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ABSTRACT

Federated learning (FL) is a novel approach to machine learning that allows multiple
edge devices to collaboratively train a model without disclosing their raw data.
However, several challenges hinder the practical implementation of this approach,
especially when devices and the server communicate over wireless channels, as it
suffers from communication and computation bottlenecks in this case. By utilizing
a communication-efficient framework, we propose a novel zero-order (ZO) method
with two types of gradient estimators, one-point and two-point, that harnesses the
nature of the wireless communication channel without requiring the knowledge of
the channel state coefficient. It is the first method that includes the wireless channel
in the learning algorithm itself instead of wasting resources to analyze it and remove
its impact. The two main difficulties of this work are that in FL, the objective
function is usually not convex, which makes the extension of FL to ZO methods
challenging, and that including the impact of wireless channels requires extra
attention. However, we overcome these difficulties and comprehensively analyze
the proposed zero-order federated learning (ZOFL) framework. We establish its
convergence theoretically, and we prove a convergence rate of O( 1

3√
K

) with the
one-point estimate and O( 1√

K
) with the two-point one in the nonconvex setting.

We further demonstrate the potential of our algorithms with experimental results,
taking into account independent and identically distributed (IID) and non-IID
device data distributions.

1 INTRODUCTION

Zero-order (ZO) methods are a subfield of optimization that assume that first-order (FO) information
or access to function gradients is unavailable. ZO optimization is based on estimating the gradient
using function values queried at a certain number of points. The number of function queries depends
on the assumptions of the problem. For example, in multi-point gradient estimates (Duchi et al., 2015;
Agarwal et al., 2010), they construct the gradient by performing the difference of function values
obtained at many random or predefined points. However, they assume that the stochastic setting stays
the same during all these queries. For example, for functions θ 7→ f(θ, S) subject to a stochastic
variable S, two-point gradient estimates have the form,

g = d
f(θ + γΦ, S)− f(θ − γΦ, S)

2γ
Φ,

with θ ∈ Rd the optimization variable, γ > 0 a small value, and Φ a random vector with a symmetric
distribution. By contrast, one-point estimates that use only one function value (Flaxman et al., 2004;
Li & Assaad, 2021; Mhanna & Assaad, 2022), principally obtained at a random point,

g =
d

γ
f(θ + γΦ, S)Φ,

assume that the settings are continuously changing during optimization. This is an important property
as it resonates with many realistic applications, like when the optimization is performed in wireless
environments or is based on previous simulation results. Recently, an appeal to ZO optimization
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Figure 1: Federated learning over wireless networks.

is emerging in the machine-learning community, where optimizers are based on gradient methods.
Examples include reinforcement learning (Vemula et al., 2019; Malik et al., 2019), generating
contrastive explanations for black-box classification models (Dhurandhar et al., 2019), and effecting
adversarial perturbations on such models (Ilyas et al., 2018; Chen et al., 2019).

On the other hand, with the massive amounts of data generated or accessed by mobile devices, a
growing research interest in both sectors of academia and industry (Bonawitz et al., 2019) is focused
on federated learning (FL) (McMahan et al., 2017), as it’s a practical solution for training models on
such data without the need to log them to a server. A lot of effort has been invested in developing
first-order (McMahan et al., 2017; Zhang et al., 2021; Wang et al., 2021) and second-order (Elgabli
et al., 2022; Li et al., 2019) methods to improve the efficacy of FL. These methods typically require
access to the gradient or the Hessian of the local objective functions in their implementation to solve
the optimization problem. However, using and exchanging such information raises many challenges,
such as expensive communication and computation and privacy concerns (Li et al., 2020).

There’s more interest recently in learning over wireless environments (Yang et al., 2020; Amiri &
Gündüz, 2020; Sery & Cohen, 2020; Guo et al., 2021; Sery et al., 2021), with the increase of devices
connected to servers through cellular networks. In this paper, we are interested in this scenario
illustrated in Figure 1. Similarly to the aforementioned work, we are examining the case of analog
communications between the devices and the server. However, it’s a challenging problem as when
the information is sent over the wireless channel, it becomes subject to a perturbation induced by
the channel. This perturbation is not limited to additive noise, as noise is, in fact, due to thermal
changes at the receiver. The channel acts as a filter for the transmitted signal (Tse & Viswanath, 2005;
Björnson & Sanguinetti, 2020),

x̂ = Hx+ n (1)

where x and x̂ ∈ Rd are the sent and received signals, respectively. H ∈ Rd×d is the channel matrix,
and n ∈ Rd is the additive noise, both of which are stochastic, constantly changing, and unknown.
We elaborate further on the channel modeling and why we can consider it real in Appendix A for
the interested reader. In federated learning, x may denote the model or its gradients sent over the
channel. To remove this impact, every channel element must be analyzed and removed to retrieve the
sent information. This analysis is costly in computation and time resources. Thus, here our objective
is to study federated learning in wireless environments without wasting resources.

Further, we’re interested in exploring the potential of ZO optimization to deal with some of the
difficulties demonstrated by FL. We then consider a federated learning setting where a central server
coordinates with N edge devices to solve an optimization problem collaboratively. The data is private
to every device and the exchanges between the server and the devices is restricted to the optimization
parameters. To that end, let N = {1, ..., N} be the set of devices and θ ∈ Rd denote the global
model. We define Fi : Rd → R as the loss function associated with the local data stored on device i,
∀i ∈ N . The objective is to minimize the function F : Rd → R that is composed of the said devices’
loss functions, such that

min
θ∈Rd

F (θ) :=

N∑
i=1

Fi(θ) with Fi(θ) = ESi∼Difi(θ, Si). (2)

Si is an i.i.d. ergodic stochastic process following a local distribution Di. Si is used to model various
stochastic perturbation, e.g. local data distribution among others. We further consider the case where
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the devices do not have access to their gradients for computational and communication restraints, and
they must estimate this gradient by querying their model only once per update. They obtain a scalar
value from this query, that they must send back to the server.

1.1 MOTIVATION FOR OUR WORK

In this subsection, we describe the various challenges in FL and how our method varies from previous
work in dealing with these challenges.

Communication bottleneck. In general, the main idea of federated learning is that the devices
receive the model from the server, make use of their data to update the gradient, and then send
back their gradients without ever disclosing their data. The server then updates the model using
the collected and averaged gradients, and the process repeats. Since the gradients have the same
dimension as the model, in every uplink step, there are Nd values that need to be uploaded, which
forms a fundamental communication bottleneck in FL. To deal with this issue, some propose local
multiple gradient descent steps to be done by the devices before sending their gradients back to the
server to save communication resources (Khaled et al., 2020), or allow partial device participation at
every iteration (Chen et al., 2018), or both (McMahan et al., 2017). Others propose lossy compression
of the gradient before uploading it to the server. For example, all Konečný et al. (2016); Khirirat et al.
(2018); Elgabli et al. (2020) suggest stochastic unbiased quantization approaches, where gradients
are approximated with a finite set of discrete value for efficiency. Mishchenko et al. (2019) propose
the quantization of gradient differences of the current and previous iterations, allowing the update to
incorporate new information, while Chen et al. (2022) propose the sparsification of this difference.
Sparsification means that if a vector component is not large enough, it will not be transmitted.

Channel impact. In federated learning over wireless channels, there’s a problem with channel
knowledge. When the devices upload their gradient g ∈ Rd to the server, the server receives Hg + n
as shown in equation (1). In Yang et al. (2020) and Fang et al. (2022) and all references within,
they assume that they can remove the impact of the channel. However, as the channel matrix H
coefficients follow a stochastic process and there are two unknown received entities, the channel H
and the gradient, the knowledge of the gradient requires estimating the channel coefficients at each
iteration of the FL. This requires computation resources, and more importantly, it requires resources
to exchange control/reference signals between the devices and the server at each time/iteration to
estimate the channel coefficients H . Alternatively, our work offers a much simpler approach. We
don’t waste resources trying to analyze the channel. We use the channel in the implementation itself.
It is part of the learning. We harness it to construct our gradient estimate without the need to remove
its impact, saving both computation and communication resources.

Computation demands. Unlike standard methods that rely on the computational capabilities of
participating devices, our approach is less demanding. Devices simply receive the global model,
query it with their data, and send back the scalar loss, eliminating the need for "backward pass"
computation. Only the "forward pass" is performed.

Black-box optimization in FL. One motivation for employing ZO methods is black-box problems
(Fang et al., 2022) when gradient information cannot be acquired or is complicated to compute.
For example, in hyperparameter tuning, gradients cannot be calculated, as there isn’t an analytic
relationship between the loss function and the hyperparameters (Dai et al., 2020).

1.2 CHALLENGES AND CONTRIBUTION

Addressing nonconvexity in FL is challenging. Our ZO method must handle nonconvexity, noise, and
stochasticity efficiently, which can slow down convergence in gradient techniques. Additionally, the
channel’s introduction adds uncertainty and constraints on the number of communication exchanges.
We need to ensure consistent and reliable performance, considering unknown probability distributions
and fewer function evaluations. Unlike convex cases, nonconvex optimization doesn’t allow easy
quantification of optimization progress. Verifying gradient convergence becomes intricate due
to biased gradient estimates. Moreover, unbounded variance in one-point estimates can lead to
significant gradient deviations. These challenges involve technical and intuitive complexities we
navigate.
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In this work, we overcome these difficulties and propose a new communication-efficient algorithm
in the nonconvex setting. This algorithm differs from the standard gradient method as it entails
two reception-update steps instead of one, and it’s not a simple extension of FO to ZO where the
devices still have to upload their full model/gradient, as is the case in Fang et al. (2022). By limiting
the exchange to scalar-valued updates, we counter the communication bottleneck, and we save up
to a factor of O(d), in comparison to standard methods, in terms of total exchanges of variables
between the devices and the server, saving a lot of execution time and allowing the convergence rate
to compete with the standard FO method. We harness the nature of autocorrelated channels for truly
"blind" reception of the data. We prove the convergence theoretically with one-point and two-point
estimates and provide experimental evidence. An important distinction worth noting is that standard
ZO methods establish convergence by focusing on the expected convergence of the exact gradient. In
contrast to prior research, our approach goes further in the proof. We demonstrate the convergence of
the exact gradient itself almost surely, not solely its expected value. The key element in this proof is
employing Doob’s martingale inequality to constrain the stochastic error resulting from estimated
gradients. We finally extend the analysis to non-symmetrical channel models, i.e., channels without
zero-mean, and thus provide a practical algorithm for general settings.

2 ALGORITHMS

This section illustrates our proposed zero-order stochastic federated learning algorithms with different
gradient estimators (ZOFL).

2.1 THE 1P-ZOFL ALGORITHM

Algorithm 1 The 1P-ZOFL algorithm
Input: Initial model θ0 ∈ Rd, the initial step-sizes α0 and γ0, and the channels’ standard deviation
σh

1: for k = 0, 2, 4, ... do
2: The server receives

∑N
j=1

hj,k
σ2
h

+ nj,k

3: The server broadcasts θk + γkΦk
∑N
j=1

(
hj,k
σ2
h

+ nj,k

)
to all devices

4: The server receives
∑N
i=1 hi,k+1f̃i

(
θk + γkΦk

∑N
j=1

(
hj,k
σ2
h

+ nj,k

)
, Si,k+1

)
+ ni,k+1

5: The server multiplies the received scalar sum by Φk to assemble g(1P )
k given in (3)

6: The server updates θk+1 = θk − αkg(1P )
k

7: end for

We consider an intermediary wireless environment between the server and each device i for i ∈ N as
shown in Figure 1. Wireless channels introduce a stochastic scaling on the sent signal as elaborated
in equation (1). As we only send a scalar value over the channel at a time, our channel has only one
scalar coefficient in addition to a scalar noise. Channel coefficients are usually autocorrelated from
one timeslot to the next. Let hi,k denote the channel scaling affecting the sent signal from device
i to the server at timeslot k, independent from all other devices’ channels. We assume hi,k to be a
zero-mean random variable with standard deviation σh, ∀i ∈ N ,∀k ∈ N+, and ni,k an additive noise
on the transmitted signal. Assuming that the channel is time-correlated for two consecutive iterations
k and k + 1, such that the autocovariance is E[hi,khi,k+1] = Khh, ∀i ∈ N , ∀k ∈ N+, we present
our first learning method in Algorithm 1:

The devices must carry out two communication steps. In the first, every device sends the value
1
σ2
h

to the server. According to equation (1), the server receives hj,k
σ2
h

+ nj,k from every device
j. Hence, it receives the sum in step 2. Afterward, the server uses the values received to ad-
just the model and broadcasts it to the devices. When device i receives the model, it receives
hDLi,k+1[θk +γkΦk

∑N
j=1(

hj,k
σ2
h

+nj,k)] +nDLi,k+1, and to simplify notation, we let the stochastic vector

[hDLi,k+1, n
DL
i,k+1] be included within the big vector Si,k+1 of stochastic perturbations. Device i then

queries this received model to obtain the stochastic loss fi. Then the devices send f to the server in the

4



Under review as a conference paper at ICLR 2024

second communication step, and according to equation (1), the server receives the quantity indicated
in step 5. Finally, the server assembles the gradient estimate and is able to update θ according to step
7. All transmissions are subject to channel scaling and additive noise. We designate them by h and n
in the device-to-server transmission. In the server-to-devices one, we designate them by S. We let
f̃i = fi

σ2
h

be the normalized loss function and define αk and γk as two step-sizes and Φk ∈ Rd as a
perturbation vector generated by the server that has the same dimension as that of the model.

We emphasize here that g(1P )
k (in step 6) is the gradient estimate in this case, and one can see that

the impact of the channel is included in the gradient estimate and hence in the learning. The major
advantage of this algorithm is that each device sends only two scalar values. This is stark improvement
in communication efficiency over standard federated learning algorithms that require each device to
send back the whole model or local gradient of dimension d. In effect, it’s resource draining and can
be unrealistic to assume it’s possible. We show in the numerical results that there is a considerable
delay difference in favor of our method.

2.2 THE 2P-ZOFL ALGORITHM

Algorithm 2 The 2P-ZOFL algorithm
Input: Initial model θ0 ∈ Rd, the initial step-sizes α0 and γ0, and the channels’ standard deviation
σh

1: for k = 0, 2, 4, ... do
2: The server receives

∑N
j=1

hj,k
σ2
h

3: The server broadcasts θk + γkΦk
∑N
j=1

hj,k
σ2
h

and θk − γkΦk
∑N
j=1

hj,k
σ2
h

to all devices under
the same stochastic wireless environment

4: The server receives∑N
i=1 hi,k+1

[
f̃i

(
θk + γkΦk

∑N
j=1

hj,k
σ2
h
, Si,k+1

)
− f̃i

(
θk − γkΦk

∑N
j=1

hj,k
σ2
h
, Si,k+1

)]
5: The server multiplies the received scalar sum by Φk to assemble g(2P )

k given in (4)
6: The server updates θk+1 = θk − αkg(2P )

k
7: end for

For our second method, we aim to assemble and optimize with a two-point gradient estimate. Similarly
to 1P-ZOFL, there are two communication steps. The only difference is that the server has to adjust
the model twice based on the devices’ feedback and broadcast the model with both adjustments. We
consider that the additive noise is negligible and that the wireless environment is slowly changing.
The upload communication efficiency is unaffected by the change of estimate as the functional
difference is still a scalar value.

2.3 THE ESTIMATED GRADIENTS

We provide here analysis of our ZO gradient estimates. We propose the one-point estimate:

g
(1P )
k = Φk

N∑
i=1

[
hi,k+1f̃i

(
θk + γkΦk

N∑
j=1

(hj,k
σ2
h

+ nj,k

)
, Si,k+1

)
+ ni,k+1

]
, (3)

where hi,k, hi,k+1, and the noise remain unknown. This saves computation complexity and is
very communication efficient as it transcends the need to send pilot signals to estimate the channel
continuously. In fact, it’s unrealistic to assume that the instantaneous channel can be evaluated as
wireless environments typically change every 1− 2 ms.

In certain scenarios when the stochastic environment is changing more slowly, where the devices can
query two consecutive loss functions under the same circumstances, we can use two-point estimates
instead of one-point ones. In other words, whenever the server can broadcast two successive model
versions under the same conditions, i.e. same Si,k+1, our estimate can take the following form:

g
(2P )
k = Φk

N∑
i=1

hi,k+1

[
f̃i

(
θk + γkΦk

N∑
j=1

hj,k
σ2
h

, Si,k+1

)
− f̃i

(
θk − γkΦk

N∑
j=1

hj,k
σ2
h

, Si,k+1

)]
. (4)
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The added advantage of two-point estimates is that they increase the convergence rate as their
variance w.r.t. the exact gradient is generally bounded. However, this advantage is only possible if
we recognize the added noise at reception as negligible.

We next consider the following assumptions on the additive noise, the perturbation vector, and the
local loss functions.

Assumption 1 ni,k is assumed to be a zero-mean uncorrelated noise with bounded variance, mean-
ing E(ni,k) = 0 and E(n2i,k) = σ2

n <∞, ∀i ∈ N , ∀k ∈ N+. For any timeslot k, E(ni,knj,k) = 0

if i 6= j. For any device i, E(ni,kni,k′) = 0 if k 6= k′.

Assumption 2 Let Φk = (φ1k, φ
2
k, . . . , φ

d
k)T . At each iteration k, the server generates its Φk

vector independently from other iterations. In addition, the elements of Φk are assumed i.i.d with
E(φd1k φ

d2
k ) = 0 for d1 6= d2 and there exists α2 > 0 such that E(φ

dj
k )2 = α2, ∀dj , ∀k. We further

assume there exists a constant α3 > 0 where ‖Φk‖ ≤ α3, ∀k.

Example 1 An example of a perturbation vector satisfying Assumption 2, is picking every dimension
of Φk from {− 1√

d
, 1√

d
} with equal probability. Then, α2 = 1

d and α3 = 1.

Assumption 3 All loss functions θ 7→ fi(θ, Si) are Lipschitz continuous with Lipschitz constant LSi ,
|fi(θ, Si)− fi(θ′, Si)| ≤ LSi‖θ − θ′‖, ∀i ∈ N . In addition, ESifi(θ, Si) <∞,∀i ∈ N .

LetHk = {θ0, S0, θ1, S1, ..., θk, Sk} denote the history sequence, then the following two Lemmas
characterize our gradient estimates.

Lemma 1 Let Assumptions 1 and 2 be satisfied and define the scalar values c1 = α2
Khh
σ4
h

and
c′1 = 2c1, then both gradient estimators are biased w.r.t. the objective function’s exact gradient
∇F (θ). Concretely, E[g

(1P )
k |Hk] = c1γk(∇F (θk) + bk) and E[g

(2P )
k |Hk] = c′1γk(∇F (θk) + b′k),

∀k ∈ N+, where bk and b′k are the bias terms.

Proof: Refer to Appendix B.1.

Lemma 2 Let Assumptions 1-3 and the inequality ‖θk‖ < ∞ hold almost surely. There exist two
bounded constants c2, c′2 > 0, such that E[‖g(1P )

k ‖2|Hk] ≤ c2 and E[‖g(2P )
k ‖2|Hk] ≤ c′2γ2k almost

surely.

Proof: Refer to Appendix B.2.

3 CONVERGENCE ANALYSIS

This section analyzes the behavior of our algorithms in the nonconvex setting. Assuming that a global
minimizer θ∗ ∈ Rd exists such that minθ∈Rd F (θ) = F (θ∗) > −∞ and ∇F (θ∗) = 0, we start by
introducing a general necessary assumption and two estimate-specific assumptions in the subsections.

Assumption 4 We assume the existence and the continuity of∇Fi(θ) and∇2Fi(θ), and that there
exists a constant α1 > 0 such that ‖∇2Fi(θ)‖2 ≤ α1,∀i ∈ N .

Lemma 3 By Assumption 4, we know that the objective function θ 7−→ F (θ) is L-smooth for some
positive constant L, ‖∇F (θ) − ∇F (θ′)‖ ≤ L‖θ − θ′‖, ∀θ, θ′ ∈ Rd, or equivalently, F (θ) ≤
F (θ′) + 〈∇F (θ′), θ − θ′〉+ L

2 ‖θ − θ
′‖2.

Lemma 4 By Assumptions 1, 2, and 4, we can find two scalar values c3, c′3 > 0 such that ‖bk‖ ≤
c3γk and ‖b′k‖ ≤ c′3γk.

Proof: Refer to Appendix B.3.

3.1 1P-ZOFL CONVERGENCE

As we deal with stochastic environments, we inevitably analyze the expectation over all possible
variable outcomes. From Lemma 1, we see that in expectation, our estimator deviates from the
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gradient direction by the bias term. To provide that these terms don’t grow larger and preferably
grow smaller as the algorithms evolve, we impose that γk vanishes. Additionally, to ensure that the
expected norm squared of the estimator, as shown in Lemma 2, doesn’t accumulate residual constant
terms, we impose that the step size αk vanishes. The series properties in the following assumption
come from the recursive analysis of the algorithm.

Assumption 5 Both the step sizes αk and γk vanish to zero as k → ∞ and the following series
composed of them satisfy the convergence assumptions

∑∞
k=0 αkγk = ∞,

∑∞
k=0 αkγ

3
k < ∞, and∑∞

k=0 α
2
k <∞.

Example 2 To satisfy Assumption 5, we consider the following form of the step sizes, αk = α0(1 +
k)−υ1 and γk = γ0(1 + k)−υ2 with υ1, υ2 > 0. Then, it’s sufficient to find υ1 and υ2 such that
0 < υ1 + υ2 ≤ 1, υ1 + 3υ2 > 1, and υ1 > 0.5.

We next define the stochastic error e(1P )
k as the difference between the value of a single realization of

g
(1P )
k and its conditional expectation given the history sequence, i.e., e(1P )

k = g
(1P )
k − E[g

(1P )
k |Hk].

The study of this noise and how it evolves is essential for the analysis of the algorithm as it gives
access to the exact gradient when examining the algorithm’s convergence behavior and permits us
to prove that, in fact, the exact gradient converges to zero and not just the expectation of the exact
gradient. This is a stronger convergence property, and it has not been done before in ZO nonconvex
optimization to the best of our knowledge. The trick is to show that e(1P )

k is a martingale difference
sequence and to apply Doob’s martingale inequality to derive the following lemma.

Lemma 5 If all Assumptions 1-5 hold and ‖θk‖ <∞ almost surely, then for any constant ν > 0, we
have limK→∞ P(supK′≥K ‖

∑K′

k=K αke
(1P )
k ‖ ≥ ν) = 0.

Proof: Refer to Appendix C.1.

The smoothness inequality allows for the first main result, leading to the second in the following
theorem.

Theorem 1 When Assumptions 1-5 hold and givenHk, we have
∑
k αkγk‖∇F (θk)‖2 < +∞ and

limk→∞ ‖∇F (θk)‖ = 0 almost surely, meaning that the algorithm converges.

Proof: Refer to Appendix C.2.

Proof sketch: We substitute the algorithm’s updates in the second inequality of Lemma 3 and replace
the estimate by its expectation and stochastic error. We then perform a recursive addition over the
iterations k > 0. With Lemma 5, the conditions on the step sizes, and the upper bound estimate’s
squared norm, we are able to find an upper bound on

∑
k αkγk‖∇F (θk)‖2 when k grows to∞. The

next step is to consider the hypothesis limk→∞ sup ‖∇F (θk)‖ ≥ ρ, for ρ > 0, and prove that it
contradicts with the first result.

Define δk = F (θk)− F (θ∗). We next find an upper bound on the convergence rate of Algorithm 1.

Theorem 2 Consider in addition to the assumptions in Theorem 1, that the step sizes are those of
Example 2 with υ3 = υ1 + υ2 < 1. Then, we can write∑

k αkγkE
[
‖∇F (θk)‖2

]∑
k αkγk

≤ (1− υ3)

(K + 2)1−υ3 − 1

(
2δ0

c1α0γ0
+
c23γ

2
0(υ1 + 3υ2)

υ1 + 3υ2 − 1
+

2c2Lα0υ1
c1γ0(2υ1 − 1)

)
.

(5)

Proof: Refer to Appendix C.3.

In Theorem 2, we see that the optimal choice of the exponents for the time-varying component
O( 1

K1−υ1−υ2 ), is υ1 = 1
2 and υ2 = 1

6 for a rate of O( 1
3√
K

). However, to prevent the constant
component from growing too large, it is recommended to choose slightly larger exponents of
υ1 = 1

2 + ε
2 and υ2 = 1

6 + ε
2 , where ε is a small strictly positive value. This will result in a rate of

O
(

1

K
1
3
−ε

)
.
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3.2 2P-ZOFL CONVERGENCE

Similarly to the previous subsection, we introduce an assumption regarding step sizes. The only
difference comes from the fact that the upper bound on the expected norm squared of the estimate
scales as γ2k in Lemma 2. While αk no longer needs to vanish, this does not affect the convergence
rate later, so we keep the same formulation.

Assumption 6 Both αk → 0 and γk → 0 as k → ∞. Besides,
∑∞
k=0 αkγk = ∞,

∑∞
k=0 αkγ

3
k <

∞, and
∑∞
k=0 α

2
kγ

2
k <∞.

Example 3 Consider the same form as that in Example 2, αk = α0(1+k)−υ1 and γk = γ0(1+k)−υ2 ,
with υ1, υ2 > 0. To satisfy Assumption 6, find υ1 and υ2 such that 0 < υ1 + υ2 ≤ 1, υ1 + 3υ2 > 1,
and υ1 + υ2 > 0.5.

Lemma 6 Similarly, let e(2P )
k = g

(2P )
k −E[g

(2P )
k |Hk]. If Assumptions 1-4 and 6 hold and ‖θk‖ <∞

almost surely, then for ν > 0, we have limK→∞ P(supK′≥K ‖
∑K′

k=K αke
(2P )
k ‖ ≥ ν) = 0.

Proof: Refer to Appendix D.1.

Theorem 3 Then, when Assumptions 1-4, and 6 hold, we have
∑
k αkγk‖∇F (θk)‖2 < +∞ and

limk→∞ ‖∇F (θk)‖ = 0 givenHk, almost surely, meaning that the algorithm converges.

Proof: Refer to Appendix D.2.

Theorem 4 In addition to the assumptions of Theorem 3, let the step sizes have the form of Example
3 with υ3 = υ1 + υ2 < 1. Then,∑

k αkγkE
[
‖∇F (θk)‖2

]∑
k αkγk

≤ (1− υ3)

(K + 2)1−υ3 − 1

(
2δ0

c′1α0γ0
+
c′23 γ

2
0(υ1 + 3υ2)

υ1 + 3υ2 − 1
+

2c′2Lα0γ0υ3
c′1(2υ3 − 1)

)
.

(6)

Proof: Refer to Appendix D.3.

In Theorem 4, the best exponents choice is υ1 = υ2 = 1
4 which allows a rate of O( 1√

K
). To avoid

the constant part growing too large, we find an arbitrarily small ε > 0 such that υ1 = υ2 = 1
4 + ε

2 for
a rate of O

(
1

K
1
2
−ε

)
.

3.3 NON-SYMMETRICAL CHANNELS CASE

Assuming a non-symmetrical channel model with E[hi,k] = µh and σ2
h = E[h2i,k]− µ2

h, ∀i,∀k, we
provide how our gradient estimates and algorithms can be adjusted in Appendix F to account for this
case. In fact, non-symmetrical channel models (e.g., Rician) offer a simplification of both analysis
and implementation in comparison to symmetrical models (e.g., Rayleigh), as the non-zero mean no
longer cancels out the gradient, and the design is further independent of the autocorrelation of the
channels. However, with this study, we provide a generalized solution that encompasses any channel
model.

4 EXPERIMENTAL RESULTS

For our experimental results, we ran our simulations on servers offered by our university with a Slurm
workload manager. Our resources include 32 CPUs and 80GB memory over a cpu_long partition.
All our codes are run in a Conda (Anaconda, 2022) virtual environment using Pytorch (Version 2.0.0)
(Paszke et al., 2022) as the main library, and all datasets are accessed via Torchvision (Marcel et al.,
2022). We test our algorithms in nonconvex binary image classification problems, and we compare
them against the original federated learning algorithm FedAvg (McMahan et al., 2017) with exact
gradient and one local update per round. However, we don’t consider the effect of the channel or
any noise/stochasticity for the FedAvg algorithm. All experiments are done for 100 devices and data
batches of 10 images per user per round. Every communication round in the graphs include all steps
2 through 7 for both Algorithms 1 and 2.

8
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For the first example, we classify photos of the two digits "0" and "1" from the MNIST dataset
(LeCun & Cortes, 2005) using a nonconvex logistic regression model with a regularization parameter
of 0.001. All images are divided equally among the devices and are considered to be preprocessed
by being compressed to have dimension d = 10 using a lossy autoencoder. We run our code on
50 simulations with different random model initializations testing the accuracy in every iteration
against an independent test set. The graphs in Figure 2 are averaged over all these simulations. For
the non-IID data distribution, we first sort the images according to their labels and then divide them
among the devices. While we can see clearly the effect of the theoretical convergence rate, both of
our algorithms perform consistently well with all the different random variations influencing every
simulation. Considering non-IID data distribution seems to slow down both our algorithms slightly
without a major effect on the final result.

For the second example, we classify photos of "shirts" and "sneakers" from the FashionMNIST
dataset (Xiao et al., 2017) using a multilayer-perceptron with an input layer of 784 units and 2 hidden
layers with 200 units each using ReLu activations and a final sigmoid activation (197602 parameters).
We run our code on 30 simulations with different random model initializations and average the
resulting accuracy against an independent test set. The non-IID distribution is generated as in the
previous example. Similarly to McMahan et al. (2017), we plot each curve by taking the best value of
test-set accuracy achieved over all prior rounds. The results are shown in Figure 3. While 1P-ZOFL
takes longer time to converge, 2P-ZOFL performs fairly well.

The main idea is that to converge, FedAvg requires 300 communication rounds while 2P-ZOFL
requires 2000. However, by 300 rounds, each device will have uploaded 197602× 300 = 59280600
scalar values to the server vs. 2000 × 2 = 4000. FedAvg will have 14820 more data per user. As
wireless capacity is limited and there are other users using the medium, we can only send a certain
amount of information per second. For a worst-case scenario where a scalar value needs one second
to be uploaded, FedAvg will require around 4 more hours than 2P-ZOFL. It’s true that 2P-ZOFL’s
convergence rate is smaller, but that doesn’t mean that it is slower due to the limited capacity of
wireless link as explained above. We provide a quantitative comparison with another algorithm
encompassing communication-efficient strategies (local SGD and partial device participation) in
Appendix E.3.

We provide all experimental details and parameter choices alongside an extra analysis of our
algorithm’s performance relating to its independence of the noise variance in Appendix E.

Figure 2: Accuracy evolution of 1P-ZOFL, 2P-
ZOFL, and FedAvg for IID data and non-IID
distribution in the logistic regression model.

Figure 3: Accuracy evolution of 1P-ZOFL, 2P-
ZOFL, and FedAvg for IID and non-IID data
distribution in the training example model.

5 CONCLUSION

This work considers a learning problem over wireless channels and proposes a new zero-order feder-
ated learning method with one-point and two-point gradient estimators. We limit the communication
to scalar-valued feedback from the devices and incorporate the wireless channel in the learning
algorithm. We provide theoretical and experimental evidence for convergence and find an upper
bound on the convergence rate.

9
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REPRODUCIBILITY STATEMENT

We have made diligent efforts to enhance the reproducibility of our research findings. In the main
text and the accompanying appendix, we have provided comprehensive details of our experimental
procedures, data preprocessing steps, and mathematical proofs to facilitate the replication of our work.
All the datasets utilized in our experiments have been cited with references to their sources, and a
complete description of the data processing steps is provided in the appendix. We are committed to
transparency and encourage readers to refer to the relevant sections of this paper and the appendix for
a detailed account of our methodology and data to facilitate reproducibility.

REFERENCES

Alekh Agarwal, Ofer Dekel, and Lin Xiao. Optimal algorithms for online convex optimization with
multi-point bandit feedback. In COLT, 2010.

Mohammad Mohammadi Amiri and Deniz Gündüz. Federated learning over wireless fading channels.
IEEE Transactions on Wireless Communications, 19(5):3546–3557, 2020. doi: 10.1109/TWC.
2020.2974748.

Inc. Anaconda. Anaconda software distribution. https://www.anaconda.com/, 2022.

Emil Björnson and Luca Sanguinetti. Making cell-free massive mimo competitive with mmse
processing and centralized implementation. IEEE Transactions on Wireless Communications, 19
(1):77–90, 2020. doi: 10.1109/TWC.2019.2941478.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman,
Vladimir Ivanov, Chloé Kiddon, Jakub Konečný, Stefano Mazzocchi, Brendan McMa-
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A ON THE CHANNEL MODEL

As described in Section 2.2 of Chapter 2 of Tse & Viswanath (2005) and considering a double-
sideband suppressed carrier amplitude modulation (DSB-SC) instead of quadrature amplitude modu-
lation (QAM):

Having a baseband signal x, to send it over the channel, we modulate (multiply) it by
√

2 cos 2πfct
where fc is the carrier frequency and t is the time index.

When sent over the channel, the transmitted signal x undergoes perturbation and thus the received
signal becomes:

z =
√

2
∑
i

aix cos(2πfct+ ϕi(t)) + w(t), (7)

where ai is the amplitude attenuation of path i and ϕi(t) = 2πflt+ ϕl is the phase shift incurred by
Doppler frequency shift fl and/or any time delay ϕl. w(t) is an additive noise.

By developing the cosine term in z, we obtain

z = x
√

2
∑
i

ai cos(ϕi(t))︸ ︷︷ ︸
in-phase component, I(t)

cos(2πfct)− x
√

2
∑
i

ai sin(ϕi(t))︸ ︷︷ ︸
quadrature component,Q(t)

sin(2πfct) + w(t), (8)

From Section 2.4.2 of Tse & Viswanath (2005): According to the central limit theorem, if there are a
large number of channel paths, the in-phase and quadrature components of the received signal, which
are not correlated with each other, will exhibit distributions that resemble the normal (Gaussian)
distribution. Specifically, each component will have an average value of zero and a variance of
Σ/2, which is equivalent to σ2. The magnitude of the perturbation

√
I(t)2 +Q(t)2 thus becomes

Rayleigh distributed. This is the Rayleigh fading model. In addition, when the line-of-sight path is
large and has a known magnitude, the probabilistic model becomes a Rician fading.

Furthermore, as I(t) and Q(t) are orthogonal, an equivalent complex channel model ĥ(t) = I(t) +

jQ(t) = a(t)e−jϕ(t) can be derived. Since the carrier frequency fc is not involved in ĥ(t), this
representation is valid at baseband level. Thus, the complex channel model is usually used to represent
the received signal ĥ(t)x+ n(t) at baseband with ĥ(t) a complex entity.

Continuing from (8), to demodulate z and obtain the baseband received signal y, z is first multiplied
by
√

2 cos 2πfct then the result goes through a low pass filter.

z
√

2 cos(2πfct)

=2x
∑
i

ai cos(ϕi(t)) cos2(2πfct)− 2x
∑
i

ai sin(ϕi(t)) sin(2πfct) cos(2πfct)

+
√

2w(t) cos(2πfct)

=x
∑
i

ai cos(ϕi(t))(1 + cos(4πfct))− x
∑
i

ai sin(ϕi(t)) sin(4πfct) +
√

2w(t) cos(2πfct)

(9)
After the low pass filter, we obtain the received baseband signal

y =x
∑
i

ai cos(ϕi(t)) + n(t)

=R[ĥ(t)]x+ n(t)

=h(t)x+ n(t)

(10)

where n(t) is the baseband equivalent noise with a zero-mean Gaussian distribution and IID com-
ponents (Section 2.2.4 of Tse & Viswanath (2005)) and R[ĥ(t)] = I(t) is the real part of the
channel.

As we are interested to send real values over the wireless channel in this paper, one can easily see
how equation (10) is valid to use with a real channel h = R[ĥ] following a Gaussian distribution with
zero mean and variance equal to σ2.
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B ON THE ESTIMATED GRADIENTS

B.1 PROOF OF LEMMA 1: BIASED ESTIMATORS

Let g(1P )
k have the form in (3), then the conditional expectation givenHk can be written as

E[g
(1P )
k |Hk]

=E
[
Φk

N∑
i=1

(
hi,k+1f̃i

(
θk + γkΦk

N∑
j=1

(hj,k
σ2
h

+ nj,k

)
, Si,k+1

)
+ ni,k+1

)∣∣∣Hk]
(a)
=E

[
Φk

N∑
i=1

hi,k+1F̃i

(
θk + γkΦk

N∑
j=1

(hj,k
σ2
h

+ nj,k

))∣∣∣Hk]
(b)
=E
[
Φk

( N∑
i=1

hi,k+1F̃i(θk) + γk

N∑
i=1

hi,k+1

N∑
j=1

(hj,k
σ2
h

+ nj,k

)
ΦTk∇F̃i(θk)

+ γ2k

N∑
i=1

hi,k+1

( N∑
j=1

hj,k
σ2
h

+ nj,k

)2
ΦTk∇2F̃i(θ̆k)Φk

)∣∣∣Hk]
(c)
=E
[
Φk

(
γk
σ2
h

N∑
i=1

hi,k+1hi,kΦTk∇F̃i(θk)

+ 2γ2kN

N∑
i=1

hi,k+1

N∑
j=1

(h2j,k
σ4
h

+ n2j,k

)
ΦTk∇2F̃i(θ̆k)Φk

)∣∣∣Hk]

=
γk
σ2
h

N∑
i=1

E
[
hi,k+1hi,k

∣∣∣Hk]E[ΦkΦTk

∣∣∣Hk]∇F̃i(θk)

+ 2γ2kN

N∑
i=1

E
[
hi,k+1

N∑
j=1

(h2j,k
σ4
h

+ n2j,k

)
ΦkΦTk∇2F̃i(θ̆k)Φk

∣∣∣Hk]
(d)
=γkα2

Khh

σ4
h

N∑
i=1

∇Fi(θk) + γ2k
2N

σ2
h

N∑
i=1

E
[
hi,k+1

N∑
j=1

(h2j,k
σ4
h

+ n2j,k

)
ΦkΦTk∇2F̃i(θ̆k)Φk

∣∣∣Hk]
(e)
=c1γk(∇F (θk) + bk),

(11)

where (a) is by the definition in (2) and due to Assumption 1, (b) is by Taylor expansion and
mean-value theorem and considering θ̆k between θk and θk + γkΦk

∑N
j=1

(hj,k
σ2
h

+ nj,k
)
. (c) is since

E[hi,k+1] = 0 for the first element and E[hi,k+1hj,k] = 0 when i 6= j and the independence of noise
for the second element. (d) is due to Assumption 2. In (e), we let c1 = α2

Khh
σ4
h

and the bias

bk = 2γk
Nσ2

h

α2Khh

N∑
i=1

E
[
hi,k+1

N∑
j=1

(h2j,k
σ4
h

+ n2j,k

)
ΦTk∇2F̃i(θ̆k)Φk

∣∣∣Hk]. (12)
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Next, let g(2P )
k have the form in (4), then

E[g
(2P )
k |Hk]

=E
[
Φk

N∑
i=1

hi,k+1

[
f̃i

(
θk + γkΦk

N∑
j=1

hj,k
σ2
h

, Si,k+1

)
− f̃i

(
θk − γkΦk

N∑
j=1

hj,k
σ2
h

, Si,k+1

)]∣∣∣Hk]
(a)
=E

[
Φk

N∑
i=1

hi,k+1

[
F̃i

(
θk + γkΦk

N∑
j=1

hj,k
σ2
h

)
− F̃i

(
θk − γkΦk

N∑
j=1

hj,k
σ2
h

)]∣∣∣Hk]
(b)
=E
[
Φk

N∑
i=1

hi,k+1

[
F̃i(θk) + γk

N∑
j=1

hj,k
σ2
h

ΦTk∇F̃i(θk) + γ2k(

N∑
j=1

hj,k
σ2
h

)2ΦTk∇2F̃i(θ́k)Φk

−
(
F̃i(θk)− γk

N∑
j=1

hj,k
σ2
h

ΦTk∇F̃i(θk) + γ2k(

N∑
j=1

hj,k
σ2
h

)2ΦTk∇2F̃i(θ̀k)Φk
)]∣∣∣Hk]

=E
[
Φk

N∑
i=1

hi,k+1

(
2γk

N∑
j=1

hj,k
σ2
h

ΦTk∇F̃i(θk)

+ γ2k(

N∑
j=1

hj,k
σ2
h

)2ΦTk (∇2F̃i(θ́k)−∇2F̃i(θ̀k))Φk

)∣∣∣Hk]
(c)
=E
[
Φk

(
2
γk
σ2
h

N∑
i=1

hi,k+1hi,kΦTk∇F̃i(θk)|Hk
]

+ E
[
Φk

(
γ2kN

σ4
h

N∑
i=1

hi,k+1

N∑
j=1

h2j,kΦTk (∇2F̃i(θ́k)−∇2F̃i(θ̀k))Φk

)∣∣∣Hk]

=2
γk
σ2
h

N∑
i=1

E
[
hi,k+1hi,k

∣∣Hk]E[ΦkΦTk
∣∣Hk]∇F̃i(θk)

+
γ2kN

σ4
h

N∑
i=1

E
[
hi,k+1

N∑
j=1

h2j,kΦkΦTk (∇2F̃i(θ́k)−∇2F̃i(θ̀k))Φk

∣∣∣Hk]
(d)
=2α2

Khh

σ4
h

γk

N∑
i=1

∇Fi(θk) +
N

σ6
h

γ2k

N∑
i=1

E
[
hi,k+1

N∑
j=1

h2j,kΦkΦTk (∇2Fi(θ́k)−∇2Fi(θ̀k))Φk

∣∣∣Hk]
=c′1γk(∇F (θk) + b′k)

(13)

where (a) is by the definition in (2), (b) is by Taylor expansion and mean-valued theorem and
considering θ́k between θk and θk + γkΦk

∑N
j=1

hj,k
σ2
h

, and θ̀k between θk and θk − γkΦk
∑N
j=1

hj,k
σ2
h

.
(c) is since E[hi,k+1hj,k] = 0 when i 6= j in the first term. (d) is due to Assumption 2. In (e), we let
c′1 = 2α2

Khh
σ4
h

.

From (13), we can see that the estimate bias has the form

b′k = γk
N

2α2σ2
hKhh

N∑
i=1

E
[
hi,k+1

N∑
j=1

h2j,kΦkΦTk (∇2Fi(θ́k)−∇2Fi(θ̀k))Φk

∣∣∣Hk]. (14)
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B.2 PROOF OF LEMMA 2: EXPECTED NORM SQUARED OF THE ESTIMATED GRADIENTS

Bounding the norm squared of the one-point gradient estimate,

E[‖g(1P )
k ‖2|Hk]

=E
[∥∥∥Φk

N∑
i=1

(
hi,k+1f̃i

(
θk + γkΦk

N∑
j=1

(hj,k
σ2
h

+ nj,k

)
, Si,k+1

)
+ ni,k+1

)∥∥∥2∣∣∣Hk]

=E
[
‖Φk‖2

( N∑
i=1

hi,k+1f̃i

(
θk + γkΦk

N∑
j=1

(hj,k
σ2
h

+ nj,k

)
, Si,k+1

)
+ ni,k+1

)2∣∣∣Hk]
(a)

≤α2
3N

N∑
i=1

E
[(
hi,k+1f̃i

(
θk + γkΦk

N∑
j=1

(hj,k
σ2
h

+ nj,k

)
, Si,k+1

)
+ ni,k+1

)2∣∣∣Hk]
(b)
=α2

3N

N∑
i=1

E
[
h2i,k+1f̃

2
i

(
θk + γkΦk

N∑
j=1

(hj,k
σ2
h

+ nj,k

)
, Si,k+1

)
+ n2i,k+1

∣∣∣Hk]
(c)

≤α2
3N

N∑
i=1

E
[
h2i,k+1

σ4
h

(
‖fi(0, Si,k+1)‖+ LSi,k+1

‖θk + γkΦk

N∑
j=1

(hj,k
σ2
h

+ nj,k

)
‖
)2∣∣∣Hk]

+N2α2
3σ

2
n

≤α2
3N

N∑
i=1

E
[
h2i,k+1

σ4
h

(
‖fi(0, Si,k+1)‖+ LSi,k+1

‖θk‖+ LSi,k+1
γk‖Φk‖

∣∣∣ N∑
j=1

hj,k
σ2
h

+ nj,k

∣∣∣)2∣∣∣Hk]
+N2α2

3σ
2
n

(d)

≤3α2
3N

N∑
i=1

E
[
h2i,k+1

σ4
h

(
‖fi(0, Si,k+1)‖2 + L2

Si,k+1
‖θk‖2 + α2

3L
2
Si,k+1

γ2k

( N∑
j=1

hj,k
σ2
h

+ nj,k

)2)∣∣∣Hk]
+N2α2

3σ
2
n

(e)

≤ 3N2α2
3

σ2
h

(
µS + LS‖θk‖2

)
+3Nα4

3LSγ
2
k

N∑
i=1

E
[
h2i,k+1

σ4
h

( N∑
j=1

h2j,k
σ4
h

+ n2j,k + 2
∑
j<l

hj,khl,k
σ4
h

)∣∣∣Hk]+N2α2
3σ

2
n

(f)
=

3N2α2
3

σ2
h

(
µS + LS‖θk‖2

)
+ 3N2α4

3LSγ
2
k

(σ4
h + 2K2

hh + (N − 1)σ4
h

σ8
h

+
Nσ2

n

σ2
h

)
+N2α2

3σ
2
n

:=c2,
(15)

where (a) is by Assumption 2 and Cauchy-Schwartz, (b) is due the independence of noise, (c) is by As-
sumption 3, and (d) is again by Cauchy-Schwartz. In (e), we let µS = maxi E[‖fi(0, Si,k+1)‖2|Hk]
and LS = maxi E[L2

Si,k+1
|Hk]. (f) is due to the normally-distributed channel random variables.

Bounding the norm squared of the two-point gradient estimate,
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E[‖g(2P )
k ‖2|Hk]

=E
[∥∥∥Φk

N∑
i=1

hi,k+1

[
f̃i

(
θk + γkΦk

N∑
j=1

hj,k
σ2
h

, Si,k+1

)
− f̃i

(
θk − γkΦk

N∑
j=1

hj,k
σ2
h

, Si,k+1

)]∥∥∥2∣∣∣Hk]

=E
[
‖Φk‖2

( N∑
i=1

hi,k+1

[
f̃i

(
θk + γkΦk

N∑
j=1

hj,k
σ2
h

, Si,k+1

)
− f̃i

(
θk − γkΦk

N∑
j=1

hj,k
σ2
h

, Si,k+1

)])2∣∣∣Hk]
(a)

≤α2
3E
[( N∑

i=1

hi,k+1

[
f̃i

(
θk + γkΦk

N∑
j=1

hj,k
σ2
h

, Si,k+1

)
− f̃i

(
θk − γkΦk

N∑
j=1

hj,k
σ2
h

, Si,k+1

)])2∣∣∣Hk]
(b)

≤α2
3E
[( N∑

i=1

hi,k+1

σ2
h

LSi,k+1

∥∥∥2γkΦk

N∑
j=1

hj,k
σ2
h

∥∥∥)2∣∣∣Hk]
(c)

≤4γ2kα
2
3E
[
LS‖Φk‖2

( N∑
i=1

hi,k+1

σ2
h

)2( N∑
j=1

hj,k
σ2
h

)2∣∣∣Hk]
(d)

≤4γ2kα
4
3N

2LSE
[

1

σ8
h

N∑
i=1

h2i,k+1

N∑
j=1

h2j,k

∣∣∣Hk]
(d)

≤4γ2kα
4
3N

2LS

(
1

σ8
h

N∑
i=1

E[h2i,k+1h
2
i,k|Hk] +

1

σ8
h

N(N − 1)σ4
h

)
≤4γ2kα

4
3N

2LS

(
N

σ8
h

(σ4
h + 2K2

hh) +
N(N − 1)

σ4
h

)
=γ2k

4α4
3N

3LS
σ4
h

(
2K2

hh

σ4
h

+N

)
(e)
=c′2γ

2
k,

(16)

where (a) is by Assumption 2, (b) is by Assumption 3, in (c), LS = maxi E[L2
Si,k+1

|Hk], (d) is

by Cauchy-Schwartz, (
∑N
i=1 xi)

2 = (
∑N
i=1 1 · xi)2 ≤ N

∑N
i=1 x

2
i , and (d) is due to the normally-

distributed channel random variables. In (e), c′2 =
4α4

3N
3LS

σ4
h

(
2K2

hh

σ4
h

+N

)
.

B.3 PROOF OF LEMMA 4: NORM OF THE BIAS

Considering the form of the bias in (12), by Assumptions 1, 2 and 4,

‖bk‖
(a)

≤2γk
Nσ2

h

α2Khh

N∑
i=1

E
[∣∣∣hi,k+1

N∑
j=1

(h2j,k
σ4
h

+ n2j,k

)∣∣∣‖Φk‖‖ΦTk ‖‖∇2F̃i(θ̆k)‖‖Φk‖
∣∣∣Hk]

≤2γk
Nα1α

3
3σ

2
h

α2Khh

N∑
i=1

E
[∣∣∣hi,k+1

N∑
j=1

(h2j,k
σ4
h

+ n2j,k

)∣∣∣∣∣∣Hk]
(b)

≤2γk
Nα1α

3
3σ

2
h

α2Khh

N∑
i=1

[
σh

√
2

π

(
2Khh +

√
σ4
h −K2

hh

)
+ (N − 1)σ3

h

√
2

π
+N

√
2

π
σhσ

2
n

]

=2γk
N2α1α

3
3σ

3
h

α2Khh

√
2

π

[(
2Khh +

√
σ4
h −K2

hh

)
+ (N − 1)σ2

h +Nσ2
n

]
(c)
=c3γk,

(17)
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where (a) is due to Jensen’s inequality, (b) is by using the half-normal distribution for nor-
mal random variables in absolute value explained in the following paragraph, and in (c), c3 =

2
N2α1α

3
3σ

3
h

α2Khh

√
2
π

[(
2Khh +

√
σ4
h −K2

hh

)
+ (N − 1)σ2

h +Nσ2
n

]
.

Let X and Y be two variables representing time-correlated channel realizations at times k and k′
respectively. Assume they follow the N (0, σ) distribution and they have a correlation coefficient %.
Then, we can write Y = %X +

√
1− %2Z, where Z is independent of X and following the same

distribution N (0, σ). Then,

E[|Y X2|] = E[|(%X +
√

1− %2Z)X2|]

= E[|%X3 +
√

1− %2ZX2|]

≤ E[%|X3|+
√

1− %2|ZX2|]

= 2%

√
2

π
σ3 +

√
1− %2

√
2

π
σ × σ2

= (2%+
√

1− %2)

√
2

π
σ3.

If we substitute σ = σh and % = Khh
σ2
h

, we obtain the previous inequality (b).

Similarly, the bias of (14) can be bounded from above using Assumptions 2 and 4, as

‖b′k‖ ≤γk
N

2α2σ2
hKhh

N∑
i=1

E
[∣∣∣hi,k+1

N∑
j=1

h2j,k

∣∣∣‖Φk‖‖ΦTk ‖‖∇2Fi(θ́k)−∇2Fi(θ̀k)‖‖Φk‖
∣∣∣Hk]

≤2γkα1α
3
3

N

2α2σ2
hKhh

N∑
i=1

E
[∣∣hi,k+1(h2i,k +

∑
j 6=i

h2j,k)
∣∣∣∣∣Hk]

≤2γkα1α
3
3

N

2α2σ2
hKhh

N∑
i=1

[
σh

√
2

π

(
2Khh +

√
σ4
h −K2

hh

)
+ (N − 1)σ3

h

√
2

π

]

≤γkα1α
3
3

N2

α2σhKhh

√
2

π

[
2Khh +

√
σ4
h −K2

hh + (N − 1)σ2
h

]
=c′3γk,

(18)

with c′3 = α1α
3
3

N2

α2σhKhh

√
2
π

[
2Khh +

√
σ4
h −K2

hh + (N − 1)σ2
h

]
.

C 1P-ZOFL ALGORITHM CONVERGENCE

C.1 STOCHASTIC NOISE

To prove Lemma 5, we begin by demonstrating that the sequence {
∑K′

k=K αke
(1P )
k }K′≥K is a

martingale. Since g(1P )
k and g(1P )

k′ are independent if k 6= k′ and

E[e
(1P )
k ] =E[g

(1P )
k − E[g

(1P )
k |Hk]]

=EHk
[
E
[
g
(1P )
k − E[g

(1P )
k |Hk]

∣∣∣Hk]]
=0

18



Under review as a conference paper at ICLR 2024

by the law of total expectation, the sequence is a martingale. Therefore, for any constant ν > 0, we
can state

P( sup
K′≥K

‖
K′∑
k=K

αke
(1P )
k ‖ ≥ ν)

(a)

≤ E(‖
K′∑
k=K

αke
(1P )
k ‖2)

=
1

ν2
E(

K′∑
k=K

K′∑
k′=K

αkαk′〈e(1P )
k , e

(1P )
k′ 〉)

(b)
=

1

ν2
E(

K′∑
k=K

‖αke(1P )
k ‖2)

≤ 1

ν2

∞∑
k=K

E(α2
k‖g

(1P )
k − E[g

(1P )
k |Hk]‖2)

=
1

ν2

∞∑
k=K

α2
kE(‖g(1P )

k ‖2)− EHk(‖E[g
(1P )
k |Hk]‖2)

≤ 1

ν2

∞∑
k=K

α2
kE(‖g(1P )

k ‖2)

(c)

≤ c2
ν2

∞∑
k=K

α2
k,

where (a) is due to Doob’s martingale inequality (Doob, 1953), (b) is since E[〈e(1P )
k , e

(1P )
k′ 〉] = 0 for

any k 6= k′, and (c) is by Lemma 2.

Since c2 is a bounded constant and limK→∞
∑∞
k=K α

2
k = 0 by Assumption 5, we get

limK→∞
c2
ν2

∑∞
k=K α

2
k = 0 for any bounded constant ν. Hence, the probability that

‖
∑K′

k=K αke
(1P )
k ‖ ≥ ν also vanishes as K →∞, which concludes the proof.

C.2 PROOF OF THEOREM 1: CONVERGENCE ANALYSIS

By the L-smoothness assumption and the algorithm update step θk+1 = θk − αkg(1P )
k , we have

F (θk+1) ≤ F (θk)− αk〈∇F (θk), g
(1P )
k 〉+

α2
kL

2
‖g(1P )
k ‖2

= F (θk)− αk〈∇F (θk), g
(1P )
k − E[g

(1P )
k |Hk] + E[g

(1P )
k |Hk]〉+

α2
kL

2
‖g(1P )
k ‖2

= F (θk)− αk〈∇F (θk), e
(1P )
k 〉 − c1αkγk〈∇F (θk),∇F (θk) + bk〉+

α2
kL

2
‖g(1P )
k ‖2

= F (θk)− αk〈∇F (θk), e
(1P )
k 〉 − c1αkγk‖∇F (θk)‖2 − c1αkγk〈∇F (θk), bk〉

+
α2
kL

2
‖g(1P )
k ‖2

(a)

≤ F (θk)− αk〈∇F (θk), e
(1P )
k 〉 − c1αkγk‖∇F (θk)‖2 +

c1αkγk
2
‖∇F (θk)‖2

+
c1αkγk

2
‖bk‖2 +

α2
kL

2
‖g(1P )
k ‖2

= F (θk)− αk〈∇F (θk), e
(1P )
k 〉 − c1αkγk

2
‖∇F (θk)‖2 +

c1αkγk
2
‖bk‖2 +

α2
kL

2
‖g(1P )
k ‖2

(19)

where (a) is by −〈a, b〉 ≤ 1
2‖a‖

2 + 1
2‖b‖

2.
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By taking the telescoping sum, we get

F (θ∗) ≤ F (θK+1) ≤ F (θ0)− c1
2

K∑
k=0

αkγk‖∇F (θk)‖2 −
K∑
k=0

αk〈∇F (θk), e
(1P )
k 〉

+
c1
2

K∑
k=0

αkγk‖bk‖2 +
c2L

2

K∑
k=0

α2
k‖g

(1P )
k ‖2

(20)

Hence,

K∑
k=0

αkγk‖∇F (θk)‖2 ≤ 2

c1
(F (θ0)− F (θ∗))− 2

c1

K∑
k=0

αk〈∇F (θk), e
(1P )
k 〉+

K∑
k=0

αkγk‖bk‖2

+
c2L

c1

K∑
k=0

α2
k‖g

(1P )
k ‖2

(21)

By Assumption 3, ‖∇F (θk)‖ is bounded for any θk ∈ Rd and by Lemma 5, we have

lim
K→∞

‖
K∑
k=0

αk〈∇F (θk), e
(1P )
k 〉‖ <∞. (22)

From Lemma 4, we know that ‖bk‖2 ∼ γ2k . Hence, by Assumption 5,

lim
K→∞

K∑
k=0

αkγ
3
k <∞. (23)

From Lemma 2 and by looking closely at the use of the Lipschitz continuity property in (15), we can
say ‖g(1P )

k ‖2 ≤ c for some c > 0. Thus, again by Assumption 5,

lim
K→∞

K∑
k=0

α2
k <∞. (24)

We conclude that

lim
K→∞

K∑
k=0

αkγk‖∇F (θk)‖2 <∞. (25)

Moreover, since the series
∑
k αkγk diverges by Assumption 5, we have

lim
k→∞

inf ‖∇F (θk)‖ = 0. (26)

To prove that limk→∞ ‖∇F (θk)‖ = 0, we consider the hypothesis H) limk→∞ sup ‖∇F (θk)‖ ≥ ρ
for an arbitrary ρ > 0.

Assume (H) to be true. Then, we can always find an arbitrary subsequence
(
‖∇F (θkl)‖

)
l∈N of

‖∇F (θk)‖, such that ‖∇F (θkl)‖ ≥ ρ− ε, ∀l, for ρ− ε > 0 and ε > 0.

Then, by the L-smoothness property and applying the descent step of the algorithm,

‖∇F (θkl+1)‖ ≥ ‖∇F (θkl)‖ − ‖∇F (θkl+1)−∇F (θkl)‖
≥ ρ− ε− L‖θkl+1 − θkl‖
= ρ− ε− Lαkl‖gkl‖
≥ ρ− ε− L

√
cαkl ,

(27)

20



Under review as a conference paper at ICLR 2024

Since kl →∞ as l→∞, we can always find a subsequence of (klp)p∈N such that klp+1
− klp > 1.

As αkl is vanishing, we consider (kl)l∈N starting from αkl <
ρ−ε
L
√
c
. Thus,

∞∑
k=0

αk+1γk+1‖∇F (θk+1)‖2

≥ (ρ− ε)2
∞∑
k=0

αk+1γk+1 − 2(ρ− ε)L
√
c

∞∑
k=0

αk+1γk+1αk + L2c

∞∑
k=0

αk+1γk+1α
2
k

≥ (ρ− ε)2
∞∑
k=0

αk+1γk+1 − 2(ρ− ε)L
√
c

∞∑
k=0

α2
kγk+1 + L2c

∞∑
k=0

αk+1γk+1α
2
k

= +∞,

(28)

as the first series diverges, and the second and the third converge by Assumption 5. This implies
that the series

∑
k αkγk‖∇F (θk)‖2 diverges. This is a contradiction as this series converges almost

surely by (25). Therefore, hypothesis (H) cannot be true and ‖∇F (θk)‖ converges to zero almost
surely.

C.3 PROOF OF THEOREM 2: CONVERGENCE RATE

Starting again from theL-smoothness in Lemma 3 and the algorithm update step θk+1 = θk−αkg(1P )
k ,

we have

F (θk+1) ≤ F (θk)− αk〈∇F (θk), g
(1P )
k 〉+

α2
kL

2
‖g(1P )
k ‖2. (29)

Taking the conditional expectation givenHk,

F (θk+1) ≤ F (θk)− c1αkγk〈∇F (θk),∇F (θk) + bk〉+
α2
kLc2
2

= F (θk)− c1αkγk‖∇F (θk)‖2 − c1αkγk〈∇F (θk), bk〉+
α2
kLc2
2

(a)

≤ F (θk)− c1αkγk‖∇F (θk)‖2 +
c1αkγk

2
‖∇F (θk)‖2 +

c1αkγk
2
‖bk‖2 +

α2
kLc2
2

= F (θk)− c1αkγk
2
‖∇F (θk)‖2 +

c1αkγk
2
‖bk‖2 +

α2
kLc2
2

(30)

where (a) is by −〈a, b〉 ≤ 1
2‖a‖

2 + 1
2‖b‖

2

By considering a large value K > 0 and taking the telescoping sum of (30), we get

E[F (θK+1)|HK ] ≤ F (θ0)− c1
2

K∑
k=0

αkγk‖∇F (θk)‖2 +
c1
2

K∑
k=0

αkγk‖bk‖2 +
Lc2
2

K∑
k=0

α2
k

.

(31)

Given the assumption that F (θ∗) = minθ∈Rd F (θ) exists, we know that δk = F (θk)− F (θ∗) ≥ 0.
Then,

0 ≤ E[δK+1|HK ] ≤ δ0 −
c1
2

K∑
k=0

αkγk‖∇F (θk)‖2 +
c1c3

2

K∑
k=0

αkγ
3
k +

Lc2
2

K∑
k=0

α2
k

.

(32)

Finally, ∑
k

αkγkE[‖∇F (θk)‖2] ≤ 2

c1c3
δ0 +

∑
k

αkγ
3
k +

Lc2
c1

∑
k

α2
k (33)
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Let αk and γk have the forms given in Example 2. We know that, ∀K > 0,
K∑
k=0

αkγ
3
k = α0γ

3
0 +

K∑
k=1

αkγ
3
k ≤ α0γ

3
0

(
1 +

∫ K

0

(x+ 1)−υ1−3υ2dx

)
= α0γ

3
0

(
1 +

1

υ1 + 3υ2 − 1
− (K + 1)−υ1−3υ2+1

υ1 + 3υ2 − 1

)
≤ α0γ

3
0

(
1 +

1

υ1 + 3υ2 − 1

)
= α0γ

3
0

(
υ1 + 3υ2

υ1 + 3υ2 − 1

)
.

(34)

Similarly,
K∑
k=0

α2
k ≤ α2

0

(
2υ1

2υ1 − 1

)
(35)

• Next, when 0 < υ1 + υ2 < 1,
K∑
k=0

αkγk ≥ α0γ0

∫ K+1

0

(x+ 1)−υ1−υ2dx

=
α0γ0

(1− υ1 − υ2)

(
(K + 2)1−υ1−υ2 − 1

)
.

(36)

Thus, making use of inequality (33)∑
k αkγkE[‖∇F (θk)‖2]∑

k αkγk
≤ (1− υ1 − υ2)

(K + 2)1−υ1−υ2 − 1

×
(

2

c1α0γ0
δ0 + c23γ

2
0

(
υ1 + 3υ2

υ1 + 3υ2 − 1

)
+
Lc2α0

c1γ0

(
2υ1

2υ1 − 1

))
(37)

• Otherwise, when υ1 + υ2 = 1,
K∑
k=0

αkγk ≥ α0γ0

∫ K+1

0

1

x+ 1
dx

= α0γ0 ln(K + 2).

(38)

Thus, we get∑
k αkγkE[‖∇F (θk)‖2]∑

k αkγk
≤ 1

ln(K + 2)

×
(

2

c1α0γ0
δ0 + c23γ

2
0

(
υ1 + 3υ2

υ1 + 3υ2 − 1

)
+
Lc2α0

c1γ0

(
2υ1

2υ1 − 1

))
(39)

D 2P-ZOFL ALGORITHM CONVERGENCE

D.1 STOCHASTIC NOISE

Since g(2P )
k and g(2P )

k′ are independent if k 6= k′ and

E[e
(2P )
k ] =E[g

(2P )
k − E[g

(2P )
k |Hk]]

=EHk
[
E
[
g
(2P )
k − E[g

(2P )
k |Hk]

∣∣∣Hk]],
=0
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the sequence is a martingale. Thus, for any ν > 0,

P( sup
K′≥K

‖
K′∑
k=K

αke
(2P )
k ‖ ≥ ν)

(a)

≤ E(‖
K′∑
k=K

αke
(2P )
k ‖2)

=
1

ν2
E(

K′∑
k=K

K′∑
k′=K

αkαk′〈e(2P )
k , e

(2P )
k′ 〉)

(b)
=

1

ν2
E(

K′∑
k=K

‖αke(2P )
k ‖2)

≤ 1

ν2

∞∑
k=K

E(α2
k‖g

(2P )
k − E[g

(2P )
k |Hk]‖2)

=
1

ν2

∞∑
k=K

α2
kE(‖g(2P )

k ‖2)− EHk(‖E[g
(2P )
k |Hk]‖2)

≤ 1

ν2

∞∑
k=K

α2
kE(‖g(2P )

k ‖2)

(c)

≤ c′2
ν2

∞∑
k=K

α2
kγ

2
k,

where (a) is due to Doob’s martingale inequality (Doob, 1953), (b) is since E[〈e(2P )
k , e

(2P )
k′ 〉] = 0 for

any k 6= k′, and (c) is by Lemma 2.

Since c′2 is a bounded constant and limK→∞
∑∞
k=K α

2
kγ

2
k = 0 by Assumption 6, we get

limK→∞
c′2
ν2

∑∞
k=K α

2
kγ

2
k = 0 for any bounded constant ν. Hence, the probability that

‖
∑K′

k=K αke
(2P )
k ‖ ≥ ν also vanishes as K →∞, which concludes the proof.

D.2 PROOF OF THEOREM 3: CONVERGENCE ANALYSIS

By the L-smoothness assumption, we have

F (θk+1) ≤ F (θk)− αk〈∇F (θk), g
(2P )
k 〉+

α2
kL

2
‖g(2P )
k ‖2

= F (θk)− αk〈∇F (θk), g
(2P )
k − E[g

(2P )
k |Hk] + E[g

(2P )
k |Hk]〉+

α2
kL

2
‖g(2P )
k ‖2

= F (θk)− αk〈∇F (θk), e
(2P )
k 〉 − c′1αkγk〈∇F (θk),∇F (θk) + b′k〉+

α2
kL

2
‖g(2P )
k ‖2

= F (θk)− αk〈∇F (θk), e
(2P )
k 〉 − c′1αkγk‖∇F (θk)‖2 − c′1αkγk〈∇F (θk), b′k〉+

α2
kL

2
‖g(2P )
k ‖2

(a)

≤ F (θk)− αk〈∇F (θk), e
(2P )
k 〉 − c′1αkγk‖∇F (θk)‖2 +

c′1αkγk
2
‖∇F (θk)‖2

+
c′1αkγk

2
‖b′k‖2 +

α2
kL

2
‖g(2P )
k ‖2

= F (θk)− αk〈∇F (θk), e
(2P )
k 〉 − c′1αkγk

2
‖∇F (θk)‖2 +

c′1αkγk
2
‖b′k‖2 +

α2
kL

2
‖g(2P )
k ‖2

(40)

where (a) is by −〈a, b〉 ≤ 1
2‖a‖

2 + 1
2‖b‖

2.
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By taking the telescoping sum, we get

F (θ∗) ≤ F (θK+1) ≤ F (θ0)− c′1
2

K∑
k=0

αkγk‖∇F (θk)‖2 −
K∑
k=0

αk〈∇F (θk), e
(2P )
k 〉

+
c′1
2

K∑
k=0

αkγk‖b′k‖2 +
c′2L

2

K∑
k=0

α2
k‖g

(2P )
k ‖2

(41)

Hence,

K∑
k=0

αkγk‖∇F (θk)‖2 ≤ 2

c′1
(F (θ0)− F (θ∗))− 2

c′1

K∑
k=0

αk〈∇F (θk), e
(2P )
k 〉+

K∑
k=0

αkγk‖b′k‖2

+
c′2L

c′1

K∑
k=0

α2
k‖g

(2P )
k ‖2

(42)

By Assumption 3, ‖∇F (θk)‖ is bounded for any θk ∈ Rd and by Lemma 6, we have

lim
K→∞

‖
K∑
k=0

αk〈∇F (θk), ek〉‖ <∞. (43)

From Lemma 4, we know that ‖b′k‖2 ∼ γ2k . Hence, by Assumption 6,

lim
K→∞

K∑
k=0

αkγ
3
k <∞. (44)

From Lemma 2 and by looking closely at the use of the Lipschitz continuity property in (16), we can
say ‖g(2P )

k ‖2 ≤ c′γ2k for some c′ > 0. Thus, again by Assumption 6,

lim
K→∞

K∑
k=0

α2
kγ

2
k <∞. (45)

We conclude that

lim
K→∞

K∑
k=0

αkγk‖∇F (θk)‖2 <∞. (46)

Moreover, since the series
∑
k αkγk diverges by Assumption 6, we have

lim
k→∞

inf ‖∇F (θk)‖ = 0. (47)

To prove that limk→∞ ‖∇F (θk)‖ = 0, we consider the hypothesis H) limk→∞ sup ‖∇F (θk)‖ ≥ ρ
for an arbitrary ρ > 0.

Assume (H) to be true. Then, we can always find an arbitrary subsequence
(
‖∇F (θkl)‖

)
l∈N of

‖∇F (θk)‖, such that ‖∇F (θkl)‖ ≥ ρ− ε, ∀l, for ρ− ε > 0 and ε > 0.

Then, by the L-smoothness property and applying the descent step of the algorithm,

‖∇F (θkl+1)‖ ≥ ‖∇F (θkl)‖ − ‖∇F (θkl+1)−∇F (θkl)‖
≥ ρ− ε− L‖θkl+1 − θkl‖

= ρ− ε− Lαkl‖g
(2P )
kl
‖

≥ ρ− ε− L
√
c′αklγkl ,

(48)
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Since kl →∞ as l→∞, we can always find a subsequence of (klp)p∈N such that klp+1
− klp > 1.

As αklγkl is vanishing, we consider (kl)l∈N starting from αklγkl <
ρ−ε
L
√
c′

. Thus,

∞∑
k=0

αk+1γk+1‖∇F (θk+1)‖2

≥ (ρ− ε)2
∞∑
k=0

αk+1γk+1 − 2(ρ− ε)L
√
c′
∞∑
k=0

αk+1γk+1αkγk + L2c′
∞∑
k=0

αk+1γk+1α
2
kγ

2
k

≥ (ρ− ε)2
∞∑
k=0

αk+1γk+1 − 2(ρ− ε)L
√
c′
∞∑
k=0

α2
kγ

2
k + L2c′

∞∑
k=0

αk+1γk+1α
2
kγ

2
k

= +∞,

(49)

as the first series diverges, and the second and the third converge by Assumption 6. This implies
that the series

∑
k αkγk‖∇F (θk)‖2 diverges. This is a contradiction as this series converges almost

surely by (46). Therefore, hypothesis (H) cannot be true and ‖∇F (θk)‖ converges to zero almost
surely.

D.3 PROOF OF THEOREM 4: CONVERGENCE RATE

Due to the L-smoothness, we have

F (θk+1) ≤ F (θk)− αk〈∇F (θk), g
(2P )
k 〉+

α2
kL

2
‖g(2P )
k ‖2. (50)

Taking the conditional expectation givenHk,

F (θk+1) ≤ F (θk)− c′1αkγk〈∇F (θk),∇F (θk) + b′k〉+
c′2L

2
α2
kγ

2
k

= F (θk)− c′1αkγk‖∇F (θk)‖2 − c′1αkγk〈∇F (θk), b′k〉+
c′2L

2
α2
kγ

2
k

(a)

≤ F (θk)− c′1αkγk‖∇F (θk)‖2 +
c′1αkγk

2
‖∇F (θk)‖2 +

c′1αkγk
2
‖b′k‖2 +

c′2L

2
α2
kγ

2
k

= F (θk)− c′1αkγk
2
‖∇F (θk)‖2 +

c1αkγk
2
‖b′k‖2 +

c′2L

2
α2
kγ

2
k

(51)

where (a) is by −〈a, b〉 ≤ 1
2‖a‖

2 + 1
2‖b‖

2

We again consider a large value K > 0 and take the telescoping sum of (51),

E[F (θK+1)|HK ] ≤ F (θ0)− c′1
2

∑
k

αkγk‖∇F (θk)‖2 +
c′1
2

∑
k

αkγk‖b′k‖2 +
c′2L

2

∑
k

α2
kγ

2
k

0 ≤ E[δK+1|HK ] ≤ δ0 −
c′1
2

∑
k

αkγk‖∇F (θk)‖2 +
c′1
2

∑
k

αkγk‖b′k‖2 +
c′2L

2

∑
k

α2
kγ

2
k

(52)

Hence,

∑
k

αkγkE[‖∇F (θk)‖2] ≤ 2

c′1
δ0 + c′3

∑
k

αkγ
3
k +

c′2L

c′1

∑
k

α2
kγ

2
k (53)
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Let the step sizes have the form as in Example 3. We know that, ∀K > 0,

K∑
k=0

αkγ
3
k = α0γ

3
0 +

K∑
k=1

αkγ
3
k ≤ α0γ

3
0

(
1 +

∫ K

0

(x+ 1)−υ1−3υ2dx

)
= α0γ

3
0

(
1 +

1

υ1 + 3υ2 − 1
− (K + 1)−υ1−3υ2+1

υ1 + 3υ2 − 1

)
≤ α0γ

3
0

(
1 +

1

υ1 + 3υ2 − 1

)
= α0γ

3
0

(
υ1 + 3υ2

υ1 + 3υ2 − 1

)
.

(54)

Similarly,
K∑
k=0

α2
kγ

2
k ≤ α2

0γ
2
0

(
2υ1 + 2υ2

2υ1 + 2υ2 − 1

)
(55)

• Next, when 0 < υ1 + υ2 < 1,

K∑
k=0

αkγk ≥ α0γ0

∫ K+1

0

(x+ 1)−υ1−υ2dx

=
α0γ0

(1− υ1 − υ2)

(
(K + 2)1−υ1−υ2 − 1

)
.

(56)

Thus, substituting in inequality (53), we get∑
k αkγkE[‖∇F (θk)‖2]∑

k αkγk
≤ (1− υ1 − υ2)

(K + 2)1−υ1−υ2 − 1

×
(

2δ0
c′1α0γ0

+
c′23 γ

2
0(υ1 + 3υ2)

υ1 + 3υ2 − 1
+

2c′2Lα0γ0(υ1 + υ2)

c′1(2υ1 + 2υ2 − 1)

)
.

(57)

• Otherwise, when υ1 + υ2 = 1,

K∑
k=0

αkγk ≥ α0γ0

∫ K+1

0

1

x+ 1
dx

= α0γ0 ln(K + 2).

(58)

Then, we obtain∑
k αkγkE[‖∇F (θk)‖2]∑

k αkγk
≤ 1

ln(K + 2)

×
(

2δ0
c′1α0γ0

+
c′23 γ

2
0(υ1 + 3υ2)

υ1 + 3υ2 − 1
+

2c′2Lα0γ0(υ1 + υ2)

c′1(2υ1 + 2υ2 − 1)

)
.

(59)

E EXPERIMENTAL RESULTS DETAILS

E.1 AUTOENCODER

The lossy autoencoder that we train to compress the images of the MNIST dataset has an encoder-
decoder architecture. The encoder part takes an input of size 784 and gradually reduces its dimen-
sionality to 10. This is accomplished by passing the input tensor through three linear layers whose
dimensions move from 784 to 512, to 128, to 10, with the first two layers followed by an ELU
activation function.

26



Under review as a conference paper at ICLR 2024

The decoder part takes the encoded representation and reconstructs the original input tensor by
performing the reverse operation of the encoder. Specifically, the encoded tensor is passed through
three linear layers whose sizes move from 10 to 128, to 512 to 784, with the first two layers followed
by an ELU activation function and, finally, a sigmoid activation function in the last layer to ensure
that the output pixel intensities are between 0 and 1.

Overall, the autoencoder architecture consists of 6 linear layers and 4 activation functions (3 ELU
and 1 sigmoid).

We train the model on all the images of the MNIST dataset over 10 epochs using the mean squared
error loss and Adam optimizer.

E.2 PARAMETERS CHOICE

Φk is generated according to Example 1. All channels are generated using the normal distribution
with autocovariance Khh = 1

2 . The noise is Gaussian with 0 mean and variance σ2
n = 1

4 .

1. For the logistic regression model, we consider the following step sizes/ learning rates for
every algorithm:

• 1P-ZOFL: αk = (1 + k)−0.51 and γk = 3(1 + k)−0.18

• 2P-ZOFL: αk = 3(1 + k)−0.26 and γk = 6(1 + k)−0.26

• FedAvg: η = 0.15

With the non-IID data distribution, we only change the following:

• 2P-ZOFL: αk = 3.5(1 + k)−0.26 and γk = 6.5(1 + k)−0.26

2. For the training model, we consider the following:
• 1P-ZOFL: αk = 0.1(1 + k)−0.51 and γk = 0.3(1 + k)−0.18

• 2P-ZOFL: αk = 0.4(1 + k)−0.26 and γk = 0.7(1 + k)−0.26

• FedAvg: η = 0.01

E.3 QUANTITATIVE COMPARISON

Table 1: Upload communication efficiency of ZOFL vs FedAvg (McMahan et al., 2017) vs FedZO
(Fang et al., 2022) till convergence and per iteration.

ALGORITHM

TOTAL SYMBOLS
UNTIL

CONVERGENCE
FOR 1 DEVICE

TOTAL SYMBOLS
UNTIL

CONVERGENCE
FOR 100 DEVICES

NUMBER OF
SYMBOLS

PER ITERATION
FOR 1 DEVICE

NUMBER OF
SYMBOLS

PER ITERATION
FOR 100 DEVICES

ZOFL 4, 000 400, 000 2 200

FEDAVG 59, 280, 600 5, 928, 060, 000
59, 280, 600/300

= 197, 602
19, 760, 200

FEDZO 59, 280, 600/50
= 1, 185, 612

1, 185, 612× 10
= 11, 856, 120

1, 185, 612/300
= 3, 952

39, 520

We include this quantitative study to compare with other communication-efficient strategies, like
local SGD (multiple local gradient descent steps before upload) and partial device participation at
every iteration. For this study, we compare with FedZO (Fang et al., 2022), which incorporates both
strategies and communicates over wireless channels.

Casting the added complexity aside for now (for the extra channel processing, piloting, and training
time needed) for FedZO and assuming that FedZO with H = 50 (local updates) and M = 10 (10%
of the users) performs as well as FedAvg presented in our experiments (which is quite generous),
the number of scalar values to collectively upload is still very high (59280600/500 = 118561) as
compared to that of our algorithms. If we add the additional time needed for local training (50
times forward and backward passes through the local models) and the back-and-forth exchange for
instantaneous channel coefficients and maximum squared norm of local models between the server
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and clients in section IV.B of Fang et al. (2022), then the communication efficiency of our algorithm
will be clearly evident as compared to the literature. We present the number of symbols to upload in
Table 1 for an easier read of comparison.

E.4 PERFORMANCE OF 1P-ZOFL VS SNR

An important remark to convey is that our algorithm is independent of the amount of noise present in
the wireless environment. High SNR is needed when we must decode the information in the received
signal. In our case, nothing is decoded; there is no channel estimation or gradient calculation from
the received signal. Rather, the received signal is fed directly into the learning (the channel is part of
the learning). The amount of noise present in the system does not affect our algorithms’ convergence:
Examining (15) and (17), we see that the noise variance σ2

n might only increase the norms of the
estimate and bias, but if we refer to (19), we’ll find that both terms are multiplied by step sizes,
and we can counter the noise effect by decreasing the step sizes’ constant parts (i.e, in the terms
c1αkγk

2 ‖bk‖2 and α2
kL
2 ‖g

(1P )
k ‖2). We have provided numerical evidence in Figure 4 to assess this

explanation. In the plots, we decreased α0 and γ0 when we increased σ2
n. When taking the noise

variance equal to 1, i.e. same variance as the channel’s, we get the same performance. When taking it
2.25, which refers to poor communication quality, the algorithm was able to keep up when the step
sizes became small enough, proving a difference in the rate affected in its constant part. Finally, they
all converged to the same accuracy, meaning there was no gap in the convergence due to the noise.

Figure 4: 1P-ZOFL with logistic regression and different noise variance σ2
n.

F NON-SYMMETRICAL CHANNELS

Assuming non-symmetrical channels with E[hi,k] = µh and σ2
h = E[h2i,k]−µ2

h, ∀i,∀k, the one-point
gradient estimate becomes

g
(1P )
k = Φk

N∑
i=1

[
hi,k+1f̃i

(
θk + γkΦk, Si,k+1

)
+ ni,k+1

]
. (60)

And 1P-ZOFL is updated to Algorithm 3.

The two-point estimator also changes to

g
(2P )
k = Φk

N∑
i=1

hi,k+1

[
f̃i

(
θk + γkΦk, Si,k+1

)
− f̃i

(
θk − γkΦk, Si,k+1

)]
. (61)

And 2P-ZOFL is updated to Algorithm 4.
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Algorithm 3 The 1P-ZOFL algorithm with non-symmetrical channels
Input: Initial model θ0 ∈ Rd, the initial step-sizes α0 and γ0, and the channels’ standard deviation
σh

1: for k = 0, 2, 4, ... do
2: The server broadcasts θk + γkΦk
3: The server receives

∑N
i=1 hi,k+1f̃i

(
θk + γkΦk, Si,k+1

)
+ ni,k+1

4: The server multiplies the received scalar sum by Φk to assemble g(1P )
k in (60)

5: The server updates θk+1 = θk − αkg(1P )
k

6: end for

Algorithm 4 The 2P-ZOFL algorithm with non-symmetrical channels
Input: Initial model θ0 ∈ Rd, the initial step-sizes α0 and γ0, and the channels’ standard deviation
σh

1: for k = 0, 2, 4, ... do
2: The server broadcasts θk+γkΦk and θk−γkΦk under the same stochastic wireless environment
3: The server receives∑N

i=1 hi,k+1

[
f̃i

(
θk + γkΦk, Si,k+1

)
− f̃i

(
θk − γkΦk, Si,k+1

)]
4: The server multiplies the received scalar sum by Φk to assemble g(2P )

k in (61)
5: The server updates θk+1 = θk − αkg(2P )

k
6: end for

We then analyze the properties of our modified gradient estimates:

E[g
(1P )
k |Hk]

=E
[
Φk

N∑
i=1

(
hi,k+1f̃i

(
θk + γkΦk, Si,k+1

)
+ ni,k+1

)∣∣∣Hk]

=E
[
Φk

N∑
i=1

µhF̃i

(
θk + γkΦk

)∣∣∣Hk]

=E
[
Φkµh

N∑
i=1

(
F̃i(θk) + γkΦTk∇F̃i(θk) + γ2kΦTk∇2F̃i(θ̆k)Φk

)∣∣∣Hk]

=µhγk

N∑
i=1

E
[
ΦkΦTk∇F̃i(θk) + γkΦkΦTk∇2F̃i(θ̆k)Φk

∣∣∣Hk]
=c1γk(∇F (θk) + bk),

(62)

with c1 = µhα2

σ2
h

and bk = γk
α2

E
[
ΦkΦTk∇2Fi(θ̆k)Φk

∣∣∣∣Hk].

Then, ‖bk‖ ≤ γk
α2
α3
3α1, now c3 =

α3
3α1

α2
and ‖bk‖ ≤ c3γk.
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E[‖g(1P )
k ‖2|Hk]

=E
[∥∥∥Φk

N∑
i=1

hi,k+1

[
f̃i

(
θk + γkΦk, Si,k+1

)
− f̃i

(
θk − γkΦk, Si,k+1

)]∥∥∥2∣∣∣Hk]

=E
[
‖Φk‖2

( N∑
i=1

hi,k+1f̃i

(
θk + γkΦk, Si,k+1

)
+ ni,k+1

)2∣∣∣Hk]

≤α2
3N

N∑
i=1

E
[(
hi,k+1f̃i

(
θk + γkΦk, Si,k+1

)
+ ni,k+1

)2∣∣∣Hk]

=α2
3N

N∑
i=1

E
[
h2i,k+1f̃

2
i

(
θk + γkΦk, Si,k+1

)
+ n2i,k+1

∣∣∣Hk]

≤α2
3N

N∑
i=1

E
[
h2i,k+1

σ4
h

(
‖fi(0, Si,k+1)‖+ LSi,k+1

‖θk + γkΦk‖
)2∣∣∣Hk]+N2α2

3σ
2
n

≤α2
3N

N∑
i=1

E
[
h2i,k+1

σ4
h

(
‖fi(0, Si,k+1)‖+ LSi,k+1

‖θk‖+ LSi,k+1
γk‖Φk‖

)2∣∣∣Hk]+N2α2
3σ

2
n

≤3α2
3N

N∑
i=1

E
[
h2i,k+1

σ4
h

(
‖fi(0, Si,k+1)‖2 + L2

Si,k+1
‖θk‖2 + α2

3L
2
Si,k+1

γ2k

)∣∣∣Hk]+N2α2
3σ

2
n

=
3N2α2

3(σ2
h + µ2

h)

σ2
h

(
µS + LS‖θk‖2 + α2

3LSγ
2
k

)
+N2α2

3σ
2
n

:=c2,
(63)

For the two-point estimate,

E[g
(2P )
k |Hk]

=E
[
Φk

N∑
i=1

hi,k+1

[
f̃i

(
θk + γkΦk, Si,k+1

)
− f̃i

(
θk − γkΦk, Si,k+1

)]∣∣∣Hk]

=E
[
Φk

N∑
i=1

µh

[
F̃i

(
θk + γkΦk

)
− F̃i

(
θk − γkΦk

)]∣∣∣Hk]

=E
[
Φk

N∑
i=1

µh

[
F̃i(θk) + γkΦTk∇F̃i(θk) + γ2kΦTk∇2F̃i(θ́k)Φk

−
(
F̃i(θk)− γkΦTk∇F̃i(θk) + γ2kΦTk∇2F̃i(θ̀k)Φk

)]∣∣∣Hk]
=2γkµh

N∑
i=1

E
[
ΦkΦTk∇F̃i(θk) +

γk
2

ΦTk (∇2F̃i(θ́k)−∇2F̃i(θ̀k))Φk

∣∣∣Hk]
=c′1γk(∇F (θk) + b′k)

(64)

with c′1 = 2µhα2

σ2
h

and b′k = γk
2α2

E
[
ΦkΦTk (∇2F̃i(θ́k)−∇2F̃i(θ̀k))Φk

∣∣∣∣Hk].

Then, ‖b′k‖ ≤
γk
2α2

α3
3α1, now c′3 =

α3
3α1

2α2
and ‖b′k‖ ≤ c′3γk.
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E[‖g(2P )
k ‖2|Hk]

=E
[∥∥∥Φk

N∑
i=1

hi,k+1

[
f̃i

(
θk + γkΦk, Si,k+1

)
− f̃i

(
θk − γkΦk, Si,k+1

)]∥∥∥2∣∣∣Hk]

=E
[
‖Φk‖2

( N∑
i=1

hi,k+1

[
f̃i

(
θk + γkΦk, Si,k+1

)
− f̃i

(
θk − γkΦk, Si,k+1

)])2∣∣∣Hk]

≤α2
3E
[( N∑

i=1

hi,k+1

[
f̃i

(
θk + γkΦk, Si,k+1

)
− f̃i

(
θk − γkΦk, Si,k+1

)])2∣∣∣Hk]

≤α2
3E
[( N∑

i=1

hi,k+1

σ2
h

LSi,k+1

∥∥∥2γkΦk

∥∥∥)2∣∣∣Hk]

≤4γ2kα
4
3N

σ4
h

N∑
i=1

E
[
h2i,k+1L

2
Si,k+1

∣∣∣Hk]
=4γ2k

α4
3(σ2

h + µ2
h)LSN

2

σ4
h

:=c′2γ
2
k

(65)

where LS = E[LSi,k+1
|Hk] and c′2 = 4

α4
3(σ

2
h+µ

2
h)LSN

2

σ4
h

.

The rest of the analysis resumes as previously.
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