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ABSTRACT

Generative Flow Networks (GFlowNets) are an emerging class of sampling
methods for distributions over discrete and compositional objects, e.g., graphs.
In spite of their remarkable success in problems such as drug discovery and
phylogenetic inference, the question of when and whether GFlowNets learn to
sample from the target distribution remains underexplored. To tackle this issue, we
first assess the extent to which a violation of the detailed balance of the underlying
flow network might hamper the correctness of GFlowNet’s sampling distribution.
In particular, we demonstrate that the impact of an imbalanced edge on the model’s
accuracy is influenced by the total amount of flow passing through it and, as
a consequence, is unevenly distributed across the network. We also argue that,
depending on the parameterization, imbalance may be inevitable. In this regard, we
consider the problem of sampling from distributions over graphs with GFlowNets
parameterized by graph neural networks (GNNs) and show that the representation
limits of GNNs delineate which distributions these GFlowNets can approximate.
Lastly, we address these limitations by proposing a theoretically sound and
computationally tractable metric for assessing GFlowNets, experimentally showing
it is a better proxy for correctness than popular evaluation protocols.

1 INTRODUCTION

Generative flow networks (GFlowNets, Bengio et al., 2021; 2023) are reward-driven generative
models for compositional objects (e.g., sequences or graphs) that have been successfully employed
in several scientific domains (Deleu et al., 2022; 2023; da Silva et al., 2023; Zhang et al., 2023d;
Jain et al., 2022; Bengio et al., 2021; Jain et al., 2023). In essence, GFlowNets cast sampling from an
unnormalized distribution as solving a network flow problem (Bazaraa et al., 2004). Starting from an
initial state, GFlowNets create valid samples by drawing a series of actions according to a (forward)
policy network determined by the amount of flow between adjacent states. This process can be
interpreted as spreading the total mass of the distribution (flow at the source) through trajectories
that lead to elements in the target distribution’s support (sink nodes).

While most works on GFlowNets are primarily empirical, developing a deeper theoretical under-
standing of GFlowNets is key to designing better models and assessment methodologies that are
both theoretically sound and practically efficacious. In this regard, Bengio et al. (2023; 2021) laid
out the technical foundations for GFlowNets, showing that a model satisfying the so-called balance
conditions samples from the target discrete distribution. Lahlou (2023) extended this theory to the
context of probability measures supported on arbitrary topological spaces. Also recently, the relation-
ship of GFlowNets with variational inference (Malkin et al., 2023), reinforcement learning (Tiapkin
et al., 2024), and diffusion models (Garipov et al., 2023; Lahlou, 2023) has been formally established.
Despite these advances, a question of important practical implications remains: when do a GFlowNet
correctly learn its target distribution? More specifically, little is known regarding the sensitivity of
a GFlowNet’s accuracy to balance violations, the possible causes of imbalance, or how to evaluate
the distributional correctness of GFlowNets for large state spaces in a principled manner.

This paper establishes a series of results to address these fundamental questions. Firstly, we provide
bounds on the total variation of GFlowNets as functions of balance fluctuations/violations. By
considering tree-structured state graphs with identical rewards, we show that flow imbalances at
different depths have a non-uniform impact on the approximation capabilities of GFlowNets — more
specifically, balance mismatches near the root state may have a higher impact than those near terminal
states. We also extend our analysis to show that similar results hold for general directed acyclic
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Table 1: Main contributions of this work. Highlighted items represent methodological advancements.

Section 3
Sensitivity to local failures for general SGs and targets Thm. 1
Formulation of weighted DB loss and comparison against DB Eq. 6, Fig. 4

Section 4
Universal approximation of distributions over trees Thm. 2
Representational limits of 1-WL GFlowNets Thm. 3
Formulation of Look-Ahead (LA) GFlowNets Eq. 7
LA-GFlowNets ≻ Standard GFlowNets Thm. 4, Fig. 6

Section 5
Definition of FCS as a tractable goodness-of-fit metric Def. 1
Relationship between FCS and TV Thm. 5, Cor. 1
FCS is highly correlated to TV Sec. 5.1
Inadequacy of commonly used evaluation protocols Sec. 5.2

state graphs (DAGs) and multimodal target distributions. To illustrate the pragmatic benefits of these
insights, we devise a novel family of learning objectives extending the traditional detailed balance
loss. As we demonstrate in Section 3, this approach often accelerates training convergence.

After delving into the consequences of an imbalanced flow network on the GFlowNet’s accuracy, we
take a closer look at its potential causes. Towards this objective, we study the distributional limits of
GFlowNets when sampling graph-structured objects. Notably, most applications of GFlowNets consist
of sampling from distributions over graphs, which render graph neural networks (GNNs) (Gori et al.,
2005; Gilmer et al., 2017; Xu et al., 2019) particularly convenient to parameterize policy networks. In
fact, GNNs are often used to parameterize the policies in practice (Bengio et al., 2021; Roy et al., 2023;
Zhu et al., 2023; Zhang et al., 2023d; Pandey et al., 2024). With this in mind, we provide constructions
exposing their shortcomings. While GNN-based GFlowNets can express any distribution over trees
under mild conditions, we show that there are simple state graphs and target distributions from which
no GFlowNet can correctly sample. We leverage our analysis to introduce look-ahead GFlowNets
(LA-GFlowNets), a simple yet effective scheme to provably boost the expressiveness of GFlowNets.
In essence, LA-GFlowNet incorporates children-state embeddings as inputs to the forward policy.
This allows LA-GFlowNets to distinguish actions that lead to distinguishable states but cannot be
told apart by the Weisfeiler-Leman (WL) (Weisfeiler & Lehman, 1968) test.

Remarkably, these impossibility results underline the importance of having a reliable metric for
probing the accuracy of a trained GFlowNet. In this sense, we also provide a theoretically sound
framework for the distributional assessment (i.e., goodness-of-fit) of GFlowNets in high-dimensional
state spaces, which we call flow consistency in sub-graphs (FCS) metric. Put simply, FCS consists
of a Monte Carlo estimate of the average L1 error w.r.t. a distribution of "cuts" of the target’s
support. The FCS metric is a proxy for the absolute error between a GFlowNet’s sampling and
target distributions, and we empirically show that FCS highly correlates with the (often intractable)
L1 error while requiring up to three orders of magnitude less compute. In contrast, we show that
popular evaluation metrics do not accurately capture distributional correctness, e.g., the number
of high-reward states visited during training and the average reward of the top-k scoring states
(Jang et al., 2024; Kim et al., 2024; Bengio et al., 2021). In our view, this contribution is extremely
valuable for ensuring smooth progress in the GFlowNet literature.

In Table 1, we summarize the main contributions of this work. Section 3 analyzes the distributional
correctness of GFlowNets as a function of balance violations and leverages these theoretical insights to
propose a family of weighted detailed balance (WDB) losses. Section 4 discusses the representational
limits of GFlowNets for graph domains and proposes LA-GFlowNets to boost the expressive power
of GNN-based GFlowNets. Finally, Section 5 proposes FCS as a theoretically grounded metric to
assess the accuracy of GFlowNets well-suited to high-dimensional settings. Importantly, all sections
of this work provide experiments to substantiate our theoretical analyses, illustrating the claims and
demonstrating the practical relevance of the methodological contributions.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 BACKGROUND

Notations. Let X be a finite set, which we call the set of terminal states, and R be an unnor-
malized distribution over X , which is also called a reward function (Bengio et al., 2021). We
define the set of states S as an extension of X comprising two distinctive elements: an initial
state, so ∈ S, and a final state, sf ∈ S. We hence define a DAG G = (S, E), termed state
graph (SG), such that (i) there are no incoming edges to so; (ii) for each x ∈ X , there is a
directed path from so to x; (iii) there is an edge from each x to sf , which is not directly con-
nected to any other state in S; and (iv) there are no outgoing edges from sf . Figure 1 illustrates
a state graph in which the states represent multisets and the edges denote the addition of an el-
ement. We say that a trajectory τ = (sj)

h
j=0 on G is complete if it starts at so and ends at sf ,

Figure 1: Illustration of a state graph.

and write τ ⇝ x to denote a complete trajectory finished
by the transition (x, sf ); for example, (so, s1, s2, sf ) in
Figure 1 is a complete trajectory. A forward policy over G
is a function pF : S×S → R+ for which pF (s, ·) is a prob-
ability measure supported on s’s children in G, denoted
by child(s). We use pF (·|s) and pF (s, ·) interchangeably.
A backward policy pB is a forward policy over G’s trans-
pose. For a complete trajectory τ , we write pF (τ) =∏

i=1...h pF (si−1, si). A flow is a function F : S → R+

s.t. F |X = R. We denote the cardinality operator as #. For
a trajectory τ , #τ denotes its number of transitions.

GFlowNets. A GFlowNet learns a forward policy pF and (sometimes) a backward policy pB and a
flow function F on a SG G such that the marginal distribution of pF over X , pT (x) =

∑
τ⇝xpF (τ),

matches a given reward function R (up to a normalizing factor). We refer to pT as the GFlowNet’s
sampling distribution and to π ∝ R as the reward-induced probability measure over X . Also, we will
often denote a GFlowNet by (G, pF , pB , F ) or (when there is no risk of ambiguity) just (pF , pB , F ).
In many applications, pF and F are parameterized as a GNN (Bengio et al., 2021; Zhang et al., 2023d)
or as a transformer (Deleu et al., 2022; Kim et al., 2024) and pB is fixed as a uniform policy. Since the
seminal work of Bengio et al. (2021), numerous learning objectives have been proposed to estimate the
model’s parameters (Malkin et al., 2022; 2023; Madan et al., 2022; Zhang et al., 2023b), most of which
are based on the principle of network balance — ensuring that the incoming and outgoing flows in a
state are equal. The detailed balance (DB) loss, for instance, enforces the detailed balance condition
F (s)pF (s

′|s) = F (s′)pB(s|s′) by minimizing the average log-squared difference between the incom-
ing and outgoing flows of states within a trajectory (Bengio et al., 2023; Zhang et al., 2023d),

LDB(pF , pB , F ) = Eτ

 1

#τ

∑
(s,s′)∈τ

(
log

F (s)pF (s
′|s)

F (s′)pB(s|s′)

)2
 (1)

with the hard-coded constraint F (s′) = R(s′) when s′ ∈ X is a terminal state; the expectation is
computed with respect to any positive probability measure over trajectories. Other popular learning
objectives, such as the trajectory balance (TB) (Malkin et al., 2022) and subtrajectory balance
(SubTB) (Madan et al., 2022) losses, are reviewed in the supplement.

Assessment of GFlowNets. For most problems, X is intractably large and it is not possible to directly
compare the GFlowNet’s sampling distribution to the target R. As a consequence, assessing the
goodness-of-fit and convergence rate of GFlowNets is a challenging problem. To avoid this issue, a
common practice in the literature (Pan et al., 2023a;b; 2024; Zhang et al., 2023d; Jang et al., 2024) is to
measure the count and average reward of the highest-scoring states found during training. The intuition
is that a well-fitted model will quickly locate high-probability regions of the target distribution. More
precisely, let XT ⊆ X be the terminal states found during training, Ro ∈ R+ be a hand-crafted thresh-
old, and H(XT , Ro) = {x : x ∈ XT ∧ R(x) ≥ Ro} be the samples in XT with reward larger than
Ro. Also, let {{x1, . . . , xS}} ∼ pT be S samples from the trained GFlowNet. Then, we define

Avg(XT , Ro) =
∑

x∈H(XT ,Ro)

R(x)

#H(XT , Ro)
and Acc(pT ) = min

{
1
S

∑
1≤i≤S R(xi)

Ex∼R[R(x)]
, 1

}
. (2)

This second metric, referred to as accuracy by Shen et al. (2023); Kim et al. (2024), measures the prox-
imity of the GFlowNet to the target based on the expected reward — assuming that Ex∼R[R(x)] can
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be computed. Importantly, we will show in Section 5 that Avg(XT , Ro), #H(XT , Ro), and Acc(pT )
are not necessarily connected to the closeness of a GFlowNet to the global minimum of its learning
objective and, therefore, may lead to misguided conclusions if not interpreted carefully.

The expressive power of GNNs and the 1-WL isomorphism test. Graph neural networks (GNNs)
are the dominating paradigm for graph representation learning (Xu et al., 2019; Hamilton, 2020;
Wang et al., 2024; Corso et al., 2024). Most GNNs employ a multi-layered message-passing scheme,
interleaving neighborhood aggregation and update operations at each layer. Specifically, for each
node v at layer ℓ, the aggregation is a nonlinear function of the (ℓ− 1)-layer representations of v’s
neighbors. The update step computes a new representation for v based on its representation at layer
ℓ− 1 and the aggregated messages (output of the aggregation step). Importantly, message-passing
GNNs have well-known representational limits, which are upper-bounded by the first-order
Weisfeiler-Lehman isomorphism test (1-WL) (Xu et al., 2019; Weisfeiler & Lehman, 1968). We
provide more details regarding this relationship in Appendix B.

3 ON THE PROPAGATION OF ERRORS IN FLOW NETWORKS

Our investigation starts with the main source of distributional errors in a GFlowNet, namely, the lack
of balance in the underlying flow network. In this pursuit, the primary question we wish to address is:
what is the impact of violations to the balance conditions on the goodness-of-fit of GFlowNets?

3.1 BOUNDS ON THE TOTAL VARIATION OF GFLOWNETS

To build intuition, our first result (Remark 1) quantifies the extent to which a violation to the detailed
balance condition in a single node might affect the TV distance between the GFlowNet’s sampling
distribution and a uniform target in the case of tree-structured SGs, which are often featured in appli-
cations, e.g., (Jain et al., 2022; Jiralerspong et al., 2023; Liu & et al., 2023; Hu et al., 2023).

Remark 1 (TV for tree-structured SGs). Let (G, pF , pB , F ) be a GFlowNet balanced with respect
to a reward R, where G is a directed regular tree with branching factor g and depth h, and R is
unnormalized uniform. Also, consider the GFlowNet (G, p̃F , pB , F̃ ) such that i) F̃ (so) = F (so) + δ
and F̃ (s⋆) = F (s⋆) + δ for some s⋆ ∈ child(so) and δ ≥ 0; ii) F̃ (s) = F (s) for all s not reachable
from s⋆; iii) F̃ (s) =

∑
s′∈child(s) F̃ (s

′); and iv) p̃F (s, s′) ∝ F̃ (s′) ∀(s, s′) ∈ E(G) (see Figure 2).
Let p̃T be the marginal distribution induced by p̃F . The TV between p̃T and π ∝ R satisfies

ϵ (δ, g, F (s0)) ≤ TV (p̃T , π) ≤ ϵ
(
δ, gh, F (s0)

)
, with ϵ(δ, x, t) := (1− 1/x) δ/t+δ. (3)

F (so) + δ

F (so)
g + δ F (so)

g

F (so)
gh + δ1

F (so)
gh + δ2

F (so)
gh

F (so)
gh

degree g

Figure 2: Tree-structured SG w/ excess flow
δ from s0 to left child. We omit node labels.

Naturally, the upper and lower bounds are increasing
functions of δ. Importantly, these bounds are tight,
i.e., for any δ, there is a corresponding flow function
for which the TV equals the stated bounds. Also, we
note that the upper bound ϵ(δ, gh, F (so)) increases
monotonically with the number of leaves gh, i.e.,
the further the imbalanced edge (so, s

⋆) is from the
leaves, the greater the potential damage to accuracy.
Notably, this demonstrates that the effect of balance
violations on the distributional approximation is het-
erogeneously spread among the SG’s edges. We ex-
perimentally validate these findings for the benchmark tasks outlined in Section 2 in Figure 3.

As we shall show in Theorem 1, these intuitive results can be extended to the context of arbitrarily
shaped SGs labeled with any target probability measure π. In this broader setting, of which Equation 3
is a particular case, the tree-inherited concepts of depth and branching factor of a state s are replaced
by the total probability mass accumulated by the terminal descendants of s. The reader is invited
to observe that, under the assumptions of Remark 1, these properties are interchangeable. From
a practitioner’s perspective, however, the exact computation of the quantities appearing in Theorem 1
is unfeasible for most benchmark and realistic problems. Consequently, our empirical analysis in
the following section leverages the insights from Theorem 1 and the computational tractability of
Remark 1 to derive a weighted detailed balance (WDB) loss which, by assigning different weights
to different transitions based on their distance to the initial state of the SG, aims at facilitating the
search for a balanced flow assignment and speeding up the training convergence.
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Figure 3: Average LDB(s, s
′) := (log(F (s)pF (s, s

′)− log(F (s′)pB(s, s′)))
2 along randomly

sampled trajectories during the early stages of training. As suggested by our analysis, the DB loss is
unevenly distributed across a trajectory, with different transitions influencing the loss in diverse ways.

Theorem 1 (TV bounds for arbitrary distributions). Let (G, pF , pB , F ) be a GFlowNet with arbitrary
state graph G satisfying the DB condition w.r.t. an arbitrary reward R. Similarly to Remark 1, define
(G, p̃F , pB , F̃ ) by increasing the flow F (s) in some node s by δ and redirecting the extra flow to a
direct child s⋆ by properly adjusting pF (s, ·). Likewise, F̃ is defined by propagating the extra flows to
all states reachable from s⋆. Also, let Ds⋆ ⊆ X be the set of terminal states reachable from s⋆. Then,
the TV between the distribution p̃T over X induced by p̃F and the normalized target π ∝ R satisfies

δ

F (s0) + δ

1−
∑

x∈Ds⋆

π(x)

 ≤ TV (p̃T , π) ≤
δ

F (s0) + δ

(
1− min

x∈Ds⋆

π(x)

)
. (4)

3.2 APPLICATION TO GFLOWNET TRAINING

Weighted DB. We note that, by default, the DB loss in Equation 1 computes an arithmetic average
of the transition-level errors. Intrinsically, this design encodes that each transition has the same
impact on our overall goal of approximating the target distribution. Nonetheless, as indicated by
our theoretical and empirical analyses in Section 3.1, this is not the case. Therefore, we construct
a family of weighted detailed balance (WDB) losses,

FWDB =

{
Lγ(s, s

′) : (s, s′) 7→ γ(s, s′)

(
log

F (s)pF (s
′|s)

F (s′)pB(s|s′)

)2 ∣∣∣∣γ : S × S → R+

}
, (5)

and train a GFlowNet by choosing a Lγ ∈ FWDB and minimizing the stochastic objective

Lγ
WDB(pF , pB , F ) := Eτ

 1∑
(s,s′)∈τ γ(s, s

′)

∑
(s,s′)∈τ

Lγ(s, s
′)

 . (6)

We are left with the task of choosing an appropriate γ. Inspired by recent advances in diffusion
probabilistic models (Kingma et al., 2021; Kingma & Gao, 2023), we might choose a γ ensuring that
no term in Equation 6 dominates the loss. In light of Remark 1, any monotonically decreasing function
on #Ds′ (i.e., the number of terminal descendants of s′) would be a principled choice for γ. Here,
we use γ(s, s′) = 1/#Ds′ , but acknowledge that other γ might be optimal for different tasks.

Empirical illustration. We compare the performance of WDB against TB, SubTB, and the standard
DB objective (with γ ≡ 1) in Figure 4 using four benchmark tasks for GFlowNets: autoregressive
sequence design (Jain et al., 2022; Malkin et al., 2022; Jiralerspong et al., 2023), phylogenetic
inference (Zhou et al., 2024), set generation (Bengio et al., 2023; Pan et al., 2023b;a; Jang et al.,
2024), and hypergrid navigation (Malkin et al., 2022; 2023; Madan et al., 2022). We provide more
details regarding the experimental setup in Appendix E. Remarkably, using WDB leads to faster
convergence of the GFlowNet’s sampling distribution to the target distribution for phylogenetic
inference and set generation — measured in terms of the TV distance. Note these two environments
are exactly the ones for which early-stage transitions dominate the loss, as shown in Figure 3. For the
two remaining cases, WDB performs approximately on par with standard DB. These results, which
are discussed at length in Section E.4 (see Figure 11), suggest that one may drastically improve the
DB loss by adequately weighting each transition within a trajectory.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 10000 20000 30000

0.4

0.6

0.8

T
V

Sequences

0 20000 40000 60000

0.2

0.3

Phylogenetics

0 10000 20000 30000

0.05

0.10

Sets

0.0 0.5 1.0
×106

0.4

0.6

0.8

Hypergrid

Number of observed trajectories Objective

DB with γ(s, s′) ∝ 1
#Ds′ (ours)

TB
DB with γ(s, s′) ∝ 1

SubTB

Figure 4: WDB performs competitively with or better than DB, SubTB, and TB. By weighting
each (s, s′) in inverse proportion to the number of terminal descendants of s′ (i.e., γ(s, s′) = 1/#Ds′ )
in the DB loss, a faster convergence in terms of TV w.r.t. the standard objective is achieved.

4 DISTRIBUTIONAL LIMITS OF GNN-BASED POLICY NETWORKS

Our analysis so far has focused on the impact of imbalanced nodes on the GFlowNet’s sampling
distribution. We now step back and analyze a natural cause for this lack of balance: parametrization.
Notably, some of the hottest applications of GFlowNets lie in graph domains and leverage GNNs
to incorporate desirable inductive biases (e.g., Bengio et al., 2021; Nica et al., 2022; Roy et al.,
2023; Zhang et al., 2023d; Zhu et al., 2023; Pandey et al., 2024). Thus, this section explores the
representational limits of GNN-based GFlowNets. Towards this goal, we show their universal capacity
of approximating distributions over trees. Then, we construct a family of problems that a GFlowNet
based on 1-WL GNNs, termed as 1-WL GFlowNet, cannot solve, showing that balance violations
may arise due to limited expressivity of the policy network.

Our first result (Theorem 2) demonstrates that, for any reward supported over trees, there is an 1-WL
GFlowNet capable of sampling proportional to that reward. To achieve this result, we construct a
simple generative process starting from a totally disconnected graph and adding one edge at a time,
always yielding only one non-singleton component.

Theorem 2 (Universality of 1-WL GFlowNets for trees.). If S is a collection of trees such that
(s, s′) ∈ E implies that s ⊂ s′ (s is a proper subtree of s′) with #E(s′) = #E(s) + 1, then there is a
GFlowNet equipped with 1-WL GNNs can approximate any distribution π over X ⊆ S.

Figure 5: A combination of a state graph and re-
ward function that causes 1-WL GFlowNets to fail.

Theorem 2 certifies that 1-WL GFlowNets can
sample from arbitrary distributions over trees.
However, the 1-WL test is not a perfect oracle
for isomorphism. A natural question is: are
there limits to the representational power of
1-WL GFlowNets? Theorem 3 shows a broad
family of cases (i.e., combinations of SGs and re-
ward functions) for which 1-WL GFlowNets fail.
This result rests on the fact that states must dis-
tribute flow evenly to children if the actions lead-
ing to them are 1-WL indistinguishable.

Illustrating failure modes of 1-WL GFlowNets. Figure 5 provides a construction where 1-WL
GFlowNets fails to achieve balance. Note that the actions leading to the children s′ and s′′ of s
(enclosed by a box) are 1-WL indistinguishable. Hence, 1-WL policies distribute the flow in s
equally among s′ and s′′, failing to match the distinct rewards R(s′) = 4 and R(s′′) = 8. Theorem 3
extends this intuition to a wider range of cases.

Theorem 3 (Limitations of GNN-based GFlowNets). Let G = (S, A) be a state graph and R : X ⊆
S → R+ be a reward function. Suppose G is a directed tree. Let T (s) ⊆ X for s ∈ S denote the set
of terminal states reachable by a directed path starting at s. If there is a state s = (V,E) ∈ S and
two pairs of nodes (a, b) ̸= (c, d) ∈ V 2 \E that are not 1-WL distinguishable and

∑
x∈T (s′)R(x) ̸=∑

x∈T (s′′)R(x) with s′ = (V,E ∪ {(a, b)}) and s′′ = (V,E ∪ {(c, d)}) (illustrated in Figure 5),
then there is no 1-WL GFlowNet capable of approximating π ∝ R with TV zero.

We now leverage these insights to propose a more expressive GNN-based GFlowNet: Look-ahead
GFlowNets (LA-GFlowNets). The rationale of LA-GFlowNets is to incorporate children’s graph
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embeddings as inputs to the forward policy. This allows LA-GFlowNets to disambiguate between
children states obtained from 1-WL equivalent actions, enabling assignment of uneven probabilities to
non-distinguishable actions as long as the embeddings of corresponding children states differ.

More formally, let s′ and s be two neighboring nodes in the SG, differing only by an edge (u, v) not
in s — recall that s and s′ are graphs themselves. Let also ϕv|G be the 1-WL embedding of a node v
within a graph G. Then, LA-GFlowNets’ forward policy can be described as

pF (s, s
′) ∝ exp

{
MLP

(
ψ1

(
{ϕu|s, ϕv|s}

)
∥ ψ2

(
{ϕw|s′}w∈V (s′)

))}
, (7)

where ψ1 and ψ2 are order-invariant functions (Zaheer et al., 2017). Since child embeddings are
added (via concatenation) to the original action embedding, there is no loss of expressiveness w.r.t.
1-WL GFlowNets. On the other hand, LA-GFlowNets can perfectly approximate cases like the one
depicted in Figure 5. Theorem 4 states the superior expressiveness of LA-GFlowNets.

Theorem 4 (LA-GFlowNet is more expressive than 1-WL GFlowNet). If there is a 1-WL forward
policy inducing a sampling distribution proportional to a reward R, there is a LA-GFlowNet forward
policy over the same SG with a sampling distribution proportional to R. The converse does not hold.

0.0

0.2

0.4

L
1

0 100
0.0

0.2

0.4

L
1

0 100

# epochs

LA-GFlowNet GFlowNet

Figure 6: Illustrations in which LA-
GFlowNets succeed but standard
GNN-based GFlowNet fail.

Empirical illustration. To demonstrate the limitations of
1-WL GFlowNets, we define next a group G of SGs for which
there are actions that, despite leading to non-isomorphic
states, cannot be distinguished by a GNN-based policy. In this
scenario, let Rn,k be the set of regular graphs with n nodes
of degree k. Then, let G be the set of SGs C1 ← P → C2

such that P ∈ Rn,k and C1 and C2 are non-isomorphic graphs
differing from P by a single additional edge; see Figure 9 in
the supplement for an illustration. Note that, due to the (graph-
theoretic) regularity of P , pF (P,C1) = pF (P,C2) for any
GNN-based pF . Thus, the corresponding GFlowNet is inher-
ently unable to learn a non-uniform distribution on {C1, C2}.
LA-GFlowNets, in contrast, are not constrained by such limited
expressivity. As an example, we create four triples (C1, P, C2)
with n = 8, k = 3, R(C1) = 0.1 and R(C2) = 0.9. Under
these conditions, Figure 6 shows LA-GFlowNet can accurately
sample from the target distribution. However, a standard GNN-based GFlowNet can only sample
from a uniform, attaining a (constant) L1 error of 0.4 throughout training.

5 CONVERGENCE DIAGNOSTICS FOR GFLOWNETS

Finally, with the understanding that there are distributions from which a GFlowNet cannot sample,
we ask: how can we tractably assess the closeness of a GFlowNet’s to its target? To answer this, we
propose a provably correct and computationally amenable metric for probing the distributional incor-
rectness of GFlowNets (Section 5.1), termed Flow Consistency in Subgraphs (FCS). Strikingly, we
compare FCS against three popular techniques for assessing the convergence of GFlowNets, namely,
the number of modes, average reward of top-scoring samples, and Shen’s accuracy, and show that
FCS is often the only metric accurately reflecting a GFlowNet’s goodness-of-fit (Section 5.2).

5.1 PROBING GFLOWNETS’ DISTRIBUTIONAL INCORRECTNESS

Flow Consistency in Subgraphs (FCS). The basic principle of FCS is to estimate the discrepancy
between ratios of probabilities (Hyvärinen, 2007) instead of measuring the divergence between the
intractable learned and target distributions. For this, we recall that the marginal distribution pT of
a GFlowNet (G, pF , pB) over the terminal states X can be computed as

pT (x) :=
∑

τ : so⇝x

pF (τ) = Eτ∼pB(·|x)

[
pF (τ)

pB(τ |x)

]
(8)

for each x ∈ X . For most benchmark tasks, e.g., hypergrid environment (Malkin et al., 2023), set
generation (Shen et al., 2023), and sequence design (Jain et al., 2022), we can exactly and tractably
compute pT . In autoregressive problems (Jain et al., 2022), for instance, there is a single trajectory τx
leading to each x ∈ X . Hence, pT (x) = pF (τx) can be directly evaluated. Similarly, for small state
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graphs, the sum in Equation 8 can be explicitly calculated by enumerating the trajectories τ finishing
at x. When exact computation of pT is unfeasible, a Monte Carlo estimator of the expectation in
Equation 8 offers an accurate approximation. In this case, FCS consists of comparing restrictions of
pT (x) and R(x) to random subsets of X . We formalize this procedure in the definition below.

Definition 1 (Flow Consistency in Sub-graphs). Let PS be a positive probability distribution on
β-sized subsets of X , β ≥ 2. For each S ⊆ X , define the restrictions of pT and R to the set S as

p
(S)
T (x) =

1{x∈S}pT (x)∑
y∈S pT (y)

and R(S)(x) =
1{x∈S}R(x)∑

y∈S R(y)
for x ∈ X . (9)

We define FCS as the expected TV between p(S)
T and R(S):

FCS(pT , R) := ES∼PS
[TV(p

(S)
T , R(S))]. (10)

Clearly, FCS(pT , R) ∈ [0, 1]. Moreover, Theorem 5 shows that FCS(pT , R) = 0 only if
pT (x) ∝ R(x), asserting the conceptual correctness of our metric.

Theorem 5 (Equivalence between TV & FCS). Let PS be any full-support distribution over {S ⊆
X : #S = β} for some β ≥ 2. Also, let TV(pT , π) = 1/2

∑
x∈X |pT (x)− π(x)| be the TV distance

between pT and π := R/Z, Z =
∑

x∈X R(x). Then, TV(pT , π) = 0 if and only if FCS(pT , R) = 0.

Notably, β interpolates FCS between a ratio-matching-like metric (Hyvärinen, 2007) (β = 2) and the
TV distance (β=#X ). Here, we set β as the size of the batch of trajectories used in training. In this
respect, Corollary 1 clarifies the role of β in FCS in terms of its proximity to the TV distance.

Corollary 1 (Role of β in FCS). Let PS(S;β) = 1{#S=β}
(
n−1
β−1

)−1∑
x∈S pT (x) be a distribution

over β-sized subsets of X . Also, let pT (S) =
∑

x∈S pT (x), and define π(S) similarly. Then,∣∣∣TV (pT , π)− ES∼PS(·;β)
[
TV

(
p
(S)
T , R(S)

)]∣∣∣ ≤ 1

2
· #X
β
· max
S⊆X , #S=β

|pT (S)− π(S)|. (11)

An implementation of FCS. First, we emphasize that FCS can be easily extended to accommodate
variably sized subsets of X . To see this, let PS be any positive distribution in {S ⊆ X : #S ≤ β} and
note ES∼PS

[TV (p
(S)
T , R(S))] = 0 only if FCS(pT , R) := ES∼PS(·|#S=β)[TV (p

(S)
T , R(S))] = 0. In

this context, our implementation of FCS defines PS as the distribution over at-most-β-sized subsets of
X corresponding to the terminal states of a batch of trajectories sampled from a fixed policy.

PAC statistical guarantees for FCS. From a statistical viewpoint, FCS approximates the distribu-
tional accuracy of a GFlowNet by probing the model on a relatively small fraction of the state graph.
One might wonder, under these conditions, how the empirical estimate compares to a deterministic
goodness-of-fit measure. Corollary 2 addresses this issue from a probably approximately correct
(PAC) perspective, showing that an estimate of FCS closely approximates TV when a sufficiently
large number of subsets is sampled (large m) and the model is relatively accurate (small error).

Corollary 2 (PAC bound for FCS). Let PS be as in Theorem 5. Then, for any δ ∈ (0, 1), with
probability at least 1− δ over choosing m i.i.d. β-sized subsets S1, . . . , Sm ∼ PS of X :

TV(pT , π) ≤
1

m

∑
1≤i≤m

TV
(
p
(Sm)
T , R(Sm)

)
+

#X
2β
· max
S⊆X ,#S=β

|pT (S)− π(S)|+
√

2 log 1
δ/m.

Empirical illustration. Figure 7 (left) shows that FCS closely resembles the TV distance for the tasks
of set and sequence generation. In fact, the Spearman correlation between FCS and TV for these tasks
is 0.99 and 0.90, respectively. Importantly, however, the estimation of FCS is up to three orders of
magnitude faster than the computation of the TV distance (Figure 7 (right)). Remarkably, these results
attest the usefulness of FCS as a general-purpose goodness-of-fit metric for GFlowNets.

5.2 CASE STUDY: LED- AND FL-GFLOWNETS WITH UNRESTRICTED FLOWS

LED- and FL-GFlowNets. When training GFlowNets, the learning signal is sparse; it is only
available at the end of each trajectory via the reward function. LED- (Jang et al., 2024) and FL- (Pan
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Figure 7: FCS is a computationally feasible surrogate for the TV distance. (left) FCS accurately rep-
resents TV in the considered tasks (right) while being up to three orders of magnitude faster to compute.
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Figure 8: FCS is the only metric correctly reflecting GFlowNet’s distributional accuracy. Number
of modes (columns 3-4) and average reward (columns 5-6) of the highest scoring samples found during
training do not accurately reflect GFlowNet’s goodness-of-fit, while FCS does (columns 1-2). Remark-
ably, we consider the terminally unrestricted variants of LED- and FL-GFlowNets (see Proposition 1).

et al., 2023a) GFlowNets aim at reducing this issue by reparametrizing logF (s, s′) as the residual of
a potential function ϕθ(s, s′), i.e., logF (s, s′) = ϕθ(s, s

′) + log F̃ (s, s′), and minimizing

LLED(s, s
′) =

(
log F̃ (s) + log pF (s, s

′)− log pB(s
′, s)− log F̃ (s′) + ϕθ(s, s

′)
)2

(12)

for every (s, s′). For FL-GFlowNet, ϕθ(s, s′) = ξ(s′)−ξ(s) is fixed as the gap between hand-crafted
energy functions satisfying ξ(x) = − logR(x) for x ∈ X and ξ(so) = 0 (Pan et al., 2023a, Eq. (5)).
For LED-GFlowNet, ϕθ(s, s′) is learned. Readers may consult Appendix C for further details.

LED- and FL-GFlowNets with unrestricted flows. Our findings below reveal that, even when
the terminal flows F (x) for x ∈ X are not constrained to equal R(x), both LED- and FL-GFlowNets
greatly outperform a standard GFlowNet according to conventional metrics. As we show both theoret-
ically (Proposition 1) and empirically (Figure 8), however, constraining F (x) to R(x) is necessary to
ensure GFlowNet’s sampling correctness even under w.r.t.like parameterization. Importantly, we have
significant reasons to believe that an unrestricted F (x) was a part of some experiments in the original
works of Pan et al. (2023a) and Jang et al. (2024) (see Section E.3), a fact that strengthens the need
for a standard, easy-to-compute, and sound metric for GFlowNet assessment, such as FCS.

Proposition 1 (Unpredictability of GFlowNets with unrestricted terminal flows). Consider an FL- or
LED-GFlowNet achieving LLED(s, s

′) = 0 for all transitions (s, s′) and trajectories τ . Then, the
learned marginal distribution over X satisfies pT (x) ∝ R(x)F̃ (x) for every x ∈ X .

We refer to GFlowNets trained without enforcing F (x)=R(x) as terminally unrestricted (TU).

Experimental setup. We empirically demonstrate that FCS is the only metric able to represent
GFlowNet’s accuracy when compared to three popular alternatives for assessing these models:
number of modes, average reward of top-scoring samples, and Shen’s accuracy (see Equation 2;
Shen et al., 2023). For this, we consider the standard tasks of set and bag (multiset) generation, also
featured in Jang et al. (2024)’s experimental campaign, and design of DNA sequences bindable with a
yeast PHO4 transcription factor. For the latter, we omit results for the FL-GFlowNet due to the lack of
a clear candidate for ξ; results are presented in Figure 13. Appendix E contains further details.

Results. There are three main takeaways from Figure 8 and Table 2. First, our baseline model
(TB-GFlowNet) accurately learns to sample from the target distribution (Figure 8, left), whereas
the (terminally unrestricted) LED- and FL-GFlowNets variants do not. Second, both LED- and FL-
GFlowNets find a significantly more valuable portion of the state space than their standard counterpart
during training (Figure 8, middle, right), but fail to sample correctly. The large variance of the reported
results is a consequence of the lack of a unique stationary solution to the models’ respective learning
objectives, as stated in Proposition 1, and was also observed by Pan et al. (2023a, Figure 2). Third,
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Shen’s accuracy is not an appropriate proxy for goodness-of-fit. All in all, our experiments show
that usual metrics should be used carefully when comparing the convergence speed of GFlowNets.

Table 2: Shen et al. (2023)’s accuracy metric in-
correctly assigns perfect score to the provably un-
sound TU-FL and TU-LED GFlowNet’s variants.

LED FL TB

Sets 100.00±0.00 100.00±0.00 93.74±0.98

Bags 100.00±0.00 100.00±0.00 81.38±6.86

PHO4 100.00±0.00 NA 96.98±0.77

In contrast to conventional wisdom in the liter-
ature, these quantities do not directly measure
a GFlowNet’s closeness to a global minimizer
of its learning objective. In view of this, our
analyses highlight the importance of having
a theoretically sound and computationally
amenable metric for assessing GFlowNets to
drive progress in the field. Strikingly, FCS is
— as far as we know — the only alternative
satisfying both of these constraints.

6 CONCLUSIONS, LIMITATIONS, AND BROADER IMPACT

Conclusions. The learning objective of GFlowNets is to find a balanced flow assignment in a flow
network. As such, the inaccuracies of a trained model are a consequence of violations to the posited
balance conditions. In this work, we first argued that the impact of an imbalanced node on the
GFlowNet’s distributional correctness is heterogeneously distributed across the flow network. As
a consequence, we extended the DB loss by non-uniformly weighting the transition-wise terms to
account for this heterogeneity, which was shown to be effective in practice. For graph-structured
generative tasks, we proved that these violations to the balance might be associated to the limited
expressiveness of the GNN that parameterizes the policy network, which limits the range of
distributions that a GFlowNet can sample from. To mitigate this issue, we introduced LA-GFlowNets
to boost the expressive power of GNN-based GFlowNets by incorporating the embeddings of the
children of a state into the policy network. Finally, we proposed FCS as a computationally amenable
metric for probing the goodness-of-fit of GFlowNets to its target distribution when the learned flow
assignment is potentially imbalanced. Notably, our experiments demonstrated that FCS is a better
proxy to the GFlowNet’s distributional accuracy than conventional diagnostic methods.

Limitations. Although our empirical analysis comprehends standard benchmark problems in the
GFlowNet literature and is on par with other works in terms of the variety of generative tasks, it
does not consider specialized applications such as molecule generation (Pandey et al., 2024) and
natural language processing (Hu et al., 2023). Additionally, our weighting scheme for the WDB
learning objective was heuristically derived. Albeit effective, it could likely be improved by taking
into account desirable properties of a loss function, e.g., low gradient variance (Richter et al., 2020;
Malkin et al., 2023). Lastly, we established results concerning the capabilities and limitations
of 1-WL GNN-based GFlowNets due to their widespread use in practice (Kipf & Welling, 2017;
Veličković et al., 2018; Xu et al., 2019; Corso et al., 2024). However, extending this analysis to more
expressive (e.g., higher-order) GNNs is a promising direction (Morris et al., 2021).

Broader impact. In conclusion, we believe our work paves the road for many advancements in the
GFlowNet literature. Firstly, the development of more effective weighting schemes for the DB objec-
tive in Section 3 may speed up GFlowNet training. Similarly, the limited expressivity of GNN-based
GFlowNets laid out in Section 4 is a cautionary tale for using equivariant neural networks when param-
eterizing the model’s policies and may be a useful tool for explaining the difficulty in approximating
certain distributions, as well as developing more expressive models. Last but not least, we expect FCS
to greatly impact the assessment of GFlowNets and the validation of novel learning objectives.
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A RELATED WORKS

GFlowNets. Generative Flow Networks (GFlowNets) (Bengio et al., 2021; 2023; Lahlou, 2023) were
proposed as an alternative to Monte Carlo Tree Search (Buesing et al., 2020) in DAG-structured envi-
ronments. Presently, GFlowNets have been successfully applied with remarkable success in difficult
problems such as causal discovery (Deleu et al., 2022; 2023; da Silva et al., 2023), molecule discovery
(Bengio et al., 2021; Nica et al., 2022; Atanackovic & Bengio, 2024; Pandey et al., 2024), text infilling
(Hu et al., 2023; Venkatraman et al., 2024), phylogenetic inference (Zhou et al., 2024), and combinato-
rial optimization (Zhang et al., 2023b;c). Similarly, a large effort has been devoted to the development
of easier-to-minimize learning objectives with enhanced credit assignment (Bengio et al., 2023;
Malkin et al., 2022; Madan et al., 2022; Pan et al., 2023b; Tiapkin et al., 2024) and better exploratory
policies (Pan et al., 2023a; Vemgal et al., 2023; Rector-Brooks et al., 2023; Lau et al., 2023; 2024;
Jang et al., 2024; Kim et al., 2024). In our work, we considered both the trajectory balance,

LTB(pF , pB , F ) = Eτ

[(
log

F (so)pF (τ)

pB(τ |x)R(x)

)2
]
, (13)

and the subtrajectory balance (τi denotes the ith state of τ and #τ+1, the number of states in τ ),

LSubTB(pF , pB , F ) = Eτ

 ∑
1≤i<j≤#τ+1

λj−i∑
1≤s<t≤#τ+1 λ

t−s

(
log

F (τi)pF (τi:j |τi)
pB(τi:j |τj)F (τj)

)2
 , (14)

which are the most popular loss functions for training GFlowNets. Nonetheless, the problems of identi-
fying the failure modes and soundly assessing the accuracy of GFlowNets have received far less atten-
tion from the literature, with Shen et al. (2023)’s work being the most closely related to ours.

Expressiveness of GNNs. Graph neural networks (GNNs) are the leading approach for representation
and predictive learning on graph-structured data (Kipf & Welling, 2017; Veličković et al., 2018;
Hamilton et al., 2018; Xu et al., 2019; Corso et al., 2024). Despite their outstanding performance,
unveiling the limitations of GNNs remains an active line of research. Notably, most works focus on
the design of additional structural features of the graph to enhance the expressive power of the GNN
(Srinivasan & Ribeiro, 2020; Souza et al., 2022; Zhang et al., 2023a; Wang et al., 2023; Graziani
et al., 2024). Usually, these features add a non-negligible cost to the evaluation of the GNN and,
similarly to the proposed LA-GFlowNets, there is a trade-off between computational complexity and
expressivity (Morris et al., 2021). We refer the reader to the work of Papp & Wattenhofer (2022) for
a comparison between GNN extensions in terms of their expressive power.

B MESSAGE-PASSING GNNS AND THE 1-WL TEST

Here, we denote a graph as a tuple G = (V,E), where V = {1, 2, . . . , n} is the set of nodes and
E ⊆ V × V is the set of edges. More specifically, we consider attributed graphs — i.e., each node
v ∈ V has associated features xv ∈ Rd. Also, we denote the set of neighbors of a node v in the graph
as Nv = {u : (u, v) ∈ E}.
1-WL test. The Weisfeiler-Lehman isomorphism test (Weisfeiler & Lehman, 1968) assigns colors for
all nodes in an attributed input graph G by applying the following iterative procedure:

Initialization: The colors of all nodes in G are initialized using the initial node features: ∀v ∈
V, c0(v) = xv . If node features are not available, all nodes receive identical colors;

Refinement: At step ℓ, the colors of all nodes are refined using a hash (injective) function: for all
v ∈ V , we apply cℓ+1(v) = HASH(cℓ(v), {{cℓ(u) : (u, v) ∈ E}});

Termination: The test is carried out for two graphs in parallel and stops when the multisets of
corresponding colors diverge, returning non-isomorphic. If the algorithm runs until the
number of different colors stops increasing, the test is deemed inconclusive.

Message-passing GNNs. Most popular GNNs can be described using the message-passing
paradigm (Gilmer et al., 2017). Within this framework, a GNN initializes each node’s embedding
with its original features, i.e., h(0)v = xv for all node v ∈ V . Then, at each layer ℓ, each node v gathers
messages from its neighbors u ∈ Nv , compiling them into an aggregated message m(ℓ)

v :

m(ℓ)
v = AGGREGATEℓ

(
{{h(ℓ−1)

u : u ∈ Nv}}
)
,
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where AGGREGATEℓ is an arbitrary function on multisets, i.e., it is order-invariant. Subsequently,
each node uses the (so-called) UPDATE function (e.g., a feedforward neural network) to refresh its
embedding in light of the aggregated message:

h(ℓ)v = UPDATEℓ

(
m(ℓ)

v , h(ℓ−1)
v

)
.

When both the AGGREGATE and UPDATE functions incur no loss of information (i.e., they are
injective), the message-passing procedure coincides with the refinement step from the 1-WL test (Xu
et al., 2019). In this case, the GNN attains the same power of the 1-WL isomorphism test. Conversely,
the 1-WL serves as an upper-bound on the expressive power of message-passing GNNs.

C FORWARD-LOOKING- AND LED-GFLOWNETS

As mentioned earlier, both the forward-looking (FL-) and Learning Energy Decompositions (LED-)
GFlowNets are built upon the principle of enhancing credit assignment via reparamaterizing the
flow function F as a logarithmic residual of a (either hand-crafted or learned) basic potential
function ϕ, i.e., logF (s, s′) = log ϕ(s, s′) + log F̃ (s, s′), and F̃ (s, s′) = F̃ (s)pF (s

′|s) in the usual
policy-based parameterization. Under this novel perspective, the DB loss becomes

LDB(pF , pB , F ) = Eτ

 1

#τ

∑
(s,s′)∈τ

(
ϕ(s, s′) + log

F̃ (s)pF (s
′|s)

F̃ (s′)pB(s|s′)

)2
 , (15)

with the constraint that
∑

(s,s′)∈τ ϕ(s, s
′) = logR(x), in which x is the unique terminal state

in the trajectory τ . Recall that, for FL-GFlowNets, ϕ(s, s′) = ξ(s′) − ξ(s) for a hand-crafted
energy function ξ such that ξ(so) = 0 and ξ(x) = logR(x) (Pan et al., 2023a, Assumption 1). For
LED-GFlowNets, ϕ(s, s′) is parameterized as an neural network taking as input a concatenation of
the vectorial representations of s and s′. The parameters of ϕ are then learned by minimizing

LLS(τ) = E(ms,s′ )(s,s′)∈τ∼Bernoulli(1−γ)


 1

#τ
ξ(x)− 1

C

∑
(s,s′)∈τ

ms,s′ϕθ(s, s
′)

2
 , (16)

in which {ms,s′}(s,s′) is a Dropout mask and C =
∑

(s,s′)∈τ ms,s′ is the number of unmaked
transitions. During training, we interleave gradient-based updates of the potential function ϕ and
(pF , pB , F ) until a chosen stopping criterion (e.g., maximum number of epochs) is satisfied.

D PROOFS

This section contains self-contained and rigorous proofs for our theoretical results.

D.1 PROOF OF REMARK 1
The terminal states of the modified flow network will have two types of nodes, with flow F

gh and
F
gh + δi, with δi ≥ 0 and

∑gh−1

i=1 δi = δ. We normalize those probabilities to obtain the individual
probabilities for each terminal state, which determines the density of each sample. From that, we can
proceed to compute the total variation distance between p̃T and π.

∥p̃T − π∥TV =
1

2

∑
x∈X
|p̃T (x)− π(x)|

=
1

2

(gh − gh−1)

∣∣∣∣ Fgh 1

F + δ
− 1

gh

∣∣∣∣+ gh−1∑
i=1

∣∣∣∣F + ghδi
gh

1

F + δ
− 1

gh

∣∣∣∣


=
1

2

[
ghδ − gh−1δ +

∑gh−1

i=1 |ghδi − δ|
gh(F + δ)

]
.

We can lower bound
∑gh−1

i=1 |ghδi− δ|, by considering that
∑gh−1

i=1 (ghδi− δ) = ghδ− gh−1δ, taking

the absolute value of the result and each element of the sum to obtain ghδ−gh−1δ ≤∑gh−1

i=1 |ghδi−δ|.
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Thus we obtain the lower bound

1

2

[
ghδ − gh−1δ + ghδ − gh−1δ

gh(F + δ)

]
≤ 1

2

[
ghδ − gh−1δ +

∑gh−1

i=1 |ghδi − δ|
gh(F + δ)

]
(
1− 1

g

)
δ

F + δ
≤ ||p̃T − π||TV .

This lower bound is reached when all error terms in the terminal states have the same value δi =
δ
gh .

To upper bound |ghδi − δ| we apply the triangle inequality, obtaining |ghδi − δ| ≤ ghδi + δ and∑gh−1

i=1 |ghδi − δ| ≤ ghδ + gh−1δ, from which we obtain the upper bound

∥p̃T − π∥TV ≤
1

2

[
ghδ − gh−1δ + ghδ + gh−1δ

gh(F + δ)

]
≤ δ

F + δ
.

To obtain a tighter bound we break the sum
∑gh−1

i=1 |ghδi − δ| by partitioning the sum into the first I

terms SA = gh
∑I

i=1 |δi− δ
gh | with δi < δ

gh and subsequent gh−1−I terms SB = gh
∑gh−1

j=I+1 |δj−
δ
gh | with δj ≥ δ

gh . By construction, we know that SA+ gh
∑I

i=1 δi+ g
h
∑gh−1

j=I+1 δj −SB = gh−1δ,
simplifying to SB − SA = δ(gh − gh−1). We rewrite SA + SB = SB − SA + 2SA = δ(gh −
gh−1) + 2SA, and by triangle inequality on SA, we obtain the upper bound

∑gh−1

i=1 |ghδi − δ| =
SA+SB ≤ ghδ−gh−1δ+2Iδ. Setting I = gh−1−1 (the biggest value it can have without breaking
the constraints on δi), it simplifies to SA + SB ≤ ghδ + gh−1δ − 2δ

∥p̃T − π∥TV ≤
1

2

[
ghδ − gh−1δ +

∑gh−1

i=1 |ghδi − δ|
gh(F + δ)

]

≤ 1

2

[
ghδ − gh−1δ + ghδ + gh−1δ − 2δ

gh(F + δ)

]
≤
[
ghδ − δ
gh(F + δ)

]
≤
(
1− 1

gh

)
δ

F + δ
.

D.2 PROOF OF THEOREM 1
To demonstrate this result, we will need the following facts regarding the function f(x) : x ∈ Rn 7→∑n

i=1 |xi − ai| for positive constants ai.

Lemma 1 (Convexity). Let ∆n+1 = {x ∈ Rn : xi ≥ 0 ∧∑n
i=1 xi = 1} and a ∈ Rn. Then,

f : ∆n+1 → R defined by f(x) =
∑n

i=1 |xi − ai| is convex.

Proof. It follows from f(αx+(1−α)y) =∑n
i=1 |αxi−αai+(1−α)yi−(1−α)ai| ≤ α

∑n
i=1 |xi−

ai|+ (1− α)∑n
i=1 |yi − ai| = αf(x) + (1− α)f(y) for any α ∈ [0, 1] and x, y ∈ ∆n+1.

Lemma 2 (Maximality at edges). Let ei ∈ Rn satisfy eij = 0 for j ̸= i and eii = 1. Then, the
function f from Lemma 1 achieves its maximum at argmax1≤i≤n f(ei).

Proof. We will show that, for each x ∈ ∆n+1, there is a i for which f(ei) ≥ f(x). In particular, f is
maximized at one of the ei’s. For this, note that

f(x) = f

(
n∑

i=1

xiei

)
≤

n∑
i=1

xif(ei) ≤ max
1≤i≤n

f(ei) (17)
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due to the convexity of f . Thus, f is upper bounded by max1≤i≤n f(ei). Conversely, there is a ei
for which this upper bound is attained. Hence, argmaxx f(x) ⊇ argmax1≤i≤n f(ei).

Lemma 3 (Minimality). Let f be the function of Lemma 1 and assume that a ≥ 0 and
∑n

i=1 ai ≤ 1.
Then, f is minimized by 1−∑n

i=1 ai.

Proof. Choose a j ∈ {1, . . . , n} arbitrarily. Since xj = 1−∑n
i=1,i̸=j xi,

n∑
i=1

|xi − ai| =
n∑

i=1,i̸=j

|ai − xi|+

∣∣∣∣∣∣aj − 1 +

n∑
i=1,i̸=j

xi

∣∣∣∣∣∣ ≥
∣∣∣∣∣

n∑
i=1

ai − 1

∣∣∣∣∣ . (18)

Correspondingly, the lower bound in Equation 18 is achieved when xi = ai for i ̸= j and xj =
1−∑n

i=1,i̸=j ai ≥ 0. This ensures that f is minimized by 1−∑n
i=1 ai.

In words, Lemma 1 and Lemma 2 ensure that the TV distance between finitely supported distributions
is convex and attains its maximum at a Dirac delta.

Proof of Theorem 1. Initially, let δx be the amount of extra flow reaching x ∈ X and define βx = δx/δ.
Then,

∥pT − π̃∥TV =
1

2

∑
x∈X
|pT (x)−π(x)| =

1

2

∑
x∈Ds⋆

|pT (x)−π(x)|+
1

2

∑
x∈Dc

s⋆

|pT (x)−π(x)|. (19)

Since pT (x) = π̃(x)+δx/F+δ for x ∈ Ds⋆ and pT (x) = π̃(x)/F+δ for x ∈ Dc
s⋆ ,∑

x∈Dc
s⋆

|pT (x)− π(x)| =
δ

F + δ

∑
x∈Dc

s⋆

π(x). (20)

On the other hand,∑
x∈Ds⋆

|pT (x)− π(x)| =
∑

x∈Ds⋆

∣∣∣∣ π̃(x) + δx
F + δ

− π̃(x)

F

∣∣∣∣ = δ

F + δ

∑
x∈Ds⋆

∣∣∣∣βx − π̃(x)

F

∣∣∣∣ . (21)

By Lemma 2, the function f : β 7→∑
x∈Ds⋆

|βx − π(x)| is maximized at

max
y∈Ds⋆

f(ey) = max
y∈Ds⋆

∑
x∈Ds⋆

|exy − π(x)|

= max
y∈Ds⋆

 ∑
x∈Ds⋆ ,x ̸=y

π(x)

+ (1− π(y))

= 1 +
∑

x∈Ds⋆

π(x)− 2 min
y∈Ds⋆

π(y).

(22)

Similarly, Lemma 3 ensures that

min
β∈∆#Ds⋆+1

f(β) = 1−
∑

x∈Ds⋆

π(x). (23)

Thus, since
∑

x∈Ds⋆
π(x) = 1−∑x∈Dc

s⋆
π(x),

δ

F + δ

1−
∑

x∈Ds⋆

π(x)

 ≤ ∥pT − π∥TV ≤
δ

F + δ

(
1− min

y∈Ds⋆

π(y)

)
. (24)
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D.3 PROOF OF THEOREM 2

As stepping stones towards proving Theorem 2, we first lay down Lemma 4 and Lemma 5.

Lemma 4. Let G = (V,E) and G′ = (V ′, E′) be two non-isomorphic trees of size at most n. Let
ϕ be the node embedding map of a 1-WL GNN with at least 2n− 1 layers. Then, ϕv ̸= ϕv′ for all
v ∈ V and v′ ∈ V ′.

Proof. Recall 1-WL GNNs can distinguish any pair of non-isomorphic trees. Let Tn and T ′
n denote

the sets of computation trees (CTs) for each node in G and G′ after n layers, respectively. Likewise,
let T2n−1 and T ′

2n−1 denote the sets of CTs after 2n+1 layers. Since both graphs are non-isomorphic,
1-WL has already converged with n steps — the maximum diameter of a tree is n− 1. Without loss
of generality, Tn−T ′

n ̸= ∅, i.e., there is at least one CT in Tn that is not isomorphic to any tree in T ′
n.

The same holds for 2n− 1 layers, i.e., T2n−1 − T ′
2n−1 ̸= ∅. Note that a CT Tn ∈ Tn − T ′

n is also a
subtree of any T2n−1 ∈ T2n−1. Since Tn /∈ T ′

n, Tn is not a subtree of any CT in T ′
2n−1 — otherwise

it would be in T ′
n too. In other words, T2n−1 ∩ T ′

2n−1 = ∅, implying directly our claim.

Lemma 5. Let G = (V,E) and G′ = (V ′, E′) be any two trees of size at most n, i.e., |V | and
|V ′| ≤ n. Also, let I = (U, ∅) and I ′ = (U ′, ∅) be graphs comprising isolated nodes, and ϕ be
the node embedding map of a 1-WL GNN with at least 2n − 1 layers. If {ϕv, ϕu} = {ϕv′ , ϕu′}
for any (v, u) ∈ V × U and (v′, u′) ∈ V ′ × U ′, then the trees (V ∪ {u}, E ∪ {(v, u)}) and
(V ′ ∪ {u′}, E′ ∪ {(v′, u′)}) are isomorphic.

Proof. If {ϕv, ϕu} = {ϕv′ , ϕu′}, then we either have that i) ϕv = ϕv′ and ϕu = ϕu′ or ii) ϕv = ϕu′

and ϕv′ = ϕu. In the first case, we can apply Lemma 4 to conclude that G ∼= G′ (with associated
bijection g1). Since ϕu = ϕu′ , we know that xu = xu′ and the corresponding singleton graphs
are trivially isomorphic as well (with bijection g2). Finally, we can build a bijection g between the
vertices of the merged graphs by making g(v) = g1(v) if v ∈ V and g(u) = g2(u) = u′. For the
second case, Lemma 4 implies G and G′ are singletons with xu = xv′ and xv = xu′ . The result
is a totally disconnected graph, except for an edge linking nodes with identical features in both
graphs.

Armed with the previous lemmata, Theorem 2 is straightforward assuming GNN depth 2n − 1.
From Lemma 5, we know that the action embeddings for any two nodes have an empty intersection.
Likewise, two actions have the same embedding only if they leave from the same state and arrive at the
same state. Therefore, all edges in the SG receive different embeddings. Recall that GNN embeddings
are fed to MLP layers, which are universal approximators given enough width. Therefore, a 1-WL
GNN followed by MLP can approximate any policy forward pF . The same applies to the backward
policy pB . We can use the same combination to get state embeddings, which allow approximating any
node flow function F . Therefore, we can choose the triplet (pF , pB , F ) respecting the DB conditions,
for instance.

D.4 PROOF OF THEOREM 3

Assume there is a 1-WL GFlowNet sampling from π. Since G is tree-structured, the mass arriving at
T (s1) ∪ T (s2) must arrive through s — i.e., all paths from s0 to some x ∈ T (s1) ∪ T (s2) traverse
s. Furthermore, there is no directed path from s′ to any terminal in T (s′′) or vice-versa, otherwise
the skeleton (i.e., undirected structure) of G would contain a cycle. Then, F (s, s′) =

∑
x∈T (s′)R(x)

and F (s, s′) =
∑

x∈T (s′)R(x), implying F (s, s′) ̸= F (s, s′′).

D.5 PROOF OF THEOREM 4

Since child embeddings are included as additional inputs to LA-GFlowNets, it follows directly
that LA-GFlowNets are at least as expressive as 1-WL GFlowNets. We are left with showing the
converse does not hold. In Figure 5, we provide a construction for which 1-WL GFlowNets fail but
LA-GFlowNets do not.
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D.6 PROOF OF THEOREM 5
Firstly, let S = {x1, . . . , xB} ⊆ X and

e(S) =
1

2

∑
x∈S

∣∣∣∣ pT (x)pT (S)
− R(x)

R(S)

∣∣∣∣ , (25)

in which pT (S) =
∑

x∈S pT (x) and R(S) =
∑

x∈S R(x), as the TV distance between the restric-
tions of pT and R to S. For conciseness, we write p(S)

T (x) = pT (x)/pT (S) and π(S)(x) = R(x)/R(S).
We also denote by π(x) = R(x)/R(X ) the normalized reward in X . Similarly, we define
e(p) = ES∼p[e(S)]. Then, we first show that e(p) = 0 when TV(pT , π) = 0. For this, note that
TV(pT , π) = 0 implies pT (x) = π(x) for every x and hence pT (S) = π(S) ∀S ⊆ X . Thus,

e(p) := ES∼p

[
1

2

∑
x∈S

|p(S)
T (x)− π(S)(x)|

]
= 0. (26)

On the other hand, assume that e(p) = 0. Recall that p is a distribution of full support over
{S ⊆ X : |S| = B} and that B ≥ 2. In particular, e(p) ensures that

e(S, θ) :=
1

2

∑
x∈S

∣∣∣∣ pT (x)pT (S)
− π(x)

π(S)

∣∣∣∣ = 0. (27)

Hence, pT (S)π(x) = π(S)pT (x) for each S and x ∈ S. Write then S = S′ ∪ {x} and conclude
that pT (S′)π(x) = π(S′)pT (x) for every S′ and x /∈ S′. Thus, by summing both members of this
equality across x′ /∈ S′, we notice that

pT (S
′)(1− π(S′)) = π(S′)(1− pT (S′)), (28)

i.e., pT (S′) = π(S′). Thus, by iterating this procedure, we conclude that pT (x) = π(x) for
all S′ and x /∈ S′. Since S′ and x were chosen arbitrarily, pT (x) = π(x) for every x ∈ X .
Consequently, TV(pT , π) = 0. This ensures the equivalence between e(p) and TV(pT , π) in terms
of characterizing the GFlowNet’s distributional correctness.

D.7 PROOF OF COROLLARY 1
Recall the definition of e(S) in Equation 25. We start demonstrating that PS(·;β) is indeed a
probability distribution. Clearly, PT (S;β) ≥ 0 for every S ⊆ X . On the other hand,∑

S⊆X
PS(S;β) =

∑
S⊆X ,#S=β

(
n− 1

β − 1

)−1∑
x∈S

pT (x)︸ ︷︷ ︸
pT (S)

=
∑

S⊆X ,#S=β

(
n− 1

β − 1

)−1

pT (S)

=
∑
x∈X

(
n− 1

β − 1

)−1(
n− 1

β − 1

)
pT (x) = 1,

(29)

since each pT (x) appears exactly
(
n−1
β−1

)
times on the sum above. Hence, PS(·;β) is a probability

distribution. As for the rest, let ê = ES∼p[e(S)], #X = n, Pβ = {S ⊆ X : #S = β}, and
∆ = n

2β maxS∈Pβ
|pT (S)− π(S)|. We will first show that

TV(pT , π)− ê ≤ ∆. (30)

Then, we will verify that TV(pT , π)− ê ≥ −∆. These inequalities will jointly imply Corollary 1. In
this scenario, note there are

(
n−1
β−1

)
subsets of X with β elements containing a x ∈ X . Thus,

TV(pT , π) =
1

2

∑
S∈Pβ

∑
x∈S

(
n− 1

β − 1

)−1

|pT (x)− π(x)|. (31)
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For conciseness, define dTV = TV(pT , π). Hence,

dTV − ê =
1

2

∑
S∈Pβ

∑
x∈S

(
n− 1

β − 1

)−1

|pT (x)− π(x)| − PS(S)

∣∣∣∣ pT (x)pT (S)
− π(x)

π(S)

∣∣∣∣
≤ 1

2

∑
S∈Pβ

∑
x∈S

(
n− 1

β − 1

)−1(∣∣∣∣pT (x)− pT (S)

π(S)
π(x)

∣∣∣∣+ π(x)

∣∣∣∣1− pT (S)

π(S)

∣∣∣∣)

− PS(S)

pT (S)

∣∣∣∣pT (x)− π(S)

pT (S)
π(x)

∣∣∣∣
=

1

2

∑
S∈Pβ

∑
x∈S

(
n− 1

β − 1

)−1

π(x)

∣∣∣∣1− pT (S)

π(S)

∣∣∣∣
=

1

2

(
n− 1

β − 1

)−1 ∑
S∈Pβ

|pT (S)− π(S)|

≤ 1

2

(
n− 1

β − 1

)−1(
n

β

)
max
S∈Pβ

|pT (S)− π(S)| =
n

2β
∆

(32)

since PS(S)/pT (S) =
(
n−1
β−1

)−1
and there are

(
n
β

)
β-sized subsets of X . For the reverse inequality,

notice that

dTV − ê =
1

2

∑
S∈Pβ

∑
x∈S

(
n− 1

β − 1

)−1

|pT (x)− π(x)| − PS(S)

∣∣∣∣ pT (x)pT (S)
− π(x)

π(S)

∣∣∣∣
≥ 1

2

∑
S∈Pβ

∑
x∈S

(
n− 1

β − 1

)−1

|pT (x)− π(x)|

− PS(S)

(∣∣∣∣ pT (x)pT (S)
− π(x)

pT (S)

∣∣∣∣+ ∣∣∣∣ π(x)pT (S)
− π(x)

π(S)

∣∣∣∣)
= −1

2

∑
S∈Pβ

(
n− 1

β − 1

)−1

pT (S)
∑
x∈S

π(x)

∣∣∣∣ 1

pT (S)
− 1

π(S)

∣∣∣∣
= −1

2

(
n− 1

β − 1

)−1 ∑
S∈Pβ

|pT (S)− π(S)| ≥ −
n

2β
max
S∈Pβ

|pT (S)− π(S)| .

(33)

D.8 PROOF OF COROLLARY 2
Again, recall the definition of e(S) in Equation 25. We now provide a self-contained proof of
Corollary 2, which follows from Corollary 1 and Hoeffding’s inequality Alquier (2024). Firstly, let
ê = ES∼p[e(S)] and ei = e(Si). Since ê− ei ∈ [−1, 1], Hoeffding’s inequality yields

E

exp
λ

ê− 1

m

∑
1≤i≤m

ei


 ≤ exp

{
λ2

2m

}
. (34)

Then, Chernoff’s bound implies

PS1,...,Sm

ê ≥ 1

m

∑
1≤i≤m

ei + s

 ≤ E

exp
λ

ê− 1

m

∑
1≤i≤m

ei


 e−λs ≤ exp

{
λ2

2m
− λs

}
due to Equation 34. This upper bound is minimized when λ = sm. In this case, λ2

/2m−λs = −s2m/2.
By letting s = −2 log δ/m, we verify that

PS1,...,Sm

ê ≥ 1

m

∑
1≤i≤m

ei +

√
2 log 1

δ

m

 ≤ δ. (35)
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Then, Corollary 1 and the complementary of the preceding inequality imply

PS1,...,Sm

TV(pT , π) ≤
1

m

∑
1≤i≤m

ei + max
S⊆X ,|S|=B

|pT (S)− π(S)|+

√
2 log 1

δ

m

 ≥ 1− δ. (36)

D.9 PROOF OF PROPOSITION 1
As detailed Appendix C, the global minimizer of both FL- and LED-GFlowNets’ learning objectives
satisfy

∑
(s,s′)∈τ ϕ(s, s

′) = − logR(x) for every trajectory τ . Since LLED(s, s
′) = 0,

F̃ (s) exp{ϕθ(s, s′)}pF (s, s′) = pB(s
′, s)F̃ (s′)

for every trajectory finishing at x. Therefore, for every trajectory τ ⇝ x,

pF (τ) = pB(τ |x)
F̃ (x)

F̃ (so)

∏
(s,s′)∈τ

exp{−ϕ(s, s′)}

= pB(τ |x)
F̃ (x)

F̃ (so)
exp

− ∑
(s,s′)∈τ

ϕ(s, s′)


= pB(τ |x)

F̃ (x)

F̃ (so)
R(x).

Hence,

pT (x) =
∑
τ⇝x

pF (τ) =
∑
τ⇝x

F̃ (x)R(x)

F̃ (so)
pB(τ |x) ∝ F̃ (x)R(x)

∑
τ⇝x

pB(τ |x) = F̃ (x)R(x), (37)

ensuring that the marginal distribution learned by terminally unrestricted FL- and LED-GFlowNets
does not necessarily match GFlowNet’s target distribution.
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E EXPERIMENTAL DETAILS

We provide further details regarding the experimental setup for each section below. Experiments were
run in a cluster equipped with A100 GPUs, using a single GPU per run. We also include a more exten-
sive discussion of existing empirical results and additional experiments in Section E.1 and Section E.2,
respectively. Section E.3 describes our implementation of both FL- and LED-GFlowNets and their ter-
minally unrestricted variants. All experiments relied on Adam (Kingma & Ba, 2014) with a learning
rate of 10−3 for pF and 10−2 for logZ for stochastic optimization (Madan et al., 2022).

E.1 EXPERIMENTS FOR SECTION 3
Set generation. The support X is defined as the collection of sets with 16 elements sampled from
a deposit D = {1, . . . , 32}. To define the reward function, we let f : D → R with f(d) ∼ U [0, 1]
and let logR(x) =

∑
d∈x f(d). We implemented an MLP with 2 256-dimensional hidden layers to

parameterize both the forward policy and the flow function. For the weighting function γ, we note
that #Ds′ =

(
32−|s′|
16−|s′|

)
, in which |s′| is the current state’s size.

Sequence design. The support X is defined as the collection of sequences of size up to 12 with
elements extracted from a depositD = {1, . . . , 4}. We implemented an MLP with 2 256-dimensional
hidden layers for both the forward policy and flow functions, both of which received as input a
sequence of length 12 padded with 0s. Then, the reward function of a x ∈ R8 is defined by
f : D → R and g : [[1, 12]] → R„ with f(d), g(i) ∼ U [−1, 1] for d ∈ D and i ∈ [[1, 12]], through
logR(x) =

∑
i f(xi)g(xi). For the weighting function γ, we note that #Ds′ = 1+4+ · · ·+412−|s′|

is the number of s′’s terminal descendants.

Phylogenetic inference. A phylogenetic tree is defined by a complete binary tree G with labeled
leaves corresponding to observed biological species and anonymous internal nodes corresponding
to their evolutionary ancestors. Also, we consider a set Y ∈ R32×7 of DNA sequences of size 32
associated to the 7 observed species; the likelihood of Y is defined by J&C69 (Jukes & Cantor,
1969)’s mutation model and computed by Felsenstein’s algorithm (Felsenstein, 1981), and the reward
function is the unnormalized posterior induced by an uniform prior distribution over trees. We adopt
the iterative process proposed by Zhou et al. (2024) to sample phylogenetic trees with GFlowNets,
and use a Graph Isomorphism Network (Xu et al., 2019) to parameterize pF . For the weighting
function γ, we recall that #Ds′ = (2 · (7− |s′)| − 1)!! is the number of terminal descendants of s′,
with |s′| as the amount of connected components in s′ (?).

Hypergrid. The support X is composed of the tuples (x, y) ∈ [0, 11]× [0, 11] characterizing the
12×12 2-dimensional grid. The generative process is identical to that of Bengio et al. (2021); Malkin
et al. (2022; 2023). The reward function, in particular, is defined by

R(s) = 10−3 + 0.5
∏

1≤i≤2

1{|si/11∈(0.25,0.5]} + 2
∏

1≤i≤2

1{|si/11|∈(0.3,0.4)} (38)

for a state s = (s1, s2); 1A is the indicator function of the event A. Similarly to Madan et al.
(2022), we use a batch size of 16 trajectories and train the model for 62500 epochs (106 trajectories).
We parameterize the forward policy with a MLP composed of 2 128-dimensional layers. Also,
#Ds′ = (11− s′1)(11− s′2) + 1 is the number of terminal states reachable from a state s′.

Details on the experiments for Figure 3. To further understand Theorem 1 in the context of the
training GFlowNets, we show in Figure 3 the average log-squared balance violation along trajectories
for the generative tasks considered in Section 3. As expected, the magnitude of the DB loss is mostly
dominated by early-transitions of the generative process. Also, this dominance is more notorious for
the problems of set generation and phylogenetic inference and less noticeable for the problems of se-
quence design and hypergrid navigation, consistently with the results observed in Figure 4 concerning
the improved performance of minimizing our weighted loss in Equation 6 with respect to the tradi-
tional approach. In this regard, we emphasize that the design of sequences and hypergrid navigation
are the only tasks in Figures 3 and 4 with variably sized trajectories. When training a model for these
tasks, we observe that most sampled trajectories are relatively short in the initial stages of training,
which may hamper the improvements enacted by our weighted learning objective due to the simi-
larities of the weights. Nonetheless, as we acknowledge in Section 6, a deeper understanding of the
influence of each transition to the accuracy of the GFlowNet’s sampling distribution is still required. In
any case, it is clear that the conventional uniform weighting in Equation 6 is sub-optimal. Importantly,
we also believe that the best choice for γ should be considered in a problem-by-problem basis.
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Figure 11: Average Lγ
WDB(s, s

′) := γ(s, s′) (log(F (s)pF (s, s′)− log(F (s′)pB(s, s′)))
2 on ran-

dom trajectories during training. Results are averaged across 5 runs. In contrast to Figure 3, we ob-
serve that γ has a skewing-then-smoothing effect, i.e., it initially assigns large weights to terminal states
(where the training signal, R, is received), then equalizes the weights across transitions. This is notice-
able for the Phylogenetics and Set tasks, which are the ones in which Lγ

WDB performs the best.

E.2 EXPERIMENTS FOR SECTION 4
L P R

L P R

Figure 9: Examples of tuples (Li, Pi, Ri).
Added edges and their nodes are highlighted.

Setup for Figure 6. This experiment is built upon
simple 3-state SGs with the form L ← P → R, in
which P is a 3-regular graph of 8 nodes and L and R
are P ’s non-isomorphic children obtained by the ad-
dition of a single edge. In particular, we choose four
different tuples (Li, Pi, Ri) for the four plots of Fig-
ure 6. See Figure 9 for an illustration of 2 of the im-
plemented SGs. To parameterize the policies of both
LA- and the standard GFlowNets, we use a 3-layer
GIN (Xu et al., 2019) having 32-dimensional layer, followed by an MLP of 2 32-dimensional layers.
For LA-GFlowNet, the MLP’s input size is twice as large as the one for the standard model.
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Figure 10: Training times.

Runtime analysis for LA-GFlowNets. From a theoretical standpoint,
the time-complexity of a LA-GFlowNet grows linearly with the
maximum number C of children of a state in the state graph. In
contrast, the cost of a conventional GFlowNet implementation is
constant with respect to C. Please see Figure 10 for a comparison
between the training times of LA-GFlowNet, a standard GFlowNet
(trained by minimizing TB), and a GFlowNet trained via the flow
matching objective (FM) — see (Bengio et al., 2021, Equation 11) —
for the set generation task with the same hyperparameters described
in Section E.1. We report the average running time for 16 epochs
averaged across 5 seeds. Investigating whether an equivalent boost in
expressivity can be achieved at a lower complexity is a promising future direction.

E.3 EXPERIMENTS FOR SECTION 5

FL- and LED-GFlowNets. We followed the experimental setup of Pan et al. (2023a) and Jang
et al. (2024) when implementing both FL- and LED-GFlowNets. To avoid implementation bias,
we reproduced our experiments using Pan et al. (2023a)’s publicly released code1 and obtained
similar results. In particular, both pF and ϕ were parameterized with MLPs. For LED-GFlowNet, we
carried out 8 stochastic gradient steps for learning ϕ for each epoch during training. For the standard
GFlowNet trained by minimizing the TB loss, we followed Malkin et al. (2022)’s instructions.

We privately exchanged emails with the main author of LED-GFlowNets (Jang et al., 2024) regarding
whether their implementations enforced F (x) = R(x) or not. Importantly, he told us he verified their
experiments and that their code for the set environment indeed did not enforce F (x) = R(x), thereby
implementing the terminally unrestricted GFlowNet variant described in Proposition 1, but explained
to us his remaining experiments were correct. He also told us that the base code for his experiments
on the set environment was borrowed from Pan et al. (2023a)’s work.

1Available online at github.com/ling-pan/FL-GFN.
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Figure 12: Illustration of the effect of γ on the learning convergence of GFlowNet. We introduce
two novel weighting functions: γ1 and γ2. On the one hand, γ1 weights each transition in inverse
proportion to the square root of its number of descendants #Ds′ and, as expected, produces a behavior
similar to that of the originally proposed γ. On the other hand, γ2 — which is the inverse of γ —
significantly hampers the learning convergence of the trained GFlowNet.
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Figure 13: Complement to Figure 8 for the PHO4 task (Shen et al., 2023, Section 7). Again, FCS is
the only metric that properly reflects the GFlowNet’s distributional accuracy. Indeed, despite quickly
covering the high-probability regions of the target (mid and right panels), TU-LED-GFlowNet fails
to learn the right distribution (left panel). Results are averaged over three runs.

Set generation. The experimental setup is identical to the one described at Section 3. To compute
Shen et al. (2023)’s accuracy, we pre-computed the average of R(x) under the target distribution
by extensively enumerating the SG’s terminal states. For FCS, we randomly sampled 32 batches of
terminal states of size up to 128 for the Monte Carlo estimator.

Bag generation. The experimental setup is mostly the same we used for set generation. However,
due to the space of bags being significantly larger than the space of sets, we fix D = {1, . . . , 16} and
generate 8-sized multisets with elements in D.

E.4 ADDITIONAL EXPERIMENTS

Transition-wise losses for Lγ
WDB. Figure 11 shows the averages of Lγ

WDB(s, s
′) as a function of

the transition (s, s′)’s depth along randomly sampled trajectories. We note that, while the standard
DB loss is mostly dominated by earlier states on the initial training stages (see Figure 3), Lγ

WDB is
governed by near-terminal transitions. Hence, the primary training signal, which corresponds to the
reward of terminal states, receives a larger weight during the optimization process. On the other hand,
as training progresses, the loss variability within a trajectory decreases, guiding the GFlowNet to learn
a balanced flow across the entire state graph — essential for accurate distributional approximation
(Theorem 1).

Additional weighting schemes for Lγ
WDB. In the light of Figure 3, Theorem 1, and of the above

analysis, we deduce that an effective weighting function γ should prioritize near-terminal transitions.
Figure 11 validates this intuition on the tasks of set generation and sequence design (see Figure 4) by
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showing that, when γ is a strictly increasing function of the transition’s depth, the resulting Lγ
WDB

performs competitively with or better than the standard DB loss. In practice, these results can guide
the design of an appropriate weighting function. However, a principled approach for optimally
constructing γ remains open, being an important venue for future investigations.

Effectiveness of FCS in a real dataset. We reproduce the experiments in Figure 8 for the task
of sampling DNA sequences of length 10 in proportion to a reward function defined by wet-lab
measurements of the sequence’s binding affinity to a yeast transcription factor (PHO4) (Shen et al.,
2023; Jain et al., 2022; Barrera et al., 2016; Trabucco et al., 2022). For this, we follow the experimental
setup described in Section E.3 for the sequence design task. Consistently with Figure 8, Figure 13 and
Table 2 show that FCS is the only tractable metric able to correctly infer the provable incorrectness of
TU-LED-GFlowNet. Indeed, in terms of mode discovery and Shen et al. (2023)’s accuracy, TU-LED-
GFlowNet outperforms the TB-GFlowNet — despite being farther from the target distribution. We
omit FL-GFlowNet since there is no natural candidate for the potential function.
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