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ABSTRACT

Large Language Models (LLMs) have become indispensable in numerous real-
world applications. Unfortunately, fine-tuning these models at scale, especially in
federated settings where data privacy and communication efficiency are critical,
presents significant challenges. Existing methods often resort to parameter-efficient
fine-tuning (PEFT) to mitigate communication overhead, but this typically comes
at the cost of model accuracy. To address these limitations, we propose federated
full-parameter tuning at scale for LLMs (Ferret), the first first-order method with
shared randomness to enable scalable full-parameter tuning of LLMs across decen-
tralized data sources while maintaining competitive model accuracy. Ferret accom-
plishes this through three aspects: (1) it employs widely applied first-order methods
for efficient local updates; (2) it projects these updates into a low-dimensional
space to considerably reduce communication overhead; and (3) it reconstructs
local updates from this low-dimensional space with shared randomness to facilitate
effective full-parameter global aggregation, ensuring fast convergence and compet-
itive final performance. Our rigorous theoretical analyses and insights along with
extensive experiments, show that Ferret significantly enhances the scalability of
existing federated full-parameter tuning approaches by achieving high computa-
tional efficiency, reduced communication overhead, and fast convergence, all while
maintaining competitive model accuracy.

1 INTRODUCTION

Recently, Large Language Models (LLMs) have become indispensable tools across a wide range of
real-world applications, from natural language processing tasks like translation (Xu et al., 2024) and
summarization (Van Veen et al., 2024) to more complex tasks such as code generation (Liu et al.,
2024) and decision-making systems (Shao et al., 2023). The immense scale and versatility of LLMs
make them highly valuable in practice, but they also introduce significant challenges, particularly
when they are fine-tuned in federated settings. Federated Learning (FL) offers a decentralized
approach to fine-tuning LLMs while retaining data on local clients to ensure privacy. However, while
this approach effectively addresses privacy concerns, it also results in prohibitive communication
overhead when the model parameters of LLMs scale to billions.

One of the straightforward strategies to mitigate the prohibitive communication costs in the federated
tuning of LLMs is parameter-efficient fine-tuning (PEFT). PEFT methods (Hu et al., 2022; Wei et al.,
2024) focus on fine-tuning only a subset of model parameters, which is able to significantly reduce
the communication overhead between clients and a central server (Che et al., 2023; Zhang et al., 2023;
Kuang et al., 2024; Zhang et al., 2024b). Despite the effectiveness in reducing bandwidth usage, this
type of approach often compromises model accuracy (Pu et al., 2023), as fine-tuning a subset of
model parameters may fail to fully capture the nuances of local data distributions. Thus, recent efforts,
e.g., FedKSeed (Qin et al., 2024), have been devoted to utilizing zeroth-order optimization (ZOO)
(Nesterov & Spokoiny, 2017; Berahas et al., 2022) in federated full-parameter tuning of LLMs, aiming
to maintain competitive model accuracy while reducing the communication overhead by transmitting
only thousands of scalar gradients per round between clients and a central server. Unfortunately, this
approach often suffers from its poor scalability, including increased computational cost per round
and a larger number of communication rounds required for convergence, compared to FL methods
that use first-order optimization (FOO), e.g., FedAvg (McMahan et al., 2017).
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To this end, we propose federated full-parameter tuning at scale for LLMs (Ferret), the first first-order
FL method with shared randomness to enable scalable federated full-parameter tuning of LLMs with
compelling computational efficiency, reduced communication overhead, and fast convergence speed,
all while maintaining competitive model accuracy. Ferret achieves this through three aspects: First, it
employs widely applied first-order methods to perform computationally efficient local updates on each
client, which typically requires fewer iterations to achieve the same local update process compared to
existing ZOO-based FL. Next, Ferret projects these updates into a low-dimensional space, leading
to a significantly reduced communication cost compared to existing FOO-based FL. Finally, Ferret
reconstructs local updates from the low-dimensional space with shared randomness for effective full-
parameter global aggregation, ensuring fast convergence and competitive model accuracy compared
to existing ZOO-based FL. We further complement Ferret with rigorous theoretical analyses and
principled insights, showing the theoretical advantages of Ferret over other baselines and guiding the
best practices for its implementation. Finally, through extensive experiments, we verify that Ferret
significantly outperforms existing methods with superior scalability and competitive model accuracy,
making it a desirable solution for deploying LLMs in large-scale federated environments.

To summarize, our contributions in this work include:
• We propose Ferret, the first first-order FL approach with shared randomness (to the best of our

knowledge), which significantly enhances the scalability of federated full-parameter tuning of
LLMs while maintaining competitive model accuracy.

• We present rigorous theoretical analyses and insights to support the effectiveness of our Ferret,
demonstrating its theoretical advantages over other baselines and guiding its best practices.

• Through extensive experiments, we demonstrate that Ferret consistently improves over existing
methods in practice, offering both superior scalability and competitive model accuracy.

2 PROBLEM SETUP

In this paper, we consider the federated full-parameter tuning of an LLM using decentralized data
{Di}

N
i=1 on N local clients while preserving data privacy, i.e., without sharing raw data. Specifically,

given a loss function ℓ(·; ·), we aim to minimize a global objective L(w) defined as the average loss
across {Di}

N
i=1 over the model parameters w ∈ Rd of an LLM. That is,

min
w
L(w) ≜

1

N

∑
i∈[N ]

L(i)(w) where L(i)(w) ≜ E
x
(i)∈Di

[
ℓ(w;x(i))

]
. (1)

Following the practice in federated learning (FL), (1) can be solved through multiple rounds of local
training and global aggregation. In each communication round, each client i independently updates
its local model parameters by minimizing its local objective L(i)(w) based on its local data Di. After
local training, the clients transmit their updated local model parameters to a central server, where
they are aggregated to form an updated global model. This updated global model is then redistributed
to all clients, and the process is repeated over rounds.

The main challenge in LLM federated full-parameter tuning is to ensure the computational efficiency
and the convergence speed of the global model while reducing the communication overheads,
particularly given that the parameter size d of LLMs often reaches billions. While existing first-
order FL (McMahan et al., 2017; Li et al., 2020; Karimireddy et al., 2020) can ensure compelling
computational efficiency and convergence speed by applying first-order updates, they typically incur
O(d) communication overheads due to the need to transmit the entire set of model parameters
between clients and the central server. This type of methods hence is impractical for LLM federated
full-parameter tuning due to the enormous size of LLMs. In contrast, although zeroth-order FL (Qin
et al., 2024) can reduce these communication costs by transmitting only several scalar gradients
from their finite difference-based gradient estimation with shared randomness, they often incur more
computational cost to achieve the same local update progress and a larger number of communication
rounds to converge compared with first-order FL. These naturally raise the question:

Can we combine the strengths of these methods to achieve scalable federated full-
parameter tuning of LLMs with high computational efficiency, reduced communi-
cation overhead, and fast convergence?
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Algorithm 1: Federated Full-Parameter Tuning at Scale for LLMs (Ferret)
Input: Pre-trained model parameters w0, N clients, number of rounds R, number of local

updates T , number of bases K, local learning rate η
1 for each round r ∈ [R] do
2 for each client j ∈ [N ] in parallel do
3 if r > 1 then // Step 1 : Global Aggregation
4 Receive seeds {s(i)}Ni=1 and coordinates {γ(i)k }

N,K
i=1,k=1 from the central server

5 Generate random bases {v(i)
k }

N,K
i=1,k=1

6 wr−1 ← wr−2 −
∑
i∈[N ]

(∑K
k=1 γ

(i)
k v(i)

k

)
/N

7 wr,0 ← wr

8 for each iteration t ∈ [T ] do // Step 2 : Local Updates
9 w(j)

r,t ← w(j)
r,t−1 − η∇ℓ(w

(j)
r,t−1;x

(j)
r,t−1) on randomly sampled data x(j)

r,t−1

// Step 3 : Projected Updates
10 Randomly choose seed s(j) and generate random bases {v(j)

k }
K
k=1

11 ∆(j)
r ← w(j)

r−1 −w(j)
r , compute coordinates {γ(j)k }

K
k=1 based on (6)

12 Send s(j) and {γ(j)k }
K
k=1 to the central server

3 THE FERRET ALGORITHM

To answer this question, we introduce Ferret, federated full-parameter tuning at scale for LLMs,
in Algo. 1. We present an overview of our Ferret algorithm in Sec.3.1, followed by a detailed
explanation of the key techniques in Ferret in Sec. 3.2.

3.1 OVERVIEW OF FERRET

To achieve scalable LLM federated full-parameter tuning, our Ferret algorithm combines the strengths
of both first-order FL, which offers efficient computation and fast convergence, and zeroth-order
FL, which reduces communication overhead. Specifically, Ferret (a) follows first-order FL to apply
first-order optimization methods for local updates on clients, ensuring both computational efficiency
and fast convergence, and (b) draws inspiration from zeroth-order FL by projecting updates into a
low-dimensional space using random bases that can be regenerated using shared randomness among
clients for the reconstruction of these updates, thereby reducing communication overhead.

Our Ferret algorithm operates by repeating the following three sequential steps over many communi-
cation rounds, denoted by r ∈ [R], where R is the total number of rounds. For simplicity, we omit
the subscript r from the seeds, random bases, and projected coordinates in our notation.

Step 1 : Global Aggregation (Line 3-6 in Algo. 1). At the beginning of the first round (r = 1),
each client initializes its local model parameters using the pre-trained model parameters w0, i.e.,
w1 ← w0. For subsequent rounds (r > 1), each client j ∈ [N ] receives the random seeds s(i) and
the corresponding K projected coordinates {γ(i)k }

K
k=1 of every client i ∈ [N ] from the previous

round. These random seeds (i.e., shared randomness) are then used to generate d-dimensional random
bases {v(i)

k }
K
k=1 for each client i. 1 These random bases, along with the corresponding projected

coordinates {γ(i)k }
K
k=1, are applied to reconstruct local updates as ∆̃(i)

r−1 in every client i. The global
model is then updated by aggregating these local contributions as follows:

wr−1 ← wr−2 −
1

N

∑
i∈[N ]

∆̃(i)
r−1 where ∆̃(i)

r−1 ≜
∑
k∈[K]

γ
(i)
k v

(i)
k . (2)

Step 2 : Local Updates (Line 7-9 in Algo. 1). After Step 1 , each client j will perform T -iteration
first-order optimization on its local loss function by using the randomly sampled data for its local
updates. Formally, if stochastic gradient descent with a local learning rate η is used, the update rule

1Similar to (Qin et al., 2024), we can obtain K random seeds from a single seed s
(i) and employ these K

seeds to generate K random bases independently for each client i. So, one seed is sufficient for each client.

3
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for client j ∈ [N ] at iteration t ∈ [T ] of round r ∈ [R] can then be represented as:

w
(j)
r,t ← w

(j)
r,t−1 − η∇ℓ

(
w

(j)
r,t−1;x

(j)
t−1

)
where wr,0 ← wr . (3)

Different from the zeroth-order update in (Qin et al., 2024) that requires many local update iterations,
the first-order update in (3) enables each client to efficiently and effectively adapt the global model
wr to its specific data using a small T , thereby enhancing both the computational efficiency of this
local update. Here, (3) can be implemented using any gradient method variant, e.g., Adam (Kingma
& Ba, 2014).

Step 3 : Projected Updates (Line 10-12 in Algo. 1). After completing the local updates above, each
client j randomly chooses a single new seed s(j) to generate K new random bases {v(j)

k }
K
k=1 and

employ these K new random bases to project the local update ∆(j)
r into a K-dimensional coordinates

{γ(j)k }
K
k=1 based on the techniques in Sec. 3.2. Seed s(j) and projected coordinates {γ(j)k }

K
k=1 are

then shared with other clients to facilitate the next round of global aggregation. By sharing only a
single random seed and K projected coordinates among N clients where random bases {v(j)

k }
K
k=1

can be regenerated for global aggregation as shown in Step 1 above, the communication overhead in
LLM full-parameter tuning is therefore considerably reduced compared with first-order methods (e.g.,
FedAvg) especially when T ≪ d. Of note, the communication of this seed s(j) can be mitigated if the
same seed is used across all rounds r ∈ [R], which can further reduce the communication overhead.

3.2 UPDATE PROJECTION AND RECONSTRUCTION

As mentioned before, we aim to project the local updates into K-dimensional coordinates (K ≪ d)
to substantially reduce the communication overhead in LLM full-parameter tuning. To accomplish
this, let ∆ ∈ Rd denote any local update, and let V = [v1 v2 · · · vK ] ∈ Rd×K represent the K
random bases generated by any random seed s, we solve the following convex minimization problem
to determine the K-dimensional projected coordinates γ = [γ1 γ2 · · · γK ]⊤:

γ ≜ argmin
y

∥Vy −∆∥ . (4)

As V is singular with K ≪ d, the close-form of γ and its corresponding reconstruction ∆̃ will be

γ = (V⊤V)−1V⊤∆, ∆̃ = V(V⊤V)−1V⊤∆ . (5)

Choice of Random Bases V. Particularly, if V is a rectangular matrix with ones on its main diagonal,
meaning that each vk is a standard basis vector, (5) simplifies to γ = V⊤∆, which then corresponds
to a block-wise dimension selection for local update projection and reconstruction. However, this
approach significantly reduces the number of parameters updated per round as K ≪ d, potentially
hindering the overall tuning performance. We thus propose to sample each element in vk (k ∈ [K])
independently from a normal distribution with bounded 2-norm, i.e., ∥vk∥ ≤ 1, aiming to realize and
stabilize full-parameter tuning of LLMs for competitive overall performance. To achieve this, we can
sample from a truncated normal distribution: v ∼ N (0, 1) with v ∈ [−1/

√
d, 1/
√
d] instead. The

efficacy of this bounded norm will be demonstrated in Sec. 4.1 shortly.

Reconstruction w/o Inversion. Unfortunately, (5) incurs a computational complexity of O(K2d+

K3) and storage complexity of O(Kd) owing to the inversion of V⊤V in (5), which is prohibitively
costly, especially whenK is large and d reaches billions. Since V⊤V is a scaled empirical covariance
for the aforementioned distribution of an identity covariance matrix (Vershynin, 2012) , we propose
to approximate V⊤V with IK (i.e., K ×K-dimensional identity matrix) and (5) as

γ ≈ (ρK)−1V⊤∆ . (6)

Here, ρ ≜ 1 − 2ψ(1/
√
d)/

√
d

2Φ(1/
√
d)−1

, where ψ( 1√
d
) and Φ( 1√

d
) is the probability density function (PDF)

and cumulative distribution function (CDF) of the standard normal distribution evaluated at 1/
√
d,

respectively. This approximation leads to improved computational complexity of O(Kd) and storage
complexity ofO(max{K, d}), where the storage complexity is reduced due to the in-place operations

4
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on random bases {vk}
K
k=1 when computing {γk}

K
k=1 sequentially. Consequently, we can reconstruct

the true update ∆ approximately using ∆̃ below

∆̃ = (ρK)−1VV⊤∆ , (7)

whose efficacy will be theoretically justified in Sec. 4.1. Finally, our (6) and (7) simplify the update
projection and reconstruction in (5) into straightforward matrix multiplications.

Block-Wise Reconstruction. The computational complexity of O(Kd) and storage complexity of
O(max{K, d}) for our reconstruction in (7) is still prohibitively costly, particularly for LLMs with
billions of parameters. To address this, we propose a block-wise reconstruction technique to reduce
both computational and storage complexities. Specifically, suppose the full dimension d is divided
into L blocks, each with dimension dl such that

∑
l∈[L] dl = d. Let ∆l be the update for block l and

Kl (with
∑
l∈[L]Kl = K) be the number of random bases allocated to this block. We propose to

compute γl and reconstruct ∆l using random bases Vl of dimension dl ×Kl as follows:

γl = (ρlK)−1V⊤
l ∆l, ∆̃l = (ρlKl)

−1VlV
⊤
l ∆l . (8)

Here, ρl ≜ 1− 2ψ(1/
√
dl)/
√
dl

2Φ(1/
√
dl)−1

. This trick reduces the storage complexity to O(max{{Kl, dl}
L
l=1})

that is straightforward to verify, and lowers the computational complexity to O(
∑
l∈[L]Kldl). Of

note, (8) also significantly reduces the computational complexity of global aggregation compared to
existing methods (Qin et al., 2024) (verified in Sec. 5). This block-wise reconstruction thus further
enhances the scalability of our Ferret in the federated full-parameter tuning of LLMs.

4 THEORETICAL ANALYSES AND INSIGHTS

We now provide theoretical analyses to substantiate the effectiveness of Ferret: (a) reconstruction
analysis in Sec. 4.1; (b) convergence analysis in Sec. 4.2; and (c) scalability and beyond in Sec. 4.3.

4.1 RECONSTRUCTION ANALYSIS

Theorem 1 (Unbiased Reconstruction). Given the reconstruction in (7), we have

E
[
∆̃
]
= ∆ .

To begin with, we demonstrate in Thm. 1 that our reconstruction in (7) is unbiased, with the proof
provided in Appx. B.1. Of note, Thm. 1 shows that (a) the scalar 1/(ρK) is crucial for (7) to
achieve an unbiased reconstruction of the ground-truth update ∆, and (b) our (7) avoids the bias
commonly found in zeroth-order FL methods (Berahas et al., 2022), including FedZO (Fang et al.,
2022) and FedKSeed (Qin et al., 2024). As a result, (7) is expected to provide a more accurate update
reconstruction, which we will elaborate more below.
Theorem 2 (Reconstruction Error). Given the reconstruction in (7), we have

E
[∥∥∥∆̃−∆

∥∥∥] ≤ max

{
2

√
2 ln(2d)

ρK
,
2 ln(2d)

ρK

}
∥∆∥ .

We then demonstrate the efficacy of our reconstruction in (7) by theoretically bounding the difference
between the reconstructed update ∆̃ and the ground truth ∆ in Thm. 2. The proof is in Appx. B.2.
Of note, 1/ρ typically has an asymptotic rate of O(d), which we will verify empirically in Appx. C.4.
Thm. 2 offers three critical insights of our Ferret: (a) Our reconstruction in (7) incurs a reconstruction
error at a rate of Õ(d/K) for T local update iterations when

√
d ≥ K, which generally aligns with

the results in (Vershynin, 2010). This indicates that the reconstruction error of our (7) can be linearly
reduced by increasing K. (b) Ferret avoids additional constant error items (Berahas et al., 2022) that
are caused by the biased estimation in these zeroth-order FL methods, implying that our (7) can be
more accurate. We will justify this further in our Thm. 3 below. (c) Thanks to the independence from
the iterations (i.e., T ) of local updates in Thm. 2, Ferret prevents the error accumulation over the
local update iterations T , which is a common issue in zeroth-order FL methods (Fang et al., 2022;
Qin et al., 2024).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 3 (Connection with Zeroth-Order Method). Define gk ≜ ℓ(w+ϵvk;x
(i)

)−ℓ(w;x
(i)

)
ϵ where

each element v in vk is sampled from v ∼ N (0, 1) with v ∈ [−1/
√
d, 1/
√
d], g ≜ [g1 · · · gK ]⊤, and

V ≜ [v1 v2 · · · vK ] ∈ Rd×K , assume ℓ(·; ·) is β-smooth w.r.t its first argument, the zeroth-order
reconstruction Vg/K used in (Fang et al., 2022; Qin et al., 2024) then incurs:∥∥∥∥ 1

K
Vg − 1

K
VV⊤∇ℓ(w;x(i))

∥∥∥∥ ≤ 1

2
βϵ .

We then show in Thm. 3 the connection between our update projection (6) and zeroth-order method
used in (Fang et al., 2022; Qin et al., 2024). The proof is provided in Appx. B.3. Thm. 3 delivers three
essential insights: (a) When ϵ→ 0, the reconstruction Vg/K in zeroth-order method is equivalent to
VV⊤∇ℓ(w;x(i))/K and shares a similar form of (7) when ∆ is replaced by ∇ℓ(w;x(i)), implying
that zeroth-order method in fact aims to approximate our reconstruction (7). (b) In practice, ϵ > 0.
So, zeroth-order method leads to a biased reconstruction with an additional error term of βϵ/2
compared to our (7), and this error will accumulate over T local iterations, implying that our (7) can
indeed be more accurate as we have demonstrated above. (c) In addition, zeroth-order method is
typically coupled with a single gradient (i.e., ∇ℓ(w;x(i))), whereas our (7) can be applied to any
vector, making it more general. Overall, these results further verify the advantages of our (7) over
the zeroth-order method used in (Fang et al., 2022; Qin et al., 2024), which we will also support
empirically in Appx. C.4.

Proposition 1 (Block-Wise Reconstruction Speedup). For block-wise reconstruction (8) of size L,

∑
l∈[L]

dlKl <

( ∑
l∈[L]

dl

)( ∑
l∈[L]

Kl

)
= dK .

We next highlight the computational advantage of our block-wise reconstruction (8) in Prop. 1. The
proof is in Appx. B.4. Prop. 1 indicates that by dividing the reconstruction of d-dimensional updates
into smaller blocks {dl}

L
l=1, we get a reduction in overall computational complexity that is strictly

less than that of the full dimension d in (7). E.g., when d1 = · · · = dL and K1 = · · · = KL, we have∑
l∈[L]Kldl = Kd/L, showing that our block-wise reconstruction (8) reduces the computational

complexity of (7) by a factor of 1/L. This implies that increasing the number of blocks L can further
enhance the computational efficiency of our block-wise reconstruction (8).

Proposition 2 (Block-Wise Reconstruction Error). For block-wise reconstruction (8) of size L, when√
dl ≥ Kl for any l ∈ [L],

E
[∥∥∥∆̃−∆

∥∥∥] < Õ( ∑
l∈[L]

∥∆l∥
ρlKl

)
,

which is minimized by choosing Kl ∝
√
∥∆l∥ /ρl.

We conclude by analyzing the error induced by our block-wise reconstruction (8) and the corre-
sponding optimal random bases allocation in Prop. 2. The proof is provided in Appx. B.5. Prop. 2
demonstrates that reconstruction error can be minimized by adaptively allocating the number of
random bases according to the gradient norm of each block. This is intuitively reasonable because a
larger gradient norm typically indicates a need for more immediate model updates in practice. Hence,
this insight not only provides a theoretical foundation for optimizing Ferret but also offers practical
guidance. That is, by aligning the number of random bases with gradient norms, practitioners can
enhance reconstruction accuracy and overall model performance. This adaptive approach ensures effi-
cient use of computational resources, making Ferret versatile and effective across different datasets
and federated learning scenarios.

4.2 CONVERGENCE ANALYSIS

In this subsection, we present the convergence of Ferret in our Thm. 4 below when using stochastic
gradient descent (SGD) for the local updates in (3). To simplify the analysis, we primarily focus on
deriving theoretical results for a homogeneous setting, where L(i)(w) = L(w) in (1). Results in the
heterogeneous setting can be derived by following the same proof idea.
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Table 1: Comparison of scalability (computation and communication per round, and #rounds to
converge) and other factors (adaptability, generalization, and privacy). Here, d≫ K ≫ T . Symbols:
◦ (fewer is better), ♡ and ⋄ (more is better).

Method Type Scalability Others

Comp. Comm. #Rounds Adapt. Gen. Privacy

FedZO ZOO O(τ0K) O(d) ◦ ◦ ◦ √ ♡ ♡ ♡ ⋄ ⋄
FedKSeed ZOO O(τ0K) O(K) ◦ ◦ ◦ × ♡ ♡ ♡ ⋄ ⋄ ⋄
FedAvg FOO O(τ1T ) O(d) ◦ √ ♡ ♡ ♡ ⋄
Ferret (ours) FOO O(τ1T ) O(K) ◦ ◦ √ ♡ ♡ ♡ ⋄ ⋄ ⋄

Theorem 4 (Convergence). Define D ≜ L(w0)−minw L(w). Assume that L(w) is β-smooth and
non-convex, and E[∥∇L(i)(w)− ℓ(w;x)∥2] ≤ σ2 for any x,w, when choosing η ≤ 1

20βT in Algo. 1,
the following holds for federated full-parameter tuning with L(i)(w) = L(w),

min
r∈[R)

E
[
∥∇L(wr)∥

2
]
≤ O

(
D

ηTR
+ ηTσ2

)
where [R) is the half-open interval [0, R). Especially, by choosing η = 1

20βT
√
R

in Algo. 1, the

number of communication rounds are required to be R = O(1/ϵ2) to achieve an ϵ convergence error.

Its proof is in Appx. B.6. Particularly, when T = 1, Thm. 4 recovers the result of standard SGD
(Ghadimi & Lan, 2013). Thm. 4 provides three essential insights: (a) Thanks to our improved update
reconstruction (7) as justified above, Ferret avoids the additional constant terms accumulated over
T local iterations, which are typically caused by the biased gradient estimation in zeroth-order FL
methods (e.g., FedZO and FedKSeed) (Fang et al., 2022), thereby highlighting the superior advantage
of Ferret over these zeroth-order FL methods in convergence speed. (b) Given a proper η, Ferret
shares the same communication round complexity as SGD, at a rate of O(1/ϵ2), showing that the
communication round complexity of Ferret is asymptotically comparable to that of standard SGD.
(c) This communication rounds complexity is improved over that of zeroth-order FL methods (Fang
et al., 2022) due to its independence from d and other constant factors required by these zeroth-order
FL methods, further highlighting the advantage of Ferret in communication round complexity and its
improved efficacy in federated full-parameter tuning over these methods.

4.3 SCALABILITY AND BEYOND

With the theoretical results above, we summarize the scalability of Ferret and compare it to existing
methods like zeroth-order FL (e.g., FedZO and FedKSeed) and first-order FL (e.g., FedAvg) in Tab. 1.

Computation Per Round. Of note, Ferret enjoys a computational complexity of O(τ1T ) for any
client i ∈ [N ] per round, where τ1 is the per-iteration complexity of the first-order update (including
forward and backward passes) in (3), and T is the number of local iterations. This is comparable to
the well-established FedAvg. In contrast, both FedZO and FedKSeed incur a complexity of O(τ0K),
with τ0 being the per-iteration complexity of the zeroth-order update (i.e., forward pass) and K
representing the number of forward passes. As first-order updates use more accurate gradients, T will
be smaller than K (i.e., T ≪ K) to attain the same local update progress. Although τ1 can be at most
twice τ0, our Ferret is still more computationally efficient than FedZO and FedKSeed (see Sec. 5).

Communication Per Round. As only one seed and K projected coordinates {γ(i)k }
K
k=1 from a client

i ∈ [N ] need to be transmitted per round in Algo. 1 with K ≪ d, Ferret incurs a communication
overhead of O(K), which is similar to that of FedKSeed. This is significantly more efficient than
FedAvg and FedZO, which have a communication complexity of O(d) due to their need to transmit
the entire model (or gradients). This significantly reduced communication cost therefore makes
Ferret especially suitable for federated full-parameter tuning of LLMs with billions of parameters.

Rounds to Converge. As revealed in Sec.4.2, our Ferret benefits from unbiased update reconstruction
in (7) (validated in Thm. 1), enabling fast convergence with a small number of communication rounds
to achieve ϵ convergence error (see Thm. 4). This is significantly more efficient than zeroth-order FL
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Table 2: Comparison of Rouge-L (%) among various algorithms. Each cell reports the mean ± std of
Rouge-L scores from the final round of four runs, each using a different random seed. All results,
except for those pertaining to FedAvg and Ferret, are taken from (Qin et al., 2024).

Algorithm Natural Instructions Dolly-15K
DataJuicer-1.3B LLaMA-3B DataJuicer-1.3B LLaMA-3B

FedPTuning 19.61 ± 2.71 25.41 ± 1.14 23.98 ± 3.23 30.30 ± 1.16
FedPrompt 6.04 ± 0.12 8.95 ± 2.47 32.73 ± 0.87 24.50 ± 4.78
FedIT-SGD 19.40 ± 1.83 28.14 ± 0.85 27.23 ± 0.68 29.28 ± 0.50
FedIT 22.30 ± 0.42 28.13 ± 0.50 30.80 ± 0.98 33.23 ± 1.51

FedZO 21.74 ± 1.91 29.46 ± 0.38 32.91 ± 0.67 36.34 ± 0.39
FedKSeed 22.33 ± 1.72 29.77 ± 0.75 32.90 ± 0.37 35.64 ± 0.83
FedAvg 23.95 ± 2.76 32.11 ± 0.70 29.67 ± 1.26 30.98 ± 1.66

Ferret (ours) 24.99 ± 0.99 30.03 ± 0.99 30.63 ± 0.84 34.57 ± 0.57

methods like FedZO and FedKSeed, which require many more communication rounds to converge
due to poor gradient estimation (Fang et al., 2022). FedAvg, applying the ground truth local update
for its global aggregation, surely converges with the fewest rounds. Overall, Ferret remains a strong
choice for federated full-parameter tuning of LLMs, even in terms of rounds to converge.

Beyond Scalability. Our Ferret also offers benefits in adaptability, generalization, and privacy. Unlike
FedKSeed, which is limited to SGD, Ferret is highly adaptable, because both global aggregation (2)
and local update (3) in Ferret can be implemented with any gradient method variant, e.g., the widely
used AdamW (Loshchilov & Hutter, 2019) in LLM training. This adaptability thus makes it much
easier to integrate Ferret into existing centralized tuning workflows for LLMs, facilitating a seamless
transition to federated tuning. Besides, since Ferret enables federated tuning with full parameters,
it is expected to deliver strong generalization performance as other federated full-parameter tuning
methods like FedAvg, as supported in Sec. 5. Finally, by transmitting only seeds and low-dimensional
projected coordinates among clients, rather than the entire model (or gradients) as in FedZO and
FedAvg, Ferret ensures improved privacy for federated full-parameter tuning of LLMs.

Overall, Ferret strikes an optimal balance between computational efficiency, communication over-
head, convergence speed, and other critical factors such as adaptability, generalization, and privacy.
This makes it a highly scalable and desirable solution for federated full-parameter tuning of LLMs.

5 EXPERIMENTS

In this section, we evaluate the efficacy of our Ferret algorithm, following the practice in FedKSeed
(Qin et al., 2024). We primarily compare Ferret with other federated full-parameter tuning baselines,
including both zeroth-order methods (e.g., FedZO (Fang et al., 2022) and FedKSeed (Qin et al., 2024))
and first-order methods (e.g., FedAvg (McMahan et al., 2017)). Our evaluations use DataJuicer-1.3B
(Chen et al., 2023) and LLaMA-3B (Touvron et al., 2023a) on the Natural Instructions (Wang et al.,
2022) and Dolly-15K (Conover et al., 2023) datasets, as well as larger models (i.e., LLaMA2-7B
and LLaMA2-13B (Touvron et al., 2023b)) on the CodeAlpaca (Chaudhary, 2023) and GSM8K
(Cobbe et al., 2021) datasets. As demonstrated in Sec. 4.2, Ferret is guaranteed to converge faster
than zeroth-order FL methods. Therefore, we run Ferret for fewer communication rounds compared
to FedKSeed: 12 rounds versus 40 on Natural Instructions, and 20 rounds versus 60 on Dolly-15K.
However, for more complex tasks such as CodeAlpaca and GSM8K, we run all algorithms, including
Ferret, for 20 rounds to ensure a fair comparison. More experimental details and ablation studies are
provided in Appx. C.1 and Appx. C.5, respectively.

5.1 COMPARISON ON ACCURACY

We present the model accuracy achieved by different federated tuning methods in Tables 2 and 3.
The results in Table 2 demonstrate that federated full-parameter tuning methods (including FedAvg,
FedZO, FedKSeed, and our method) generally achieve better model accuracy compared to PEFT-
based federated tuning methods (such as FedPTuning, FedPrompt, FedIT-SGD, and FedIT). This
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Table 3: More comparison of Rouge-L (%) among various algorithms. Each cell reports the mean ±
std of Rouge-L scores from the final round of four runs, each using a different random seed.

Algorithm CodeAlpaca GSM8K
LLaMA2-7B LLaMA2-13B LLaMA2-7B LLaMA2-13B

FedZO 4.58 ± 0.26 6.19 ± 0.32 30.41 ± 0.31 13.63 ± 0.34
FedKSeed 8.33 ± 0.98 10.70 ± 0.47 28.26 ± 3.60 33.67 ± 1.15
FedAvg 15.41 ± 0.43 14.68 ± 0.26 38.30 ± 0.40 39.82 ± 0.17

Ferret (ours) 12.10 ± 0.47 11.84 ± 0.91 36.10 ± 1.18 34.50 ± 1.42

Table 4: Comparison of computational cost and communication overhead on LLaMA-3B, focusing
on (a) the computational costs from local updates, global aggregation, and the overall tuning process;
and (b) the per-round and overall communication costs. The improvement achieved by our Ferret is
reported in brackets using blue (compared with FedKSeed) and orange (compared with FedAvg).

Algorithm Computational Cost (Sec.) Communication Cost (# param.)

Local Update Global Aggr. Overall Per-Round Overall

FedZO 32.6 0.3 1.3×103 6.0×109 2.4×1011

FedKSeed 56.9 123.8 7.2×104 8.2×103 3.3×105

FedAvg 1.8 0.3 25.2 6.0×109 7.2×1010

Ferret (ours) 5.6 (10.2×) 24.7 (5.0×) 3.6×102 (20.0×) 7.8×103 (106×) 9.4×104 (106×)

underscores the importance of full-parameter tuning for Large Language Models (LLMs). Importantly,
the results in both tables show that our proposed method consistently delivers strong or competitive
performance across four different scenarios. Specifically, on the Natural Instructions dataset, our
method outperforms all others for different model sizes, with up to a 2.66% improvement over the next
best method, FedKSeed. On the Dolly-15K dataset, our method maintains competitive performance.
Moreover, on both the CodeAlpaca and GSM8K datasets, our method achieved noticeably improved
accuracy over other zeroth-order baselines (i.e., FedZO and FedKseed). However, Ferret slightly
underperform FedAvg, likely due to reconstruction errors caused by our method for these complex
tasks. Overall, these results have well demonstrated the ability of our method to sustain strong model
accuracy in practice across various datasets and model sizes.

5.2 COMPARISON ON SCALABILITY

Since we focus on federated full-parameter tuning of LLMs, we primarily provide a detailed scalability
comparison of this type of methods, including FedZO, FedKSeed, FedAvg, and Ferret. We evaluate
their scalability performance on Natural Instructions using LLaMA-3B (see Tab. 4) and GSM8K
using LLaMA2-7B (see Tab. 5), where the calculation of computational cost and communication
overhead is provided in Appx. C.2 and more comparison on LLaMA2-13B is in Appx. C.3. The
results in Tab. 4 and Tab. 5 demonstrate that compared with FedKSeed, Ferret achieves substantial
reductions in computational costs: a 10.2× improvement for local updates on LLaMA-3B and 13.1×
on LLaMA2-7B, a 5.0× improvement in global aggregation on LLaMA-3B and 5.8× on LLaMA2-
7B, as well as a 20.0× improvement for overall tuning cost on LLaMA-3B and 6.8× on LLaMA2-7B.
2 These advancements stem from several key innovations: our first-order local updates, which reduce
the number of required iterations; block-wise reconstruction, which optimizes global aggregation; and
precise reconstruction, which significantly decreases communication round complexity. Furthermore,
compared to FedAvg that does not leverage any shared randomness, Ferret exhibits an enormous
reduction in overall communication costs, i.e., 106× on LLaMA-3B and 107× on LLaMA2-7B. This
emphasizes the ability of Ferret in scaling federated full-parameter tuning.

2The reduced improvement in overall tuning cost for our Ferret on LLaMA2-7B, compared to LLaMA-3B, is
because that both Ferret and FedKSeed are using the same number of communication rounds for more complex
tasks such as GSM8K.
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Table 5: Comparison of computational cost and communication overhead on LLaMA2-7B, focusing
on (a) the computational costs from local updates, global aggregation, and the overall tuning process;
and (b) the per-round and overall communication costs. The improvement achieved by our Ferret is
reported in brackets using blue (compared with FedKSeed) and orange (compared with FedAvg).

Algorithm Computational Cost (Sec.) Communication Cost (# param.)

Local Update Global Aggr. Overall Per-Round Overall

FedZO 54.1 0.7 1.1×103 1.4×1010 2.8×1011

FedKSeed 117.0 510.0 1.3×104 8.2×103 1.6×105

FedAvg 5.8 0.7 1.3×102 1.4×1010 2.8×1011

Ferret (ours) 8.9 (13.1×) 88.3 (5.8×) 1.9×102 (6.8×) 6.4×103 (106×) 1.3×104 (107×)
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Figure 1: Comparison of communication rounds required by Ferret, FedKSeed, and FedAvg for
convergence on Natural Instructions with (a) DataJuicer-1.3B and (b) LLaMA-3B, and (c) comparison
on GSM8K with LLaMA2-7B.

In Fig. 1, we also compare the convergence speeds of Ferret with other baselines (e.g., FedKSeed
and FedAvg) on Natural Instructions (with DataJuicer-1.3B and LLaMA-3B) and on GSM8K (with
LLaMA2-7B). The findings show that, Ferret converges remarkably fast, requiring only two commu-
nication rounds in line with FedAvg compared to the 12 rounds needed by FedKSeed. This results in
a 20× reduction in communication round complexity for both DataJuicer-1.3B and LLaMA-3B. Even
on larger models like LLaMA2-7B, Ferret maintains a comparable convergence speed to FedAvg,
which is still considerably faster than FedKSeed.

Overall, these results highlight the scalability of Ferret, as discussed in Sec. 4.3, and demonstrate its
ability to balance computational efficiency, communication overhead, and fast convergence.

6 CONCLUSION

In conclusion, our Ferret algorithm offers a highly desirable solution for the scalable, full-parameter
tuning of LLMs in federated environments. By achieving high computational efficiency, fast conver-
gence, and reduced communication overhead, Ferret overcomes the limitations of existing methods,
striking an improved balance among these critical factors. Moreover, our rigorous theoretical analyses
and extensive experiments validate Ferret as a robust and reliable approach for deploying LLMs in
large-scale federated settings.

REPRODUCIBILITY STATEMENT

Of note, due to limited space, we have provided the related work section in Appx. A. To ensure the
reproducibility of the theoretical analysis presented in this paper, we have included complete proofs
of all theorems and propositions in Appx. B. Additionally, we provide detailed descriptions of the
experimental settings and comprehensive ablation studies in Appx. C.
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APPENDIX A RELATED WORK

Federated PEFT for LLMs. The field of federated learning (FL) has gained significant traction
in its application to the fine-tuning of large language models (LLMs). Traditional FL approaches
in this domain (Zhang et al., 2023; Kuang et al., 2024; Zhang et al., 2024a; Kuang et al., 2023)
have predominantly focused on parameter-efficient fine-tuning (PEFT) techniques (Hu et al., 2022;
Wei et al., 2024; Lester et al., 2021; Lin et al., 2024; Hu et al., 2024), which reduce the number of
trainable parameters in LLMs to mitigate the extensive communication overheads in FL scenarios.
Unfortunately, while PEFT methods such as those proposed in (Kuang et al., 2024; Zhang et al.,
2024a) have shown promise, they often fall short in achieving the accuracy levels possible with
full-parameter tuning (Pu et al., 2023), particularly in non-IID (non-independent and identically
distributed) data settings commonly encountered in FL. In contrast, this paper focuses on federated
full-parameter tuning of LLMs, aiming to achieve significantly reduced communication overhead
while maintaining competitive model accuracy.

Federated Learning with Shared Randomness. Several approaches leveraging shared randomness
have been proposed to enhance communication efficiency in FL. Methods including (Qin et al., 2024;
Xu et al., 2023; Maritan et al., 2023; Feng et al., 2023; Dorfman et al., 2023; Zelikman et al., 2023;
Rahimi et al., 2024) demonstrate that by transmitting only a limited set of random seeds and scalar
gradients, communication overhead can be drastically reduced. However, these methods rely on
zeroth-order optimization (ZOO) for their local updates on each client. This reliance often results in
poor scalability, as these methods require substantial computational costs per round to achieve the
same local update progress and a larger number of communication rounds to converge compared
with their first-order counterparts, such as FedAvg (McMahan et al., 2017) and FedProx (Li et al.,
2020). This limitation therefore becomes a bottleneck in large-scale federated environments. In
contrast, our paper introduces the use of shared randomness within first-order FL, aiming to improve
both computational and communication-round efficiency of zeroth-order FL. To the best of our
knowledge, this is the first time that shared randomness has been introduced in first-order FL to
reduce communication overhead.

APPENDIX B PROOFS

B.1 PROOF OF THM. 1

Suppose v is randomly and independently sampled from a truncated normal distribution, i.e., v ∼
N (0, 1) with v ∈ [−1/

√
d, 1/
√
d], we have

E [v] = 0 , (9)

and also

E
[
v2
]
= (E [v])2 + VAR(v)

= VAR(v)

= 1− 1/
√
d(ψ(1/

√
d) + ψ(−1/

√
d))

Φ(1/
√
d)− Φ(−1/

√
d)

−

(
ψ(1/

√
d)− ψ(−1/

√
d)

Φ(1/
√
d)− Φ(−1/

√
d)

)2

= 1− 2ψ(1/
√
d)/
√
d

2Φ(1/
√
d)− 1

(10)

where ψ( 1√
d
) and Φ( 1√

d
) is the probability density function (PDF) and cumulative distribution

function (CDF) of the standard normal distribution evaluated at 1/
√
d, respectively.
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According to Sec. 3.2, each element v in V is randomly and independently sampled from the truncated
normal distribution above. We therefore have the following to conclude our proof:

E
[
∆̃
]
=

1

ρK
E
[
VV⊤

]
∆

=
1

ρK
E

[
K∑
k=1

vkv
⊤
k

]
∆

= ∆ .

(11)

B.2 PROOF OF THM. 2

To begin with, we introduce the lemma below to ease our proof.

Lemma 1 (Matrix Bernstein Inequality, Thm. 1.6.2 in (Tropp et al., 2015)). Let X1, · · · ,XK be
independent, zero mean, and symmetry matrices of size d× d, if ∥Xk∥ ≤ C for any k ∈ [K], we then
have

E

[∥∥∥∥∥
K∑
k=1

Xk

∥∥∥∥∥
]
≤
√
2ν ln(2d) +

1

3
C ln(2d) (12)

where ν ≜
∥∥∥∑K

k=1 E
[
X2
k

]∥∥∥.

Define Xk ≜
(
vkv

⊤
k − ρId

)
/K, We have

∥Xk∥
(a)
=

1

K

∥∥∥vkv⊤
k − ρId

∥∥∥
(b)

≤ 1

K

(∥∥∥vkv⊤
k

∥∥∥+ ρ ∥Id∥
)

(c)
=

1

K

(∥∥∥v⊤
k vk

∥∥∥+ ρ
)

(d)

≤ 2

K

(13)

where (b) comes from triangle inequality and (c) is due to the fact that outer product vkv
⊤
k and inner

product v⊤
k vk shares the same operator norm. Finally, (d) results from ρ < 1 and v⊤

k vk ≤ 1.

Besides, we also have

E
[
X2
k

]
(a)
=

1

K2E
[
vkv

⊤
k vkv

⊤
k − 2ρvkv

⊤
k + ρ2Id

]
(b)

⪯ 1

K2E
[
vkv

⊤
k − 2ρvkv

⊤
k + ρ2Id

]
(c)
=

1

K2

(
ρ− ρ2

)
Id

(d)

⪯ ρ

K2 Id

(14)

where (b) comes from the fact that v⊤
k vk ≤ 1 and (c) is due to the fact that E

[
vkv

⊤
k

]
= ρId.

As a result, by introducing the results above with a triangle inequality, we have∥∥∥∥∥
K∑
k=1

E
[
X2
k

]∥∥∥∥∥ ≤
K∑
k=1

∥∥∥∥ ρ

K2 Id

∥∥∥∥
≤ ρ

K
.

(15)
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By introducing the results above into Lemma. 1,

E
[∥∥∥∆̃−∆

∥∥∥] = E
[∥∥∥∥ 1

ρK
VV⊤∆−∆

∥∥∥∥]
≤ E

[∥∥∥∥ 1

ρK
VV⊤ − Id

∥∥∥∥] ∥∆∥
=

1

ρ
E

[∥∥∥∥∥
K∑
k=1

Xk

∥∥∥∥∥
]
∥∆∥

≤

√
2 ln(2d)

ρK
+

ln(2d)

ρK
,

(16)

which finally concludes our proof.

Remark 1. Sampling from a truncated normal distribution (rather than a standard normal distribution)
ensures a bounded norm, which is crucial for achieving a bounded reconstruction error by our method
in Sec. 3.2.

B.3 PROOF OF THM. 3

Since the loss function ℓ(·; ·) is assumed to be β-smooth w.r.t its first argument, we then have

ℓ(w + ϵvk;x
(i))− ℓ(w;x(i)) ≤ ϵ

(
∇ℓ(w;x(i))

)⊤
vk +

1

2
βϵ2 ∥vk∥

2

≤ ϵ
(
∇ℓ(w;x(i))

)⊤
vk +

1

2
βϵ2 .

(17)

By dividing ϵ on both sides of the inequality above, we have

gk − v⊤
k ∇ℓ(w;x(i)) ≤ 1

2
βϵ . (18)

We therefore can conclude our proof using the results below:

∥∥∥∥ 1

K
Vg − 1

K
VV⊤∇ℓ(w;x(i))

∥∥∥∥ (a)
=

∥∥∥∥∥ 1

K

K∑
k=1

(
vkgk − vkv

⊤
k ∇ℓ(w;x(i))

)∥∥∥∥∥
(b)

≤ 1

K

K∑
k=1

∥∥∥vkgk − vkv
⊤
k ∇ℓ(w;x(i))

∥∥∥
(c)

≤ 1

K

K∑
k=1

∣∣∣gk − v⊤
k ∇ℓ(w;x(i))

∣∣∣ ∥vk∥
(d)

≤ 1

2
βϵ

(19)

where (b) comes from triangle inequality and (d) results from (18) and ∥vk∥ ≤ 1.

Remark 2. When ϵ → 0, (18) indicates that gk = v⊤
k ∇ℓ(w;x(i)), implying that this scalar

gradient in zeroth-order method, e.g., FedKSeed (Qin et al., 2024), is an approximation of directional
derivative, i.e., our projected update in (6) when ∆ is replaced with∇ℓ(w;x(i)).
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B.4 PROOF OF PROP. 1

Due to the fact that d =
∑
l∈[L] dl, K =

∑
l∈[L]Kl, and Kl > 0 for any l ∈ [L], we have

dK =

∑
l∈[L]

dl

∑
l∈[L]

Kl


=
∑
l∈[L]

dl

∑
l∈[L]

Kl


>
∑
l∈[L]

dlKl ,

which therefore concludes our proof.

B.5 PROOF OF PROP. 2

Based on our block-wise reconstruction in (8) and Thm. 2, we have

E
[∥∥∥∆̃−∆

∥∥∥] (a)
= E

√√√√∑
l∈[L]

∥∥∥∆̃l −∆l

∥∥∥2


(b)
< E


√√√√√(∑

l∈[L]

∥∥∥∆̃l −∆l

∥∥∥)2


(c)
=
∑
l∈[L]

E
[∥∥∥∆̃l −∆l

∥∥∥]
(d)

≤
∑
l∈[L]

(√
2 ln(2dl)

ρlKl

+
ln(2dl)

ρlKl

)
∥∆l∥

(20)

where (a) is based on the definition of ∆̃l and ∆l and (b) is from the fact that
∥∥∥∆̃l −∆l

∥∥∥ > 0.

Given that
√
dl > Kl and we can then use Õ to hide the logarithm term in the result above, the

following then holds:

E
[∥∥∥∆̃−∆

∥∥∥] < Õ
∑
l∈[L]

∥∆l∥
ρlKl

 . (21)

To minimize the upper bound above w.r.t {Kl}
L
l=1 with

∑
l∈[L]Kl = K, we resort to KKT conditions.

Specifically, define k ≜ [K1, · · · ,KL]
⊤ and the following Lagrangian function based on λ > 0:

F (k, λ) ≜
∑
l∈[L]

∥∆l∥
ρlKl

+ λ

∑
l∈[L]

Kl −K

 . (22)

To minimize (21), for any l ∈ [L], Kl and λ then needs to satisfy the following condition:
∂F (k, λ)

∂Kl

= −∥∆l∥ /ρl
K2
l

+ λ = 0 . (23)

That is,

λ =
∥∆1∥ /ρ1
K2

1

= · · · = ∥∆L∥ /ρL
K2
L

. (24)

This finally leads to Kl ∝
√
∥∆L∥ /ρL, which consequently concludes our proof.
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Remark 3. Prop. 2 provides a looser bound than Thm. 2, primarily owing to the inequality (b) in
(20). Based on this looser bound, one might expect that block-wise reconstruction would incur a
larger error compared to the vanilla reconstruction in (7). However, empirical results in Appx. C.4
and Appx. C.5 show that block-wise reconstruction yields comparable performance to the vanilla
approach.

B.6 PROOF OF THM. 4

Of note, we follow the general idea in (Shu et al., 2024) to prove the convergence of Ferret. To begin
with, we introduce the following lemmas borrowed from (Shu et al., 2024):

Lemma 2. Let {u1, . . . ,uτ} be any τ vectors in Rd. Then the following holds for any a > 0:

∥ui∥
∥∥uj∥∥ ≤ a

2
∥ui∥

2
+

1

2a

∥∥uj∥∥2 , (25)∥∥ui + uj
∥∥2 ≤ (1 + a) ∥ui∥

2
+

(
1 +

1

a

)∥∥uj∥∥2 , (26)∥∥∥∥∥
τ∑
i=1

ui

∥∥∥∥∥
2

≤ τ
τ∑
i=1

∥ui∥
2
. (27)

Lemma 3. For any β-smooth function f , inputs x,y in the domain of f , the following holds for any
constant η > 0:

∥x− η∇f(x)− y + η∇f(y)∥2 ≤ (1 + ηβ)2∥x− y∥2 .

Let η ≤ 1/(Tβ), we can bound the discrepancy between w
(i)
r,t and wr for any client i as below

E
[∥∥∥w(i)

r,t −wr

∥∥∥2]
(a)
= E

[∥∥∥w(i)
r,t−1 − η∇ℓ(w

(i)
r,t−1;x

(i)
r,t−1)−wr

∥∥∥2]
(b)
= E

[∥∥∥w(i)
r,t−1 − η∇L(w

(i)
r,t−1) + η∇L(wr)−wr + η

(
∇L(w(i)

r,t−1)−∇L
(i)(w

(i)
r,t−1)

)
+η
(
∇L(i)(w

(i)
r,t−1)−∇ℓ(w

(i)
r,t−1;x

(i)
r,t−1)−∇L(wr)

)∥∥∥2]
(c)

≤ T

T − 1
E
[∥∥∥w(i)

r,t−1 − η∇L(w
(i)
r,t−1) + η∇L(wr)−wr

∥∥∥2]
+ 2η2T E

[∥∥∥∇L(i)(w
(i)
r,t−1)−∇ℓ(w

(i)
r,t−1;x

(i)
r,t−1)

∥∥∥2 + ∥∇L(wr)∥
2

]
(d)

≤ T (1 + ηβ)2

T − 1
E
[∥∥∥w(i)

r,t−1 −wr

∥∥∥2]+ 2η2Tσ2 + 2η2T ∥∇L(wr)∥
2

(e)

≤ 24η2T 2σ2 + 24η2T 2 ∥∇L(wr)∥
2

(28)

where (a) is from the local update of w(i)
r,t−1 on each client i, and (c) is based on (26) in Lemma 2

with a = 1/(T − 1) and L(w(i)
r,t−1) = L(i)(w

(i)
r,t−1). Besides, (d) results from Lemma 3 and

the assumption that E[∥∇L(i)(w) − ℓ(w;x)∥2] ≤ σ2. Finally, (e) comes from the summation of
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geometric series and the fact that ηβ ≤ 1/T as well as

t−1∑
τ=0

(
(T + 1)2

T (T − 1)

)τ
≤
T−1∑
τ=0

(
(T + 1)2

T (T − 1)

)τ

=

(
(T + 1)2/[T (T − 1)]

)T
− 1

(T + 1)2/[T (T − 1)]− 1

=
T (T − 1)

3T + 1

((
1 +

3T + 1

T (T − 1)

)T
− 1

)

<
T (T − 1)

3T + 1

(
exp

(
3T + 1

T

)
− 1

)
<
T

3

(
exp

(
7

2

)
− 1

)
< 12T .

(29)

Besides E
[
VrV

⊤
r

]
= ρId, one can also verify that E

[
VrV

⊤
r VrV

⊤
r

]
= ρ2Id, we therefore have

E
[
∥wr+1 −wr∥

2
]

= E
[
(wr+1 −wr)

⊤
(wr+1 −wr)

]
= E

( η

ρKN

)2
(

N∑
i=1

T∑
t=1

∇ℓ(w(i)
r,t−1;x

(i)
r,t−1)

)⊤

VrV
⊤
r VrV

⊤
r

N∑
i=1

T∑
t=1

∇ℓ(w(i)
r,t−1;x

(i)
r,t−1)


=

(
η

ρKN

)2

E

( N∑
i=1

T∑
t=1

∇ℓ(w(i)
r,t−1;x

(i)
r,t−1)

)⊤

E
[
VrV

⊤
r VrV

⊤
r

] N∑
i=1

T∑
t=1

∇ℓ(w(i)
r,t−1;x

(i)
r,t−1)


=
( η
N

)2
E

∥∥∥∥∥
N∑
i=1

T∑
t=1

∇ℓ(w(i)
r,t−1;x

(i)
r,t−1)

∥∥∥∥∥
2


≤ η2

N

N∑
i=1

E

∥∥∥∥∥
T∑
t=1

∇ℓ(w(i)
r,t−1;x

(i)
r,t−1)

∥∥∥∥∥
2


(30)
where the last inequality comes from the (27) in Lemma 2. Here, we omit the subscript r from the
random bases V in our notation for simplicity.

Since E
[∥∥∥w(i)

r,t −wr

∥∥∥2] = η2E
[∥∥∥∑t

τ=1∇ℓ(w
(i)
r,τ−1;x

(i)
r,τ−1)

∥∥∥2], by replacing τ with T , we have

E
[
∥wr+1 −wr∥

2
]
≤ 24η2T 2σ2 + 24η2T 2 ∥∇L(wr)∥

2
. (31)
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Besides, since E [wr+1 −wr] = − η
N

∑N
i=1

∑T
t=1∇L

(i)(w
(i)
r,t−1), we have

E
[
∇L(wr)

⊤(wr+1 −wr)
]

(a)
= − η

N
E

[
N∑
i=1

T∑
t=1

∇L(wr)
⊤∇L(i)(w

(i)
r,t−1)

]
(b)
= − η

N
E

[
N∑
i=1

T∑
t=1

∇L(wr)
⊤
(
∇L(i)(w

(i)
r,t−1)−∇L(w

(i)
r,t−1) +∇L(w

(i)
r,t−1)−∇L(wr) +∇L(wr)

)]
(c)

≤ η

N

N∑
i=1

T∑
t=1

(
ηβT ∥∇L(wr)∥

2
+

β

4ηT
E
[∥∥∥w(i)

r,t−1 −wr

∥∥∥2])− ηT ∥∇L(wr)∥
2

(d)

≤ (7η2T 2β − ηT ) ∥∇L(wr)∥
2
+ 6η2T 2βσ2

(32)
where (c) comes from Cauchy–Schwarz inequality and the fact that L(w(i)

r,t−1) = L
(i)(w

(i)
r,t−1). In

addition, (d) results from (31).

Finally, based on the assumption that L is β-smooth, we naturally have

E [L(wr+1)− L(wr)] ≤ E
[
∇L(wr)

⊤ (wr+1 −wr)
]
+
β

2
E
[
∥wr+1 −wr∥

2
]

≤ (19η2T 2β − ηT )E
[
∥∇L(wr)∥

2
]
+ 18η2T 2βσ2 .

(33)

By rearranging and letting η ≤ 1
20Tβ , we have

E
[
∥∇L(wr)∥

2
]
≤ 20 E [L(wr)− L(wr+1)]

ηT
+ 360ηTβσ2 , (34)

Finally, by summarizing both sides over R rounds and scaling them with 1/R, we have the following
results to conclude our proof:

min
r∈[R)

E
[
∥∇L(wr)∥

2
]
≤ 20 (L(w0)−minw L(w))

ηTR
+ 360ηβTσ2 . (35)

Remark 4. Note that the large constant in (35) arises from our bound in (28) for sufficiently large T .
This bound can be improved in practice by considering a smaller T instead.
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APPENDIX C EXPERIMENTS

C.1 EXPERIMENTAL SETUP

Baselines. In line with the comparison in (Qin et al., 2024), we selected four practical methods for
federated LLM tuning as our baselines: (1) FedPTuning (Kuang et al., 2024), (2) FedPrompt (Kuang
et al., 2023), (3) FedIT (Zhang et al., 2024a), and (4) FedIT-SGD, a variant of FedIT that replaces
Adam with SGD. In addition, we included four full-parameter tuning methods for comparison: (1)
FedAvg (McMahan et al., 2017), (2) FedZO (Fang et al., 2022), (3) FedMeZO, a hybrid of FedAvg
and MeZO (Malladi et al., 2023), and (4) FedKSeed (Qin et al., 2024).

C.1.1 SETUP ON THE NATURAL INSTRUCTION AND DOLLY-15K DATASETS

Datasets. We conducted our experiments using the Natural Instructions (NI) (Wang et al., 2022)
and Dolly-15K (Conover et al., 2023) datasets, following a setup similar to (Qin et al., 2024). For the
NI dataset, we allocated 738 training tasks to individual clients for local updates and reserved 119 test
tasks for global evaluation, reflecting a non-IID distribution. Meanwhile, for the Dolly-15K dataset,
the final task was utilized for global evaluation, while the remaining tasks were distributed among
200 clients with varying levels of label distribution skew. Rouge-L (Lin, 2004) was chosen as the
evaluation metric. Given our resource constraints, we selected DataJuicer-1.3B (Chen et al., 2023) and
LLaMA-3B (Touvron et al., 2023a) as the base models for our study. The corresponding HuggingFace
model paths are “datajuicer/LLaMA-1B-dj-refine-150B” and “openlm-research/open llama 3b”.

FL Settings. In each round of federated learning, 5% of clients were randomly selected to par-
ticipate. Following the same practice in FedKSeed (Qin et al., 2024), we set the total number of
communication rounds to 40 for the NI dataset and 60 for Dolly-15K for all baselines. Due to the
compelling efficiency of our method, we set the total number of communication rounds to 12 for the
NI dataset and 20 for Dolly-15K for Ferret. First-order baselines trained locally for one epoch, and
FedKSeed trained for 200 steps, while our Ferret algorithm trained for 10 iterations (i.e., T = 10
in Algo. 1). The K value was set to 4096 for FedKSeed. All approaches perform local update
with a batchsize of 1 to reduce memory consumption. For each local update iteration in Ferret, we
accumulate the gradients from 4 samples.

Hyper-parameters. For Ferret, the local update learning rate η for each client is set to 1× 10−4,
where the selected learning rate is searched from [2 × 10−4, 1 × 10−4, 5 × 10−5]. The global
aggregation learning rates on Natural Instruction and Dolly-15K are set to 10.0 and 3.0, respectively,
which is search from [10.0, 5.0, 1.0]. For other baselines in Tab. 1 of our main paper, we reported
their accuracy performances using the results from FedKSeed (Qin et al., 2024).

Prompt Template. In our experiments, the raw input data is pre-processed to follow a structured
format, where we warp the input text to the Alpaca prompt template (Taori et al., 2023). The
corresponding templates for the NI and Dolly-15K dataset are shown in Table 6 and 7.

Table 6: Prompt template for Natural Instructions.

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.

### Instruction: {De�nition}

### Input: {input}

### Response:
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Table 7: Prompt template for Dolly-15K. If some data instances do not have the context attribute, we
will discard the line “### Input: ” in the template.

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.

### Instruction: {instruction}

### Input: {context}

### Response:

C.1.2 SETUP ON THE CODEALPACA AND GSM8K DATASETS

Datasets. To further demonstrate that Ferret can also improve the capability of larger LLMs for
code generation and mathematical reasoning, we conducted more experiments using the CodeAl-
paca (Chaudhary, 2023) and GSM8K (Cobbe et al., 2021) datasets, following a similar federated setup.
The CodeAlpaca dataset (of around 8.0k samples) is a code dataset that consists of ten programming
languages, including C, C#, C++, Go, Java, PHP, Pascal, Python, Scale, and X86-64 Assemble. We
exclude the X86-64 Assembly data due to limited samples in the dataset. We uniformly randomly
sampled 10% instances from the original data as the hold-out test set for evaluation, and we split the
remaining 10% samples into nine subsets based on the programming language category and assign
each subset to one client as its local training data. For GSM8K, its official train set is split into three
subsets, where each client’s dataset consists of grade school math questions randomly partitioned
from the original dataset, forming a IID distribution. We use the official GSM8K test split as the
evaluation dataset. Rouge-L (Lin, 2004) was chosen as the evaluation metric. To demonstrate the
scalability of Ferret, we extended the experiments to larger models: LLaMA2-7B and LLaMA2-13B
(Touvron et al., 2023a) as the base models for our study. The corresponding HuggingFace model
paths are “meta-llama/Llama-2-7b-hf” and “meta-llama/Llama-2-13b-hf”.

FL Settings. Due to the computing constraints, we set the total number of communication rounds
to 20 for both CodeAlpaca and GSM8K for all methods. The K value was set to 4096 for FedKSeed
as the same as before. Zeroth-order baselines are trained locally for 200 steps, while FedAvg and
Ferret are trained for 10 iterations with accumulating the gradients from 4 samples. All approaches
perform local updates with a batch size of 1 to reduce memory consumption.

Hyper-parameters. For FedZO and FedKSeed, the local update learning rate is set to 3× 10−7 for
all models. For FedAvg on both LLaMA2-7B and LLaMA2-13B, the local update learning rate η for
each client is set to 3× 10−4, and the global aggregation learning rate is set to 1.0. For Ferret on
LLaMA2-7B, the local update learning rate η is set to 3× 10−4 and the global aggregation learning
rate is set to 5.0. For Ferret on LLaMA2-13B, the local update learning rate η is set to 5 × 10−4

and the global aggregation learning rate is set to 10.0. The selected learning rate is searched from
[5× 10−4, 3× 10−4, 1× 10−4] and the selected global aggregation learning rates is searched from
[10.0, 5.0, 1.0].

C.2 CALCULATION OF COMPUTATIONAL COST AND COMMUNICATION OVERHEAD

In this subsection, we provide the details of how the computational cost and communication cost are
calculated for all methods listed in Tab. 4.

Calculation of Computational Cost. For FedZO, we follow the same hyper-parameters (b1 =
200, b2 = 1) for FedZO from FedKSeed paper (Qin et al., 2024), which employs 200 local update
steps and 1 perturbation for each local update step. For calculating the computational cost of FedAvg
and Ferret, we apply 10 local update steps for each client. Same as our experimental setting in Tab. 1,
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Table 8: Comparison of computational cost and communication overhead on LLaMA2-13B, focusing
on (a) the computational costs from local updates, global aggregation, and the overall tuning process;
and (b) the per-round and overall communication costs. The improvement achieved by our Ferret is
reported in brackets using blue (compared with FedKSeed) and orange (compared with FedAvg).

Algorithm Computational Cost (Sec.) Communication Cost (# param.)

Local Update Global Aggr. Overall Per-Round Overall

FedZO 114.1 25.7 2.8×103 2.6×1010 5.2×1011

FedKSeed 188.4 666.2 1.7×104 8.2×103 1.6×105

FedAvg 24.9 25.7 1.0×103 2.6×1010 5.2×1011

Ferret (ours) 19.2 (9.8×) 169.4 (3.9×) 3.8×103 (4.5×) 7.6×103 (106×) 1.5×104 (107×)

the batch size is set to 1 for all methods. The time cost incurred at gradient projection is also included
in the Local Update.

In the global aggregation process for both FedZO and FedAvg, raw gradients from all clients are
averaged and then used to update the global model. In contrast, for FedKSeed and Ferret, the
projected gradients are first aggregated through averaging, then reconstructed, and finally used to
update the global model.

For the overall computation cost, we follow the calculation below:

Overall = (Local Update + Global Aggr.)×R.

Calculation of Communication Overhead. The per-round communication cost refers to the total
number of parameters exchanged between a client and the central server during a single round. This
includes both the raw or projected gradients that the client sends to the server and the aggregated
gradients that the client receives from the server. Each parameter (or projected gradient) is encoded
as 16-bit floating point numbers. In accordance with the practice in FedKSeed, we set the number of
rounds R to 40 for both FedZO and FedKSeed. Given the notable convergence rate of Ferret, we set
R to 12 for both Ferret and FedAvg. Although (Qin et al., 2024) employs R = 40 for FedAvg, we
use R = 12 to provide a strong basis for comparison and to highlight the computational efficiency of
Ferret.

For the overall communication cost, we follow the calculation below:

Overall = Per-Round×R.

C.3 MORE COMPARISON OF COMPUTATIONAL COST AND COMMUNICATION OVERHEAD

Table 8 compares the computational cost and communication overhead of LLaMA2-13B using the
GSM8K dataset. Because of GPU memory constraints, FedZO and FedAvg have slightly higher
computational costs, as gradients need to be stored on the CPU. The results show that even for large
models like LLaMA2-13B, Ferret still demonstrates superior scalability. Compared to FedKSeed,
Ferret reduces computational costs significantly: 9.8× for local updates, 3.9× for global aggregation,
and 4.5× for overall tuning cost. Additionally, compared to FedAvg, which does not utilize shared
randomness, Ferret achieves a dramatic 107× reduction in communication costs. These results, along
with the evidence in Sec. 5, further highlight the scalability of Ferret in federated full-parameter
tuning.

C.4 ABLATION STUDIES ON RECONSTRUCTION

Rate of 1/ρ w.r.t Dimension d. In Fig. 2, we present the rate of 1/ρ where ρ is defined in Sec. 3.2
to verify our claim following Thm. 2. The results in Fig. 2 confirm that 1/ρ indeed follows a rate of
O(d).

Comparison of Reconstruction Accuracy between Ferret and ZO Method. In Fig. 3, we present
the reconstruction accuracy (measured by cosine similarity) for the d = 105-dimensional gradient of
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Figure 2: Rate of 1/ρ w.r.t. dimension d.
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Figure 3: Reconstruction accuracy of our (8) vs.
zeroth-order method under varying K and ϵ.
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Figure 4: Reconstruction Accuracy (measured by cosine similarity between reconstruction and ground
truth) of our (8) vs. zeroth-order method under varying T , d, and L.

the function F (x) =
∑d
i=1 x

2
i at a randomly sampled input x with varying K by using our method

in (7) and zeroth-order method with different values of ϵ. The goal is to compare the reconstruction
accuracy of our (7) with that of the ZO method under varying K and ϵ. The results in Fig. 3 indicate
that: (a) our method (7) achieves improved reconstruction accuracy compared to the ZO method,
particularly the one with an optimal ϵ = 0.1, which indeed aligns with the insights from our Thm. 3;
(b) both our method (7) and the ZO method exhibit the same increasing rate in reconstruction accuracy
as K increases, highlighting the connection between these two methods as implied by our Thm. 3;
and (c) this increasing rate is generally linear, which is consistent with Thm. 2. These results therefore
further verify the insights in Thm. 2 and Thm. 3, and support the advantages of our method (7) over
the ZO method.

Reconstruction Accuracy of Ferret under Varying T . In Fig. 4 (a), we present the reconstruction
accuracy (measured by cosine similarity) of a T -iteration gradient descent update for the function
F (x) =

∑d
i=1 sin

2(xi) with a learning rate of 0.1, d = 5 × 104, L = 1, and K = 500, using our
method in (8) and the zeroth-order (ZO) method described in Thm. 3 with ϵ = 0.1. The goal is to
compare the accumulated error from our (8) with that of the ZO method. Interestingly, Fig. 4 (a)
shows that our method maintains consistent reconstruction accuracy as the number T of gradient
descent iterations increases, whereas the ZO method experiences a noticeable decline in accuracy.
This result implies that our (8) effectively avoids the accumulated error typical in zeroth-order
methods, aligning with the theoretical justification provided in Sec. 4.1.

Reconstruction Accuracy of Ferret under Varying d. In Fig. 4 (b), we show the reconstruction
accuracy (measured by cosine similarity) of d-dimensional gradient of F (x) =

∑d
i=1 sin

2(xi) at a
randomly sampled input x, with L = 1 and K = 500, using our method in (8) and the zeroth-order
(ZO) method described in Thm. 3 with ϵ = 0.1. The goal is to compare the reconstruction accuracy
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Figure 5: Convergence and generalization of Ferret under varying K on Natural Instructions with
DataJuicer-1.3B where 2K0 corresponds to the communication cost of 7.8×103 per round in Tab. 4.
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Figure 6: Convergence, generalization, and projection time cost per round of Ferret under varying L
on Natural Instructions with DataJuicer-1.3B where L = 194 is applied in our Tab. 2.

rate with respect to the dimension d between our (8) method and the ZO method. Interestingly, Fig. 4
(b) shows that both methods achieve the same reconstruction accuracy rate with respect to d. More
importantly, when d becomes large, the accuracy rate is approximately linear, which aligns with the
theoretical insights provided in Thm. 2.

Reconstruction Accuracy of Ferret under Varying L. In Fig. 4 (c), we present the reconstruction
accuracy (measured by cosine similarity) and computational complexity (measured by time cost) for
the d = 5.12× 105-dimensional gradient of function F (x) =

∑d
i=1 sin

2(xi) at a randomly sampled
input x, under varying L of the same number of dimensions and K = 512, using our method in
(8). The goal is to study the impact of block size L on our (8). Notably, Fig. 4 (c) shows that our
block-wise reconstruction (8) significantly reduces computational complexity (in line with Prop. 1),
while maintaining consistent reconstruction accuracy as L increases. These results further verify the
efficacy of our block-wise reconstruction (8).

C.5 ABLATION STUDIES ON CONVERGENCE AND GENERALIZATION

Convergence and Generalization of Ferret under Varying K. In Fig. 5, we present the con-
vergence and generalization of Ferret under varying K on the Natural Instructions dataset with
DataJuicer-1.3B, using the same experimental setup as described in Appx. C.1. Notably, Fig. 5 shows
that: (a) a larger number of random bases (i.e., a larger K0) generally leads to improved convergence,
while the generalization performance remains comparable; (b) 2K0 already provides compelling
convergence and generalization performance, and further increasing K yields only marginal improve-
ments in convergence; and (c) a slight decrease in generalization performance as K increases is likely
due to the reduced regularization effect from noisy gradients.
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Figure 7: Convergence and generalization of Ferret under varying optimizers for local updates.
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Figure 8: Convergence and generalization of Ferret under varying allocation scheme of K for our
block-wise reconstruction, in which Kl ∝ ∥∆l∥ corresponds to our results in Sec. 5.

Convergence and Generalization of Ferret under Varying L. In Fig. 6, we present the con-
vergence, generalization, and projection time cost of Ferret under varying block sizes L on the
Natural Instructions dataset with DataJuicer-1.3B, using the same experimental setup as described in
Appx. 21. Notably, Fig. 6 shows that increasing the number of blocks (i.e., a larger L) leads to im-
proved convergence and reduced time cost for projection and reconstruction, while the generalization
performance remains comparable. This improved convergence is likely due to the logarithmic term in
the reconstruction error of our (7), as a larger number of blocks reduces the dimensionality of each
block, thereby minimizing reconstruction error. In addition, the reduced time cost aligns with our
analysis in Sec. 4.1 and the empirical results shown in Fig. 4(c), further highlighting the efficacy of
our block-wise reconstruction method (8).

Convergence and Generalization of Ferret under Varying Optimizers. In Fig. 7, we present the
convergence and generalization of Ferret under different optimizers for its local updates, using the
same experimental setup described in Appx. C.1. Notably, Fig. 7 demonstrates that Ferret achieves
faster convergence with an improved optimizer (e.g., Adam vs. SGD) while maintaining comparable
generalization performance. These findings further support the adaptability of Ferret, as discussed in
Sec. 4.3.

Convergence and Generalization of Ferret under Varying Allocation of K. In Fig. 8, we
present the convergence and generalization of Ferret under different allocation schemes for K in
our block-wise reconstruction, using the same experimental setup described in Appx. C.1, where
Kl ∝ ∥∆l∥ corresponds to our results in Sec. 5. Notably, Fig. 7 shows that Ferret achieves both
faster convergence and improved generalization performance by following the best practices guided
by Prop. 2. These findings therefore validate the significance and correctness of our Prop. 2.
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