re-

sult. Note that the latter bound depends polynomially on the scale ofW0 and φ. In contrast,
Kakade et al. (Remark 3.5) give an improved bound of Õ(

√
dφ(dφ + dψ +H)H2T ), without

polynomial dependence on σ2 and the scale ofW0 and φ. We conjecture that the σ2 depen-
dence is an artifact of our analysis, but it is less clear whether the dependence on dφ, dψ can
be improved.
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