
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

InCa and InDia: Inline Casing and Diacritization Preprocessing
For Robust-to-Noise Tokenization and Interpretability

Anonymous Authors1

Abstract
We introduce two inline approaches to tokeniza-
tion preprocessing of casing (InCa) and diacritics
(InDia) in the texts. Their main component relies
on an automatically created external dictionary
that stores information about the most frequent
casings or diacritizations of words, and marking
only the non-frequent spellings. We show that
in a number of noising scenarios, our casing al-
gorithm shows the best performance, and in the
cases where it performs on par with the alterna-
tive solutions, the intrinsic parameters of the to-
kenizer trained on our data are more stable. As
for inline diacritization, this is the first solution of
that type to our knowledge; we show its improve-
ment on robustness against the de-diacritized texts
compared to tokenization without preprocessing.
We share our preprocessing systems at a public
GitHub repository.1

1. Introduction
The strong point of subword tokenization systems, such
as BPE Sennrich et al. (2016) or SentencePiece Kudo &
Richardson (2018), is their ability to split any sequence of
characters to tokens by falling back to smaller subwords if
the character groups are not frequent. However, they are
inherently overly sensitive towards variation in the character
usage. The examples of such variation are various types
of casing (capitalization or uppercasing) of the words or
omitting the diacritics prescribed by language norms (so-
called de-diacritization). Tokenizers trained on the general-
purpose data usually show poor performance when tokeniz-
ing the words which bear similar meaning but are written
differently by casing or de-diacritization: since they have

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1The scripts will be shared at camera-ready date.

not seen enough training examples of different casing or
diacritizations, they cannot find the corresponding lines for
the upper-cased words and end up over-splitting them into
smaller sequences they could find. The illustration of such
over-splitting is shown in Table 1.

This variation can be treated as noise and may be deleted
beforehand, but in some cases it may also bear linguistic (as
in diacritics) or expressive (as in writing the sentences in
all caps in the social networks) information. Thus, an ideal
solution for handling such a variation would be to preserve
the information about casing or diacritization while not dam-
aging the quality of the tokenization. One of the solutions
suggested for the casing problem and developed in a line
of works is applying preprocessing on the texts before the
tokenizer. The recent analysis by Jain et al. (2023) shows
that, if applied with a number of tricks (for example, using
a single auxiliary token for a sequence of uppercase words)
and with data augmentation, it can handle the inputs with
different casings well. However, the way the auxiliary sym-
bols are assigned in this paper is questionable, as it allows
both treating them as separate tokens and merging the words
with them. Moreover, most of the work on the inline casing
algorithms either focuses on the downstream performance of
the tokenization on the NLP tasks or solely on the intrinsic
performance of the tokenizers without its downstream NLP
applications. Bearing in mind that subword tokenization is
a relatively new technique and there is still no consensus in
how to evaluate the efficiency of the tokenizer itself, this
lack of simultaneous analysis of the intrinsic qualities of
the tokenizer and the extrinsic performance of the systems
which use this tokenizer is a big problem. Finally, to our
knowledge, there has been no attempt to apply the inline
approach to other orthographical transformations such as
diacritics and de-diacritization mentioned above.

With this work, we present two systems for preprocessing of
texts with respect to casing and diacritization - InCa and In-
Dia. Their core characteristic is usage of the automatically
trained dictionary that stores information about the most
frequent casing or diacritization of each word in a training
corpus, and explicit marking of only the casings that are
less frequent. Our main aim is to create a system that min-
imizes the lengths of the tokenized sequences, makes the

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2025

Variation Input Phrase Tokenized Sequence # Tokens
None Během výběrů Během výběr ů 3
All-Caps BĚHEM VÝBĚRŮ B Ě H EM V Ý B Ě R Ů 10
No Diacritics Behem vyberu Be hem vy ber u 5

Table 1. An illustration of the tokenization problem with the same phrase transformed either by upper-casing or by deleting the diacritiza-
tion. The tokenizer trained on the “regular” data (with diacritized and usually not upper-cased words) struggles to split it consistently. The
words are overly split, which would influence the processing time and the performance on the downstream NLP task.

subword vocabularies more transparent (for example, free
from doublets differing only by casing), and robust to noise
(showing similar tokenization and downstream performance
for different types of casing and diacritization of the same
text).

Our contributions are the following:

1. In Section 3.1, we introduce a frequency-based inline
casing preprocessing algorithm, called InCa (for Inline
Casing), that is tokenizer-agnostic, fully reversible and
does not require much compute to run.

2. In Section 3.2, we present the first, to our knowledge,
inline diacritization algorithm InDia, also tokenizer-
agnostic, fully reversible and easy to run.

3. In Section 4, we test the proposed algorithms on the
task of Czech-Ukrainian machine translation (MT),
evaluating both the extrinsic (translation quality) and
intrinsic (efficiency of tokenization and tokenizer vo-
cabularies) metrics. For inline casing, we also compare
our system with the recent inline casing solutions. We
show that, compared to baseline (and other casing sys-
tems for InCa), our solutions show stable performance
in the general translation scenarios, and for some types
of noising (such as full upper-casing) it shows signif-
icantly better downstream performance than any of
the compared systems. We also demonstrate that the
tokenized sequences become more stable under differ-
ent noising scenarios, and the tokenizer vocabularies
become more optimal and interpretable in terms of
subword uniqueness.

2. Related Work
Inline approaches to casing were firstly introduced by Rex-
line & Robert (2011) as a text compression technique: the
upper-cased and title-cased2 words are substituted with their
lower-cased correspondences and prepended with the addi-
tional symbols that mark the case of the word. Hereinafter,
such additional symbols are called flags and denoted in

2Hereinafter, “upper-cased” refers to a spelling that only con-
sists of capital letters (also known as “all caps”), e.g. “HELLO”,
and “title-cased” refers to the words starting with a capital letter
only, e.g. “Hello World”.

blue. For MT task, this approach was firstly implemented
by Berard et al. (2019), where it was named “inline casing”.
There, the flags were applied after the use of BPE to every
subword of an upper-cased or title-cased word (which does
not sound an optimal solution). In the next papers, for in-
stance, Etchegoyhen & Gete (2020), the authors returned to
application of casing flags before tokenization. Their results
show that inline casing is the most efficient case marking
strategy for several MT language pairs, compared to other
approaches such as keeping the initial casing, lower-casing,
true-casing, recasing and case factors. The authors sug-
gested that this happened because the inline casing is the
strategy that allows “to combine lowercase-based transla-
tion benefits with case information exploitation”. Another
study Shi et al. (2020) compared two variants of placing
inline casing flags – either before or after the cased word,
and trained the additional neural models for case predic-
tion. They show that all approaches outperform baseline,
specifically, the right allocation of flags works better than
the left one. However, compared to case prediction models,
the inline casing showed lower performance.

Recently, two efficient inline casing approaches were pub-
lished. The first one, TokenMonster3, is a standalone sub-
word tokenization system which includes preprocessing and
tokenization modules. At preprocessing step, it assigns
two flags (called “capcodes”) that are responsible for upper-
casing or title-casing, while the input text is transformed
to lower case. At the tokenizer training step, it allows for
multi-word tokens (i.e. it does not enforce token separation
by white space), and it uses a variation of a UnigramLM
Kudo (2018) approach that is defined as “distillation”. As
a result, the tokenizer shows text representations in 37.5%
fewer tokens at the same vocabulary size compared to GPT-
2 or Tiktokenizer4 used in OpenAI models; the author also
trained NanoGPT5 model on their tokenizer outputs, which
showed equal results on several benchmarks such as SQuAD
Rajpurkar et al. (2016) as the pretrained nanoGPT. Another
approach, also integrated into tokenization system, was pre-
sented by Marian NMT team in Jain et al. (2023). Firstly,
their contribution was adding two more flags to two regu-

3https://github.com/alasdairforsythe/
tokenmonster

4https://github.com/dqbd/tiktokenizer
5https://github.com/karpathy/nanoGPT

2

https://github.com/alasdairforsythe/tokenmonster
https://github.com/alasdairforsythe/tokenmonster
https://github.com/dqbd/tiktokenizer
https://github.com/karpathy/nanoGPT

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2025

larly seen upper-case and title-case ones, namely, beginning
and ending of spans of multiple upper-cased words. What is
more important, the authors addressed the problem of sub-
optimality of the encoded sequence lenghts made by inline
casing systems. Their solution was to distinguish between
such words that are often used in upper or title case from
the ones where it happens rarely. In case of frequent usage
of cased form (e.g. proper names or abbreviations), the flag
is merged with the word and thus is not split: the words
“America” and “USA” will be transformed to “Tamerica”
and “Uusa”, respectively, which allows tokenizer to merge
the flags with the following word; infrequent cases (e.g. reg-
ular nouns) are assigned the flags with a white space (thus
“Hello” and “HELLO” will be transformed to “T hello” and
“U hello”) which would enforce flags as separate tokens. The
paper shows increased robustness of the algorithm towards
noised casing, as well as only slight changes in encoded
length on the noised data compared to the general text. It is
necessary to note, though, that all algorithms (BPE without
preprocessing, classical inline casing and the proposed al-
gorithms) were showed better performance after using the
augmented training data.

Other lossless approaches of addressing case variation in-
clude: combination of subword embeddings with the char-
acter representations, augmented by random noise or case
toggling Aguilar et al. (2021); or approaches that are called
“case factorization”. This term denotes different concepts,
for example, handling case information in the same manner
as the positional information in Transformer model – by em-
beddings that are added pointwise to the word embedding,
as in UniCase Powalski & Stanislawek (2020); or transfor-
mation of strings into 3-dimentional space by variational
auto-encoder architecture Oord et al. (2017), resulting in a
set of 3 integers in range [0, 255], as in Samuel & Øvrelid
(2023).

Regarding the diacritization handling at tokenizer prepro-
cessing stage, we could not find any research targeting this
topic. The only brief mention and speculation about the
impact of diacritics on vocabulary size is made in Alabi
et al. (2020), where two low-resource African languages,
Twi (which does not use diacritics) and Yoruba (which uses
diacritics) are compared by their representations trained in
FastText pre-trained models (usually of low quality) and on
manually curated data. The authors speculate that, despite
the fact that Yoruba orthography requires diacritics, there
are not many properly diacritized open source data. Oth-
erwise, most of NLP solutions either treat the letters with
diacritics as the “atomic” characters in the same way as the
“base” alphabetic symbols, or strip the text off the diacritics
(which seems to happen with consonantal systems and with
some large multilingual models such as BERT Devlin et al.
2019).

There is an adjacent body of research related to the restora-
tion of diacritics, both for languages with obligatory dia-
critics (such as the South Slavic languages Ljubešić et al.
(2016) or Vietnamese Nga et al. 2019), and for vowel signs
for consonantal alphabets (such as Arabic Shamardan &
Hifny 2023). In most cases, the problem is formulated as an
MT task from non-diacritized to diacritized language; thus,
solutions such as sequence-to-sequence models or classical
statistical MT architectures are applied to it.

Finally, a notable approach similar to inline preprocessing
has been introduced for languages with non-concatenative
morphology such as Hebrew - Splinter: Gazit et al. (2025).
The authors suggest to separate the root consonants from
the consonants and vowels with inflectional meaning, which
are orthographically interleaved in a word. The algorithm
groups separately the root characters and the inflectional
characters, the latters in a form of dictionary, where key is
position index within a word and value is a character.

3. InCa and InDia
Below, we will present the algorithms for inline casing and
inline diacritization. They share core principles, namely, us-
ing a dictionary that stores the information about the most
frequent casing and diacritization of each word, respectively.
Another crucial concept for both methods is a base: namely,
for both casing and diacritization, a base is a sequence of
uncased and undiacritized characters to which all its cased
or diacritized versions would correspond. For instance, for
casing, “us” is a base for a lower-cased word form “us”, its
title-cased counterpart “Us” and an abbreviation “US”. Sim-
ilarly, for diacritization (on an example of Czech language),
three word forms “zebra” (zebra), “žebra” (rib-GEN.SG)
and “žebrá” (beg-PRAES.3.SG) have the same base, “zebra”.
Finally, we use the term flags to denote special symbols that
denote casing or diacritization for a particular base.

3.1. InCa - Inline Casing With Vocabulary

We introduce InCa algorithm, which is acronym for Inline
Casing. Its core idea is to collect the counts of each word in
the training data about how frequently it was met in lower ,
upper and title case, and to keep the information about the
most frequent version of each word’s casing in a dictionary.
The exact system works in several steps:

1. Training: For each base (uncased word form) in training
corpus, counts of all its possible casings are stored. Then,
a dictionary is created, which consists of “base”: “most
frequent casing” items.

2. Encoding: Each word in the input text is compared
against the dictionary on whether its casing is the most
frequent one. If it is, the word is transformed into lower
case without any flag. If it is not, the word is prepended

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2025

with a corresponding flag: for title (T), upper (U) or lower
(L) case, respectively. Note that, contrary to most inline
casing systems, there is an explicit lower case flag, since
the lower case may be not the most frequent casing of a
base (e.g. for proper nouns or abbreviations). Notably, the
flag and the base are always white space-separated: for
example, the spelling “FRANCE” (if the most frequent
casing is title-cased, “France”) will be written as “U france”.
This is done to enforce subword splitting at the tokenization
stage between the casing information and the base. Two
additional small tricks are applied to minimize the number
of flags even more:

1. For sentence-initial positions, we expect the word to
be title-cased. Therefore, only the cases where the
word is NOT title-cased are marked explicitly with an
corresponding L flag.

2. For fully upper-cased sentences, we apply a single flag
(A for “all upper-case”).

3. Decoding: The output string that consists of only base
spellings and flags is being restored the following way: for
each base in the text, we check if it is prepended with an
explicit flag, and make a corresponding casing to the word.
If it is not, we check the base against the dictionary and
return the most frequent casing from it.

Since the word form distributions in any natural language
corpus tend to follow Zipf’s law, we can end up with a
large dictionary at the training stage, most of the items of
which will be the bases met once or a few times. Thus,
we introduced a parameter that sets the minimal count of
a particular base in the training data to be recorded in the
dictionary; otherwise, each word unseen in the dictionary
will be explicitly marked if it is not lower-cased.

Two objectives of our approach compared to other inline cas-
ing systems are minimization of the encoded token length
and increase in robustness under different casing of the
same bases, which happen due to external storage of in-
formation about the frequent casing. The only algorithm
that attempted to address minimization of token length was
the one suggested by Jain et al. (2023); however, their ap-
proach allows merging of flags with the bases when the
words are mostly used in cased forms. This essentially trans-
forms the cased letters into digraphs within the same word,
which theoretically should not improve the tokenization
length for non-frequent spellings of the words. For example,
the word “France” will be tokenized according to this ap-
proach as “Tfrance”, since it is mostly seen in title case; but
for its lower-cased or upper-cased spellings “france” and
“FRANCE” these whole strings will be assigned to differ-
ent token sequences. We will show evidence supporting
this claim, as well as comparison with other inline casing
approaches, in Section 4.

3.2. InDia - Inline Diacritization With Vocabulary

Inspired by the InCa approach, we leverage it to the problem
of diacritization, with several modifications. Below we show
the InDia method (standing for Inline Diacritization).

1. Training: For each base (undiacritized character se-
quence) in training corpus, counts of all its possible diacriti-
zations are stored. Then, a dictionary is created, which
consists of “base”: “most frequent diacritization” items. On
example of three diacritizations of the base “zebra” (“zebra”,
“žebra” and “žebrá”), let’s assume that “žebra” is the most
frequent.

2. Encoding: Each word in the input text is compared
against the dictionary. If it is the most frequent diacritization
of the base, it is transformed to base without a flag. Other-
wise, we mark the diacritics that differ from the most fre-
quent diacritization. Since in many languages same diacritic
signs can be applied to different characters (or in different
positions) in the word, for complete reversibility we need to
keep information about each type of a diacritic sign, as well
as its exact character index. This results in inevitable multi-
character sequences of the flags. We think of diacritization
operations as the dictionary, where each key is a character
index idi where a diacritization has to be applied, and di is a
value, which is an exact diacritization sign. To maximize the
compression of the diacritization flag, each flag is stored as
a sequence KV −idx1−ID−idx2−KV −d1−d2, where
a special symbol KV separates the sequences of keys (in the
beginning) and values (in the end), and a special symbol ID
separates the indices of the diacritized characters (which are
marked by numbers). The reason for formatting diacritics
flag as dictionary is that such a syntax allows for shorter se-
quences than its main alternative, sequence of diacritization
signs d1d2...dn for the whole length of each word. The rea-
son for keeping keys and values on different sides of the flag
is our hypothesis that this way, a tokenizer could find fre-
quent patterns for multiple diacritizations independent from
absolute position in a word (and will store them as a single
token). A more widespread dictionary, id1 : d1, ...idn : dn,
does not allow for this, since the diacritization signs are
separated by character indices. Thererfore, at encoding,
the word “žebra” will be transformed to “zebra” (as the
most frequent), while “žebrá” will be transformed as “KV
4 KV č zebra”, since only one diacritization of type č in
the character with index 4 differs from the most frequent
diacritization.

3. Decoding: similarly to InCa, at decoding stage we look
up each base in dictionary, find its most frequent diacritiza-
tion, and re-diacritize it according to dictionary. Then, if the
word has explicit diacritization flag before, we apply all op-
erations mentioned in the flag to already the most diacritized
version. Notably, the “pivot” diacritization from which we
count all differing diacritizations is the most frequent one,

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2025

not the bare form without diacritizations. Using the most
frequent diacritization as a “default” diacritization for each
word does not look as evident as for casing; we justify our
choice in Appendix A. With example of “zebra”, the word
“zebra” will be restored as “žebra” (from the dictionary), and
“KV 4 KV č zebra” will be restored as “žebrá” as it will first
take on the most frequent diacritization from the dictionary,
and then only look at the explicit diacritization flag.

To our knowledge, this is the first case of inline approach
to diacritization handling. We also applied two modifica-
tions of this approach to see the optimal way of storing
the diacritization flags; the comparison will be shown in
Section 4.3.

4. Case Study: Czech-Ukrainian MT
4.1. Experiment Setup

We applied our preprocessing modules to the MT down-
stream task on Czech-Ukrainian language pair (both direc-
tions). For each observation, we needed to train the full
pipeline consisting of preprocessing, tokenizer and MT sys-
tem. Therefore, our experiments were restricted by the num-
ber of languages, preprocessing parameters and tokenizer
choice, due to compute limitations. Our main focus was
comparison of different preprocessing solutions, therefore
the tokenizer and the MT training setups, as well as training
and validation data, were fixed for all experiments. The
preprocessing details will be explained in two subsections
below. The general setup is as follows:

1. Data: For training, we used the dataset comprising
8 million sentences that contain all Czech-Ukrainian
data from the OPUS corpus Tiedemann (2012), Wiki-
Matrix data from the initial publication Schwenk et al.
(2021), and the ELRC EU acts in Ukrainian.6. For
evaluation, the subset of 1012 sentences from Flores
101 dataset was used Goyal et al. (2022). All data
underwent NFKC normalization, since it is a default re-
quirement for SentencePiece tokenization (see below)
and for treating the diacritization base in InDia.

2. Tokenizer: For all setups except TokenMonster in
casing analysis, SentencePiece Kudo & Richardson
(2018) implementation of the Unigram LM is used. All
training corpus sentences were used to train tokenizer.
The vocabularies were trained jointly for Czech and
Ukrainian, the vocabulary size is 32,000 tokens.

3. MT System: We used Marian implementation Junczys-
Dowmunt et al. (2018) of the Transformer model

6https://elrc-share.eu/repository/
browse/eu-acts-in-ukrainian/
71205868ae7011ec9c1a00155d026706d86232eb1bba43b691bdb6e8a8ec3ccf/

Vaswani et al. (2017), specifically, transformer-base
model size and 16 epochs for training. All tokenization
and MT experiments were run on a single GPU for one
experiment. The NVIDIA RTX 3090 was used for all
experiments. The training time typically spanned 22 to
25 hours.

We used a range of extrinsic and intrinsic metrics for evalu-
ation of our systems. For extrinsic evaluation, BLEU Pap-
ineni et al. (2001), chrF Popović (2015) and COMET Rei
et al. (2020) were used; for BLEU and chrF, the SacreBLEU
implementation Post (2018) was used. For casing experi-
ments, the lowercased versions of BLEU and chrF metrics
were also used.

Regarding intrinsic evaluation, we selected two metrics
based on a comparative analysis of Balhar (2023). Specif-
ically, we use character per token (CPT) ratio as shown
below:

CPT (τ, π, C) =

∑
s∈C |s|∑

s∈C |τ(π(s))|
(1)

where:

• τ is a given tokenizer,

• π is the preprocessing function such as InCa or In-
Dia (where applicable, for no preprocessing scenario
π(s) = s),

• C is a given language corpus,

• s is a sentence within the C corpus, |s| is its length in
characters and |τ(π(s))| is the length of the encoded
sequence in tokens.

This metric aims to estimate the optimality of the encoded
text in terms of its length. Since we expect a better tokenizer
to minimize the space of the encoded sequence, we say that
a better tokenizer should have a higher number of characters
per token ratio. The metric has a lower bound of 1. This
metric is a language-independent generalization of metrics
such as average sequence length (i.e. average number of
tokens per sentence) and the word fertility (average number
of tokens per word), which are met in other works such as
Liang et al. (2023) and Rust et al. (2021).

Another metric that is used for token distribution estimation
is Average Rank (AR). It is formally represented in the
formula below:

AR(τ, C) =
∑
t∈Vτ

rank(t, τ(C)) · p(t, C) (2)

where

5

https://elrc-share.eu/repository/browse/eu-acts-in-ukrainian/71205868ae7011ec9c1a00155d026706d86232eb1bba43b691bdb6e8a8ec3ccf/
https://elrc-share.eu/repository/browse/eu-acts-in-ukrainian/71205868ae7011ec9c1a00155d026706d86232eb1bba43b691bdb6e8a8ec3ccf/
https://elrc-share.eu/repository/browse/eu-acts-in-ukrainian/71205868ae7011ec9c1a00155d026706d86232eb1bba43b691bdb6e8a8ec3ccf/

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2025

• τ is a tokenizer function, and Vτ is its vocabulary,

• C is a given corpus,

• rank(t, τ(C)) is a rank of a token t (position in the
list of the unique tokens met in tokenized corpus C
ordered by frequency),

• p(t, C) is a frequency of a given token in the corpus.

In other words, the average rank metric is a weighted aver-
age of the tokens met in the tokenized corpus, where weights
are the frequencies of the tokens in the given corpus. If the
distribution is skewed, then it will have a long tail of tokens
with small probabilities; in this case the bigger frequency
weights will be skewed towards the head of the distribution.
The more uniform the distribution (or at least the smaller
the tail in favor of the high-frequency tokens), the larger the
weighted average. Thus, we expect that the higher average
rank of the tokenized text would signify the more optimal
usage of the tokens, hence a better tokenizer.

Both intrinsic metrics depend on the validation dataset that
the tokenizer is applied to. We are also interested in changes
in internal representations of the tokenizer; thus, we evaluate
character per token ratio for the vocabulary items (denoted
as CPTv), which is counted as average number of characters
per unique subword in a given tokenizer vocabulary.

Finally, we used another intrinsic metric that was recently
proposed for tokenization evaluation, Rényi Efficiency by
Zouhar et al. (2023); however, it showed excessive sen-
sitivity to auxiliary flags used in the tokenized text. We
exclude it from the main paper and provide the evidence for
problems with this metric application in Appendix C.

4.2. Experiments with Casing

Since there already exist different methods for inline casing,
we are interested in comparing them to our suggested system.
Therefore, we compared five modes of preprocessing:

1. base: baseline, no inline casing;

2. inca: our suggested system;

3. inca-n: “naive” version of inca: we analyze how sub-
stantial is the contribution to the InCa dictionary, there-
fore, we exclude the dictionary from the system and
explicitly put the flags on every occurrence of the cased
word;

4. marian: inline casing with diversification by fre-
quency introduced by Marian NMT Jain et al. (2023);

5. tkm: TokenMonster preprocessor and tokenizer, that
assigns 2 possible flags and allows for multi-word to-
kens, thus maximizing the token lengths.

We compare extrinsic performance on both directions of
Czech-Ukrainian translation pair, and intrinsic performance
on the encoded texts for both languages. We were not only
interested in general MT setup, but also in three scenarios
of case noising: fully upper-cased, fully lower-cased and
with 10% of randomly cased words.

The detailed results with all metrics are presented in Ap-
pendix B. For non-noised scenario, we see that all systems
including the no-preprocessing implementation go on par,
with 21.5-22.0 BLEU score (0.86-0.87 COMET score) vari-
ation for Czech-Ukrainian direction and 22.7-23.3 BLEU
score (0.86-0.87 COMET score) interval for Ukrainian-
Czech. Similar parity can be seen for lower-cased and 10%
randomly cased scenarios. The seeming increase of inca,
inca-n and marian approaches for these two noisings
(up to 0.5 BLEU point) is not a reliable trend: we estimated
stability of our model by training the base and inca sys-
tems three times, and we obtained the variation of 0.9 BLEU
points for both scenarios. Thus, we can see that all prepro-
cessing algorithms, including ours, work on par on general
translation task.

Prepro-
cessing BLEU lc(BLEU) COMET

base 1.6 1.9 0.448
inca 21.3 21.3 0.871
inca-n 20.7 20.7 0.867
marian 15.5 20.4 0.814
tkm 15.5 17.9 0.840

Table 2. Excerpt from extrinsic metrics of the main inline casing
algorithms: fully upper-cased noise, Czech-Ukrainian translation
pair. Full statistics can be found in Appendix B.

An interesting differentiation occurs in the fully upper-cased
scenario. An excerpt of the results for Czech-Ukrainian
direction is shown in Table 2. There, the baseline scores
drop down to 1.5-2 points; tkm and marian systems show
moderate performance at around 15-17 BLEU points; and
both our systems, inca and inca-n, almost reach the
non-noised quality (20.7-22 BLEU points depending on
translation direction). This means that the main difference
between the algorithms is that the Marian and TokenMonster
casing-trained systems did not output the upper-case flags
for the whole sentences (or all words in the sentences). This
is supported by qualitative analysis: for instance, the main
problem with Marian span marking is that it uses opening
and closing flags for upper case sequences; but at the same
time if sequences are interrupted by other cases or non-cased
elements, it automatically breaks the uppercasing.

As for intrinsic analysis, we see that for all scenarios except
full uppercasing, the baseline, inca and marian systems
perform similarly well, followed by tkm and inca-n. Un-
der full uppercasing noise, baseline decreases drastically,

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2025

together with TokenMonster. The general trend in charac-
ter per token ratio shows that inca and marian do not
significantly differ from the baseline system, which is ex-
plained by the fact that the number of the auxiliary flags
(and therefore tokens) is intentionally minimized; the slight
prevalence of marian CPT score (it is stably higher by
0.1-0.2 points than base and inca that go on par) can
be explained by their way of allocating the case markers
together with the word itself; therefore the frequent title- or
upper-cased words automatically get longer.

Regarding the average rank metric, we see that the best
performance is mostly shown by marian. However, if
we pay attention to consistency of this metric (shown in
Figure 1), we will see that the span of AR scores, depending
on noise, is larger (especially decreasing under upper case
noise), as opposed to inca: the total variation of marian
AR is 120-140 (depending on direction), while for inca
it is 80-97. Other inline casing systems show even wider
spreads, up to 1000 interval for baseline scenario. This
shows that our system is the most stable under different
types of noising.

base InCa Naive InCa Marian TokenMonster
Inline Casing Algorithm

0

200

400

600

800

1000

1200

1400

Av
er

ag
e

R
an

k

Average Rank Variation of the Inline Casing Algorithms

noise
none
rand0.1
lower
upper

Figure 1. Distributions of the Average Rank (AR) metric with re-
spect to different types of noise. Each noise type has two dots
denoting texts in Czech and Ukrainian, respectively. Box plots
show the median, 25- and 75-percentiles.

The reason for such a stability can be seen through the tok-
enizer vocabulary items. We are interested, first, in whether
inline casing helps increase the token length in the tokenizer
vocabulary; second, how different types of inline casing
help release more space for the unique character sequences
instead of doubling the tokens that differ only in casing.
Table 3 attempts to estimate that: the CPTv column pro-
vides an answer to the first question, and the “Cased tokens”
and “Overlap with Uncased” columns give an estimate for
the answer to the second one. We can see that both InCa

approaches increase the average unique token length by 0.3
characters. The only approach beating InCa’s is TokenMon-
ster, but this happens because of an orthogonal uncontrolled
parameter: allowing the tokens to be multi-word ones. We
can also look at how optimal the inline casing approaches
are in terms of saving space for unique lower-case character
sequences. Contrary to the no-preprocessing scenario where
19% of unique tokens are cased, and 10% of vocabulary
fully corresponds to their lower-cased analogues, we can
see that all inline casing algorithms decrease these numbers
significantly. However, only the inca approaches allow
us to decrease these numbers to zero, thus allocating all
possible space released by casing normalization to the new
tokens (numbers 4 and 3 in inca and inca-n columns
correspond to the tokens that are flags themselves). Al-
though this may not be directly reflected in the intrinsic
metrics above, this is undoubtedly an important feature for
the interpretability and predictability of the tokenizer mod-
els, as we expect that the variety of the tokens present in the
vocabulary would not be obscured by the casing variation
of the tokens.

Prepro-
cessing CPTv

Cased
Tokens

Overlap with
Uncased

base 6.837 6169 3508
inca 7.119 4 0
inca-n 7.127 3 0
marian 6.554 2754 1049
tkm 8.573 149 92

Table 3. Tokenizer vocabulary statistics for different preprocessing
systems. CPTv stands for average token length in vocabulary;
“Cased tokens” value shows the number of alphabetic tokens that
contain a casing flag, and the “Overlap with Uncased” value shows
the number of the uncased tokens in the dictionary that differ from
the cased ones (in the “Cased tokens”) only by casing or flag prefix.

4.2.1. ABLATION: UPPER-CASED SENTENCE FLAGS

In the previous section, we observe that, while performing
on par with other systems in default and noisy setups, inca
is leading in fully upper-cased setup. We hypothesise that
this happens due to the specific full-sentence upper-case
flag that other systems do not have. To test this, we create a
modification of InCa that only differs in lack of this flag.

The results, shown at Table 4, indeed demonstrate a signifi-
cant decrease for the fully upper-cased setup, with a drop by
3 BLEU points. We have already seen such a trend in other
algorithms that do not use a special flag for full sentences
- marian and tkm. Despite that, the InCa without full
uppercasing still has 2 BLEU points performance higher
compared to the two algorithms mentioned above.

This example tells us that introduction of the sentence-level
flags not only show intrinsic efficiency in terms of lower

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2025

Prepro-
cessing BLEU lc(BLEU) COMET

inca 21.3 21.3 0.871
inca-A 18.0 18.3 0.850

Table 4. Extrinsic performance in fully upper-cased scenario,
Czech-Ukrainian translation direction. “inca” stands for standard
InCa implementation, “inca-A” denotes the ablation without spe-
cial flags of the full upper-case sentence.

encoded lengths (by putting one flag instead of multiple
ones), but also help downstream performance. This also
motivates us to consider introduction of other sentence-
level flags, for example, for fully title-cased or lower-cased
strings.

4.2.2. ABLATION: DATA AUGMENTATION

The authors of the marian system, which in some of our
setups showed the best extrinsic and intrinsic performance,
were claiming that in their experiments, the best perfor-
mance was obtained by combination of their inline casing
system and leveraging the augmented training data with case
variation. We decided to see if our system would benefit
from such an option, and to compare it to the baseline sys-
tem with data augmentation. The augmentation technique
was to create a train corpus set of the initial data, and add
one copy of the training data that is fully upper-cased, one
fully lower-cased and one with 10% of case noise. Thus, we
get a training dataset which is four times larger than initial
data; therefore for comparability, in the augmented setup
we decrease the number of training epochs from 16 to 4.

We compare 4 modes of preprocessing and MT training
pipeline: baseline with and without augmentation, InCa
with and without augmentation. The results in default
dataset do not show changes in extrinsic or intrinsic per-
formance; the noticeable changes happen in the fully upper-
cased noise scenario (we demonstrate only the results of
Czech-Ukrainian direction in Table 5; the other direction
shows the same trends). We can see that the extrinsic per-
formance shows breaking point at using augmentation for
no-preprocessing pipeline; while leveraging InCa does not
increase performance.

Does that mean that casing augmentation is a “silver bullet”
and we get no improvement from using InCa? To answer
this question, we can look at the tokenizer vocabulary statis-
tics. If we compare the average token length in the tokeniz-
ers depending on the casing augmentation (see Table 6),
we can see that for non-preprocessing scenario the casing-
augmented tokens became almost 0.5 characters shorter. At
the same time, there is no such drop in tokenizers trained
after the InCa application. Moreover, if we look at the de-
tails of the tokenizer vocabularies, we will see that for the

Augmen-
tation

Prepro-
cessing BLEU chrF COMET

- base 1.6 22.5 0.448
- InCa 21.3 51.3 0.871
+ base 21.6 51.4 0.874
+ InCa 22.2 52.2 0.877

Table 5. Extrinsic performance for systems with and without cas-
ing augmentation (shown in ”Augmentation” column), Czech-
Ukrainian direction, fully uppercased noise.

Augmen-
tation CPTv

Prepro-
cessing

Cased
Tokens

Overlap
with

Uncased
- base 6.837 6169 3508
- InCa 7.119 4 0
+ base 6.495 12270 10771
+ InCa 7.205 4 0

Table 6. Tokenizer vocabulary statistics for systems with and with-
out casing augmentation. The metrics are described in Table 3.

case-augmented no-preprocessing tokenizer, 38% of unique
tokens are not lower-cased, and 33% have their full lower-
cased analogues in the vocabulary. This is a demonstration
of non-optimal allocation of the vocabulary, contrary to all
InCa tokenizers.

4.3. Experiments with Diacritization

We conducted a number of experiments to test our sug-
gestion on inline diacritization. In our language pair, only
Czech language is heavily diacritized (16 letters out of 42
have diacritics); thus we only apply InDia to the Czech
texts. Firstly, we compared the general MT setups for both
directions to see if our system shows the same downstream
results as the baseline with no preprocessing. It indeed
showed consistent performance compared to no preprocess-
ing scenario: InDia shows 21.7 BLEU for Czech-Ukrainian
(against 21.6 in baseline) and 22.8 for Ukrainian-Czech
(against 22.7 for baseline). It is especially important for
the Ukrainian-Czech translation direction, as it shows both
the ability of the MT system to learn the token sequences
which contain flags, and the InDia decoder allows one to
correctly restore the diacritics in the resulting files. The
qualitative analysis of the generated diacritization flags for
Ukrainian-Czech translation direction shows that, out of
19,760 words in the target text (detokenized after output),
there are 642 char-InDia flags, and only 8 of them show hal-
lucinations (in either wrong character index or impossible
diacritic-sign combination). Thus, we can reliably use the
inline diacritization methods on the output side.

Same as in inline casing, we are interested in the perfor-
mance of our system in different noise scenarios. A frequent

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2025

BLEU
Prepro-
cessing no noise

fully
de-diacritized

20%
de-diacritized

base 21.6 9.2 18.6
InDia 21.7 17.9 21.1

InDia-w 21.7 18.8 21.1
InDia-n 21.0 18.4 20.5

Table 7. BLEU scores for different diacritization metrics (by row)
under different noise conditions (by column), Czech-Ukrainian
translation direction.

practice in the Czech online speech is complete or partial
omission of the diacritics in the text. Therefore, we chose
two noise scenarios to approximate that: a complete omis-
sion of diacritization and omission of diacritization in 20%
of words.

Since we are unaware of analogous solutions to diacritiza-
tion handling, we compare our algorithm with a baseline
and to two InDia modifications. First is InDia-n, a “naive”
version of InDia (analogous to inca-n): we do not store
information about the frequencies of the diacritizations, thus
for every diacritized word in the input text we decompose
it explicitly into the base and the flag consisting of all di-
acritized characters. Another one is InDia-w (“w” stands
for “word-level”): there, we use the same frequency-based
approach to diacritization as in InDia, but we choose a sim-
pler system of flag notation: we sort all diacritizations of
the same base by frequency, and for all diacritizations dif-
fering from the most frequent we mention the index of their
rank. This makes the flag system shorter (similar to InCa,
where each flag is a single character), but the flags lose
their “semantics” (for different basis, the “second frequent
rank” may mean different diacritization). The examples of
different diacritization systems are shown in Appendix D.

The comparison of different techniques is shown in Table 7.
We see that all InDia approaches handle the task signifi-
cantly better, doubling the quality on the fully de-diacritized
text and yielding 3 BLEU points in the 20% de-diacritized
text. It is notable, though, that for the fully de-diacritized
scenario, the performance of basic InDia is stably lower
than of its modifications. Since it lies within 1 BLEU point
span, this may be a matter of stability of the NMT train-
ing; however, this may be a consequence of how the de-
diacritization is marked in the main approach. Specifically,
for basic InDia, there is a specific character-level operation
that prescribes deletion of a diacritic (if the most frequent
spelling is diacritized). Thus, in the fully de-diacritized
scenario, every word whose most popular spelling is dia-
critized, is prepended with a flag cancelling diacritics for
each character. Thus, the encoded length of sequences be-
comes longer and not very informative, which affects the
translation quality. At the same time, “naive” InDia does not

use any flags for non-diacritized words, and InDia-w uses at
most a single-character flag in any case. This is supported
by intrinsic metrics in the fully de-diacritized noise scenario.
If we look at the character per token ratio, for InDia-n the
score of 4.0 is the highest, followed by baseline system and
InDia-w with 2.8 and 2.5 scores, respectively; the score
for main InDia system is as low as 1.6. If we follow the
spirit of the “long-sequence” flags from InCa (for the fully
upper-cased sentence), we can hypothesise that an optimal
solution for InDia would be to possibly use a single special
flag for full de-diacritization of the word, that would mini-
mize its length. Unfortunately, we leave this modification
to future work.

The last notable observation comes from the statistics from
the tokenizer vocabulary average token length. There, we
see that CPTv score for baseline tokenizer equals to 6.83,
while the tokenizer applied after InDia preprocessing has
average length of 6.91. Such a small increase (less than
0.1 character) can be explained if we look at the diacritized
subwords in the no-preprocessing tokenizer: out of 32,000
tokens, 8,454 subwords are diacritized (which comprises a
quarter of the whole vocabulary and approximately a half of
the Czech subwords there), but only 583 were having a non-
diacritized analogue. This fundamentally differs from the
trends in the inline casing-optimized vocabularies described
in Table 3, where up to a half of the cased unique subwords
have non-cased doublets. Thus, despite helping having more
consistent word splitting with respect to de-diacritization
noise, the potential for increasing the lengths in the non-
cased vocabularies is very restricted.

5. Conclusion
In this work, we introduced two inline approaches for im-
proving tokenization stability for different noising scenar-
ios and enhancement of the downstream performance. For
downstream task, we chose MT for Czech-Ukrainian lan-
guage pair. The InCa approach for inline casing shows
improvement in tokenizer dictionary elements, stability in
intrinsic metrics and on par quality with other approaches
over different types of noise. It also showed improvement in
MT quality for upper-cased sequences, which is explained
by leveraging of flags for full-sentence casing. InDia, the
first to our knowledge approach for inline diacritization,
also shows doubling the performance on the non-diacritized
texts while showing the same performance for standard (di-
acritized) data; we also show that the proposed technique
is stable enough to be used not only at the input side but
also on the output side of translation pair. We encourage the
community to use our methods for other languages and NLP
tasks by publically sharing our code in a form of simple
scripts and Python packages.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Submission and Formatting Instructions for ICML 2025

Impact Statement
This study tackles the foundational block of the NLP
pipelines, namely, preprocessing of texts before applying
subword tokenization. Most widely used state of the art
large language models are already trained through the full
pipeline, including not only tokenizers but also the model
weights; thus, there is a factor of great inertia in terms of
adjustments in preprocessing systems. However, we be-
lieve that small and medium-sized models, especially those
that are aimed at specific low-resource or noisy tasks, can
effortlessly leverage our approach and benefit from it.

Limitations
This research has several limitations. Firstly, we restricted
the scope of languages to the single language pair of the
same family, which uses similar orthographical principles.
Even within the European language area and Latin script-
based languages, there are other orthography systems such
as German, where each noun is title-cased; thus, we cannot
claim that the performance and stability of our system will
be replicated for other language pairs. Similar problems
stand for diacritization, as there are languages that use a
significantly wider range of diacritics (such as Vietnamese),
for which our InDia system may end up being inefficient.

Secondly, the tokenizers used in our comparison were both
based on the Unigram language model in SentencePiece
(and on a similar approach in TokenMonster). Thus, it
would be useful to see how our approaches would help the
NMT system if the tokenizers trained on the data would be
using other principles, such as BPE Sennrich et al. (2016)
or WordPiece Wu et al. (2016).

Finally, for the sake of comparison of the extrinsic perfor-
mance of the systems, we did a limited training of the MT
systems. For instance, the participating systems of the latest
WMT News shared task Kocmi et al. (2024) show a sta-
ble performance of several BLEU points higher than ours,
since they use bigger Transformer models and are trained
for a week (contrary to one day in our case). Thus, we
did not claim that our algorithm reaches state-of-the-art on
the Czech-Ukrainian translation pair; instead, we fixed all
training parameters and compared the performance of var-
ious accessible preprocessing approaches within the same
setting.

Ethical Statement
The robustness improvement for NLU and NLG systems
can be seen as a dual use technology, if an author of the text
intentionally tries to prevent the automatic analysis of their
texts. In many cases, such an activity of intentional noising
can be used for illegal acts such as phishing or other type

of fraud. However, in countries with oppressive political
regimes, the total scrapping of the content generated by the
users can be used for censorship and tracking of dissidents.
Based on our knowledge, the scope of the noising scenarios
examined here is different from the one generally used to
hide oppositional content. Still, we urge the community to
bear the possibility of the robust systems they develop for
evil purposes.

References
Aguilar, G., McCann, B., Niu, T., Rajani, N., Keskar,

N. S., and Solorio, T. Char2Subword: Extend-
ing the Subword Embedding Space Using Robust
Character Compositionality. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2021, pp. 1640–1651, Punta Cana, Dominican Re-
public, 2021. Association for Computational Lin-
guistics. doi: 10.18653/v1/2021.findings-emnlp.
141. URL https://aclanthology.org/2021.
findings-emnlp.141.

Alabi, J., Amponsah-Kaakyire, K., Adelani, D., and España-
Bonet, C. Massive vs. Curated Embeddings for Low-
Resourced Languages: the Case of Yorùbá and Twi. pp.
2754–2762, Marseille, France, 2020. European Language
Resources Association.

Balhar, J. Improving Subword Tokenization Methods for
Multilingual Models. Master’s thesis, Charles University,
Prague, Czech Republic, 2023.

Berard, A., Calapodescu, I., and Roux, C. Naver Labs
Europe’s Systems for the WMT19 Machine Translation
Robustness Task. In Proceedings of the Fourth Confer-
ence on Machine Translation (Volume 2: Shared Task
Papers, Day 1), pp. 526–532, Florence, Italy, 2019. As-
sociation for Computational Linguistics. doi: 10.18653/
v1/W19-5361. URL https://www.aclweb.org/
anthology/W19-5361.

Cognetta, M., Zouhar, V., Moon, S., and Okazaki, N. Two
Counterexamples to Tokenization and the Noiseless Chan-
nel, February 2024. URL http://arxiv.org/abs/
2402.14614. arXiv:2402.14614 [cs].

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding. In Proceedings of
the 2019 Conference of the North, pp. 4171–4186, Min-
neapolis, Minnesota, 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/N19-1423. URL
http://aclweb.org/anthology/N19-1423.

Etchegoyhen, T. and Gete, H. To Case or not to case:
Evaluating Casing Methods for Neural Machine Trans-

10

https://aclanthology.org/2021.findings-emnlp.141
https://aclanthology.org/2021.findings-emnlp.141
https://www.aclweb.org/anthology/W19-5361
https://www.aclweb.org/anthology/W19-5361
http://arxiv.org/abs/2402.14614
http://arxiv.org/abs/2402.14614
http://aclweb.org/anthology/N19-1423

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Submission and Formatting Instructions for ICML 2025

lation. pp. 3752–3760, Marseille, France, 2020. Euro-
pean Language Resources Association. URL https:
//aclanthology.org/2020.lrec-1.463/.

Gazit, B., Shmidman, S., Shmidman, A., and Pinter, Y.
Splintering Nonconcatenative Languages for Better To-
kenization, 2025. URL https://arxiv.org/abs/
2503.14433. Version Number: 1.

Goyal, N., Gao, C., Chaudhary, V., Chen, P.-J., Wen-
zek, G., Ju, D., Krishnan, S., Ranzato, M., Guzmán,
F., and Fan, A. The Flores-101 Evaluation Bench-
mark for Low-Resource and Multilingual Machine
Translation. Transactions of the Association for
Computational Linguistics, 10:522–538, May 2022.
ISSN 2307-387X. doi: 10.1162/tacl a 00474. URL
https://direct.mit.edu/tacl/article/
doi/10.1162/tacl_a_00474/110993/
The-Flores-101-Evaluation-Benchmark-for-Low.

Jain, R., Khayrallah, H., Grundkiewicz, R., and Junczys-
Dowmunt, M. Perplexity-Driven Case Encoding Needs
Augmentation for CAPITALIZATION Robustness. pp.
146–156, Nusa Dua, Bali, 2023. Association for Compu-
tational Linguistics. URL https://aclanthology.
org/2023.ijcnlp-short.17.

Junczys-Dowmunt, M., Grundkiewicz, R., Dwojak, T.,
Hoang, H., Heafield, K., Neckermann, T., Seide, F.,
Germann, U., Aji, A. F., Bogoychev, N., Martins, A.
F. T., and Birch, A. Marian: Fast Neural Machine
Translation in C++. In Proceedings of ACL 2018, Sys-
tem Demonstrations, pp. 116–121, Melbourne, Australia,
2018. Association for Computational Linguistics. doi:
10.18653/v1/P18-4020. URL http://aclweb.org/
anthology/P18-4020.

Kocmi, T., Avramidis, E., Bawden, R., Bojar, O.,
Dvorkovich, A., Federmann, C., Fishel, M., Freitag,
M., Gowda, T., Grundkiewicz, R., Haddow, B., Karpin-
ska, M., Koehn, P., Marie, B., Monz, C., Murray, K.,
Nagata, M., Popel, M., Popović, M., Shmatova, M.,
Steingrı́msson, S., and Zouhar, V. Findings of the
WMT24 General Machine Translation Shared Task: The
LLM Era Is Here but MT Is Not Solved Yet. In Pro-
ceedings of the Ninth Conference on Machine Trans-
lation, pp. 1–46, Miami, Florida, USA, 2024. Associ-
ation for Computational Linguistics. doi: 10.18653/
v1/2024.wmt-1.1. URL https://aclanthology.
org/2024.wmt-1.1.

Kudo, T. Subword Regularization: Improving Neural Net-
work Translation Models with Multiple Subword Can-
didates. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 66–75, Melbourne, Australia,

2018. Association for Computational Linguistics. doi:
10.18653/v1/P18-1007. URL http://aclweb.org/
anthology/P18-1007.

Kudo, T. and Richardson, J. SentencePiece: A simple
and language independent subword tokenizer and deto-
kenizer for Neural Text Processing. In Proceedings of
the 2018 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 66–
71, Brussels, Belgium, 2018. Association for Computa-
tional Linguistics. doi: 10.18653/v1/D18-2012. URL
http://aclweb.org/anthology/D18-2012.

Levenshtein, V. I. Binary Codes Capable of Correcting Dele-
tions, Insertions and Reversals. Soviet Physics Doklady,
10:707, February 1966. URL https://ui.adsabs.
harvard.edu/abs/1966SPhD...10..707L.
ADS Bibcode: 1966SPhD...10..707L.

Liang, D., Gonen, H., Mao, Y., Hou, R., Goyal, N.,
Ghazvininejad, M., Zettlemoyer, L., and Khabsa, M.
XLM-V: Overcoming the Vocabulary Bottleneck in Mul-
tilingual Masked Language Models. 2023. doi: 10.48550/
ARXIV.2301.10472. URL https://arxiv.org/
abs/2301.10472. Publisher: arXiv Version Number:
2.

Ljubešić, N., Erjavec, T., and Fišer, D. Corpus-Based
Diacritic Restoration for South Slavic Languages. pp.
3612–3616, Portorož, Slovenia, 2016. European Lan-
guage Resources Association (ELRA). URL https:
//aclanthology.org/L16-1573/.

Nga, C. H., Thinh, N. K., Chang, P.-C., and Wang, J.-C.
Deep Learning Based Vietnamese Diacritics Restora-
tion. In 2019 IEEE International Symposium on Mul-
timedia (ISM), pp. 331–3313, San Diego, CA, USA,
December 2019. IEEE. ISBN 978-1-72815-606-4.
doi: 10.1109/ISM46123.2019.00074. URL https://
ieeexplore.ieee.org/document/8958999/.

Oord, A. v. d., Vinyals, O., and Kavukcuoglu, K. Neu-
ral Discrete Representation Learning. Advances in Neu-
ral Information Processing Systems,, 30, 2017. doi:
10.48550/ARXIV.1711.00937. URL https://arxiv.
org/abs/1711.00937. Publisher: arXiv Version
Number: 2.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. BLEU:
a method for automatic evaluation of machine trans-
lation. In Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics - ACL

’02, pp. 311, Philadelphia, Pennsylvania, 2001. As-
sociation for Computational Linguistics. doi: 10.
3115/1073083.1073135. URL http://portal.acm.
org/citation.cfm?doid=1073083.1073135.

11

https://aclanthology.org/2020.lrec-1.463/
https://aclanthology.org/2020.lrec-1.463/
https://arxiv.org/abs/2503.14433
https://arxiv.org/abs/2503.14433
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00474/110993/The-Flores-101-Evaluation-Benchmark-for-Low
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00474/110993/The-Flores-101-Evaluation-Benchmark-for-Low
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00474/110993/The-Flores-101-Evaluation-Benchmark-for-Low
https://aclanthology.org/2023.ijcnlp-short.17
https://aclanthology.org/2023.ijcnlp-short.17
http://aclweb.org/anthology/P18-4020
http://aclweb.org/anthology/P18-4020
https://aclanthology.org/2024.wmt-1.1
https://aclanthology.org/2024.wmt-1.1
http://aclweb.org/anthology/P18-1007
http://aclweb.org/anthology/P18-1007
http://aclweb.org/anthology/D18-2012
https://ui.adsabs.harvard.edu/abs/1966SPhD...10..707L
https://ui.adsabs.harvard.edu/abs/1966SPhD...10..707L
https://arxiv.org/abs/2301.10472
https://arxiv.org/abs/2301.10472
https://aclanthology.org/L16-1573/
https://aclanthology.org/L16-1573/
https://ieeexplore.ieee.org/document/8958999/
https://ieeexplore.ieee.org/document/8958999/
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1711.00937
http://portal.acm.org/citation.cfm?doid=1073083.1073135
http://portal.acm.org/citation.cfm?doid=1073083.1073135

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Submission and Formatting Instructions for ICML 2025

Popović, M. chrF: character n-gram F-score for auto-
matic MT evaluation. In Proceedings of the Tenth
Workshop on Statistical Machine Translation, pp. 392–
395, Lisbon, Portugal, 2015. Association for Computa-
tional Linguistics. doi: 10.18653/v1/W15-3049. URL
http://aclweb.org/anthology/W15-3049.

Post, M. A Call for Clarity in Reporting BLEU Scores. In
Proceedings of the Third Conference on Machine Trans-
lation: Research Papers, pp. 186–191, Belgium, Brus-
sels, 2018. Association for Computational Linguistics.
doi: 10.18653/v1/W18-6319. URL http://aclweb.
org/anthology/W18-6319.

Powalski, R. and Stanislawek, T. UniCase – Rethinking
Casing in Language Models. 2020. doi: 10.48550/
ARXIV.2010.11936. URL https://arxiv.org/
abs/2010.11936. Publisher: arXiv Version Number:
1.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. SQuAD:
100,000+ Questions for Machine Comprehension of Text.
In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp. 2383–
2392, Austin, Texas, 2016. Association for Computa-
tional Linguistics. doi: 10.18653/v1/D16-1264. URL
http://aclweb.org/anthology/D16-1264.

Rei, R., Stewart, C., Farinha, A. C., and Lavie,
A. COMET: A Neural Framework for MT Evalu-
ation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pp. 2685–2702, Online, 2020. Association
for Computational Linguistics. doi: 10.18653/v1/
2020.emnlp-main.213. URL https://www.aclweb.
org/anthology/2020.emnlp-main.213.

Rexline, S. J. and Robert, L. Substitution coder - A re-
versible data transform for lossless text compression. In
2011 8th International Conference on Information, Com-
munications & Signal Processing, pp. 1–5, Singapore,
December 2011. IEEE. ISBN 978-1-4577-0031-6 978-
1-4577-0029-3 978-1-4577-0030-9. doi: 10.1109/ICICS.
2011.6173125. URL http://ieeexplore.ieee.
org/document/6173125/.

Rust, P., Pfeiffer, J., Vulić, I., Ruder, S., and Gurevych,
I. How Good is Your Tokenizer? On the Monolin-
gual Performance of Multilingual Language Models.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp. 3118–3135,
Online, 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.243. URL https:
//aclanthology.org/2021.acl-long.243.

Samuel, D. and Øvrelid, L. Tokenization with Factor-
ized Subword Encoding. In Findings of the Association
for Computational Linguistics: ACL 2023, pp. 14143–
14161, Toronto, Canada, 2023. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2023.findings-acl.
890. URL https://aclanthology.org/2023.
findings-acl.890.

Schwenk, H., Chaudhary, V., Sun, S., Gong, H., and
Guzmán, F. WikiMatrix: Mining 135M Parallel Sen-
tences in 1620 Language Pairs from Wikipedia. In Pro-
ceedings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pp. 1351–1361, Online, 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.
eacl-main.115. URL https://aclanthology.
org/2021.eacl-main.115.

Sennrich, R., Haddow, B., and Birch, A. Neural Ma-
chine Translation of Rare Words with Subword Units.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pp. 1715–1725, Berlin, Germany, 2016.
Association for Computational Linguistics. doi: 10.
18653/v1/P16-1162. URL http://aclweb.org/
anthology/P16-1162.

Shamardan, H. and Hifny, Y. Arabic Diacritics
Restoration Using Maximum Entropy Language Mod-
els. IEEE Signal Processing Letters, 30:1227–1231,
2023. ISSN 1070-9908, 1558-2361. doi: 10.1109/LSP.
2023.3295752. URL https://ieeexplore.ieee.
org/document/10184906/.

Shi, X., Huang, H., Jian, P., and Tang, Y.-K. Case-Sensitive
Neural Machine Translation. In Lauw, H. W., Wong, R.
C.-W., Ntoulas, A., Lim, E.-P., Ng, S.-K., and Pan, S. J.
(eds.), Advances in Knowledge Discovery and Data Min-
ing, volume 12084, pp. 662–674. Springer International
Publishing, Cham, 2020. ISBN 978-3-030-47425-6 978-
3-030-47426-3. doi: 10.1007/978-3-030-47426-3 51.
URL http://link.springer.com/10.1007/
978-3-030-47426-3_51. Series Title: Lecture
Notes in Computer Science.

Tiedemann, J. Parallel Data, Tools and Interfaces in
OPUS. pp. 2214–2218, Istanbul, Turkey, 2012. European
Language Resources Association (ELRA). URL
http://www.lrec-conf.org/proceedings/
lrec2012/pdf/463_Paper.pdf.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. At-
tention Is All You Need. 2017. doi: 10.48550/
ARXIV.1706.03762. URL https://arxiv.org/
abs/1706.03762. Publisher: arXiv Version Number:
7.

12

http://aclweb.org/anthology/W15-3049
http://aclweb.org/anthology/W18-6319
http://aclweb.org/anthology/W18-6319
https://arxiv.org/abs/2010.11936
https://arxiv.org/abs/2010.11936
http://aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/2020.emnlp-main.213
https://www.aclweb.org/anthology/2020.emnlp-main.213
http://ieeexplore.ieee.org/document/6173125/
http://ieeexplore.ieee.org/document/6173125/
https://aclanthology.org/2021.acl-long.243
https://aclanthology.org/2021.acl-long.243
https://aclanthology.org/2023.findings-acl.890
https://aclanthology.org/2023.findings-acl.890
https://aclanthology.org/2021.eacl-main.115
https://aclanthology.org/2021.eacl-main.115
http://aclweb.org/anthology/P16-1162
http://aclweb.org/anthology/P16-1162
https://ieeexplore.ieee.org/document/10184906/
https://ieeexplore.ieee.org/document/10184906/
http://link.springer.com/10.1007/978-3-030-47426-3_51
http://link.springer.com/10.1007/978-3-030-47426-3_51
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Submission and Formatting Instructions for ICML 2025

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser,
, Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens,
K., Kurian, G., Patil, N., Wang, W., Young, C., Smith,
J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G.,
Hughes, M., and Dean, J. Google’s Neural Machine
Translation System: Bridging the Gap between Hu-
man and Machine Translation. 2016. doi: 10.48550/
ARXIV.1609.08144. URL https://arxiv.org/
abs/1609.08144. Publisher: arXiv Version Number:
2.

Zouhar, V., Meister, C., Gastaldi, J. L., Du, L., Sachan, M.,
and Cotterell, R. Tokenization and the Noiseless Channel.
2023. doi: 10.48550/ARXIV.2306.16842. URL https:
//arxiv.org/abs/2306.16842. Publisher: arXiv
Version Number: 1.

13

https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/2306.16842
https://arxiv.org/abs/2306.16842

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Submission and Formatting Instructions for ICML 2025

A. Diacritizations in Czech: Distances from Non-Diacritized and Most Frequently-Diacritized
Bases

Flags for InDia are already by definition longer than the single-character InCa flags. Thus, we are interested in their maximal
shortening. The first step is, of course, explicitly mentioning the flags for the characters which need to be diacritized
(contrary to putting flags for each character in the sequence). But can we minimize the lengths of the flag sequences even
more? A possible solution can be to leverage the logic of frequency-ordered flags, such as in the standard InCa. We can store
the most frequent diacritizations of each base in the pre-trained vocabulary, and mark with the flags only those diacritizations
that are less frequent. This is an intuitive guess, but the statistics from the training corpus may support this claim. In the
dictionary creation step, we sort the diacritizations of each base by frequency. Now, for each base, we can count two values:
firstly, how distant (i.e. how many additional or different diacritics) each diacritized variant is from the most frequent form,
secondly, how distant it is from the base (non-diacritized) form. Since in the dictionary the diacritizations are ranked by
frequency, we can evaluate the average diacritization distance of each rank in each of the two scenarios. We can do that with
the Levenshtein distance metric Levenshtein (1966). The result of this comparison is shown in the Figure 2.

0 1 2 3 4 5 6 7 8 9 10 11 120.0

0.5

1.0

1.5

2.0

Avg
 Le

ven
sht

ein
 Di

sta
nce

Compared to Undiacritized Variant - X

X 1 2 3 4 5 6 7 8 9 10 11 12

Compared to Most Frequent Variant - 0

Average Levenshtein Distance of Word-InDia Diactitizations, Ordered by Frequency

Frequency Rank Flag

Figure 2. Average Levenshtein distance of the diacritization variants (ranked by frequency) for the Czech data. The x-axis represents the
Word-InDia diacritization flags in ascending order. The number represents the frequency rank. On the right table, the “pivotal” words
from which distance is computed is the base, thus all ranks (including most the most frequent, denoted by “0” flag) are shown. On the left
table, the most frequent version is not presented as it is pivotal point itself; the negative “X” flag represents the base form in case it is
present in the training data and different from the most frequent one. The y-axis represents the Levenshtein distance between each rank
and the “pivot”, which is averaged over the whole InDia vocabulary entries.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Submission and Formatting Instructions for ICML 2025

The table shows that the distribution of the ranked distances compared to the base has higher peaks and on average is
approximately 1.5 characters, while if we measure the distances from the most frequent diacritization, the distribution
becomes more uniform with an average of around 1.25 characters. This leads us to the suggestion that creating the pre-trained
vocabulary of the most frequent diacritizations and marking only the deviations from them would be more optimal in terms
of the encoding flag length.

Interestingly, this approach resonates with the way in which diacritics are used in a number of languages, especially in
consonant-based writing systems. For instance, in standard registers of Hebrew and Arabic, the vowel diacritics are not
expected to be written regularly, and one is expected to predict which vowel should stay after each consonant. However,
if a writer thinks that a word’s vocalization would be “unexpected” in the context (usually it happens with foreign proper
names or ambiguous words), one can mark a full word with diacritics. Moreover, if only one syllable is opaque and other
vowels meet the expectations of a reader, one can put a vocalization diacritic only on the position “under question”, which is
essentially our supposed way of diacritics of only the characters “diverging” from the most common diacritization.

B. Full Inline Casing Statistics

Noise
Prepro-
cessing CPT AR EFF BLEU(lc) chrF(lc) COMET

none base 3.973 1238 0.538 21.622.1 51.351.8 0.869
none inca 3.995 1166 0.522 21.722.4 51.452.1 0.870
none inca-n 3.592 1042 0.423 21.922.4 51.452.0 0.872
none marian 4.033 1354 0.554 21.922.5 51.752.2 0.876
none tkm 3.619 1101 0.492 21.421.9 51.151.6 0.870
lower base 3.924 1047 0.539 18.720.9 49.450.6 0.849
lower inca 3.671 1069 0.444 19.221.8 50.151.6 0.856
lower inca-n 4.123 1193 0.527 19.221.8 49.751.3 0.855
lower marian 4.115 1265 0.581 18.921.5 49.851.3 0.859
lower tkm 3.760 1135 0.452 18.720.9 49.450.7 0.850
rand0.1 base 3.745 1233 0.549 19.920.6 49.450.3 0.839
rand0.1 inca 3.715 1085 0.473 20.522.0 50.051.7 0.855
rand0.1 inca-n 3.394 985 0.391 20.621.8 50.251.4 0.857
rand0.1 marian 3.907 1324 0.529 21.021.8 50.951.9 0.863
rand0.1 tkm 3.509 1063 0.489 20.221.2 50.151.2 0.854
upper base 1.625 60 0.658 1.61.9 22.523.0 0.448
upper inca 3.890 1134 0.500 21.321.3 51.351.3 0.871
upper inca-n 3.870 1121 0.488 20.720.7 50.750.7 0.867
upper marian 3.917 1213 0.551 15.520.4 39.150.7 0.814
upper tkm 2.434 647 0.226 15.517.9 46.648.9 0.840

Table 8. Detailed statistics of the intrinsic and extrinsic metrics for the main inline casing algorithms, Czech-Ukrainian translation direction.
The “Noise” column shows which type of noising was applied (none stands for standard data, lower for fully lower-cased, rand0.1

for 10% of randomly cased words, upper for fully upper-cased noise). the “Preprocessing” column shows which case preprocessing
algorithms were applied, where “base” means no preprocessing, “inca” means our suggested InCa system, and “inca-n” means naive InCa,
“marian” shows Marian NMT suggestion by Jain et al. (2023) and “tkm” stands for TokenMonster. First three metric columns show the
intrinsic metrics: “CPT” stands for character per token ratio, “AR” stands for average rank, “EFF” stands for Rényi efficiency by Zouhar
et al. (2023). Three external metrics represent BLEU, chrF and COMET scores, respectively; the sub-scripted values under BLEU and
chrF metrics show the lc(BLEU) and lc(chrF) metrics.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Submission and Formatting Instructions for ICML 2025

Noise
Prepro-
cessing CPT AR EFF BLEU(lc) chrF(lc) COMET

none base 4.033 1189 0.516 22.723.2 51.051.5 0.873
none inca 4.014 1113 0.500 22.723.3 51.051.7 0.867
none inca-n 3.635 997 0.417 23.223.7 51.251.8 0.873
none marian 4.197 1301 0.563 23.323.7 51.451.9 0.875
none tkm 4.062 1336 0.503 22.923.3 51.051.5 0.870
lower base 4.010 1024 0.519 19.622.1 49.350.6 0.847
lower inca 3.739 1034 0.442 20.422.9 50.151.5 0.853
lower inca-n 4.160 1135 0.504 19.922.7 49.451.1 0.854
lower marian 4.298 1235 0.602 20.122.8 49.651.1 0.853
lower tkm 4.237 1383 0.474 19.922.3 49.350.7 0.846
rand0.1 base 3.785 1154 0.527 21.221.9 49.550.5 0.844
rand0.1 inca 3.756 1041 0.460 21.522.9 49.951.6 0.850
rand0.1 inca-n 3.450 946 0.388 22.023.1 50.351.5 0.859
rand0.1 marian 4.069 1266 0.534 22.523.4 50.651.7 0.862
rand0.1 tkm 3.931 1289 0.500 21.922.8 50.251.2 0.856
upper base 1.569 46 0.678 1.92.5 21.823.2 0.419
upper inca 3.944 1091 0.486 22.822.8 51.351.3 0.865
upper inca-n 3.915 1069 0.473 22.022.0 50.850.8 0.861
upper marian 4.102 1181 0.566 17.622.3 41.451.0 0.822
upper tkm 2.702 755 0.219 17.619.9 47.449.3 0.842

Table 9. Overview of the intrinsic and extrinsic metrics for the main Inline casing algorithms, Ukrainian-Czech translation direction. The
legend is the same as in 8.

C. Problems with Rényi Efficiency Metric
Our initial intention was to use the Rényi efficiency metric, presented by Zouhar et al. (2023). It is based on the assumption
that tokenization is a noiseless transformation and is based on the concept of efficiency, which aims at penalizing the token
distribution on both head and tail. The metric is theoretically based on the notion of Rényi entropy, which is a generalization
of Shannon entropy. The authors show that, on a variety of tokenizers and on a set of MT language pairs, this metric
correlates well with the downstream external metrics such as BLEU.

If we look at the results of gives least preference to naive InCa preprocessing; it is followed by TokenMonster, and then all
other systems including the one without pre-processing. If we take that into context of the noising experiments (Tables
10-11), we will see the motivation behind that. The performance of the metric seems heavily dependent on the presence and
frequency of the flags; and the more (and the oftener) the flags, the less the score of the metric. The clearest examples can
be seen on the upper-case noising: no-preprocessing scenario gets the highest scores in the table, while the TokenMonster
obtains three times as less score (recall that it marks each upper-cased word occurrence with a token, thus it has the biggest
absolute number of flags compared to any other algorithm). We understand that this should not be a fair estimate of the
non-preprocessing scenario for the future work, as the quality of this system on the downstream performance was between
1.5 and 2.5 BLEU points total. Analogous trends can be seen if we compare other types of noising: for instance, InCa,
being the only algorithm that uses flags in the fully lower-cased scenario (to mark the lower-cased words, for instance, in
the beginning of the sentence), shows the lowest performance. This is also seen if we compare each particular system in
various noising setups: for instance, naive InCa gets a lower rank of the upper-case flag in the random 10% casing scenario
compared to the standard dataset, and while it is used in the lower-cased scenario without any flags, it gets its maximal score.

Can this be a problem of a particular alpha? We made the comparative graphs to see if the ranking of the systems would
differ depending on the alpha value. We sampled alphas from 0 to 10 with 0.2 stride and estimated the Rényi efficiency score
for each alpha. Then, we compared the performance of the systems for each noising scenario separately. The result of the
evaluation on the Czech data is presented in Figure 3 (the Ukrainian data show the same patterns). Here, we firstly see that
in the majority of the cases, the scores for each system decrease monotonously and do not change their ranking depending
on alpha. We can also see that, while for the non-noised and randomly cased 10% scenarios the worst performance is shown
by naive InCa (since it uses more tokens than the “smarter” approaches), in the upper-case scenario TokenMonster goes

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Submission and Formatting Instructions for ICML 2025

none rand0.1 lower upper
Prepro-
cessing EFF R(f) EFF R(f) EFF R(f) EFF R(f)

base 0.538 - 0.549 - 0.539 - 0.658 -

inca 0.522
T:5

U:39
L:28

0.473
T:3
U:4
L:18

0.444 L:1 0.500 A:3

inca-n 0.423
T:1

U:17 0.391
T:1
U:4 0.527 - 0.488 A:3

marian 0.554 T:0
U:1628 0.529

T:0
U:3

A:2475
-A:2468

0.581 - 0.551

T:131
U:17
A:0

-A:14

tkm 0.492
U:35
T:3 0.489

U:5
T:1 0.452 - 0.226 U:0

Table 10. Rényi efficiency and ranks of the casing flags for various types of noising (“none” for default texts, “rand0.1” for 10% random
casing, “lower” and “upper” for fully lower- and upper-cased sentences), encoded Czech texts. The flags are denoted as follow: “T” stands
for title-case, “U” – for upper-casing a word, “A” – for upper-casing the whole sentence (or a span for marian), “-A” – for ending the
upper-cased span for marian, “L” – for lower-casing the word. The best (highest) scores for each column are marked bold.

significantly down as it marks each word with a flag), and in the lower-cased scenario, it is InCa with the lower-case flags
that lies below.7

The authors of the approach suggest that the increase in alpha should favor the frequent sequences to be encoded into shorter
tokens. We cannot say that our evaluation supports this claim. Instead, we can say that it penalizes the systems that output
numerous auxiliary tokens (which, in our case, are predominantly single-character). The only exception here is Marian
inline casing that sometimes happens to even outperform the non-preprocessing scenario; this can be interpreted due to the
nature of the inline casing flags that can be merged with a word, thus not creating a separate token.

In conclusion, we should say that the Rényi efficiency metric (at least in its classical version) does not favor using the
characters that increase the number of separate words (and thus tokens). Thus, if we want to encode the flags separately (this
is our aim – to relocate the casing information in an way of creating separate tokens), it is impossible to outperform the
zero preprocessing scenario on average since any inline approach to casing would at least slightly increase the length of
sentence. The case of Marian encoding shows that we can make it better if we allow the flags to merge with the words; but
theoretically this does not seem a perfect solution, since if we create a digraph within a word instead of separating it from
the word completely, it would not solve the problem of the possible allocation of the same words with different casings in
the vocabulary.

We are aware of the theoretical criticism of the Rényi efficiency metric (for example, in Cognetta et al. 2024); however, to
our knowledge, this is the first empirical evidence of the misalignment of the tokenization quality estimation and downstream
performance. Therefore, we encourage the community to use this metric with caution in the setups with the preprocessing
techniques that require additional inline flags.

7It is less clear why TokenMonster also shows bad performance on the fully lower-cased data, as it does not use an explicit lower-case
flag there. Most probably it is the result of another special token introduced by TokenMonster, “D” token that handles the deletion of the
white space after this token. It is used as a way to handle the fully reversible word separation, but in an opposite logic to SentencePiece:
while the latter explicitly marks the white spaces, TokenMonster by default restores white spaces between each of its tokens and then
deletes them whenever the special token is used. Thus, the frequent usage of this token may skew Renyi efficiency in this case.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Submission and Formatting Instructions for ICML 2025

none rand0.1 lower upper
Prepro-
cessing EFF R(f) EFF R(f) EFF R(f) EFF R(f)

base 0.516 - 0.527 - 0.519 - 0.678 -

inca 0.500
T:3

U:23
L:25

0.460
T:3
U:4
L:19

0.442 L:1 0.486 A:3

inca-n 0.417
T:1

U:16 0.388
T:1
U:4 0.504 - 0.473 A:3

marian 0.563
T:0

U:171
-A:1617

0.534

T:0
U:4

A:4012
-A:2466

0.602 - 0.566

T:229
U:22
A:0

-A:15

tkm 0.503
U:28
T:2 0.500 - 0.474 - 0.219 U:0

Table 11. Rényi efficiency and ranks of the casing flags for various types of noising, encoded Ukrainian texts. The legend conventions
follow the table on Czech data above.

D. Example of Different Inline Diacritization Methods
In Table 12 you can find an illustration of three inline diacritization methods applied to the Czech excerpts. The first row
shows the input, the next lines show the results of pre-processing and tokenization (“Base” means no pre-processing). The
InDia flags are marked in blue. For main InDia and InDia-n systems, KV flag marks the separator between the keys (indices
of the diacritized character) and values (flags for each character diacritization), and ID is a separator if there are multiple
keys. k means putting “kroužek” diacritization, č means putting “čárka” diacritization, n means de-diacritizing the letter. For
InDia-w, N means de-diacritizing the whole word, 1 and 2 mean the second- and the third- frequent diacritizations for the
same base.

Preprocessing Examples
input Olympijské komisi Spojených států

stálá tajemnice Nobelovy komise
base Olymp ijské kom is i Spojených států

stál á tajemn ice Nobelov y komise
InDia Olymp i jske KV 5 KV n komisi Spojenych KV 4 KV k statu

KV 2 ID 4 KV č č stala ta jem nice Nobelov y komise

InDia-n KV 9 KV č Olymp i jske komisi KV 6 KV č Spojenych KV 2 ID 4 KV č
k statu
KV 2 ID 4 KV č č stala ta jem nice Nobelov y komise

InDia-w Olymp i jske N komisi Spojenych 1 statu
2 stala ta jem nice Nobelov y komise

Table 12. Illustrations for modifications of InDia preprocessing and no-preprocessing tokenization.

If we pay attention only at the splitting of bases, we can see that for all InDia variations, they are split in the same manner.
Moreover, the the bases are split into longer sequences, compared to the diacritized “base” text: consider words “komisi” or
“stálá”, which are split into 3 and 2 tokens in “base” and are kept as single tokens in InDia systems.

We can see that both InDia and InDia-w omit flags on the word “Olympijské”, since it is stored in their dictionaries. We also
see that in case where the word is non-diacritized while the most frequent version of its base is diacritized, they both use
flags that erase diacritization (in the case of the word “komisi”, for which the most frequent diacritization is “komisı́”). We
can see that, in case of the non-diacritized word, the words which have the diacritization different from the most frequent
one tend to be over-tokenized by the no-preprocessing system, while they are kept as a whole in both InDia setups (such as
the word “stálá”). Finally, we can see that if we disregard the flags, the tokenization of the bases for each word is the same
with InDia and InDia-w.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Submission and Formatting Instructions for ICML 2025

0 2 4 6 8 10

0.4

0.6

0.8

1.0
Noise: none

base
inca
inca-n
marian
tkm

0 2 4 6 8 10

0.4

0.6

0.8

1.0
Noise: rand0.1

0 2 4 6 8 10

0.4

0.6

0.8

1.0
Noise: lower

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
Noise: upper

Rényi Efficiency Comparison for Different Alphas
 and Different Noises, Czech Texts

Alpha value

EF
F

sc
or

e

Figure 3. Comparison of the Rényi efficiency score depending on alpha. The subplots are created for each type of case noising, each
figure shows the EFF score of each system (Y axis) with respect to alpha score (X axis).

Contrary to these two approaches, InDia-n explicitly shows every diacritization operation, disregarding frequency. Therefore,
the word “Olympijské” is diacritized with the symbol “čárka”, while the word “komisi” is not: despite being not as frequent
word form as “komisı́”, it does not have any explicit diacritic and thus is left as is. Therefore, there is no n sign in general.

19

