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Abstract. Comparison table is an efficient tool for comparing a small
number of entities for decision making to analyze the main similarities
and differences. The manual choice of their comparison features remains
a complex and tedious task. This paper presents Versus, which is the
first automatic method for generating comparison tables from knowledge
bases of the Semantic Web. For this purpose, we introduce the contextual
reference level to evaluate whether a feature is relevant to compare a set
of entities. This measure relies on contexts that are sets of entities similar
to the compared entities. Its principle is to favor the features whose values
for the compared entities are reference (or frequent) in these contexts.
We show how to select these contexts and how to efficiently evaluate
the contextual reference level from a public SPARQL endpoint limited
by a fair-use policy. Using our publicly available benchmark based on
Wikidata, the experiments show the interest of the contextual reference
level for identifying the features deemed relevant by users with high
precision and recall. In addition, the proposed optimizations significantly
reduce the execution time and the number of required queries.

1 Introduction

A comparison table is a double-entry table with entities that you want to com-
pare in columns and comparison features in rows. The comparison table is a
particularly useful tool for decision making by isolating the common points and
major differences between compared entities. Therefore, this analytical technique
is popular in science to compare works, in culture to compare art works or in
commerce to compare products or services. This paper aims to fully automate
the process of generating a comparison table of a set of entities by querying a
knowledge base available on the Semantic Web such as DBpedia [2], YAGO [13]
or Wikidata [16]. For instance, starting from Ada Lovelace and Alan Turing,
we want to obtain a comparison table like the one presented by Table 1 built
from Wikidata (the last column related to our method will be explained later).
Beyond people, we aim to compare any entities such as places (countries, cities),
objects (tapestries, statues), institutions (universities, political parties), events
(tournaments, festivals) and so on. Unfortunately, there is no theoretical frame-
work for the design of comparison tables to determine if a feature is interesting
for comparing entities. This task is non-trivial since in 17% of the cases a human
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evaluator does not know whether a feature is interesting or not (see Section 6.1
for details). In Table 1, it seems natural to use gender to compare two people.
Besides, specifying that Turing was a member of the Royal Society is only in-
teresting because two scientists are compared. Thus, the main challenge is to
formalize the notion of interesting comparison feature. In addition, we want to
benefit from the huge knowledge bases available on the Semantic Web, which
raise a problem of robustness and efficiency. Indeed, these knowledge bases are
relatively reliable but they most often suffer from incompleteness [10,18]. For
this reason, it would be desirable that a feature considered interesting at a given
moment remains so despite the subsequent addition of facts. For instance, in
Table 1, completing Ada Lovelace’s religion should not prevent the selection of
“religion” as a comparison feature. Furthermore, rather than centralizing the
data, we would like to directly query public SPARQL endpoints to build the
comparison tables. This has the advantage of guaranteeing an optimal level of
freshness. Nevertheless, the fair-use policy of these public endpoints, which cut
off queries that are too expensive, raises optimization needs [12].

Features Ada Lovelace Alan Turing crl

sex or gender female male 0.908
spoken language English English 0.472

member of Royal Society 0.205
field of work mathematics, com-

puting
mathematics, logic, cryptanalysis, cryp-
tography, computer science

0.110

manner of death natural causes suicide 0.100
religion ? atheism 0.015

Table 1. A comparison table of Ada Lovelace and Alan Turing as running example

Along these lines, we investigate the first fully-automatic method for gener-
ating comparison tables for a particular set of entities without any information
other than the knowledge base (meaning no manually-specified comparison fea-
tures). Our entity-centric approach leads to the following contributions:

– We define a new interestingness measure, called contextual reference level, in
order to judge if a feature is relevant for comparing a given set of entities.
Its principle is to favor the reference features whose values are often used by
other sets of similar entities, called contexts.

– We show with Versus how to select the contexts and how to efficiently
evaluate the contextual reference level of a feature while minimizing the
number of knowledge base queries. The idea is to estimate bounds and to
interrupt the computation as soon as its interest is guaranteed or not.

– We evaluate Versus on a publicly available benchmark, named Compar-
ison Feature Benchmark (CFB), that we developed to assess the quality
of comparison features. It relies on comparison tables built from Wikidata
and manually evaluated. On this benchmark, the contextual reference level
leads, with equal precision, to better recall and better accuracy than the
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state-of-the-art baselines including automatic facet generation. In addition,
our optimized evaluation is significantly faster as it requires fewer queries.

The rest of the paper is organized as follows. Section 2 presents related work.
Section 3 formalizes our problem. We introduce the contextual reference level
and the Versus algorithm in Sections 4 and 5. The experiments in Section 6
evaluate the approach qualitatively and quantitatively.

2 Related Work

To the best of our knowledge, there is no work to build a comparison table of
a set of entities. We could resort to machine learning methods that learn to
rank RDF properties [4]. Unfortunately, it would be difficult to gather feedback
specific to our problem to build a training dataset. Besides, as the ranking of the
properties depends on the compared entities (for example, located in is relevant
for only 84.3% of comparison tables in our benchmark), this would require the
construction of a training dataset of considerable size to cover all cases.

Most techniques that compare two entities in a knowledge base rely on a sim-
ilarity measure [1,3]. Such measures are relevant for estimating the resemblance
between two entities, but they do not explicitly give the comparison features [14].
In this direction, [9] builds relation paths in knowledge bases between two enti-
ties to identify all similarities and differences. Unfortunately, no interestingness
measure filters out irrelevant paths leading to too many attributes (including ir-
relevant ones like identifiers). The tasks closest to ours are the infobox template
generation [11,17] and the facet extraction [5,6,8,15]. First, an infobox is a set
of attribute-value pairs describing an entity. The choice of attributes is based on
a template defined for each class (grouping a set of entities). For instance, per-
sons1 are described by their name, birth date, nationality, highlights and so on.
Many templates have been produced collaboratively by Wikipedia contributors,
but methods have also been proposed to automatically refine these templates
for more specific classes [11,17]. More recently, [11] proposed an unsupervised
metric-based method that favors frequent attributes with popular values with
respect to the PageRank. Unfortunately, as for [9], most of the attributes of the
infoboxes describe one entity in a singular way and therefore cannot be used to
compare several entities. For instance, image or notable works are not features
that can be shared by two persons.

Second, faceted search consists of restricting a collection of entities by select-
ing only those with a certain value for a given attribute, called facet [15]. A rel-
evant facet has frequently shared values among the observed entities. Typically,
facets are temporal (publication date, birth date), spatial (conference location,
birth place), personal (author, friend), material (subject, color) or energetic (ac-
tivity, action) attributes [15]. There are a few automatic facet extraction meth-
ods. For a given class, [6] extracts from the infobox templates the attributes
whose values are frequently observed. Similarly, [8] measures the quality of an

1 https://en.wikipedia.org/wiki/Template:Infobox_person

https://en.wikipedia.org/wiki/Template:Infobox_person
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attribute by favoring frequently used attributes whose values are few and uni-
formly distributed. Recently, [5] proposes very similar measures to extract facets
but a preprocessing method groups the quantitative values (which we do not
consider in this paper) and a postprocessing method filters out the redundant
facets. These methods mainly derive attributes for a limited number of classes
containing a lot of entities. Evaluating very similar entities (like Ada Lovelace
and Alan Turing) requires considering smaller groups of much more specific en-
tities (e.g., persons employed by the University of Cambridge). Therefore, the
main limitation of automatic facet extraction methods is to miss some very spe-
cific but very relevant features. Finally, unlike the facets used for navigation, it
does not matter if a comparison feature has a lot of values in the knowledge base
with an unbalanced distribution.

3 Problem Statement

A knowledge base on a set of relations R and a set of constants E (representing
entities and values) is a set of facts K ⊆ R × E × E . We write the facts in the
form r(s, o) ∈ K, where r is the relation, s is the subject and o is the object. For
instance, religion(Turing, atheism) indicates that Alan Turing was an atheist2.
Given a relation r, r−1(s, o) ∈ K means that r(o, s) ∈ K where r−1 is the inverse
relation of r. Besides, rK(s) (or more simply, r(s) when the knowledge base
K is clear) is the set of objects associated to the subject s for the relation r
in K. For instance, field of work(Turing) returns the set {mathematics, logic,
computer science, cryptanalysis, cryptography}.

The notion of comparison table is formalized as follows:

Definition 1 (Comparison table). Given a knowledge base K, the compari-
son table of a set of entities E ⊆ E by a set of features F ⊆ R is a table with
|F | rows and |E| columns where each cell intersecting a feature f and an entity
e contains the values f(e) = {o ∈ E : f(e, o) ∈ K}.

Definition 1 limits the comparison features to the relations of the compared
entities. With this definition, to use relation paths [5,9] of greater length (such as
“the country of the birth place”), it would be necessary to enrich the knowledge
base (which we do not consider in this paper). Table 1 illustrates Definition 1 with
the comparison table of the set of entities E = {Lovelace, Turing} by the set of
features F = {sex or gender, spoken language, . . . }. The cell at the intersection
of field of work and Turing contains the values field of work(Turing).

An interestingness measure m : R × 2E × 2(R×E×E) → [0, 1] evaluates the
interest m(f,E,K) of using the relation f as a feature for comparing the entities
of E in the knowledge base K.

Definition 2 (Interesting feature). Given a KB K, a set of entities E ⊆ E,
an interestingness measure m : R × 2E × 2(R×E×E) → [0, 1] and a threshold
γ ∈ [0, 1], an interesting feature f ∈ R (for m and γ) satisfies m(f,E,K) ≥ γ.

2 The Typewriter font denotes the literals from Wikidata that are used as illustrations.
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Given a KB K, a set of entities E, an interestingness measure m
and a threshold γ, we aim at extracting all the interesting features
F = {f ∈ R : m(f,E,K) ≥ γ}F = {f ∈ R : m(f,E,K) ≥ γ}F = {f ∈ R : m(f,E,K) ≥ γ} to build a comparison table of E by F .

For this purpose, we have to address two challenges. The first challenge con-
sists in defining an interestingness measure that estimates the relevance of a
feature from a knowledge base (see Section 4). The second challenge is to ef-
ficiently evaluate this measure by minimizing the number of SPARQL queries
(see Section 5).

4 Contextual Reference Level of a Feature

4.1 Definition

Intuitively, to understand and to be able to interpret a comparison table, a
feature is interesting if the values describing the compared entities are known by
the user. In psychology, it is well known that the user needs at least one reference
value to compare two values [14]. In particular, if these values are too rare (or
even only characterize one compared entity), the user of the table is unlikely to
know them because he has never been confronted with them. Sometimes such
values are informative, but they do not help to compare the entities with each
other. For instance, the place of burial of Ada Lovelace is Hucknall Church St
Mary Magdalene while that of Alan Turing is Woking Crematorium. There is
no particular conclusion to draw from this difference (except perhaps that Alan
Turing was atheist unlike Ada Lovelace, but the feature religion is much better
suited to underline this point). Of course, this notion of scarcity is dependent
on the compared entities. Even if there are only few people who are members
of the Royal Society, this feature makes sense to compare two persons employed
by the University of Cambridge. The key idea of our interestingness measure is
to evaluate the relevance of a feature according to entities that are similar to
the compared entities (for instance, those “being employed by Cambridge” or
those “speaking English” for Ada Lovelace and Alan Turing). We formalize this
intuition by introducing the notion of context:

Definition 3 (Context). Given a set of entities E ⊆ E and a relation-object
couple (r, o) ∈ R× E such that E ⊆ r−1(o), the context C for E stemming from
(r, o) is the set of entities r−1(o)\E. CE denotes the set of all contexts for E.

Intuitively, a context C is a set of entities that are similar but different
from the entities of E with respect to a relation-object couple (r, o) shared by
all the entities of E. For the comparison table provided by Table 1, an exam-
ple of context is the set of entities having English as spoken language (here,
the relation-object couple is (spoken language, English)). Naturally, the classes
are conducive to contexts. For example, all persons (i.e., entities with couple
(instance of, human)) could constitute a context for Lovelace and Turing.

Given a set of entities E ⊆ E , a feature f ∈ R and a context C ∈ CE , the
more the set of values f(e) with an entity e ∈ E describes the entities of C, the
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more this feature f has a chance to be a referent for the user of the table. From
this intuition, given an entity e ∈ E, we deduce that the interest of a feature f
should increase with the probability of observing the values in f(e) in the set of
values f(s) of similar entities s ∈ C: Pr

[
f(s) ∩ f(e) 6= ∅

∣∣ s ∈ C]. Then, given a
set of entities E = {e1, . . . , eP } and a context C ∈ CE , we define the contextual
reference level of a feature f , denoted by crlC(f,E,K), as the probability of
observing the values f(ei) of at least one entity ei ∈ E in the set of values f(si)
of similar entities si ∈ C:

crlC(f,E,K) = Pr
[
(f(s1) ∩ f(e1) 6= ∅) ∨ ... ∨ (f(sP ) ∩ f(eP ) 6= ∅)

∣∣ s1∈C, ..., sP ∈C]
= Pr

[
(∃ei ∈ E)(f(si) ∩ f(ei) 6= ∅)

∣∣ si ∈ C]
It is indeed a probability because if a similar entity si shares fea-

tures with several entities in E, it is counted only once. In prac-
tice, entities belong to several relevant contexts. For example, for Ada
Lovelace and Alan Turing, we will consider the contexts stemming from
four couples (see Section 5.2 for details): (field of work, mathematics),
(employer, Univ. of Cambridge), (occupation, computer scientist) and (spoken
language, English). For this reason, we extend the definition of crlC(f,E,K)
to a set of contexts C = {C1, . . . , CK} as follows:

Definition 4 (Contextual reference level). Given a set of entities E =
{e1, . . . , eP } ⊆ E and a set of contexts C = {C1, . . . , CK} ⊆ CE, the contextual
reference level of a feature f is defined as :

crlC(f,E,K) = Pr
[
(∃ei ∈ E)(∃k ∈ [1..K])(f(ski ) ∩ f(ei) 6= ∅)

∣∣ ski ∈ Ck

]
It is important to note that the compared entities E play a very strong

role in this definition because they limit the choice of C in the set of potential
contexts CE . The fourth column of Table 1 indicates the contextual reference
level of each feature computed from Wikidata in the four contexts mentioned
above. For instance, 0.908 corresponds to the probability of observing the value
female or male (respectively stemming from Ada Lovelace or Alan Turing for
ei) as sex or gender of an entity si that is a mathematician or an employee of
Cambridge or a computer scientist or an English speaker. With Definition 4, it
would be possible to directly calculate the contextual reference level of a feature
with a SPARQL query (not reported here due to the space limit). However,
this statistical query would often be too costly not to be interrupted by the
fair-use policy of public SPARQL endpoints [12]. Nevertheless, this definition
implicitly assumes that the entities ski are identically and independently drawn
in the different contexts Ck. With this i.i.d. assumption, the following property
rewrites the contextual reference level:

Property 1. Given a set of entities E ⊆ E , a set of contexts C ⊆ CE and a feature
f ∈ R, we have:

crlC(f,E,K) = 1−
∏
C∈C

∏
e∈E

(1−Pr
[
f(s) ∩ f(e) 6= ∅)

∣∣ s ∈ C]) = 1−
∏
C∈C

(1−crlC(f,E,K))
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Due to lack of space, we omit the proofs, but this follows from Morgan’s law.
Interestingly, each probability Pr

[
f(s) ∩ f(e) 6= ∅

∣∣ s ∈ C] can easily be calcu-
lated independently by a low-cost SPARQL query. We will see in Section 6.3
that in practice, the error rate of this kind of query is under 0.5%. In addi-
tion, considering Property 1, it is easy to see that the contextual reference level
increases with the probability Pr

[
f(s) ∩ f(e) 6= ∅

∣∣ s ∈ C] and that its range is
[0, 1]. The contextual reference level of the feature f is zero when no entity among
those of the contexts C has a common value with the entities of E. Conversely,
crlC(f,E,K) is equal to 1 as soon as a value in f(e) is shared by all the entities
of at least one context C.

4.2 Quality criteria analysis

Properties 2-4 present three quality criteria that a well-behaved interesting-
ness measure for evaluating features should satisfy. First, the following property
proves that contextual reference level is monotone with respect to contexts:

Property 2. Given a KB K, a feature f and a set of entities E, we have
crlC(f,E,K) ≤ crlC′(f,E,K) if the two sets of contexts satisfy C ⊆ C′ ⊆ CE .

This result is explained by the addition of factors less than 1 in the double
product of Property 1 when a context is added to C. Interestingly, the addition
of a new context favors the emergence of new interesting features (e.g., if a new
relation is added to the knowledge base). However, we will see in Section 5.2
that this also raises problems of redundancy between contexts. The following
property goes further by showing that contextual reference level is also robust
against incompleteness for the feature f :

Property 3. Given two KBs K and K′, a set of contexts C ⊆ CE and a feature f
such that fK(e) ⊆ fK′(e) for each e ∈ E, we have crlC(f,E,K) ≤ crlC(f,E,K′).

This property underlines that the value of contextual reference level is al-
ways underestimated when some facts are missing. If new facts are added in the
knowledge base, then the contextual reference level of a feature can only increase
(if the context C remains unchanged). For this reason, the extracted features will
remain interesting for crl if the knowledge base is completed. In Table 1, the fea-
ture religion was selected despite the lack of value for Ada Lovelace. Whatever
the value could be stated, this feature would remain interesting for crl.

Finally, the next property proves that contextual reference level of a feature
f is zero when it is an identifier (i.e., an injective function f(x) = f(y)⇒ x = y):

Property 4. Given a set of entities E and a set of contexts C, we have
crlC(f,E,K) = 0 for any feature f that is an identifier.

This result is explained by observing that for an injective function f , we
have f(e) ∩ f(s) = ∅ for any entity e ∈ E and subject s ∈ C because the set of
entities E and any context C in C are disjoint (see Definition 3). Interestingly, an
identifier f is not relevant for a comparison table because all values of f uniquely
identifies an entity. For instance, for a set of countries, the property GeoNames ID

is not an interesting feature w.r.t. crl.



8 A. Giacometti et al.

Algorithm 1 Versus: extracting the set of interesting features w.r.t. crl

Input: A knowledge base K, a set of entities E ⊆ E and a threshold γ
Output: The set of interesting features F ⊆ R
1: F := ∅
2: RE := {r ∈ R : e ∈ E ∧ r(e, s) ∈ K}
3: for all f ∈ RE do
4: Select the set of contexts C for the entities E and the feature f with Algorithm 2
5: if crlC(f,E,K) ≥ γ (using Algorithm 3) then F := F ∪ {f}
6: end for
7: return F

5 Versus: A Method for Extracting Interesting Features

5.1 Overview

The overall idea is to analyze each relation f that describes at least one entity
in E to determine whether it is an interesting feature in K: crlC(f,E,K) ≥ γ.
Algorithm 1 sketches this process. First, the set F that will contain all the
interesting features is initialized with the empty set (Line 1) and the set of
all the candidate relations RE gathers the relations that describe at least one
entity in E (Line 2). After, each relation in RE is separately processed (Lines 3-
6). Line 4 selects the set of contexts C ⊆ CE without considering the relation f
(see Algorithm 2). This set of contexts is immediately used by Algorithm 3 in
order to decide whether the relation f is an interesting feature for the entities in
E. If f is really interesting for crl, it is added to the set of interesting features
F . Finally, this set is returned at Line 7.

The rest of this section details Lines 4 and 5 based respectively on Algo-
rithms 2 and 3. Section 5.2 gives the method for selecting the set of contexts. Of
course, this choice is decisive in the calculation of the contextual reference level.
Section 5.3 presents an efficient algorithm for evaluating the contextual reference
level. Indeed, the naive evaluation of the contextual reference level is expensive,
as for each feature, it requires to calculate |C × E| queries for the numerators
and |C| queries for the denominators (see Definition 4).

5.2 Context selection

This step aims to select a small number of relevant contexts among all the con-
texts of CE that may be redundant. Indeed, in the case where a large number
of contexts in C are correlated, the contextual reference level might be abnor-
mally overestimated (see Property 2). For example, since all employees of the
University of Cambridge are necessarily humans, the context stemming from
(instance of, human) does not provide additional information, but it increases
the contextual reference level. It is however important to keep a set of contexts
that cover all the specificities of the entities similar to E:

⋂
CE . For example, the

context stemming from (occupation, computer scientist) is important because
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Algorithm 2 Selecting a set of contexts

Input: A knowledge base K, a set of entities E ⊆ E and a feature f ∈ R
Output: A set of contexts C ⊆ CE

1: C := {r−1(o)\E : r ∈ (R\{f}) ∧ (∀e ∈ E)(r(e, o) ∈ K)}
2: Sort the contexts of C by ascending cardinality
3: for all context Ci ∈ 〈C1, . . . , Cn〉 do
4: if

⋂
(C \ Ci) =

⋂
C then C := C \ Ci

5: end for
6: return C

Relation r Object o |r−1(o)\E|
field of work mathematics 2,018

employer Univ. of Cambridge 3,129
occupation computer scientist 7,943

described by source Obalky knih.cz 47,563
spoken language English 165,714

instance of human 6,389,426

Table 2. Relation-object couples common to Ada Lovelace and Alan Turing

it distinguishes Ada Lovelace and Alan Turing from mathematicians at the Uni-
versity of Cambridge who have not contributed in computer science. In this way,
we choose one of the smallest sets of contexts C∗ ⊆ CE that characterizes the
same set of entities as CE by intersecting: C∗ ∈ arg minC⊆CE

{|C| :
⋂
C =

⋂
CE}.

The exact resolution of this problem is NP-hard and it would require a large
number of knowledge base queries. We therefore propose a heuristic algorithm,
which eliminates superfluous contexts from the smallest one to the largest one.

Given a knowledge base K, a set of entities E and a feature f , Algorithm 2
returns a set of contexts C. Line 1 builds the set of contexts CE except it excludes
the context stemming from the feature f (i.e., r 6= f). The contexts are then
sorted from the smallest to the largest (Line 2) to favor the removal of overly
general contexts. The loop (Lines 3-5) iterates over each context Ci starting with
the smallest one. Line 4 tests whether the intersection of contexts without Ci

gives the same set of entities as with Ci. If this is the case, it means that this
context does not provide any specificity and it is discarded from C. Once the
loop is completed, Line 6 returns the set of non-redundant contexts.

Table 2 presents the relation-object couples (r, o) from which contexts are
computed considering Ada Lovelace and Alan Turing. After having been sorted
by ascending cardinality in Wikidata (i.e., |r−1(o)\E|), the two redundant con-
texts were eliminated by Lines 3-7 of Algorithm 2. For example, the restriction
“instance of human” does not delete any entity among those belonging to all
other contexts. It is important to note that the interest of an approach centered
on entities is to consider contexts that do not depend only on classes (i.e., there
are other relations than instance of). However, the number of contexts in C
remains reasonable in practice (7 at most in our experiments). Most often, the
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iteration of Lines 3-5 removes few contexts, but in some cases, many redundant
contexts are eliminated (for example, 167 in the most extreme case).

5.3 Efficient evaluation of the contextual reference level

Rather than calculating the exact contextual reference level of a feature, the idea
is to do a partial calculation of this value in order to only determine whether
crlC(f,E,K) is greater than γ. It is easy to see that the complement to 1 of the
contextual reference level (i.e., 1− crlC(f,E,K)) decreases with each multiplica-
tion by a factor of the form

(
1− Pr

[
f(s) ∩ f(e) 6= ∅

∣∣ s ∈ C]). With this obser-
vation, it is possible to derive a lower bound for the contextual reference level.
In the process of calculation, when this lower bound exceeds the threshold γ, we
have the guarantee that crlC(f,E,K) ≥ γ. Conversely, it is possible to derive an
upper bound of the contextual reference level by using Pr[f(s) ∩ f(e) 6= ∅, s ∈ E ]
as an upper bound of the joint probability Pr[f(s) ∩ f(e) 6= ∅, s ∈ C]. The fol-
lowing property formalizes these two bounds:

Property 5. Given a knowledge base K, the contextual reference level of a feature
f for the entities E is bounded for any S ⊆ C × E:

crlC(f,E,K) ≥ 1−
∏

(C,e)∈S

(
1− Pr

[
f(s) ∩ f(e) 6= ∅

∣∣ s ∈ C])
≤ 1−

[ ∏
(C,e)∈S

(
1− Pr

[
f(s) ∩ f(e) 6= ∅

∣∣ s ∈ C])
×

∏
(C,e)∈(C×E)\S

(
1− min{|{s ∈ E : f(s) ∩ f(e) 6= ∅}|, |C|}

|C|

)
︸ ︷︷ ︸

optimistic factor

]

Algorithm 3 benefits from these bounds for efficiently evaluating if
crlC(f,E,K) ≥ γ. More precisely, Lines 1 and 2 respectively initialize the prod-
uct p and the optimistic factor o discussed above by considering all the couples
in C ×E. The loops of Lines 3 and 4 enumerate the different entities e ∈ E and
the different contexts C ∈ C. At each iteration, Line 5 refines the calculation of
p taking into account the probability Pr

[
f(s) ∩ f(e) 6= ∅

∣∣ s ∈ C] while Line 7
updates o. If the current contextual reference level is higher than the threshold
γ, Line 6 returns true because 1 − p is a pessimistic approximation of the fi-
nal contextual reference level. Conversely, Line 8 returns false when the upper
bound 1− p× o is lower than γ.

Let us illustrate Algorithm 3 with the computation of the contextual reference
level of two features for Ada Lovelace and Alan Turing with a threshold γ = 0.01
illustrated by Table 3. The probability of having an entity with a natural death
(like Ada Lovelace) among those who studied mathematics is 0.025. From this
evaluation, it is certain that manner of death is an interesting feature because
its exact contextual reference level exceeds the lower bound 1 − (1 − 0.025)
which is higher than the threshold γ. In this case, this avoids the evaluation of 7
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Algorithm 3 Computing the contextual reference level of a relation

Input: A knowledge base K, a set of entities E ⊆ E , a threshold γ, a set of contexts
C and a relation f

Output: Return true if the relation f is interesting i.e., crlC(f,E,K) ≥ γ
1: p := 1

2: o :=
∏

(C,e)∈C×E

(
1− min{|{s∈E:f(s)∩f(e)6=∅}|,|C|}

|C|

)
3: for all e ∈ E do
4: for all C ∈ C do
5: p := p× (1− (|{s ∈ C : f(s) ∩ f(e) 6= ∅}|)/(|C|))
6: if 1− p ≥ γ then true

7: o := o/
(

1− min{|{s∈E:f(s)∩f(e) 6=∅}|,|C|}
|C|

)
8: if 1− p× o < γ then false
9: end for

10: end for
11: return false

Contexts C
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manner Lovelace 0.025 0.018 0.017 0.038
of death Turing 0.002 0.001 0.002 0.003

student of Lovelace 0,000 0,000 0,000 0,001
Turing 0,001 0,000 0,000 0,001

Table 3. Computation of crl of two features for Ada Lovelace and Alan Turing

queries that would have been necessary for the exact calculation of the contextual
reference level. For the feature student of, the optimistic factor after the first
evaluation is equal to 0.998. It is therefore sure that the contextual reference
level of this feature is at most equal to 1− (1−0)×0.998 = 0.002 which is lower
than the threshold γ. Again, the contextual reference level computation can be
interrupted (Line 8) avoiding the evaluation of 7 queries.

6 Experiments

After presenting the evaluation benchmark in Section 6.1, our experiments aim
to answer the following two questions: Does the contextual reference level really
isolate the best features? (Q1) and What is the gain of the optimized evaluation?
(Q2). These questions are respectively answered in Sections 6.2 and 6.3. Versus
is implemented in Java using the Jena library to query the public Wikidata
SPARQL endpoint. Versus was run on Windows 10 with an Intel core i7 proces-
sor and 32 GB of RAM. Due to the few operations performed on the client side,
the execution times correspond essentially to the processing time of SPARQL
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queries on the server side3. Although execution times vary with server load and
available data, they shape the behavior of the approaches. Note that the source
code of Versus, the evaluation tool and the results are available on the website
https://lovelace-vs-turing.com and github.com/asoulet/versus.

6.1 Comparison Feature Benchmark (CFB)

As comparison table generation is a new problem, we had to develop a bench-
mark, named Comparison Feature Benchmark (CFB). Its twofold objective is
to constitute a reference dataset to compare the speed of different approaches
and a gold standard to assess the quality of the discovered comparison features.
This section starts by describing the method to select from Wikidata the sets of
entities to be compared with their candidate comparison features. For simplic-
ity, we consider only pairs of entities to be compared. Then, we explain how the
quality of the candidate comparison features have been manually evaluated.

First, we randomly draw from Wikidata 1,000 types Ti (i ∈ [1..1000]) that
have between 10k and 1k instances. This random sample guarantees to cover a
wide variety of entities (person, place, objects, events and so on) in order to best
reflect Wikidata diversity. Second, for each type Ti, we select the two entities e1

i

and e2
i that have the highest degree of incoming facts (i.e., maximizing deg(e) =

|{s ∈ E : r(s, e) ∈ K ∧ e ∈ Ti}|). This in-degree ranking favors popular entities of
the type Ti. For instance, the entities Paris (Q90) and London (Q84) are selected
for the type city (Q515). Then, for each pair of entities Ei = {e1

i , e
2
i }, we define

the set Fi of relations rj where rj ∈ R has URI as objects, rj is a direct property
of Wikidata (by using the prefix http://www.wikidata.org/prop/direct/)
and rj(e

1
i ) or rj(e

2
i ) is not empty (note that we do not consider the inverse

relations less likely to be features). Thus, Fi is the set of candidate comparison
features to compare entities in Ei. Finally, for each pair of entities Ei = {e1

i , e
2
i },

we store in our benchmark CFB all the facts rj(e
k
i , o

k
i ) (k ∈ {1, 2}) where rj ∈ Fi

and oki is an object randomly drawn from the values in rj(e
k
i ) (if rj(e

k
i ) is the

empty set, then oki is null). For each type Ti (i ∈ [1..1000]), this process builds
a comparison table with |Fi| rows and two columns to compare e1

i and e2
i .

Second, 1,195 candidate features (out of the 11,852, or about 10%) were
drawn at random and evaluated manually by one of the 6 evaluators. Each time,
we asked if the candidate feature rj ∈ Fi was relevant to compare the pair of
entities Ei = {e1

i , e
2
i } (by selecting in CFB the facts rj(e

1
i , o

1
i ) and rj(e

2
i , o

2
i )). The

evaluator can answer “No”, meaning that the feature rj is not relevant (44.9% of
the evaluations), “Yes” (37.9%) or “I don’t know” (17.2%). Only 80 evaluations
were common, of which 74 agreed. It leads to a Cohen’s kappa coefficient of 0.832
that corresponds to an almost perfect agreement [7].

6.2 Q1: Quality of the extracted features

Figures 1 and 2 respectively report the precision-recall results (ignoring “I don’t
know” evaluations) and the number of comparison features. First, we benefit

3 https://query.wikidata.org/

https://lovelace-vs-turing.com
github.com/asoulet/versus
http://www.wikidata.org/prop/direct/
https://query.wikidata.org/
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from the CFB benchmark described in the previous section for comparing the
contextual reference level used by Versus (denoted by crl) with the metric used
by automatic facet generation [8] (denoted by Facet). For the facet-oriented
metric, the type Ti of the two entities (see above) is used to define the collection
on which the metric is computed. We also use two baselines: the all method [9]
that selects all the candidate features of the benchmark and the infobox method
that selects all the candidate features present in at least one of the Wikipedia
infoboxes of the entities Ei. Figure 1 reports the precision, recall and accuracy
for these methods by varying the minimum threshold for crl and Facet. For
the reasons mentioned in related work, we observe that the precision of all and
infobox, less than 50%, is catastrophic. When the precision of Facet is better
than that of crl, the recall of Facet is dramatically low (less than 20 features
are extracted). Overall, the contextual reference level is much better than facet-
oriented metric with comparable precision but higher recall and higher accuracy.
This result is not surprising because, unlike Facet, our method brings out features
specific to the two compared entities.

The precision of the contextual reference level, always above 76%, is generally
high with regard to the baselines whose precision is less than 50%. Interestingly,
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Fig. 3. Number of SPARQL queries executed on Wikidata

this precision increases with the minimum contextual reference level threshold
(from 76% for γ = 0.0001 to 86% for γ = 0.05). This demonstrates the ability of
our measure to isolate the most relevant features. However, the recall decreases
very quickly with the minimum contextual reference level threshold. This is
explained by the decrease in the number of interesting features with γ as shown
in Figure 2. With γ = 0.1, the left-hand side graph indicates that a comparison
table contains only three features on average. However, the right-hand side graph
shows strong disparities depending on the initial number of candidate features
describing the entities (note that slices are non-linear). In practice, to have a
good compromise, it seems appropriate to set γ with a value less than 0.1.

6.3 Q2: Efficiency of the method

This section assesses the efficiency gain of the optimized method (Versus ben-
efiting from Property 5) with a baseline where the exact value of the contextual
reference level is calculated (baseline based on Property 1).

Figure 3 indicates the number of SPARQL queries required to build the
1,000 comparison tables of the benchmark. The left-hand side figure plots the
total number of queries required by baseline and by Versus with respect to the
minimum crl threshold. It is always more advantageous to use the optimized
method because fewer queries are executed (around -20% of queries). Versus is
even more efficient for low thresholds (i.e., γ ≤ 0.1). For γ = 0.01, we observe on
the right-hand side figure that the number of queries increases linearly with the
number of candidate features to be tested. This result is expected because the
number of contexts (between 1 and 7) is relatively independent of the number
of features. Again, Versus is always more efficient.

The average execution time for building a comparison table with Versus
is 58.8 seconds. In the worst case, it requires 693.1 seconds to generate that of
two authors, namely the botanist Miguel Colmeiro and the poet Manuel Curros
Enŕıquez. More precisely, Figure 4 (left-hand side) details the average execution
time to construct a comparison table according to the number of features. Unlike
the number of queries, the execution time of the construction of a comparison
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table does not increase linearly with the number of features. In addition, the
standard deviations are very high. This phenomenon is explained by the fact
that not all queries have the same complexity. For instance, it is more expensive
to evaluate a query with the person as context than with the country as context
because the latter contains fewer entities. In particular, very few queries (< 0.5%)
have an execution time that exceeds the limit of the fair-use policy of Wikidata
and fail as shown by the error rates on Figure 4 (right-hand side). Interestingly,
the gain in execution time of Versus is around 30%, better than the gain in
number of queries (only 20%).

7 Conclusion

We presented Versus that automatically generates a comparison table of a set
of entities from a knowledge base by querying its public SPARQL endpoint. To
this end, we introduced the contextual reference level that evaluates whether
a feature has values for the compared entities which are sufficiently common
among other similar entities. We have broken down the computation of the con-
textual reference level into several low-cost SPARQL queries so that it satisfies
the fair-use policy of Wikidata public endpoint. Finally, this computation is also
optimized in Versus to reduce this number of queries. Experiments on our Com-
parison Feature Benchmark show the good precision of the contextual reference
level for isolating the most relevant features. Interestingly, our entity-centric
approach has a higher recall and accuracy than a baseline using facet-oriented
metric, which relies on classes. Moreover, thanks to our optimization, Versus
is about 30% faster than a naive approach. In future work, we would like to
investigate other kinds of interestingness measures not based on the contextual
reference level, but on the contrary, on exceptionality. If such measures are likely
to have a weak recall, they could be used in addition to the contextual reference
level for extracting unexpected features. Instead of evaluating each feature one
by one, it would also be relevant to extract an interesting set of features so as to
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avoid redundancies. This would be essential to combine several endpoints from
the Linked Open Data cloud that necessarily contain repeated information.

Acknowledgments. We thank the evaluators for the time they took to annotate

the features. This work was partially supported by the grant ANR-18-CE38-0009

(“SESAME”).

References

1. Anyanwu, K., Maduko, A., Sheth, A.: SemRank: Ranking complex relationship
search results on the semantic web. In: Proc. of the 14th international conference
on World Wide Web. pp. 117–127 (2005)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
A nucleus for a web of open data. In: The Semantic Web, pp. 722–735. Springer
(2007)

3. d’Amato, C., Fanizzi, N., Esposito, F.: A semantic similarity measure for expressive
description logics. arXiv preprint arXiv:0911.5043 (2009)

4. Dessi, A., Atzori, M.: A machine-learning approach to ranking RDF properties.
Future Generation Computer Systems 54, 366–377 (2016)
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