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Abstract
Flow-based generative modeling is a powerful
tool for solving inverse problems in physical sci-
ences that can be used for sampling and likelihood
evaluation with much lower inference times than
traditional methods. We propose to refine flows
with additional control signals based on an un-
derlying physics model. In our experiments, this
control signal is represented by gradients with re-
spect to a differentiable cost function. We train
a neural network to aggregate a pretrained flow
and physics-based control signal to yield a hy-
brid update. We evaluate the refinements against
classical MCMC methods for modeling strong
gravitational lens systems, a challenging inverse
problem in astronomy. We demonstrate that in-
cluding physics-based controls improves the ac-
curacy by 57%, making them competitive with
MCMC methods while being 12x to 83x faster
for inference.

1. Introduction
Acquiring posterior distributions given measurement data is
of paramount scientific interest, with real-world applications
ranging from particle physics (Baydin et al., 2019), over
the inference of gravitational waves (Dax et al., 2021) to
predictions of dynamical systems such as weather forecast-
ing (Gneiting & Raftery, 2005). For an observation o and
model parameters x the likelihood p(o|x) corresponds to
how strongly we believe a model with parameters x causes
o to occur. In Bayesian modeling, we are interested in the
posterior p(x|o), which is proportional to the likelihood
times the prior p(x) and tells us which parameters are most
likely to explain the observation.

Infering the posterior based on samples from traditional
likelihood-based methods can be expensive for high-
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Figure 1: Overview of our proposed framework. We consider a
(pretrained) flow network vθ . We use the predicted flow at the
current trajectory point xt at time t to obtain an estimate x̂1 for the
final prediction x1. We assess the quality of the obtained estimate
by using a physics-based model represented by a cost function
C. This cost function yields a control signal in which direction to
improve the estimate x̂1. An additional network learns to combine
the predicted flow with the control signal to give a new controlled
flow. By combining learning-based updates with suitable control
signals, we avoid local optima and manage to obtain high-accuracy
samples with low inference times.

dimensional data and when likelihood evaluations are costly.
Simulation-based inference (Cranmer et al., 2020) repre-
sents the posterior as a parametric function q(x|o), which is
a learnable conditional density estimator that can be trained
purely by simulations o ∼ p(o|x) alone. By investing an
upfront cost of training the density estimator, we can sample
and compute likelihoods from q(x|o) much faster than other
methods, thereby amortizing the training cost over many
observations.

Traditionally, normalizing flows (Rezende & Mohamed,
2015; Dinh et al., 2017; Papamakarios et al., 2019) have
been a popular class of density estimators used in many
areas of science. To compute likelihoods and for sampling,
normalizing flows transform a noise distribution to the pos-
terior distribution. With the advent of diffusion models (Ho
et al., 2020) and flow matching (Liu et al., 2023; Lipman
et al., 2023) it became clear that the mapping between noise
and the posterior can be defined a priori, for example by
specifying a corruption process that transforms any data dis-
tribution to a standard Gaussian. The resulting continuous-
time models outperform discrete architecture in many areas
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and training larger models is much more scalable.

We propose a simple strategy to reintroduce control signals
into the flow network. We refine an existing pretrained flow-
based models with arbitrary control signals by aggregating
the learned flow and control signals into a controlled flow.
The aggregation network is very small compared to the pre-
trained flow network, and we find that freezing the weights
of the pretrained network works very well; thus, refining
needs only a minimal amount of additional parameters and
compute.

To demonstrate how these refinements affect the accuracy
of samples and the posterior, we consider modeling strong
gravitational lens systems (Vegetti & Koopmans, 2009; Veg-
etti et al., 2023), an inverse problem in astrophysics that
is challenging and requires precise posteriors for accurate
modeling of observations. In galaxy-scale strong lenses,
light from a source galaxy is deflected by the gravitational
potential of a galaxy between the source and observer, caus-
ing multiple images of the source to be seen. Since these
images and their distortions are sensitive to the distribution
of matter on small scales, this can act as a probe for different
dark matter models. With upcoming and current sky surveys
(Laureijs et al., 2011) expected to release large data catalogs
in the near future, the number of known lenses will increase
dramatically by several orders of magnitude. Traditional
computational approaches require between several minutes
to many hours or days to model a single lens system. There-
fore, there is an urgent need to reduce the compute and
inference with learning-based methods.

In this experiment we show that using flow matching and our
proposed physics-based control signals, we obtain posterior
distributions for lens modeling that are competitive with
the posteriors obtained by MCMC-based methods, but with
several orders of magnitude faster inference times.

2. Flow Matching
Continuous-time flow models transform samples from a
sampling distribution p0 to samples of a target or posterior
distribution p1. This mapping can be expressed via a neural
ordinary equation (ODE)

dxt = vθ(t, xt)dt, (1)

where vθ(t, xt) represents a neural network with parameters
θ. Early works (Chen et al., 2018; Grathwohl et al., 2019)
optimize vθ(t, x) using maximum likelihood training, which
is computationally demanding and difficult to scale to larger
networks. Instead, in flow matching the network vθ(t, x)
is trained by regressing a vector field u(t, x) that generates
probability paths that map from p0 to p1.

Generating probability paths We say that a smooth vec-
tor field u : [0, 1] × Rd → Rd, called velocity, generates

the probability paths pt, if it satisfies the continuity equa-
tion ∂p

∂t = −∇ · (ptut). Informally, this means that we can
sample from the distribution pt by sampling x0 ∼ p0 and
then solving the ODE dx = u(t, x)dx with initial condition
x0. In the following, we will denote u(t, x) by ut(x). To
regress the velocity field, we can define the flow matching
objective

LFM(θ) := Et∼U(0,1),x∼pt(x) ||vθ(t, x)− ut(x)||2 . (2)

In order to compute this loss, we need to sample from the
probability distribution pt(x) and know the velocity ut(x).
However, in general ut(x) is not accessible.

Conditioning variable To solve this problem, we can
apply a trick by introducing a latent variable z distributed
according to q(z) and define the conditional likelihoods
pt(x|z) that depend on the latent variable so that pt(x) =∫
pt(x|z)q(z)dz. Interestingly, if the conditional likeli-

hoods are generated by the velocities ut(x|z), then the veloc-
ity ut(x) can be written in terms of ut(x|z) and pt(x|z) with
ut(x) := Eq(z)[ut(x|z)pt(x|z)/pt(x)]. We can choose
paths pt(x|z) that are easy to sample from and for which
we know the generating velocities ut(x|z). Next, we define
the conditional flow matching loss

LCFM(θ) := Et,q(z),pt(x|z) ||vθ(t, x)− ut(x|z)||2 , (3)

In contrast to the flow matching loss (2), this loss is tractable
and can be used for optimization. Now, one can show (Tong
et al., 2023) that if pt(x) > 0 for all x ∈ Rd, then

∇θLFM(θ) = ∇θLCFM(θ). (4)

This means that we can train vθ(x, t) to regress ut(x) gen-
erating the mapping between p0 and p1 by optimizing the
conditional flow matching loss (3).

2.1. Couplings

The above framework allows for many degrees of freedom
when specifying the mapping from p0 to p1 via the condi-
tioning variable z and the conditional likelihoods pt.

Conditional optimal transport One particularly intuitive
and simple choice is to consider the coupling q(z) = p1(x)
(Lipman et al., 2023) together with conditional probability
and generating velocity

pt(x|x1) = N (x| tx1, (1− (1− σmin)t)I) (5)

ut(x|x1) =
x1 − (1− σmin)x

1− (1− σmin)t
, (6)

where σmin > 0. Conditioned on x1, this coupling trans-
ports a point x0 ∼ N (0, I) from the sampling distribution
to the posterior distribution on the linear trajectory tx1 end-
ing in x1 but decreasing the standard deviation from 1 to
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a smoothing constant σmin. In this case, the transport path
coincides with the optimal transport between two Gaussian
distributions.

3. Controls for Improved Accuracy
While flow-based models vθ(t, x) gradually transform sam-
ples from p0 to p1 in many steps during inference via solving
the ODE (1), there is no direct feedback loop between the
underlying physics-based model, the current point on the
trajectory xt, and the observation o. We would like to rein-
troduce this feedback loop into the inference and training.

Conditioning of flows Flows vθ(t, x) can be conditioned
on an observation o through an additional input vθ(t, x, o),
therefore modeling the conditional densities pt(x|o) (Song
et al., 2021). For example, in classifier free-guidance (Ho
& Salimans, 2022), this conditioning is randomly dropped
and set to 0 during training. The resulting models can then
be used for both conditional and unconditional generation.
A fundamental problem here is that the conditioning o is
static, whereas we propose to have a dynamic control mech-
anism that depends on the trajectory xt, the observation,
and an underlying control signal. The latter should relate xt

and observation using a physics-based model represented
through a cost function C. As the accuracy of neural net-
works is inherently limited by the finite size of their weights,
and smaller networks are attractive from a computational
perspective, physics-based control has the potential to yield
high accuracy with lean and efficient neural network models.

1-step prediction An additional issue is that the current
trajectory xt might not be close to a good estimate of a
posterior sample x1, especially at the beginning of inference,
where x0 is drawn from the sampling distribution. Instead
of applying the cost function C to the current estimate xt,
we extrapolate xt forward in time to obtain an estimated x̂1

x̂1 = xt + (1− t)vθ(t, xt, o) (7)

to alleviate this issue.

Flows based on linear conditional transportation paths have
empirically been shown to have trajectories with less cur-
vature (Lipman et al., 2023) compared to, for example, dif-
fusion models, thus enabling inference in fewer steps and
providing better estimates for x̂1.

Self-conditioning Conditioning a model on something
that depends on its own output can be seen as a form of
self-conditioning. We showcase an adapted version of self-
conditioning (Chen et al., 2023) in algorithm 1. The main
idea of the algorithm is that instead of providing xt to the
network, the input is comprised of a tuple [xt; x̂1], where
x̂1 is either 0 or the 1-step prediction (7). By conditioning

a model on its own output, we simulate feedback, which
lets the network learn to identify and correct its own mis-
takes without the need to backpropagate gradients through
multiple network passes.

3.1. Controls

Aiming for high inference accuracy, we extend self-
conditioning via physics-based control signals to include an
additional feedback loop between the model output and an
underlying physics-based prior.

Control signal c Given an observation o and the estimated
prediction x̂1, we can calculate how well x̂1 explains o via
some cost function C. The cost function can also depend
directly on the likelihood p(o|x̂1). For a differentiable cost
function C, we define the control signal via

c(x̂1, o) := [C(x̂1, o);−∇xC(x̂1, o)]. (8)

Note that while we recommend using informative control
signals, we can use any control that depends on x̂1 and o.
In our astrophysics experiment in section 4, we use an auto-
differentiable ray-tracer (Galan et al., 2022) to evaluate how
well the estimate x̂1 matches the observation o.

Controlled flow vCθ We pretrain the flow network
vθ(t, x, o) without any control signals to make sure that
we can realize the best achievable performance possible
based on learning alone. Then, in a second training phase,
we introduce the control network vCθ (t, v, c). The task of
the control network is to aggregate the pretrained flow with
the control signal c. The control network is much smaller
than the flow network, making up ca. 10% of the weights
θ in our experiments. We freeze the network weights of
vθ and train with the conditional flow matching loss (3) for
a small number of additional steps. This reduces training
time and compute since we do not need to backpropagate
through vθ(x, t). We did not find that freezing the weights
of vθ affects the performance negatively.

Time-dependence We notice that if the estimate x̂1 is
bad and the corresponding cost C(x̂1, o) is high, gradients
and control signals can be highly unreliable. In our main
experiment in section 4, we empirically find that the esti-
mates x̂1 improve for t ≥ 0.8. Therefore, we only train the
control network for t ≥ 0.8, which allows for focusing on
control signals containing useful information. For t < 0.8,
we directly output the pretrained flow vθ(t, x, o).

We summarize our proposed control-based training in al-
gorithm 2, assuming conditional optimal transport paths
(5). For a more compact representation, we omit the time
dependence. Note that for each training step, we require
one evaluation of vθ, whereas self-conditioning requires two
evaluations.
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Algorithm 1 FM with Self-conditioning

Input: Training distribution q1, flow network vθ,
σmin

while Training do
(x1, o) ∼ q1; z ← N (0, I); s← U(0, 1)
x← tx1 + (1− (1− σmin)t)z; x̂1 ← 0
v ← stopgrad(vθ(t, [x, x̂1], o))
if s > 0.5 then

x̂1 ← x+ (1− t)v
ṽ ← vθ(t, [x, x̂1], o)

ut(x|x1, o)← x1−(1−σmin)x
1−(1−σmin)t

LCFM ← ||ṽ − ut(x|x1, o)||22
θ ← Update(θ,∇θLCFM(θ))

return: vθ

Algorithm 2 FM with Control Signals

Input: Training distribution q1, pretrained network
vθ, control network vCθ , σmin

while Training do
(x1, o) ∼ q1; z ← N (0, I)
x← tx1 + (1− (1− σmin)t)z
v ← stopgrad(vθ(t, x, o))
x̂1 ← x+ (1− t)v
c← control(x̂1, o)
ṽ ← vCθ (t, v, c) + v

ut(x|x1, o)← x1−(1−σmin)x
1−(1−σmin)t

LCFM ← ||ṽ − ut(x|x1, o)||22
θ ← Update(θ,∇θLCFM(θ))

return: vθ, vCθ

4. Strong Gravitational Lensing
Strong gravitational lensing is a physical phenomenon
whereby the light rays by a distant object, such as a galaxy,
are deflected by an intervening massive object, such as an-
other galaxy or a galaxy cluster. As a result, one observes
multiple distorted images of the background source. We
aim to recover both the lens and source light distribution as
well as the lens mass density distribution. This experiment
focuses on realistic simulated observations for which we
know the ground truths.

Lens modeling The lens equation relates coordinates on
the source plane β and the observed image plane Θ via the
deflection angle α induced by the mass profile or gravita-
tional potential of the lens galaxy. For each component we
use a parametric model (Singular Isothermal Ellipsoid for
the lens, Sérsic profiles for the light). The likelihood is mea-
sured by the χ2-statistic, which is the modeled image plane
Θ minus the observation o divided by the noise. To solve
the lensing equation, we make use of the publicly available
raytracing code by (Galan et al., 2022). We stress that even
small perturbations of the model parameters can cause the
χ2 to increase significantly; see figure 3 in the appendix.

Pretraining The network vθ is trained via flow match-
ing (Lipman et al., 2023). The flow network vθ consists
of a convolutional feature extraction neural network repre-
sented by a shallow convolutional network with 8 layers and
fed with xt and t to a feed-forward network with residual
blocks and skip-connections. Overall, it comprises ca. 480K
parameters, making it fast for inference.

Finetuning with control signals The control network
vCθ is represented by a feed-forward network with residual
blocks and gated linear units. This architecture accounts
for ca. 11% of all parameters in the combined model. The

Table 1: Evaluation with respect to average χ2 and inference time
for the posterior distribution.

Method Avg. χ2 ↓ Modeling Time ↓
HMC 1.67 ∼ 275x (2200s)
AIES 1.42 ∼ 83x (671s)

Flow Matching
10 steps 1.71 1x (8s)

+ Controls
10 steps 1.48 ∼ 3x (26s)
50 steps 1.40 ∼ 6x (50s)

control signals are obtained from simulating an observation
based on the predicted estimate x̂1 via ray-tracing based
on the parametric models, calculating the χ2-statistic and
computing gradients with respect to the estimate x̂1. See
figure 2 for a comparison of the simulated reconstructions.

4.1. Evaluation and Discussion

As reference posteriors, we include Hamiltonian Monte
Carlo (HMC) with No-U-Turn sampler (Hoffman et al.,
2014) and Affine-Invariant Ensemble Sampling (Goodman
& Weare, 2010, AIES), which are both two popular MCMC-
methods in astronomy.

χ2-statistic We show an evaluation of all methods in table
1. For both flow matching methods, we use Euler integra-
tion. The average χ2 is computed over 24 randomly chosen
validation systems, where for each, we draw 100 samples
from the posterior. If we compute the χ2 for the ground
truth parameters, we obtain a value of 1.17 due to the noise
in the observation. Since we cannot overfit to noise with
the parametric models, this represents a lower bound for
χ2 in this experiment. Including the physics-based control
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Figure 2: Reconstruction of observation (left) with parameters sampled from the posterior. Flow matching is purely learning-based and
shows noticeable residuals in the reconstruction, whereas adding the physics-based control signal removes remaining residuals. Our
proposed method has wider posteriors than the two MCMC reference methods and covers their support.

improves the χ2 from 1.71 to 1.40, representing an improve-
ment of 57% relative to the best modeling. We define the
modeling time as the average compute time required to pro-
duce 1000 credible posterior samples. Both HMC and AIES
require significant warmup times before producing the first
samples from the posterior, which we include in the table.
However, after warmup, it is relatively cheap to obtain new
samples. On the other hand, flow matching does not require
any warmup time and the modeling time increases linearly
with the number of posterior samples. All methods were
implemented in JAX (Bradbury et al., 2018) and used the
same hardware. The measurements in table 1 highlight that
our method yields an accuracy that surpasses AIES, while
being more than 13x faster.

This evaluation demonstrates that learning-based methods
are highly competitive even in small to moderate-sized prob-
lems with established MCMC-based methods in terms of
accuracy, clearly beating them in terms of inference time.
Flow matching with our proposed control signals is espe-
cially interesting because it is not affected as much by the
curse of dimensionality as traditional inference methods and
allows for having non-trivial learnable high-dimensional
priors. However, before these methods are widely trusted,
they need to demonstrate their competitiveness with tradi-
tional methods. Our results show that this is indeed the
case, which opens up exciting avenues for applying and de-
veloping approaches targeting similar and adjacent inverse
problems in science.

5. Conclusion
We presented a method for improving flow-based models
with additional control signals. This allows us to refine an
existing flow with only a few additional weights and little
training time. We thereby efficiently bridge the gap be-
tween purely learning-based methods for simulation-based
inference and optimization with hand-crafted cost functions
within the framework of flow matching. This improvement
is critical for scientific applications where high accuracy
and trustworthiness in the methods are required. Purely

learning-based methods face significant difficulties in pro-
ducing very accurate samples, as there is usually no feed-
back during inference of how good samples are. In this
paper, we demonstrated that we do not need large network
sizes or tremendous amounts of data to train accurate mod-
els that are competitive with established MCMC methods
if we include suitable control signals from physics-based
models. We believe this work makes an important step to-
wards making posterior inference in science more accurate,
understandable, and reliable.
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A. Implementation Details
Lens models We consider the following models:

• For modeling the lens we use an Singular Isothermal Ellipsoid (SIE) model with 6 parameters: the Einstein radius
θE , the ellipticities e1 and e2 and xcenter and ycenter. There is shear, for which we only consider γ1 and γ2 as free
parameters.

• The source is modeled by a Sersic profile with free parameters being the amplitude, the half-light radius, the Sersic
index n, the ellipticities e1 and e2 as well as the positions xcenter and ycenter.

• The lens light is modeled in the same way as the source, although when generating the mock data, we fix the position
as well as ellipticities to be the same as the lens mass model. For training and inference, we infer positions for both
lens mass and lens light model, so the model could produce different values for them. The MCMC methods use the
same parameter for both lens light and lens mass position.

We list all priors in table 2, table 3 and table 4. We do not have priors on the ellipticities e1 and e2 directly, but we obtain
them from priors on the position angle and axis ratio. Also, we obtain the shear parameters from γ1 and γ2 from ϕext and
γext by converting them polar to cartesian coordinates. For simulation-based inference (SBI), we also include the two
parameters ra0 and dec0 for the shear, which are always set to 0 when generating the training data sets, but in general
our network could infer other values. Overall, there are 23 parameters for vθ, which fully describe the simulation setup.
However, in our dataset there are only 17 free parameters. The MCMC methods only infer the reduced set of parameters,
making use of the dependencies between them.

Measurement instruments Observations have 160 times 160 pixels. The pixel size is 0.04 arc seconds. We use a
Gaussian points spread function (PSF) with full width at half maximum (FWHM) of 0.3. The there is Gaussian background
noise with a root mean-squared values of 0.01 and an exposure time of 1000s.

Data For training the flow network, we require a dataset consisting of pairs of ground truth parameters x and corresponding
observations o. Several instrument-specific measurement effects are included when simulating the observations. We include
background and Poisson noise and smoothing by a point-spread function (PSF). These directly affect the posterior, as more
noise and a stronger PSF will widen the posterior distribution. We generate 125.000 data samples for training and 25.000 for
validation.

Setup of MCMC-based methods We setup both baselines methods as follows:

1. Hamiltonian Monte Carlo: we use the No-U-Turn samples together with a window adaptation strategy for a better mass
matrix and step sizes. The window adaptation strategy from blackjax requires an initial guess. We obtain this initial
guess by perturbing the ground truth parameters by adding a Gaussian with mean 0 and covariance matrix σI , where
σ = 0.01. Then, we apply BFGS (Kelley, 1999) for a maximum number of 500 iterations using an implementation
from scipy. We begin sampling after the adaptation strategy has finished warming up.

2. Affine-Invariant Ensemble Sampling: we use DEMove and StretchMove both with probability 0.5. There are 400
chains and we warm up for 20K steps before starting sampling.

Both methods are implemented in numpyro (Phan et al., 2019; Bingham et al., 2019) and optimized with JAX, so their
runtimes are comparable with each other.

Network architectures and training

• Our flow network vθ comprises a lightweight feature extraction network, representated by a convolutional neural
network, which is consists of 6 downsampling blocks with 1 layer each a 32 channels and kernel size 3. As post-
processing of the output, we apply GroupNorm, silu and an additional 2DConv layer with kernel size 3 and a single
channel. We reshape the output and feed it through a final dense layer. The output of the feature extraction has the
same dimensionality as the parameters x.
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Table 2: Priors for lens mass model parameters

Parameter Prior

xcenter U(−0.2, 0.2)
ycenter U(−0.2, 0.2)
position angle ϕ U(0, 180)
axis ratio q U(0.25, 1)
external shear orientation ϕext U(0, 180)
external shear strength γext U(0, 0.1)
Einstein radius θE U(0.5, 2.0)

Table 3: Priors for the source light

Parameter Prior

amplitude U(5.0, 10.0)
half-light radius U(0.5, 2.0)
Sersic index n U(1.5, 4.0)
position angle ϕ U(0, 180)
axis ratio q U(0.25, 1)
xcenter U(−0.2, 0.2)
ycenter U(−0.2, 0.2)

Table 4: Priors for the lens light

Parameter Prior

amplitude U(5.0, 10.0)
half-light radius U(0.5, 2.0)
Sersic index n U(1.5, 4.0)

• An additional dense feed-forward neural network receives the concatenated the time t, xt and extracted features as
input. The feed-forward neural neural networks consists of 8 residual blocks with hidden dimension 128 and elu
activation.

• The control network vCθ is represented by a small feed-forward neural network, consisting of 3 residual blocks with 64
hidden layers and 3 residual blocks with 32 hidden layers. We condition each block on the time via gated linear units
and use a 16 dimensional time embedding.

For training, we use a batch size of 256 for the flow network vθ. When training vCθ , we decrease the batch size to 16. We use
the Adam optimizer with learning rate 10−4 and weight decay 10−5. Training vθ was done on a single NVIDIA Ampere
A100 GPU for ca. 45 hours and 1.250K steps. We trained vCθ for an additional 24 hours and 350K steps. A lot of the training
time was spent on running evaluation metrics, so it can be substantially improved. For inference, all methods were run on a
single NVIDIA RTX 2070 Ti.

B. Posteriors and Reconstructions for Lens Modeling
We show how small perturbations in the lens system’s parameters affect the simulated observation in figure 3. We show
extended plots of the posteriors as well as reconstructions based on non-cherry-picked random samples from the posterior
for three lens systems: See figure 4, figure 5 and figure 6 for systems 1. See figure 7, figure 8 and figure 9 for systems 2. See
figure 10, figure 11 and figure 12 for systems 3.
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Figure 3: We show how a small noise σ affects the simulated observation. We add a normal Gaussian with mean 0 and standard deviation
σ to a lens system’s ground truth parameters x. Then, we plot the simulated observation based on the noised parameters and show the
residuals.
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Figure 4: System 1: extended plot of the posterior for figure 2.
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Figure 5: System 1: Three non cherry-picked simulations based on random samples from the posterior obtained with flow matching +
physics-based controls.
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Figure 6: System 1: Three non cherry-picked simulations based on random samples from the posterior obtained with flow matching and
no controls.
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Figure 7: System 2: posterior plot.
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Figure 8: System 2: Three non-cherry-picked simulations based on random samples from the posterior obtained with flow matching +
physics-based controls.
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Figure 9: System 2: Three non cherry-picked simulations based on random samples from the posterior obtained with flow matching and
no controls.
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Figure 10: System 3: posterior plot.
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Figure 11: System 3: Three non-cherry-picked simulations based on random samples from the posterior obtained with flow matching +
physics-based controls.

18



Flow Matching with Physics-based Controls

Figure 12: System 3: Three non-cherry-picked simulations based on random samples from the posterior obtained with flow matching
and no controls.
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