InCa and InDia: Inline Casing and Diacritization Preprocessing
For Robust-to-Noise Tokenization and Interpretability

Kirill Semenov

Abstract

We introduce two inline approaches to tokeniza-
tion preprocessing of casing (InCa) and diacritics
(InDia) in the texts. Their main component relies
on an automatically created external dictionary
that stores information about the most frequent
casings or diacritizations of words, and marking
only the non-frequent spellings. We show that
in a number of noising scenarios, our casing al-
gorithm shows the best performance, and in the
cases where it performs on par with the alternative
solutions, the intrinsic parameters of the tokenizer
trained on our data are more stable. As for inline
diacritization, this is the first solution of that type
to our knowledge; we show its improvement in ro-
bustness against the de-diacritized texts compared
to tokenization without preprocessing. We share
our preprocessing systems on a public GitHub
repository.!

1. Introduction

The strong point of subword tokenization systems, such
as BPE Sennrich et al. (2016) or SentencePiece Kudo &
Richardson (2018), is their ability to split any sequence of
characters into tokens by falling back to smaller subwords
if the character groups are not frequent. However, they are
inherently overly sensitive towards variation in character
usage. Examples of such variation are various types of cas-
ing (capitalization or uppercasing) of the words or omitting
the diacritics prescribed by language norms (so-called de-
diacritization). Tokenizers trained on the general-purpose
data usually show poor performance when tokenizing the

'"Department of Computational Linguistics University of Zurich,
Switzerland “Institute of Formal and Applied Linguistics, Charles
University, Czech Republic. Correspondence to: Kirill Semenov
<kirill.semenov @uzh.ch>.

Proceedings of the ICML 2025 Tokenization Workshop (TokShop),
Vancouver, Canada. PMLR 267, 2025. Copyright 2025 by the
author(s).

'https://github.com/Kiryukhasemenov/
InFlags

12

Martin Popel ?

words which bear similar meaning but are written differ-
ently by casing or de-diacritization: since they have not
seen enough training examples of different casings or di-
acritizations, they cannot find the corresponding lines for
the upper-cased words and end up over-splitting them into
smaller sequences they could find. The illustration of such
over-splitting is shown in Table 1.

This variation can be treated as noise and may be deleted
beforehand, but in some cases it may also bear linguistic
(as in diacritics) or expressive (as in writing the sentences
in all caps in the social networks) information. Thus, an
ideal solution for handling such a variation would be to pre-
serve the information about casing or diacritization while
not damaging the quality of the tokenization. One of the
solutions suggested for the casing problem and developed
in a line of works is applying preprocessing on the texts be-
fore the tokenizer. The recent analysis by Jain et al. (2023)
shows that, if applied with a number of tricks (for example,
using a single auxiliary token for a sequence of uppercase
words) and with data augmentation, it can handle the dif-
ferently cased inputs well. However, the way the auxiliary
symbols are assigned in this paper is questionable, as it
allows both treating them as separate tokens and merging
them with other words. Moreover, most of the work on the
inline casing algorithms focuses either on the downstream
performance of the tokenization on NLP tasks or solely on
the intrinsic performance of the tokenizers. Bearing in mind
that subword tokenization is a relatively new technique and
there is still no consensus in how to evaluate the efficiency
of the tokenizer itself, this lack of simultaneous analysis
of the intrinsic qualities of the tokenizer and the extrinsic
performance of the systems which use this tokenizer is a
big problem. Finally, to our knowledge, there has been no
attempt to apply the inline approach to other orthographi-
cal transformations such as diacritics and de-diacritization
mentioned above.

In this work, we present InCa and InDia — two systems for
preprocessing of texts with respect to casing and diacritiza-
tion, respectively. Their core characteristic is the usage of
an automatically trained dictionary that stores information
about the most frequent casing or diacritization of each word
in a training corpus, and explicitly marking only the casings

https://github.com/Kiryukhasemenov/InFlags
https://github.com/Kiryukhasemenov/InFlags

InCa and InDia: Inline Casing and Diacritization Preprocessing

Variation Input Phrase Tokenized Sequence # Tokens
None Béhem vybéra Béhem _vybér 1 3
All-Caps BEHEMVYBERU | B EHEM V Y B ER U| 10
No Diacritics | Behem vyberu Be hem _vy ber u 5

Table 1. An illustration of the tokenization problem with the same phrase transformed either by upper-casing or by deleting the diacritiza-
tion. The tokenizer trained on the “regular” data (with diacritized and usually not upper-cased words) struggles to split it consistently. The
words are overly split, which would influence the processing time and the performance on the downstream NLP task.

Inln.le Sentence Dictionary

Casing

None I sold John Baker an iPhone 32 GB and an HTC 64 gb

Basic Tisold T john T baker an i_ T phone 32 U gb and an U htc 64 gb

InCa i sold john T baker an iphone 32 gb and an htc 64 L gb I, John, iPhone, GB, HTC

Table 2. An illustration of our inline casing approach (InCa). The first line is an input sentence containing words with different casing
(some spellings, like ’gb”, are not standardized). Two latter lines show how cased words are substituted with flags (T for title case, U for
all caps, L for lower case). Most inline approaches explicitly mark every non-lowercased word (with “iPhone”, they also need to handle
capitalization inside the word by splitting it). InCa leverages a pre-trained dictionary that stores the most frequent casing of each word
(the word “John” is mostly written with title case, and the word “GB” with upper case); therefore it explicitly marks only such casings that
are not most frequent (e.g. the surname “Baker” that may also be a common noun). This minimizes the encoded sequence length.

that are less frequent. Our main aim is to create a system that
minimizes the lengths of the tokenized sequences, makes
the subword vocabularies more transparent (for example,
free from doublets differing only by casing) and robust to
noise (showing similar tokenization and downstream per-
formance for different types of casing and diacritization of
the same text). A draft of this idea was already applied for
WMT?22 by Popel et al. (2022); in this paper, we present it
in more detail, share the code and results of the experiments
with this implementation, and extend our approach to the
problem of diacritization. A demonstration of this approach
compared to other inline casing systems is shown in Table 2.

Our contributions are as follows.

1. In Section 3.1, we introduce a frequency-based inline
casing preprocessing algorithm, called InCa (for Inline
Casing), that is tokenizer-agnostic, fully reversible,
and does not require much compute to run.

2. In Section 3.2, we present the first, to our knowledge,
inline diacritization algorithm InDia, also tokenizer-
agnostic, fully reversible and easy to run.

3. In Section 4, we test the proposed algorithms on the
Czech-Ukrainian machine translation task (MT), eval-
uating both extrinsic (translation quality) and intrinsic
(efficiency of tokenization and tokenizer vocabularies)
metrics. For inline casing, we also compare our sys-
tem with recent inline casing solutions. We show that,
compared to the baseline (and to other casing systems),
our solutions show stable performance in the general
translation scenarios, and for some types of noising
(such as full upper-casing) it shows significantly better

downstream performance than any of the compared
systems. We also demonstrate that the tokenized se-
quences become more stable under different noising
scenarios, and that the tokenizer vocabularies become
more efficient and interpretable in terms of subword
uniqueness.

2. Related Work

Inline casing approaches were first introduced by Rexline &
Robert (2011) as a text compression technique: the upper-
cased and title-cased® words are substituted with their lower-
case correspondences and prepended with the additional
symbols that mark the case of the word. In the following,
such additional symbols are called flags and are denoted in
blue. For the MT task, this approach was first implemented
by Berard et al. (2019), where it was called “inline casing”.
There, the flags were applied after using BPE to every sub-
word of an upper-cased or title-cased word (which does
not sound like an optimal solution). The following papers
(e.g. Etchegoyhen & Gete, 2020) returned to the application
of casing flags before tokenization. Their results show that
inline casing is the most efficient case-marking strategy for
several MT language pairs, compared to other approaches
such as keeping the initial casing, lower-casing, true-casing,
recasing, and case factors. The authors suggested that this
happened because the inline casing is the strategy that al-
lows “to combine lowercase-based translation benefits with

Hereinafter, “upper-cased” refers to a spelling that only con-
sists of capital letters (also known as “all caps”), e.g. “HELLO”,
and “title-cased” refers to the words starting with a capital letter
only, e.g. “Hello World”.

InCa and InDia: Inline Casing and Diacritization Preprocessing

case information exploitation”. Another study (Shi et al.,
2020) compared two variants of placing inline casing flags —
either before or after the cased word, and trained the addi-
tional neural models for case prediction. They show that all
approaches outperform the baseline; specifically, the alloca-
tion of flags to the right of a word works better than to the
left. However, the inline casing showed lower performance
compared to case prediction models.

Recently, two efficient inline casing approaches were pub-
lished. The first, TokenMonster?, is a standalone subword to-
kenization system that includes preprocessing and tokeniza-
tion modules. In the preprocessing step, two flags (called
“capcodes”) are assigned; they are responsible for the upper
case or the title case, while the input text is transformed
to the lower case. In the tokenizer training step, it allows
for multiword tokens (by not enforcing token separation by
white space), and it uses a variation of the UnigramLLM ap-
proach (Kudo, 2018), defined as “distillation”. As a result,
the tokenizer shows text representations in 37.5% fewer
tokens at the same vocabulary size compared to GPT-2
or Tiktokenizer* used in OpenAl models; the author also
trained NanoGPT® model on their tokenizer outputs, which
showed equal results on several benchmarks such as SQuAD
(Rajpurkar et al., 2016) as the pretrained nanoGPT.

Another approach, also integrated into the tokenization sys-
tem, was presented by the Marian NMT team (Jain et al.,
2023). Firstly, their contribution was adding two more flags
to two regularly seen upper-case and title-case ones, namely,
the beginning and ending of spans of multiple upper-cased
words. What is more important, the authors addressed the
problem of suboptimality of the encoded sequence lengths
made by inline casing systems. Their solution was to distin-
guish between such words that are often used in the upper
or title case from the ones where it happens rarely. In case
of frequent usage of cased form (e.g. proper names or abbre-
viations), the flag is merged with the word and thus is not
split: the words “America” and “USA” will be transformed
to “Tamerica” and “Uusa”, respectively, which allows the
tokenizer to merge the flags with the following word; in-
frequent cases (e.g. regular nouns) are assigned the flags
with a white space (thus “Hello” and “HELLO” will be
transformed to “T hello” and “U hello”), which would en-
force flags as separate tokens. The paper shows increased
robustness of the algorithm towards noised casing, as well
as only slight changes in encoded length on the noised data
compared to the general text. However, it is necessary to
note that all algorithms (BPE without preprocessing, clas-
sical inline casing, and the proposed algorithms) showed
better performance after using the augmented training data.

*https://github.com/alasdairforsythe/
tokenmonster

‘nttps://github.com/dgbd/tiktokenizer

Shttps://github.com/karpathy/nanoGPT

Other lossless approaches to addressing case variation in-
clude: combination of subword embeddings with character
representations, augmented by random noise or case tog-
gling (Aguilar et al., 2021); or approaches that are called
“case factorization”. This term denotes different concepts,
for example, handling case information in the same manner
as the positional information in the Transformer model —
by embeddings that are added pointwise to the word em-
bedding, as in UniCase (Powalski & Stanislawek, 2020);
or transformation of strings into 3-dimensional space by
variational auto-encoder architecture (Oord et al., 2017), re-
sulting in a set of 3 integers in range [0, 255], as in (Samuel
& Qvrelid, 2023).

Regarding the diacritization handling at the tokenizer prepro-
cessing stage, we could not find any research that addresses
this topic. The only brief mention and speculation about
the impact of diacritics on vocabulary size is made by Alabi
et al. (2020), where two low-resource African languages,
Twi (which does not use diacritics) and Yoruba (which uses
diacritics) are compared by their representations trained in
FastText pretrained models (usually of low quality) and on
manually curated data. The authors speculate that, despite
the fact that Yoruba orthography requires diacritics, there are
not many properly diacritized open source data. Otherwise,
most NLP solutions either treat the letters with diacritics
as the “atomic” characters in the same way as the “base’
alphabetic symbols, or strip the text off the diacritics (which
seems to happen with consonantal systems and with some
large multilingual models such as BERT Devlin et al. 2019).

s

There is an adjacent body of research related to the restora-
tion of diacritics, both for languages with obligatory dia-
critics, such as the South Slavic languages (Ljubesi¢ et al.,
2016) or Vietnamese (Nga et al., 2019), and for vowel signs
for consonantal alphabets, such as Arabic (Shamardan &
Hifny, 2023). In most cases, the problem is formulated as an
MT task from non-diacritized to diacritized language; thus,
solutions such as sequence-to-sequence models or classical
statistical MT architectures are applied to it.

Finally, a notable approach similar to inline preprocessing
has been introduced for languages with nonconcatenative
morphology, such as Hebrew — Splinter (Gazit et al., 2025).
The authors suggest separating the root consonants from the
consonants and vowels with inflectional meaning, which
are orthographically interleaved in a word. The algorithm
groups the root characters and the inflectional characters
separately, the latter ones in the form of a dictionary, where
the key is the position index within a word, and the value is
a character.

https://github.com/alasdairforsythe/tokenmonster
https://github.com/alasdairforsythe/tokenmonster
https://github.com/dqbd/tiktokenizer
https://github.com/karpathy/nanoGPT

InCa and InDia: Inline Casing and Diacritization Preprocessing

3. InCa and InDia

Below, we present the algorithms for inline casing and inline
diacritization. They share core principles, namely, using a
dictionary that stores the information about the most fre-
quent casing and diacritization of each word, respectively.
Another crucial concept for both methods is a base: for both
casing and diacritization, a base is a sequence of uncased
and undiacritized characters to which all its cased or dia-
critized versions would correspond. For instance, for the
casing, “us” is a base for a lower-cased word form “us”,
its title-cased counterpart, “Us”, and an abbreviation “US”.
Similarly, for diacritization (using a Czech example), three
word forms “zebra” (zebra), “Zebra” (rib-GEN.SG), and
“zebrd” (beg-PRAES.3.SG) have the same base, “zebra”.

3.1. InCa - Inline Casing With Dictionary

We introduce InCa algorithm, which is the acronym for
Inline Casing. Its core idea is to collect the counts of each
word in the training data about how frequently it occurred
in any casing variant (lower, upper, title or any other) and
to keep the information about the most frequent version of
each word’s casing in a dictionary. The system works in
three steps:

1. Training: For each base (uncased word form) in the
training corpus, counts of all possible casings are stored.
Then, a dictionary is created, which consists of “base”:
“most frequent casing” items.°

2. Encoding: Each word’ in the input text is compared
against the dictionary on whether its casing is the most
frequent. If it is, the word is transformed into lower case
without any flag. If it is not, the word is prepended with
a corresponding flag: for the title (T), upper (U) or lower
(L) case.® There is an explicit lower case flag, contrary to
most inline casing systems, since the lower case may not be
the most frequent casing of a base (e.g., for proper nouns or
abbreviations). The flag and the base are always separated
by a single space. For example, the spelling “FRANCE”
will be written as “U france” (assuming the most frequent
casing is title-cased, “France”). This is done to enforce
subword splitting between the casing information and the
base at the tokenization stage.

Two additional small tricks are applied to minimize the

SWhen storing the dictionary on disk, we can store only the
“most frequent casing” variant for each item because the base for
can be derived deterministically by lowercasing it.

"We split words on alphanumeric/non-alphanumeric bound-
aries. “Words” without any characters allowing upper or lower
case (whitespace, punctuation and other symbols) are kept un-
changed by the InCa preprocessing.

8There may be words with a casing that is not the most frequent
one, nor one of the three standard ones (T, U, L), e.g. “McDonAld”.
Such words are kept unchanged and no flag is prepended.

number of flags even more:

» For sentence-initial positions, we expect the word to
be title-cased. Therefore, only the cases where the
word is NOT title-cased are marked explicitly with a
corresponding L flag.

e For fully upper-cased sentences (lines), we apply a
single flag (A for “all upper-case”).

3. Decoding: The output string that consists of only base
spellings and flags is being restored the following way: for
each base in the text, we check if it is prepended with an
explicit flag and apply the corresponding casing to the word.
Otherwise, we check the base against the dictionary and
return the most frequent casing from it.

Since the word form distributions in any natural language
corpus tend to follow Zipf’s law, we can end up with a
long dictionary at the training stage, most of the items of
which will be the bases seen once or a few times. Thus,
we introduced a parameter that sets the minimal count of
a particular base in the training data to be recorded in the
dictionary; otherwise, each word unseen in the dictionary
will be explicitly marked if it is not lower-cased.

Compared to other inline casing systems, two objectives of
our approach are minimization of the encoded token length
and increase in robustness under different casing of the same
bases, which happen due to external storage of information
about the frequent casing. The only algorithm that attempted
to address minimization of token length was the one sug-
gested by Jain et al. (2023); however, their approach allows
merging flags with the bases when the words are mostly used
in cased forms. This essentially transforms the cased letters
into digraphs within the same word, which theoretically
should not improve the tokenization length for non-frequent
spellings of the words. For example, the word “France”
will be tokenized according to this approach as “Tfrance”,
since it is mostly seen in title case, but for its lower-cased or
upper-cased spellings “france” and “FRANCE” the system
will assign whole strings to different token sequences. We
will show evidence supporting this claim, as well as a com-
parison with other inline casing approaches in Section 4.

3.2. InDia - Inline Diacritization With Dictionary

Inspired by the InCa approach, we leverage it to the problem
of diacritization with several modifications. Below, we show
the InDia method (standing for Inline Diacritization).

1. Training: For each base (undiacritized character se-
quence) in the training corpus, counts of all its possible dia-
critizations are stored. Then, a dictionary is created, which

consists of “base”: “most frequent diacritization” items.

2. Encoding: Each word in the input text is compared

InCa and InDia: Inline Casing and Diacritization Preprocessing

against the dictionary. If it is the most frequent diacriti-
zation of the base, it is transformed into a base without a
flag. Otherwise, we mark the diacritics that differ from
the most frequent diacritization. Since, in many languages,
the same diacritic signs can be applied to different char-
acters (or in different positions) in the word, for complete
reversibility, we need to keep information about each type
of a diacritic sign, as well as its exact character index. This
results in inevitable multi-character sequences of the flags.
We think of diacritization operations as the dictionary (here-
inafter dict to distinguish it from high-level dictionaries of
InDia), where each key is a character index id; where a
diacritization has to be applied, and d; is a value, which is
an exact diacritization sign. To maximize the compression
of the diacritization flag, each flag is stored as a sequence
KV —idxy — ID —idxs — KV — dy — do, where a special
symbol KV separates the sequences of keys (in the begin-
ning), and values (in the end), and a special symbol I D
separates the indices of the diacritized characters (which
are marked by numbers). The reason for making a diacriti-
zation flag in the dict form is that such syntax allows for
shorter sequences than its main alternative, sequence of di-
acritization signs dids...d,, for the whole length of each
word. The reason for keeping keys and values on different
sides of the flag is our hypothesis that this way, a tokenizer
could find frequent patterns for multiple diacritizations in-
dependent from the absolute position in a word (and will
store them as a single token). A more widespread dict for-
mat, idq : dq,...id, : d,, does not allow for this since the
diacritization signs are separated by character indices.

For example, if “Zebra” is the most frequent variant, it will
be transformed to “zebra” (the base without any flags), while
“Zebrd” will be encoded as “KV 4 KV

one diacritization of type D (acute accent) in character
with index 4 differs from the most frequent diacritization.
Word form “Zebfa” (which does not exist in Czech) would
be encoded as “KV 3 ID 4 KV D zebra”.

zebra”, since only

3. Decoding: similarly to InCa, at the decoding stage, we
look up each base in the dictionary, find its most frequent
diacritization, and re-diacritize it according to the dictionary.
Then, if the word has an explicit diacritization flag before,
we apply all operations mentioned in the flag to the already
diacritized version. Notably, the “pivot” diacritization from
which we count all differing diacritizations is the most fre-
quent one, not the bare form without diacritizations. Using
the most frequent diacritization as a “default” diacritization
for each word does not look as evident as for casing; we
justify our choice in Appendix A.

To our knowledge, this is the first case of an inline approach
to diacritization handling. We also applied two modifica-
tions of this approach to see the optimal way of storing
the diacritization flags; the comparison will be shown in

Section 4.2.

4. Case Study: Czech-Ukrainian MT

Experiment Setup

We applied our preprocessing modules to the MT down-
stream task on the Czech-Ukrainian language pair (both
directions). For each observation, we needed to train the
full pipeline, which consisted of preprocessing, tokenizer,
and MT modules. Therefore, due to compute limitations,
our experiments were restricted in the number of languages,
preprocessing parameters, and tokenizer choices. Our pri-
mary focus was a comparison of different preprocessing
solutions. Therefore, the tokenizer and the MT training
setups, as well as training and validation data, were fixed for
all experiments. The preprocessing details will be explained
in two subsections below. The general setup is as follows:

1. Data: For training, we used the dataset comprising
8 million sentences that contain all Czech-Ukrainian data
from the OPUS corpus (Tiedemann, 2012), WikiMatrix data
from the initial publication (Schwenk et al., 2021), and the
ELRC EU acts in Ukrainian.? For evaluation, the subset of
1012 sentences from Flores 101 dataset was used (Goyal
et al., 2022). All data underwent NFKC normalization since
it is a default requirement for SentencePiece tokenization
(see below) and for treating the diacritization base in InDia.

2. Tokenizer: For all setups, SentencePiece (Kudo &
Richardson, 2018) implementation of the Unigram LM is
used, except for one experiment in casing analysis when
TokenMonster was used. All training corpus sentences were
used to train the tokenizer. The vocabulary'? was trained
jointly for Czech and Ukrainian, and the vocabulary size
was 32,000 tokens.

3. MT System: We used the Marian implementation
(Junczys-Dowmunt et al., 2018) of the Transformer model
Vaswani et al. (2017), specifically, transformer-base model
size and 16 epochs for training. All tokenization and MT
experiments were run on a single GPU (NVIDIA RTX 3090)
for one experiment. The training time typically spanned 22
to 25 hours.

We used a range of extrinsic and intrinsic metrics to evaluate
our systems. For extrinsic evaluation, we used BLEU (Pap-
ineni et al., 2001), chrF (Popovi¢, 2015) and COMET (Rei
et al., 2020); for BLEU and chrF, the SacreBLEU imple-
mentation (Post, 2018) was used. For casing experiments,
the lowercased versions of BLEU and chrF metrics were

The data were taken from elrc-share.eu page.

9Tn what follows, vocabulary refers to the set of unique sub-
words of the tokenizer model, while dictionary refers to the auxil-
iary data structure of InCa and InDia storing most frequent casings
and diacritizations.

https://elrc-share.eu/repository/browse/eu-acts-in-ukrainian/71205868ae7011ec9c1a00155d026706d86232eb1bba43b691bdb6e8a8ec3ccf/

InCa and InDia: Inline Casing and Diacritization Preprocessing

also used.

Regarding intrinsic evaluation, we selected two metrics
based on a comparative analysis of Balhar (2023). Specifi-
cally, we use the character per token (CPT) ratio as shown
below:

ZSGC |S|

)] W

CPT(r,7,C) =

Where:

e T is a given tokenizer,

e 7 is the preprocessing function such as InCa or InDia
(for no preprocessing scenario 7(s) = s),

« (C'is a given language corpus,

* s1is a sentence within the C corpus, |s]| is its length in
characters and |7(7(s))| is the length of the encoded
sequence in tokens.

This metric aims to estimate the optimality of the encoded
text in terms of length. Since we expect a better tokenizer to
minimize the length of the encoded sequence, we say that a
better tokenizer should have a higher number of characters
per token ratio. This metric is a language-independent gen-
eralization of metrics such as average sequence length (i.e.,
average number of tokens per sentence) and word fertility
(average number of tokens per word), which are met in other
works such as Liang et al. (2023) and Rust et al. (2021).

Another metric used for token distribution estimation is
Average Rank (AR). It is defined as:

AR(1,C) = Z rank(t,7(C)) - p(t, C) (2)

tev,

where

* 7 is a tokenizer function, and V. is its vocabulary,

e (C'is a given corpus,

rank(t, 7(C)) is a rank of a token ¢ (position in the
list of the unique tokens met in tokenized corpus C
ordered by frequency),

* p(t,C) is the frequency of a given token in the corpus.

In other words, the average rank metric is a weighted aver-
age of the tokens met in the tokenized corpus, where weights
are the frequencies of the tokens in the given corpus. If the
distribution is skewed, it will have a long tail of tokens with
small probabilities; in this case the bigger frequency weights

will be skewed towards the head of the distribution. The
more uniform the distribution (or at least the smaller the
tail in favor of the high-frequency tokens), the larger the
weighted average. Thus, we expect that the higher average
rank of the tokenized text would signify the more optimal
usage of the tokens, hence a better tokenizer.

Both intrinsic metrics depend on the validation dataset to
which the tokenizer is applied. We are also interested in
changes in internal representations of the tokenizer; thus,
we evaluate the character per token ratio for the vocabulary
items (denoted as CPT,,), which is counted as the average
number of characters per unique subword in a given tok-
enizer vocabulary.

Finally, we used another intrinsic metric recently proposed
for tokenization evaluation, Rényi Efficiency by Zouhar et al.
(2023); however, it showed excessive sensitivity to auxiliary
flags used in the tokenized text. We exclude it from the
main paper and provide the evidence for problems with this
metric application in Appendix C.

4.1. Experiments with Casing

Since different methods for inline casing already exist, we
are interested in comparing them to our suggested system.
Therefore, we compared five modes of preprocessing:

1. base: baseline, no inline casing;
2. inca: our suggested system;

3. inca-n: “naive” version of inca: we analyze how sub-
stantial the contribution to the InCa dictionary is; there-
fore, we exclude the dictionary from the system and
explicitly put the flags on every occurrence of the cased
word;

4. marian: inline casing with diversification by fre-
quency introduced by Marian NMT Jain et al. (2023);

5. tkm: TokenMonster preprocessor and tokenizer, that
assigns two possible flags and allows for multi-word
tokens, thus maximizing the token lengths.

We compare extrinsic performance in both directions of the
Czech-Ukrainian translation pair and intrinsic performance
in the encoded texts for both languages. We were interested
in not only the general MT setup but also three scenarios of
case noising: fully upper-cased, fully lower-cased, and with
10% of randomly cased words.

The detailed results with all metrics are presented in Ap-
pendix B. For the non-noised scenario, we see that all sys-
tems, including the no-preprocessing implementation, go
on par, with 21.5-22.0 BLEU score (0.86-0.87 COMET

InCa and InDia: Inline Casing and Diacritization Preprocessing

score) variation for Czech-Ukrainian direction and 22.7-
23.3 BLEU score (0.86-0.87 COMET score) interval for
Ukrainian-Czech. Similar parity can be seen for lower-
cased and 10% randomly cased scenarios. The seeming
increase of inca, inca—-n and marian approaches for
these two noisings (up to 0.5 BLEU point) is not a reliable
trend: we estimated the stability of our model by training
the base and inca systems three times, and we obtained
the variation of 0.9 BLEU points for both scenarios. Thus,
we can see that all preprocessing algorithms, including ours,
work on par in general translation task setup.

Prepro- b BU 16(BLEU) COMET
Cessmg

base 1.6 1.9 0.448
inca 213 213 0.871
inca-n 20.7 20.7 0.867
marian 15.5 20.4 0.814
tkm 15.5 17.9 0.840

Table 3. Excerpt from extrinsic metrics of the main inline casing
algorithms: fully upper-cased noise, Czech-Ukrainian translation
pair. Full statistics can be found in Appendix B.

An interesting differentiation occurs in the fully upper-cased
scenario. An excerpt of the results for the Czech-Ukrainian
direction is shown in Table 3. There, the baseline scores
drop down to 1.5-2 points; tkm and marian systems show
moderate performance at around 15-17 BLEU points; and
both our systems, inca and inca-n, almost reach the
non-noised quality (20.7-22 BLEU points depending on
translation direction). This means that the main difference
between the algorithms is that the Marian and TokenMonster
casing-trained systems did not output the upper-case flags
for the whole sentences (or all words in the sentences). This
is supported by qualitative analysis: for instance, the main
problem with Marian span marking is that it uses opening
and closing flags for upper case sequences, but at the same
time, if sequences are interrupted by other cases or non-
cased elements, it automatically breaks the uppercasing.

As for intrinsic analysis, we see that for all scenarios ex-
cept full uppercasing, the baseline, inca and marian sys-
tems perform similarly well, followed by t km and inca-n.
Under full uppercasing noise, the baseline performance de-
creases drastically, as does TokenMonster. The general trend
in character per token ratio shows that inca and marian
do not significantly differ from the baseline system, which
is explained by the fact that the number of the auxiliary
flags (and therefore tokens) is intentionally minimized; the
slight prevalence of marian CPT score (it is stably higher
by 0.1-0.2 points than base and inca that go on par) can
be explained by their way of allocating the case markers
together with the word itself; therefore the frequent title- or
upper-cased words automatically get longer.

Regarding the average rank metric, the best performance is
mostly shown by marian. However, if we pay attention
to consistency of this metric (shown in Figure 1), we will
see that the span of AR scores, depending on noise, is larger
(especially decreasing under upper case noise), as opposed
to inca: the total variation of marian AR is 120-140
(depending on direction), while for inca it is 80-97. Other
inline casing systems show even wider spreads, up to 1000
intervals for the baseline scenario. This shows that our
system is the most stable under different types of noise.

Average Rank Variation of the Inline Casing Algorithms
1400

° .
1200 ~ < . .;
Sal== '
L
1000 > >
x
5 800
o
© L]
<)
g L]
z 600
400 noise
® none
200 rando.1
® lower
% ® upper
0
base InCa Naive InCa Marian TokenMonster

Inline Casing Algorithm

Figure 1. Distributions of the Average Rank (AR) metric with re-
spect to different types of noise. Each noise type has two dots
denoting texts in Czech and Ukrainian, respectively. Box plots
show the median, 25- and 75-percentiles.

The reason for such stability can be seen through the tok-
enizer vocabulary items. We are interested, first, in whether
inline casing helps increase the token length in the tokenizer
vocabulary and, second, in how different types of inline
casing help release more space for the unique character se-
quences instead of doubling the tokens that differ only in
the casing. Table 4 attempts to estimate that: the CPT,
column provides an answer to the first question, and the
“Cased tokens” and “Overlap with Uncased” columns give
an estimate for the answer to the second one. We can see
that both InCa approaches increase the average unique to-
ken length by 0.3 characters. The only approach that beats
InCa’s is TokenMonster, but this happens because of an
uncontrolled orthogonal parameter: allowing the tokens to
be multi-word. We can also look at how optimal the inline
casing approaches are for saving space for unique lower-
case character sequences. Contrary to the no-preprocessing
scenario where 19% of unique tokens are cased, and 10% of
vocabulary fully corresponds to their lower-cased analogs,
we can see that all inline casing algorithms decrease these
numbers significantly. However, only the inca approaches
allow us to decrease these numbers to zero, thus allocat-

InCa and InDia: Inline Casing and Diacritization Preprocessing

ing all possible space released by casing normalization to
the new tokens (numbers 4 and 3 in inca and inca-n
columns correspond to the tokens that are flags themselves).
Although this may not be directly reflected in the intrin-
sic metrics above, this is undoubtedly an important feature
for the interpretability and predictability of the tokenizer
models, as we expect that the casing variation of the tokens
would not obscure the variety of the tokens present in the
vocabulary.

Prepro- CPT Cased Overlap with
cessing Y Tokens Uncased

base 6.837 6169 3508
inca 7.119 4 0
inca-n 7.127 3 0
marian 6.554 2754 1049
tkm 8.573 149 92

Table 4. Tokenizer vocabulary statistics for different preprocessing
systems. CPT, stands for average token length in vocabulary;
“Cased tokens” value shows the number of alphabetic tokens that
contain a casing flag, and the “Overlap with Uncased” value shows
the number of the uncased tokens in the vocabulary that differ
from the cased ones (in the “Cased tokens”) only by casing or flag
prefix.

4.1.1. ABLATION: UPPER-CASED SENTENCE FLAGS

In the previous section, we observe that, while performing
on par with other systems in default and noisy setups, inca
leads in a fully upper-cased setup. We hypothesize that this
happens due to the specific full-sentence upper-case flag
that other systems do not have. To test this, we create a
modification of InCa, which only differs in the lack of this
flag.

The results in Table 5 indeed demonstrate a significant de-
crease for the fully upper-cased setup, with a drop by 3
BLEU points. We have already seen such a trend in other
algorithms that do not use a special flag for whole sentences
- marian and tkm. Despite that, the InCa without full
uppercasing still has 2 BLEU points performance higher
compared to the two algorithms mentioned above.

This example tells us that introducing sentence-level flags
not only shows intrinsic efficiency in terms of lower encoded

Prepro- p1 U 1(BLEU) COMET
cessing

inca 213 213 0871
inca-A 18.0 183 0.850

Table 5. Extrinsic performance in fully upper-cased scenario,
Czech-Ukrainian translation direction. “inca” stands for standard
InCa implementation, “inca-A” denotes the ablation without spe-
cial flags of the full upper-case sentence.

lengths (by putting one flag instead of multiple ones) but
also helps downstream performance. This also motivates
us to consider introducing other sentence-level flags, for
example, for fully title-cased or lower-cased strings.

4.1.2. ABLATION: DATA AUGMENTATION

The authors of the marian system, which in some of our
setups showed the best extrinsic and intrinsic performance,
claimed that they obtained the best performance by combin-
ing their inline casing system and leveraging the augmented
training data with case variation. We decided to see if our
system would benefit from such an option, and to compare it
to the baseline system with data augmentation. The augmen-
tation technique was to create a training corpus of the initial
data and to add one copy of the training data that is fully
upper-cased, one fully lower-cased, and one with 10% of
case noise. Thus, we get a training dataset that is four times
larger than the initial data; therefore, for comparability, in
the augmented setup, we decrease the number of training
epochs from 16 to 4.

We compare four modes of preprocessing and MT train-
ing pipeline: baseline with and without augmentation and
InCa with and without augmentation. The results in the
default dataset do not show changes in extrinsic or intrinsic
performance; the noticeable changes happen in the fully
upper-cased noise scenario (we demonstrate only the results
of Czech-Ukrainian direction in Table 6; the other direction
shows the same trends). We can see that the extrinsic perfor-
mance shows a breaking point when using augmentation for
the no-preprocessing pipeline, while leveraging InCa does
not increase performance.

Does that mean that casing augmentation is a “silver bul-
let” and we get no improvement from using InCa? To an-
swer this question, we can look at the tokenizer vocabulary
statistics. If we compare the average token length in the
tokenizers depending on the casing augmentation (see Ta-
ble 7), we can see that for the non-preprocessing scenario,
the casing-augmented tokens became almost 0.5 characters
shorter. At the same time, there is no such drop in tokenizers
trained after the InCa application. Moreover, if we look at
the details of the tokenizer vocabularies, we will see that
for the case-augmented no-preprocessing tokenizer, 38% of
unique tokens are not lower-cased, and 33% have their full
lower-cased analogs in the vocabulary. This demonstrates
non-optimal allocation of the vocabulary, contrary to all
InCa tokenizers.

4.2. Experiments with Diacritization

We conducted several experiments to test our suggestion on
inline diacritization. In our language pair, only the Czech
language is heavily diacritized (16 letters out of 42 have dia-
critics); thus, we only apply InDia to the Czech texts. Firstly,

InCa and InDia: Inline Casing and Diacritization Preprocessing

Augmen- | PIepro- | g1 pry | opip | COMET
tation cessing

- base 1.6 | 225 0.448

- InCa 213 | 51.3 0.871

+ base 216 | 514 0.874

+ InCa 222 1 52.2 0.877

Table 6. Extrinsic performance for systems with and without cas-
ing augmentation (shown in ”Augmentation” column), Czech-
Ukrainian direction, fully uppercased noise.

Augmen- Prepro- | Cased Ove.rlap
tation CPT., cessing | Tokens with

Uncased

- base | 6.837 6169 3508

- InCa | 7.119 4 0

+ base | 6.495 12270 10771

+ InCa | 7.205 4 0

Table 7. Tokenizer vocabulary statistics for systems with and with-
out casing augmentation. The metrics are described in Table 4.

we compared the general MT setups for both directions to
see if our system showed the same downstream results as the
baseline with no preprocessing. It indeed showed consistent
performance compared to no preprocessing scenario: InDia
shows 21.7 BLEU for Czech-Ukrainian (against 21.6 in the
baseline) and 22.8 for Ukrainian-Czech (against 22.7 in the
baseline). It is especially notable for the Ukrainian-Czech
translation direction, as it shows both the ability of the MT
system to learn the token sequences which contain flags, and
the InDia decoder allows one to restore the diacritics in the
resulting files correctly. The qualitative analysis of the gen-
erated diacritization flags for Ukrainian-Czech translation
direction shows that, out of 19,760 words in the target text
(detokenized after output), there are 642 char-InDia flags,
and only 8 of them show hallucinations (in either wrong
character index or impossible diacritic-sign combination).
Thus, we can reliably use the inline diacritization methods
on the output side.

As with inline casing, we are interested in the performance
of our system in different noise scenarios. A frequent prac-
tice in the Czech online speech is the complete or partial
omission of the diacritics in the text. Therefore, we chose
two noise scenarios to approximate that: a complete omis-
sion of diacritization and omission of diacritization in 20%
of words.

Since we are unaware of analogous solutions to diacritiza-
tion handling, we compare our algorithm with a baseline
and two InDia modifications. First is InDia-n, a “naive’
version of InDia (analogous to inca-n): we do not store
information about the frequencies of the diacritizations, thus
for every diacritized word in the input text we decompose

5

BLEU \
Prepro- 16 noise fully 20%
cessing de-diacritized | de-diacritized
base 21.6 9.2 18.6
InDia 21.7 17.9 21.1
InDia-w 21.7 18.8 21.1
InDia-n 21.0 18.4 20.5

Table 8. BLEU scores for different diacritization metrics (by row)
under different noise conditions (by column), Czech-Ukrainian
translation direction.

it explicitly into the base and the flag consisting of all di-
acritized characters. Another one is InDia-w (“w” stands
for “word-level”): there, we use the same frequency-based
approach to diacritization as in InDia, but we choose a sim-
pler system of flag notation: we sort all diacritizations of the
same base by frequency, and for all diacritizations differing
from the most frequent we mention the index of their rank.
This makes the flag system shorter (similar to InCa, where
each flag is a single character). However, the flags lose
their “semantics” (for different bases, the “second frequent
rank” may mean different diacritization). The examples of
different diacritization systems are shown in Appendix D.

The comparison of different techniques is shown in Ta-
ble 8. We see that all InDia approaches handle the task
significantly better, doubling the quality of the fully de-
diacritized text and yielding 3 BLEU points in the 20%
de-diacritized text. It is notable, though, that for the fully
de-diacritized scenario, the performance of basic InDia is
stably lower than of its modifications. Since it lies within
1 BLEU point span, this may be a matter of stability of the
NMT training; however, this may be a consequence of how
the de-diacritization is marked in the main approach. Specif-
ically, for basic InD1ia, a specific character-level operation
prescribes the deletion of a diacritic (if the most frequent
spelling is diacritized). Thus, in the fully de-diacritized
scenario, every word whose most popular spelling is dia-
critized, is prepended with a flag that cancels diacritics for
each character. Thus, the encoded length of sequences be-
comes longer and less informative, affecting the translation
quality. At the same time, “naive” InDia does not use any
flags for non-diacritized words, and InDia-w uses at most a
single-character flag. This is supported by intrinsic metrics
in the fully de-diacritized noise scenario. If we look at the
character per token ratio, for InDia—n, the score of 4.0
is the highest, followed by baseline system and InDia-w
with 2.8 and 2.5 scores, respectively; the score for main
InDia system is as low as 1.6. If we follow the spirit of the
“long-sequence” flags from InCa (for the fully upper-cased
sentence), we can hypothesize that an optimal solution for
InDia would be to possibly use a single special flag for
full de-diacritization of the word that would minimize its

InCa and InDia: Inline Casing and Diacritization Preprocessing

length. Unfortunately, we will leave this modification for
future work. The intrinsic statistics on the encoded texts go
in line with the downstream performance described above:
in the non-noised scenario, they are comparable with the
baseline system, while under de-diacritization noising, the
InDia alternatives that minimize the flags (InDia-w and
InDia-n) show better performance than standard InDia.
All scores are shown in Appendix E.

The last notable observation comes from the statistics of the
tokenizer vocabulary average token length. There, we see
that the CPT,, score for the baseline tokenizer equals 6.83,
while the tokenizer applied after InDia preprocessing has
an average length of 6.91. Such a small increase (less than
0.1 characters) can be explained if we look at the diacritized
subwords in the no-preprocessing tokenizer: out of 32,000
tokens, 8,454 subwords are diacritized (which comprises a
quarter of the whole vocabulary and approximately a half
of the Czech subwords there), but only 583 were having
a non-diacritized analog. This fundamentally differs from
the trends in the inline casing-optimized vocabularies de-
scribed in Table 4, where up to half of the cased unique
subwords have non-cased doublets. Thus, despite helping
to have more consistent word splitting with respect to de-
diacritization noise, the potential for increasing the lengths
in the non-cased vocabularies is very restricted.

5. Conclusion

In this work, we introduced two inline approaches for im-
proving tokenization stability for different noising scenarios
and enhancing downstream performance. For the down-
stream task, we chose MT for the Czech-Ukrainian language
pair. The InCa approach for inline casing shows improve-
ment in tokenizer vocabulary elements, stability in intrinsic
metrics, and on par quality with other approaches for dif-
ferent types of noise. It also showed improvement in MT
quality for upper-cased sequences, which is explained by
leveraging flags for full-sentence casing. InDia, the first to
our knowledge approach for inline diacritization, also shows
doubling the performance on the de-diacritized texts while
showing the same performance for standard (diacritized)
data; we also show that the proposed technique is stable
enough to be used not only at the input side but also on the
output side of translation pair. We encourage the community
to use our methods for other languages and NLP tasks by
publicly sharing our code in simple scripts and Python pack-
ages. While we focus on MT as the extrinsic evaluation in
this paper, we hope that our methods will be useful also for
other tasks where Large Language Models are being used,
including e.g. multi-agent Al avatars.

10

Impact Statement

This study tackles the foundational block of the NLP
pipelines, namely, preprocessing of texts before applying
subword tokenization. Most widely used state-of-the-art
large language models are already trained through the whole
pipeline, including not only tokenizers but also the model
weights; thus, there is a factor of great inertia in terms of
adjustments in preprocessing systems. However, we believe
that small and medium-sized models, especially those aimed
at specific low-resource or noisy tasks, can effortlessly lever-
age and benefit from our approach.

Limitations

This research has several limitations. Firstly, we restricted
the scope of languages to the single language pair of the
same family, which use similar orthographical principles.
Even within the European language area and Latin script-
based languages, there are other orthography systems, such
as German, where each noun is title-cased; thus, we cannot
claim that the performance and stability of our system will
be replicated for other language pairs. Similar problems
stand for diacritization, as some languages use a signifi-
cantly wider range of diacritics (such as Vietnamese), for
which our InDia system may be inefficient.

Secondly, the tokenizers used in our comparison were based
on the Unigram language model in SentencePiece (and on
a similar approach in TokenMonster). Thus, it would be
helpful to see how our approaches would help the NMT
system if the tokenizers trained on the data would be using
other principles, such as BPE Sennrich et al. (2016) or
WordPiece Wu et al. (2016).

Finally, to compare the extrinsic performance of the systems,
we did limited training on the MT systems. For instance, the
participating systems of the latest WMT News shared task
Kocmi et al. (2024) show a stable performance of several
BLEU points higher than ours since they use bigger Trans-
former models and are trained for weeks (contrary to one
day in our case). Thus, we did not claim that our algorithm
reaches state-of-the-art on the Czech-Ukrainian translation
pair; instead, we fixed all training parameters and com-
pared the performance of various accessible preprocessing
approaches within the same setting.

Ethical Statement

The robustness improvement for NLU and NLG systems
can be seen as a dual-use technology if an author of the text
intentionally tries to prevent the automatic analysis of their
texts. In many cases, such intentional noising can be used for
illegal acts such as phishing or fraud. However, in countries
with oppressive political regimes, the total scrapping of the

InCa and InDia: Inline Casing and Diacritization Preprocessing

content generated by the users can be used for censorship
and tracking of dissidents. Based on our knowledge, the
scope of the noising scenarios examined here differs from
those generally used to hide oppositional content. Still, we
urge the community to bear the possibility of the robust
systems they develop for evil purposes.

Acknowledgements

This research was supported by the Czech Science Founda-
tion project 25-16242S. and by the Technology Agency
of the Czech Republic project TQ12000040 (CZDE-
MOS4AI). It has been using data and tools provided
by the LINDAT/CLARIAH-CZ Research Infrastructure
(https://lindat.cz), supported by the Ministry of Educa-
tion, Youth and Sports of the Czech Republic (Project No.
LM2023062).

References

Aguilar, G., McCann, B., Niu, T., Rajani, N., Keskar,
N. S., and Solorio, T. Char2Subword: Extend-
ing the Subword Embedding Space Using Robust
Character Compositionality. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2021, pp. 1640-1651, Punta Cana, Dominican Re-
public, 2021. Association for Computational Lin-
guistics. doi: 10.18653/v1/2021.findings-emnlp.

141. URL https://aclanthology.org/2021.

findings—-emnlp.141.

Alabi, J., Amponsah-Kaakyire, K., Adelani, D., and Espafia-
Bonet, C. Massive vs. Curated Embeddings for Low-
Resourced Languages: the Case of Yorubd and Twi. pp.
2754-2762, Marseille, France, 2020. European Language
Resources Association.

Balhar, J. Improving Subword Tokenization Methods for
Multilingual Models. Master’s thesis, Charles University,
Prague, Czech Republic, 2023.

Berard, A., Calapodescu, I., and Roux, C. Naver Labs
Europe’s Systems for the WMT19 Machine Translation
Robustness Task. In Proceedings of the Fourth Confer-
ence on Machine Translation (Volume 2: Shared Task
Papers, Day 1), pp. 526-532, Florence, Italy, 2019. As-
sociation for Computational Linguistics. doi: 10.18653/
v1/W19-5361. URL https://www.aclweb.org/
anthology/W19-5361.

Cognetta, M., Zouhar, V., Moon, S., and Okazaki, N. Two
Counterexamples to Tokenization and the Noiseless Chan-
nel, February 2024. URL http://arxiv.org/abs/
2402.14614. arXiv:2402.14614 [cs].

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.

11

BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding. In Proceedings of
the 2019 Conference of the North, pp. 4171-4186, Min-
neapolis, Minnesota, 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/N19-1423. URL
http://aclweb.org/anthology/N19-1423.

Etchegoyhen, T. and Gete, H. To Case or not to case:
Evaluating Casing Methods for Neural Machine Trans-
lation. pp. 3752-3760, Marseille, France, 2020. Euro-
pean Language Resources Association. URL https:
//aclanthology.org/2020.1lrec—-1.463/.

Gazit, B., Shmidman, S., Shmidman, A., and Pinter, Y.
Splintering Nonconcatenative Languages for Better To-
kenization, 2025. URL https://arxiv.org/abs/
2503.14433. Version Number: 1.

Goyal, N., Gao, C., Chaudhary, V., Chen, P.-J., Wen-
zek, G., Ju, D., Krishnan, S., Ranzato, M., Guzman,
F., and Fan, A. The Flores-101 Evaluation Bench-
mark for Low-Resource and Multilingual Machine
Translation. Transactions of the Association for
Computational Linguistics, 10:522-538, May 2022.
ISSN 2307-387X. doi: 10.1162/tacl_.a_00474. URL
https://direct.mit.edu/tacl/article/
doi/10.1162/tacl_a_00474/110993/

The-Flores—-101-Evaluation—-Benchmark—-for—Low.

Jain, R., Khayrallah, H., Grundkiewicz, R., and Junczys-
Dowmunt, M. Perplexity-Driven Case Encoding Needs
Augmentation for CAPITALIZATION Robustness. pp.
146-156, Nusa Dua, Bali, 2023. Association for Compu-
tational Linguistics. URL https://aclanthology.
org/2023.ijcnlp-short.17.

Junczys-Dowmunt, M., Grundkiewicz, R., Dwojak, T.,
Hoang, H., Heafield, K., Neckermann, T., Seide, F.,
Germann, U., Aji, A. F.,, Bogoychev, N., Martins, A.
F. T., and Birch, A. Marian: Fast Neural Machine
Translation in C++. In Proceedings of ACL 2018, Sys-
tem Demonstrations, pp. 116-121, Melbourne, Australia,
2018. Association for Computational Linguistics. doi:
10.18653/v1/P18-4020. URL http://aclweb.org/
anthology/P18-4020.

Kocmi, T., Avramidis, E., Bawden, R., Bojar, O.,
Dvorkovich, A., Federmann, C., Fishel, M., Freitag,
M., Gowda, T., Grundkiewicz, R., Haddow, B., Karpin-
ska, M., Koehn, P., Marie, B., Monz, C., Murray, K.,
Nagata, M., Popel, M., Popovi¢, M., Shmatova, M.,
Steingrimsson, S., and Zouhar, V. Findings of the
WMT24 General Machine Translation Shared Task: The
LLM Era Is Here but MT Is Not Solved Yet. In Pro-
ceedings of the Ninth Conference on Machine Trans-
lation, pp. 1-46, Miami, Florida, USA, 2024. Associ-
ation for Computational Linguistics. doi: 10.18653/

https://aclanthology.org/2021.findings-emnlp.141
https://aclanthology.org/2021.findings-emnlp.141
https://www.aclweb.org/anthology/W19-5361
https://www.aclweb.org/anthology/W19-5361
http://arxiv.org/abs/2402.14614
http://arxiv.org/abs/2402.14614
http://aclweb.org/anthology/N19-1423
https://aclanthology.org/2020.lrec-1.463/
https://aclanthology.org/2020.lrec-1.463/
https://arxiv.org/abs/2503.14433
https://arxiv.org/abs/2503.14433
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00474/110993/The-Flores-101-Evaluation-Benchmark-for-Low
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00474/110993/The-Flores-101-Evaluation-Benchmark-for-Low
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00474/110993/The-Flores-101-Evaluation-Benchmark-for-Low
https://aclanthology.org/2023.ijcnlp-short.17
https://aclanthology.org/2023.ijcnlp-short.17
http://aclweb.org/anthology/P18-4020
http://aclweb.org/anthology/P18-4020

InCa and InDia: Inline Casing and Diacritization Preprocessing

v1/2024.wmt-1.1. URL https://aclanthology.
0rg/2024 .wmnt—-1.1.

Kudo, T. Subword Regularization: Improving Neural Net-
work Translation Models with Multiple Subword Can-
didates. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 66—75, Melbourne, Australia,
2018. Association for Computational Linguistics. doi:
10.18653/v1/P18-1007. URL http://aclweb.org/
anthology/P18-1007.

Kudo, T. and Richardson, J. SentencePiece: A simple
and language independent subword tokenizer and deto-
kenizer for Neural Text Processing. In Proceedings of
the 2018 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 66—
71, Brussels, Belgium, 2018. Association for Computa-
tional Linguistics. doi: 10.18653/v1/D18-2012. URL
http://aclweb.org/anthology/D18-2012.

Levenshtein, V. I. Binary Codes Capable of Correcting Dele-
tions, Insertions and Reversals. Soviet Physics Doklady,
10:707, February 1966. URL https://ui.adsabs.
harvard.edu/abs/1966SPhD...10..707L.
ADS Bibcode: 1966SPhD...10..707L.

Liang, D., Gonen, H., Mao, Y., Hou, R., Goyal, N.,
Ghazvininejad, M., Zettlemoyer, L., and Khabsa, M.
XLM-V: Overcoming the Vocabulary Bottleneck in Mul-
tilingual Masked Language Models. 2023. doi: 10.48550/
ARXIV.2301.10472. URL https://arxiv.org/
abs/2301.10472. Publisher: arXiv Version Number:
2.

Ljubesi¢, N., Erjavec, T., and FiSer, D. Corpus-Based
Diacritic Restoration for South Slavic Languages. pp.
3612-3616, Portoroz, Slovenia, 2016. European Lan-
guage Resources Association (ELRA). URL https:
//aclanthology.org/L16-1573/.

Nga, C. H., Thinh, N. K., Chang, P.-C., and Wang, J.-C.
Deep Learning Based Vietnamese Diacritics Restora-
tion. In 2019 IEEE International Symposium on Mul-
timedia (ISM), pp. 331-3313, San Diego, CA, USA,
December 2019. IEEE. ISBN 978-1-72815-606-4.
doi: 10.1109/ISM46123.2019.00074. URL https://
ieeexplore.ieee.org/document/8958999/.

Oord, A. v. d., Vinyals, O., and Kavukcuoglu, K. Neu-
ral Discrete Representation Learning. Advances in Neu-
ral Information Processing Systems,, 30, 2017. doi:
10.48550/ARXIV.1711.00937. URL https://arxiv.
org/abs/1711.00937. Publisher: arXiv Version
Number: 2.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. BLEU:
a method for automatic evaluation of machine trans-
lation. In Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics - ACL
’02, pp. 311, Philadelphia, Pennsylvania, 2001. As-
sociation for Computational Linguistics. doi: 10.
3115/1073083.1073135. URL http://portal.acm.
org/citation.cfm?doid=1073083.1073135.

Popel, M., Libovicky, J., and Helcl, J. CUNI Systems for
the WMT 22 Czech-Ukrainian Translation Task. pp. 352—
357, Abu Dhabi, United Arab Emirates (Hybrid), 2022.
Association for Computational Linguistics. URL https:
//aclanthology.org/2022.wmt-1.30/.

Popovié¢, M. chrF: character n-gram F-score for auto-
matic MT evaluation. In Proceedings of the Tenth
Workshop on Statistical Machine Translation, pp. 392—
395, Lisbon, Portugal, 2015. Association for Computa-
tional Linguistics. doi: 10.18653/v1/W15-3049. URL
http://aclweb.org/anthology/W15-3049.

Post, M. A Call for Clarity in Reporting BLEU Scores. In
Proceedings of the Third Conference on Machine Trans-
lation: Research Papers, pp. 186—191, Belgium, Brus-
sels, 2018. Association for Computational Linguistics.
doi: 10.18653/v1/W18-6319. URL http://aclweb.
org/anthology/W18-6319.

Powalski, R. and Stanislawek, T. UniCase — Rethinking
Casing in Language Models. 2020. doi: 10.48550/
ARXIV.2010.11936. URL https://arxiv.org/
abs/2010.11936. Publisher: arXiv Version Number:
1.

Rajpurkar, P, Zhang, J., Lopyrev, K., and Liang, P. SQuAD:
100,000+ Questions for Machine Comprehension of Text.
In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp. 2383—
2392, Austin, Texas, 2016. Association for Computa-
tional Linguistics. doi: 10.18653/v1/D16-1264. URL
http://aclweb.org/anthology/D16-1264.

Rei, R., Stewart, C., Farinha, A. C., and Lavie,
A. COMET: A Neural Framework for MT Evalu-
ation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pp. 2685-2702, Online, 2020. Association
for Computational Linguistics. doi: 10.18653/v1/
2020.emnlp-main.213. URL https://www.aclweb.
org/anthology/2020.emnlp-main.213.

Rexline, S. J. and Robert, L. Substitution coder - A re-
versible data transform for lossless text compression. In
2011 8th International Conference on Information, Com-
munications & Signal Processing, pp. 1-5, Singapore,

https://aclanthology.org/2024.wmt-1.1
https://aclanthology.org/2024.wmt-1.1
http://aclweb.org/anthology/P18-1007
http://aclweb.org/anthology/P18-1007
http://aclweb.org/anthology/D18-2012
https://ui.adsabs.harvard.edu/abs/1966SPhD...10..707L
https://ui.adsabs.harvard.edu/abs/1966SPhD...10..707L
https://arxiv.org/abs/2301.10472
https://arxiv.org/abs/2301.10472
https://aclanthology.org/L16-1573/
https://aclanthology.org/L16-1573/
https://ieeexplore.ieee.org/document/8958999/
https://ieeexplore.ieee.org/document/8958999/
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1711.00937
http://portal.acm.org/citation.cfm?doid=1073083.1073135
http://portal.acm.org/citation.cfm?doid=1073083.1073135
https://aclanthology.org/2022.wmt-1.30/
https://aclanthology.org/2022.wmt-1.30/
http://aclweb.org/anthology/W15-3049
http://aclweb.org/anthology/W18-6319
http://aclweb.org/anthology/W18-6319
https://arxiv.org/abs/2010.11936
https://arxiv.org/abs/2010.11936
http://aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/2020.emnlp-main.213
https://www.aclweb.org/anthology/2020.emnlp-main.213

InCa and InDia: Inline Casing and Diacritization Preprocessing

December 2011. IEEE. ISBN 978-1-4577-0031-6 978-
1-4577-0029-3 978-1-4577-0030-9. doi: 10.1109/ICICS.

2011.6173125. URL http://ieeexplore.iecee.

org/document/6173125/.

Rust, P., Pfeiffer, J., Vuli¢, 1., Ruder, S., and Gurevych,
I. How Good is Your Tokenizer? On the Monolin-
gual Performance of Multilingual Language Models.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp. 3118-3135,
Online, 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.243. URL https:
//aclanthology.org/2021.acl-long.243.

Samuel, D. and @vrelid, L. Tokenization with Factor-
ized Subword Encoding. In Findings of the Association
for Computational Linguistics: ACL 2023, pp. 14143—
14161, Toronto, Canada, 2023. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2023.findings-acl.

890. URL https://aclanthology.org/2023.

findings—-acl.890.

Schwenk, H., Chaudhary, V., Sun, S., Gong, H., and
Guzmaén, F. WikiMatrix: Mining 135M Parallel Sen-
tences in 1620 Language Pairs from Wikipedia. In Pro-
ceedings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pp. 1351-1361, Online, 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.
eacl-main.115.
org/2021.eacl-main.115.

Sennrich, R., Haddow, B., and Birch, A. Neural Ma-
chine Translation of Rare Words with Subword Units.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pp. 1715-1725, Berlin, Germany, 2016.
Association for Computational Linguistics. doi: 10.
18653/v1/P16-1162. URL http://aclweb.org/
anthology/P16-1162.

Shamardan, H. and Hifny, Y. Arabic Diacritics
Restoration Using Maximum Entropy Language Mod-
els. IEEE Signal Processing Letters, 30:1227-1231,
2023. ISSN 1070-9908, 1558-2361. doi: 10.1109/LSP.

2023.3295752. URL https://ieeexplore.ieee.

org/document/10184906/.

Shi, X., Huang, H., Jian, P, and Tang, Y.-K. Case-Sensitive
Neural Machine Translation. In Lauw, H. W., Wong, R.
C.-W.,, Ntoulas, A., Lim, E.-P., Ng, S.-K., and Pan, S. J.
(eds.), Advances in Knowledge Discovery and Data Min-
ing, volume 12084, pp. 662-674. Springer International
Publishing, Cham, 2020. ISBN 978-3-030-47425-6 978-
3-030-47426-3. doi: 10.1007/978-3-030-47426-3_51.

URL https://aclanthology.

13

Tiedemann, J.

URL http://link.springer.com/10.1007/
978-3-030-47426-3_51. Series Title: Lecture
Notes in Computer Science.

Parallel Data, Tools and Interfaces in
OPUS. pp. 2214-2218, Istanbul, Turkey, 2012. European
Language Resources Association (ELRA). URL
http://www.lrec—conf.org/proceedings/
lrec2012/pdf/463_Paper.pdf.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,

L., Gomez, A. N., Kaiser, L., and Polosukhin, I. At-
tention Is All You Need. 2017. doi: 10.48550/
ARXIV.1706.03762. URL https://arxiv.org/
abs/1706.03762. Publisher: arXiv Version Number:
7.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,

Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser,
, Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens,
K., Kurian, G., Patil, N., Wang, W., Young, C., Smith,
J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G.,
Hughes, M., and Dean, J. Google’s Neural Machine
Translation System: Bridging the Gap between Hu-
man and Machine Translation. 2016. doi: 10.48550/
ARXIV.1609.08144. URL https://arxiv.org/
abs/1609.08144. Publisher: arXiv Version Number:
2.

Zouhar, V., Meister, C., Gastaldi, J. L., Du, L., Sachan, M.,

and Cotterell, R. Tokenization and the Noiseless Channel.
2023. doi: 10.48550/ARXIV.2306.16842. URL https:
//arxiv.org/abs/2306.16842. Publisher: arXiv
Version Number: 1.

http://ieeexplore.ieee.org/document/6173125/
http://ieeexplore.ieee.org/document/6173125/
https://aclanthology.org/2021.acl-long.243
https://aclanthology.org/2021.acl-long.243
https://aclanthology.org/2023.findings-acl.890
https://aclanthology.org/2023.findings-acl.890
https://aclanthology.org/2021.eacl-main.115
https://aclanthology.org/2021.eacl-main.115
http://aclweb.org/anthology/P16-1162
http://aclweb.org/anthology/P16-1162
https://ieeexplore.ieee.org/document/10184906/
https://ieeexplore.ieee.org/document/10184906/
http://link.springer.com/10.1007/978-3-030-47426-3_51
http://link.springer.com/10.1007/978-3-030-47426-3_51
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/2306.16842
https://arxiv.org/abs/2306.16842

InCa and InDia: Inline Casing and Diacritization Preprocessing

A. Diacritizations in Czech: Distances from Non-Diacritized and Most Frequently-Diacritized
Bases

The InDia flags are already, by definition, longer than the single-character InCa flags. Thus, we are interested in minimization
of their lengths. The first step is, of course, explicitly mentioning the flags for the characters which need to be diacritized
(contrary to putting flags for each character in the sequence). But can we minimize the lengths of the flag sequences even
more? A possible solution can be to leverage the logic of frequency-ordered flags, such as in the standard InCa. We can store
the most frequent diacritizations of each base in the pretrained dictionary, and mark with the flags only those diacritizations
that are less frequent. This is an intuitive guess, but the statistics from the training corpus may support this claim. In the
dictionary creation step, we sort the diacritizations of each base by frequency. Now, for each base, we can count two values:
firstly, how distant (i.e. how many additional or different diacritics) each diacritized variant is from the most frequent
diacritization, secondly, how distant it is from the base (non-diacritized word). Since in the dictionary the diacritizations are
ranked by frequency, we can evaluate the average diacritization distance of each rank in each of the two scenarios. We do it
with the Levenshtein distance metric Levenshtein (1966). The result of this comparison is shown in Figure 2.

Average Levenshtein Distance of Word-InDia
Diactitizations, Ordered by Frequency

Compared to Compared to
Undiacritized Variant - X Most Frequent Variant - 0

Avg Levenshtein Distance

012 3 4546 7 8 9101112 X1 2 3 456 7 8 9101112
Frequency Rank Flag

Figure 2. Average Levenshtein distance of the diacritization variants (ranked by frequency) for the Czech data. The x-axis represents the
ranks of diacritization variants in ascending order. On the right table, we count the average distances of the diacritizations from the base
(non-diacritized variant); therefore all ranks (including the most frequent, denoted by “0” flag) are shown. On the left table, we measure
the distances from the most frequent diacritization (therefore “0” flag is absent); the “X” flag represents the base form in case it is different
from the most frequent one. The y-axis represents the Levenshtein distance between each rank and the “starting point” (non-diacritized or
most frequent diacritization), which is averaged over the whole InDia dictionary entries.

14

InCa and InDia: Inline Casing and Diacritization Preprocessing

The table shows that the distribution of the ranked distances compared to the base has higher peaks and on average is
approximately 1.5 characters, while if we measure the distances from the most frequent diacritization, the distribution
becomes more uniform with an average of around 1.25 characters. This leads us to the suggestion that creating pretrained
dictionary of the most frequent diacritizations and marking only the deviations from them would be more optimal in terms
of the encoding flag length.

Interestingly, this approach resonates with the way in which diacritics are used in a number of languages, especially in
consonant-based writing systems. For instance, in standard registers of Hebrew and Arabic, the vowel diacritics are not
expected to be written regularly, and one is expected to predict which vowel should stay after each consonant. However,
if a writer thinks that a word’s vocalization would be “unexpected” in the context (usually it happens with foreign proper
names or ambiguous words), one can mark a full word with diacritics. Moreover, if only one syllable is opaque and other
vowels meet the expectations of a reader, one can put a vocalization diacritic only on the position “under question”, which is
essentially our supposed way of diacritics of only the characters “diverging” from the most common diacritization.

B. Full Inline Casing Statistics

Plepro-cpr AR EFF BLEUy,, chiF, COMET
cessing

none base 3.973 1238 0.538 21.6991 513518 0.869
none inca 3.995 1166 0.522 21.799.4 51.4591 0.870
none inca-n 3.592 1042 0423 21.9954 514550 0.872
none marian 4.033 1354 0.554 21.9955 51.752.2 0.876
none tkm 3.619 1101 0492 214519 51.1516 0.870
lower base 3.924 1047 0.539 18.7509 494506 0.849
lower inca 3.671 1069 0.444 19.251% 50.151.6 0.856
lower inca-n 4.123 1193 0.527 192915 49.751 3 0.855
lower marian 4.115 1265 0.581 18.95; 5 49.851 3 0.859
lower tkm 3.760 1135 0.452 18.7509 49.450.7 0.850
randg; base 3.745 1233 0.549 1999456 49450 3 0.839
randg; inca 3715 1085 0.473 20.5399 50.051 7 0.855
I'al’ld()_l inca-n 3.394 985 0.391 20.621,8 50.251.4 0.857
randg; marian 3.907 1324 0.529 21.0518 50.951.9 0.863
randg;, tkm 3.509 1063 0.489 20.2515 50.151.2 0.854
upper base 1.625 60 0.658 1.619 22.593.0 0.448
upper inca 3.890 1134 0.500 21.3213 51.3513 0.871
upper inca-n 3.870 1121 0.488 20.750.7 50.750.7 0.867
upper marian 3.917 1213 0.551 15.5594 39.150.7 0.814
upper tkm 2.434 647 0226 15.5179 46.645 9 0.840

Noise

Table 9. Detailed statistics of the intrinsic and extrinsic metrics for the main inline casing algorithms, Czech-Ukrainian translation direction.
The “Noise” column shows which type of noising was applied (none stands for standard data, 1ower for fully lower-cased, rando.1
for 10% of randomly cased words, upper for fully upper-cased noise). the ‘“Preprocessing” column shows which case preprocessing
algorithms were applied, where “base” means no preprocessing, “inca” means our suggested InCa system, and “inca-n” means naive InCa,
“marian” shows Marian NMT suggestion by Jain et al. (2023) and “tkm” stands for TokenMonster. First three metric columns show the
intrinsic metrics: “CPT” stands for character per token ratio, “AR” stands for average rank, “EFF” stands for Rényi efficiency by Zouhar
et al. (2023). Three external metrics represent BLEU, chrF and COMET scores, respectively; the sub-scripted values under BLEU and
chrF metrics show the lower-cased variants of BLEU and chrF scores.

15

InCa and InDia: Inline Casing and Diacritization Preprocessing

Prepro- opp AR EFF BLEU(, chrFy, COMET
cessing

none base 4.033 1189 0.516 227535 51.051 5 0.873
none inca 4.014 1113 0.500 22.7533 51.051 .7 0.867
none inca-n 3.635 997 0.417 23.2937 512518 0.873
none marian 4.197 1301 0.563 23.3537 514519 0.875
none tkm 4.062 1336 0.503 229553 51.051 5 0.870
lower base 4.010 1024 0.519 19.6951 49.350.6 0.847
lower inca 3.739 1034 0.442 20.4999 50.151 5 0.853
lower inca-n 4.160 1135 0.504 19995 7 49451 4 0.854
lower marian 4.298 1235 0.602 20.1558 49.651 1 0.853
lower tkm 4237 1383 0.474 199953 49.350.7 0.846
randg; base 3785 1154 0.527 212519 49.550 5 0.844
randg;, inca 3756 1041 0460 21.5599 49.951 6 0.850
randg; inca-n 3450 946 0.388 22.0531 50.351 5 0.859
randgy marian 4.069 1266 0.534 22.5534 50.651 .7 0.862
randg; tkm 3.931 1289 0.500 21.995¢ 50.251.2 0.856
upper base 1.569 46 0.678 1.955 21.893 9 0.419
upper inca 3.944 1091 0.486 22.855% 513513 0.865
upper inca-n 3915 1069 0473 22.090¢ 50.850.5 0.861
upper marian 4.102 1181 0.566 17.6953 41.451 9 0.822
upper tkm 2702 755 0219 17.6199 47449 3 0.842

Noise

Table 10. Overview of the intrinsic and extrinsic metrics for the main Inline casing algorithms, Ukrainian-Czech translation direction. The
legend is the same as in 9.

C. Problems with Rényi Efficiency Metric

Our initial intention was to use the Rényi efficiency metric, presented by Zouhar et al. (2023). It is based on the assumption
that tokenization is a noiseless transformation and is based on the concept of efficiency, which aims at penalizing the token
distribution on both head and tail. The metric is theoretically based on the notion of Rényi entropy, which is a generalization
of Shannon entropy. The authors show that, on a variety of tokenizers and on a set of MT language pairs, this metric
correlates well with the downstream external metrics such as BLEU.

If we look at the results of casing experiments in Appendix B, we see that Rényi efficiency gives the least preference
to naive InCa preprocessing; it is followed by TokenMonster, and then all other systems including the baseline without
preprocessing. If we take that into context of the noising experiments (Tables 11-12), we will see the motivation behind
that. The performance of the metric seems heavily dependent on the presence and frequency of the flags; and the more (and
the higher rank of) the flags, the less the score of the metric. The clearest examples can be seen on the upper-case noising:
no-preprocessing scenario gets the highest scores in the table, while TokenMonster obtains three times as less score (recall
that it marks each upper-cased word occurrence with a token; thus it has the biggest absolute number of flags compared to
any other algorithm). We understand that this should not be a fair estimate of the non-preprocessing scenario for the future
work, as the quality of this system on the downstream performance was between 1.5 and 2.5 BLEU points total. Analogous
trends can be seen if we compare other types of noising: for instance, InCa, being the only algorithm that uses flags in the
fully lower-cased scenario (to mark the lower-cased words, for instance, in the beginning of the sentence), shows the lowest
performance. This is also seen if we compare each particular system in various noising setups: for instance, naive InCa gets
a lower rank of the upper-case flag in the random 10% casing scenario compared to the standard dataset, and while it is used
in the lower-cased scenario without any flags, it gets its maximal score.

Can this be a problem of a particular alpha? We made the comparative graphs to see if the ranking of the systems would
differ depending on the alpha value. We sampled alphas from 0 to 10 with 0.2 stride and estimated the Rényi efficiency score
for each alpha. Then, we compared the performance of the systems for each noising scenario separately. The result of the
evaluation on the Czech data is presented in Figure 3 (the Ukrainian data show the same patterns). Here, we firstly see that
in the majority of the cases, the scores for each system decrease monotonously and do not change their ranking depending
on alpha. We can also see that, while for the non-noised and randomly cased 10% scenarios the worst performance is shown

16

InCa and InDia: Inline Casing and Diacritization Preprocessing

none randg 1 lower upper
Prepro-
cessing EFF | R(f) EFF | R(f) EFF | R(f) EFF | R(f)
base 0.538 | - 0.549 | - 0.539 | - 0.658 | -
T:5 T:3
inca 0.522 U:39 0.473 U4 0.444 | L:1 | 0.500 | A:3
L:28 L:18
. T:1 T:1
inca-n 0.423 U-17 0.391 U4 0.527 | - 0488 | A:3
T:0 T:131
. T:0 U:3 U:17
marian | 0.554 U-1628 0.529 A2475 0.581 | - 0.551 A0
-A:2468 -A:14
U:35 U:5
tkm 0.492 T3 0.489 T1 0452 | - 0.226 | U:0

Table 11. Rényi efficiency and ranks of the casing flags for various types of noising (“none” for default texts, “randg.;” for 10% random
casing, “lower” and “upper” for fully lower- and upper-cased sentences), encoded Czech texts. The flags are denoted as follow: “T” stands
for title-case, “U” — for upper-casing a word, “A” — for upper-casing the whole sentence (or a span for marian), “-A” — for ending the
upper-cased span for marian, “L” — for lower-casing the word. The best (highest) scores for each column are marked bold.

by naive InCa (since it uses more tokens than the “smarter” approaches), in the upper-case scenario TokenMonster goes
significantly down as it marks each word with a flag, and in the lower-cased scenario, it is InCa with the lower-case flags
that lies below.!!

The authors of the approach suggest that the increase in alpha should favor the frequent sequences to be encoded into shorter
tokens. We cannot say that our evaluation supports this claim. Instead, we can say that it penalizes the systems that output
numerous auxiliary tokens (which, in our case, are predominantly single-character). The only exception here is Marian
inline casing that sometimes happens to even outperform the non-preprocessing scenario; this can be interpreted due to the
nature of the inline casing flags that can be merged with a word, thus not creating a separate token.

In conclusion, we should say that the Rényi efficiency metric (at least in its classical version) does not favor using the
characters that increase the number of separate words (and thus tokens). Thus, if we want to encode the flags separately (this
is our aim — to relocate the casing information in an way of creating separate tokens), it is impossible to outperform the
Zero preprocessing scenario on average since any inline approach to casing would at least slightly increase the length of
sentence. The case of Marian encoding shows that we can make it better if we allow the flags to merge with the words; but
theoretically this does not seem a perfect solution, since if we create a digraph within a word instead of separating it from
the word completely, it would not solve the problem of the possible allocation of the same words with different casings in
the vocabulary.

We are aware of the theoretical criticism of the Rényi efficiency metric (for example, in Cognetta et al. 2024); however, to
our knowledge, this is the first empirical evidence of the misalignment of the tokenization quality estimation and downstream
performance. Therefore, we encourage the community to use this metric with caution in setups with the preprocessing
techniques that require additional inline flags.

Tt is less clear why TokenMonster also shows bad performance on the fully lower-cased data, as it does not use an explicit lower-case
flag there. Most probably it is the result of another special token introduced by TokenMonster, “D” token that handles the deletion of the
white space after this token. It is used as a way to handle the fully reversible word separation, but in an opposite logic to SentencePiece:
while the latter explicitly marks the white spaces, TokenMonster by default restores white spaces between each of its tokens and then
deletes them whenever the special token is used. Thus, the frequent usage of this token may skew Renyi efficiency in this case.

17

InCa and InDia: Inline Casing and Diacritization Preprocessing

none randg 1 lower upper
Prepro-
cessing EFF | R(f) EFF | R(f) EFF | R(f) | EFF | R(f)
base 0.516 | - 0.527 | - 0.519 | - 0.678 | -
T:3 T:3
inca 0.500 U:23 0.460 U4 0442 | L:1 | 0486 | A:3
L:25 L:19
. T:1 T:1
inca-n | 0417 U-16 0.388 U4 0.504 | - 0473 | A:3
o i
marian | 0.563 | U:171 | 0.534 p 0.602 | - 0.566 ’
A1617 A:4012 A:0
' -A:2466 -A:15
U:28
tkm 0.503 T 0.500 | - 0474 | - 0219 | U0

Table 12. Rényi efficiency and ranks of the casing flags for various types of noising, encoded Ukrainian texts. The legend conventions
follow the table on Czech data above.

D. Example of Different Inline Diacritization Methods

In Table 13 you can find an illustration of three inline diacritization methods applied to the Czech excerpts. The first row
shows the input, the next lines show the results of preprocessing and tokenization (“Baseline” means no preprocessing).
InDia flags are marked in blue. For the main InDia and InDia-n systems, the flag KV marks the separator between the keys
(indices of the diacritized character) and values (flags for each character diacritization), and ID is a separator if there are
multiple keys. E means using the ring diacritization, D means using the acute , | n | means de-diacritizing the letter. For

InDia-w, means de-diacritizing the whole word, 1 and 2 mean the second- and the third- most frequent diacritizations
for the same base.

Preprocessing | Examples

input Olympijské komisi Spojenych statd
stdld tajemnice Nobelovy komise
Baseline _Olymp ijské kom is i _Spojenych _statl
_stal & _tajemn ice _Nobelov y _komise
InDia _Olymp i jske . KV 5 KV [n] _komisi _Spojenych KV 4 KV B _statu

_KV2ID 4KV D D _stala _ta jem nice _Nobelov y _komise

InDia-n KV 9 KV D _Olymp i jske _komisi _KV 6 KV B _Spojenych _KV 21D 4
KV D E _statu

KV 2ID 4KV D D _stala _ta jem nice Nobelov y _komise

InDia-w _Olymp i jske _| N | _komisi _Spojenych _ 1 _statu
2 _stala _ta jem nice _Nobelov y _komise

Table 13. Illustrations for modifications of InDia preprocessing and no-preprocessing tokenization.

If we pay attention only to the splitting of bases, we can see that for all InDia variations, they are split in the same manner.
Moreover, the bases are split into longer sequences, compared to the diacritized “base” text: consider the words “komisi” or
“stala”, which are split into 3 and 2 tokens in “base” and are kept as single tokens in InDia systems.

We can see that both InDia and InDia-w omit flags on the word “Olympijské”, since it is stored in their dictionaries. We
also see that in case where the word is non-diacritized while the most frequent version of its base is diacritized, they both
use flags that erase diacritization (in the case of the word “komisi”, for which the most frequent diacritization is “komisi’).
In case of the non-diacritized word, the words which have the diacritization different from the most frequent one tend to
be over-tokenized by the no-preprocessing system, while they are kept as a whole in both InDia setups (such as the word
“stala”). Finally, we can see that if we disregard the flags, the tokenization of the bases for each word is the same in InDia

18

InCa and InDia: Inline Casing and Diacritization Preprocessing

EFF score

Rényi Efficiency Comparison for Different Alphas
and Different Noises, Czech Texts

Noise: none Noise: rando.1
1.0~ 1.0 -
—— base
0.8 1 inca 0.8 A
- |NCa-Nn
0.6 - —— marian | g -
tkm
0.4 - 0.4 7
2 4 6 8 10 0 2 4 6 8 10
Noise: lower Noise: upper
1.0 - 1.0 A \
0.8 - 0.87
0.6 -
0.6 -
0.4 -
04 . \ 02]
2 4 6 8 10 0 2 4 6 8 10
Alpha value

Figure 3. Comparison of the Rényi efficiency score depending on alpha. The subplots are created for each type of case noising, each
figure shows the EFF score of each system (Y axis) with respect to alpha score (X axis).

and InDia-w.

Contrary to these two approaches, InDia-n explicitly shows every diacritization operation, disregarding frequency. Therefore,

z

the word “Olympijské” is diacritized with the symbol “Carka”, while the word “komisi” is not: despite being not as frequent
word form as “komisi”, it does not have any explicit diacritic and therefore is left as is. Therefore, there is no | n | sign in
general.

19

InCa and InDia: Inline Casing and Diacritization Preprocessing

E. Intrinsic Statistics for Inline Diacritization Experiments

Prep.ro— no noise fully de-diacritized | 20% de-diacritized
cessing
Metric | CPT | AR | CPT AR CPT AR

base 3.973 | 1238 | 2.829 418 3.675 1110
InDia | 3.709 | 1112 | 1.604 480 2.922 878
InDia-w | 3.903 | 1156 | 2.530 742 3.511 1040
InDia-n | 1.579 | 478 | 4.092 1207 1.807 545

Table 14. Intrinsic metrics for different inline diacritization methods under different levels of noising. CPT stands for character per token
ratio, AR stands for average rank.

Table 14 shows the intrinsic metrics for different inline diacritization methods at different levels of de-diacritization noising.
The results are expected given the intrinsic performance: the highest scores are shown by baseline and InDia variations
that use flags of the lowest lengths: InDia-w in general since it uses single-character flags, InDia in no noise scenario
since it only marks non-frequent diacritizations, InDia—n in fully de-diacritized scenario since it only marks explicit
diacritization. Notably, we do not see the stability under different types of noising that we could see in InCa. The main
reason is suboptimality of treatment of fully de-diacritized words (or even full sequences), that ideally should use a single
flag for that. We leave such improvements for further experiments.

20

