
A CLASS-AWARE REPRESENTATION REFINEMENT
FRAMEWORK FOR GRAPH CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) are widely used for graph representation learn-
ing. Despite its prevalence, GNN suffers from two drawbacks in the graph clas-
sification task, the neglect of graph-level relationships, and the generalization is-
sue. Each graph is treated separately in GNN message passing/graph pooling, and
existing methods to address overfitting operate on each individual graph. This
makes the graph representations learnt less effective in the downstream classifica-
tion. In this paper, we propose a Class-Aware Representation rEfinement (CARE)
framework for the task of graph classification. CARE computes simple yet pow-
erful class representations and injects them to steer the learning of graph repre-
sentations towards better class separability. CARE is a plug-and-play framework
that is highly flexible and able to incorporate arbitrary GNN backbones without
significantly increasing the computational cost. We also theoretically prove that
CARE has a better generalization upper bound than its GNN backbone through
Vapnik-Chervonenkis (VC) dimension analysis. Our extensive experiments with
10 well-known GNN backbones on 9 benchmark datasets validate the superiority
and effectiveness of CARE over its GNN counterparts.

1 INTRODUCTION

In recent years, Graph Neural Networks (GNNs) have attracted a surge of attention and been ex-
tensively used to learn graph representations for downstream tasks such as graph classification (Xu
et al., 2018; Ying et al., 2018), link prediction (Zhang & Chen, 2018), graph clustering (Kipf &
Welling, 2016b; Zhang et al., 2019a), etc. They have been applied to graph structured data from
a wide range of application domains, including social networks (Kipf & Welling, 2016a; Hamilton
et al., 2017; Fan et al., 2019), molecular data (Dai et al., 2016; Gilmer et al., 2017), recommendation
system (Wu et al., 2020a; Xia et al., 2021), brain networks (Kim & Ye, 2020), and many more.

The GNN-based graph representation learning can be divided into two categories: (1) some of the
methods (Duvenaud et al., 2015; Lee et al., 2019) use a down-sampling strategy (Wu et al., 2020b) to
aggregate and transform node representations to graph representations; (2) while some other meth-
ods (Ying et al., 2018; Zhang et al., 2019b; Nouranizadeh et al., 2021) obtain the graph embedding
by exploring the hierarchical structure of each input graph. These approaches suffer from two major
drawbacks when applied to the downstream classification task: (1) Neglect of graph-level relation-
ships; and (2) Generalization issue.

Neglect of graph-level relationships. Existing GNN architectures consider each input graph inde-
pendently in their training processes. Input graphs are passed individually to GNN to yield node
representations. In addition, the model also treats each graph separately in its design of loss. The re-
lationships (similarity and/or discrepancy) among different input graphs are fully neglected. Though
the model parameters are trained by the set of input graphs collectively, it is done through a long
pathway from node representations to graph representations and finally to the loss. As a result, the
effectiveness of the model will be significantly compromised when applied to the downstream clas-
sification. With molecular data, for instance, one would want the molecules from the same class to
share similar representations. This is natural as molecules belonging to the same class often carry
certain common substructures (e.g., the same set of functional groups). These substructures could
be class-specific and serve as a perfect signature of a class. Without considering such graph-level

1

information, the graph representations learnt would be less effective in separating different graph
classes.

Generalization issue. This is an inherent issue in GNN that the model tends to overfit when the
network gets deeper or the hidden dimensionality gets larger (Song et al., 2021). Some methods
have been proposed to alleviate this issue. Several graph-argumentation based methods improve
the generalization ability by modifying input graphs (Papp et al., 2021), or generating new graphs
for adversarial learning (Ding et al., 2018) and contrastive learning (You et al., 2020). Some other
works (Byrd & Lipton, 2019; Lin et al., 2017) resample or reweight data instances to remit the
overfitting problem. However, these methods operate on each individual graph and fail to explore
the effectiveness of graph-level information in improving generalization. The discussion of related
works is provided in Appendix A.

In this paper, we develop a Class-Aware Representation rEfinement (CARE) framework to address
the two above-mentioned limitations of GNNs on the task of graph classification. Built upon the
two existing steps of GNN models for node representation learning and graph pooling, we introduce
a new block for extracting class-specific information, namely the Class-Aware Refiner. The idea of
this refiner is simple but effective. Under the supervision of ground-truth labels, the refiner learns
the class representation from a bag of subgraph representations (generated by graph pooling) from
each class, and uses it to refine the representation of each graph within the same class. In this
way, we inject the class-specific information to graph representations, with the hope that it can
steer the graph representation learning to reflect class signatures. Inspired by the separability in
clustering (Wen et al., 2016), we also propose a class loss that takes into account intra-class graph
similarity and inter-class graph discrepancy. This class loss is combined with the classification
loss to directly influence the training of class representations to gain better class separability. We
further design two different architectures of CARE so that our framework can incorporate arbitrary
GNN backbones. In terms of the model generalization, we analyze the Vapnik-Chervonenkis (VC)
dimension (Vapnik & Chervonenkis, 2015) of CARE and provide theoretic guarantee that the upper
bound of the VC dimension of CARE is lower than that of the GNN backbone. The better ability of
CARE in alleviating overfitting is also evidenced in our experiments.

We empirically validate the graph classification performance of CARE on 9 benchmark datasets
with 10 commonly used GNN backbones. The results demonstrate that CARE significantly outper-
forms its GNN backbones: it achieves up to 11% improvement in classification accuracy. We also
perform a series of ablation studies to assess the effect of each component. We use a case study
to showcase that the graph representations refined by CARE is able to achieve better class sepa-
rability. Though CARE introduces an additional refiner to the backbone model, our results show
that the consideration of graph-level information drives the model to converge with fewer training
epochs. Consequently, the training time of CARE is comparable to or even shorter than its GNN
counterparts.

The main contributions of this paper are summarized as follows:

• We propose a novel graph representation refinement framework CARE, which considers
class-aware graph-level relationships. CARE is a flexible plug-and-play framework that
can incorporate arbitrary GNNs without significantly increasing the computational cost.

• We provide theoretic support through VC dimension analysis that CARE has better gener-
alization upper bound in comparison with its GNN backbone.

• We perform extensive experiments using 10 GNN backbones on 9 benchmark datasets to
justify the superiority of CARE on graph classification task in terms of both effectiveness
and efficiency.

2 OUR PROPOSED METHOD

In this section, we first give the problem formulation of graph classification, followed by the intro-
duction of our proposed CARE framework. We also discuss two architectures for applying CARE
to existing GNNs. Finally, we provide theoretic support for the generalization of CARE.

2

2.1 PROBLEM FORMULATION

We represent a graph as G = (A,X), where A ∈ {0, 1}n×n is its adjacency matrix, and X ∈ Rn×c

denotes the feature matrix with each node characterized by a feature vector of c dimensions. The
node set of G is denoted by VG and |VG| = n. We use Xv to denote the feature vector of a node
v ∈ VG. Table 6 in Appendix summarizes the notations used throughout the paper.

Given a data set of labeled graphs D = (G,Y) = {(G, yG)}, where yG ∈ Y is the corresponding
label of graph G ∈ G, the problem of graph classification aims to learn a predictive function f :
G → Y that maps graphs to their labels.

2.2 CLASS-AWARE REPRESENTATION REFINEMENT FRAMEWORK

Graph
Encoder

Subgraph
Selector

Readout

Readout

[]

Trans

Class-Aware Refiner

intra

inter

cls

Set Encoder

Predict

Head

graph sample
class representation point

(sub)graph representation

class representation

refined graph representation

ground-truth label only been
used when training

class of graph samples

module without parameter

module with parameter

node representation

Update bag of graph
representations

Figure 1: Framework of CARE.

We now describe our proposed Class-Aware Representation rEfinement framework (CARE), which
aims to refine graph representations by considering the graph-level similarity. CARE contains four
main components, including a graph encoder, a subgraph selector, a class-aware refiner and a class
loss. The former two allow the flexible incorporation of existing GNN methods, while the latter two
are newly proposed in our framework. Figure 1 depicts the CARE framework.

The remainder of this section describes the four components in detail. We first introduce the graph
encoder to get the initial node/graph representation, and then describe the subgraph selector to ex-
tract an appropriate substructure for the subsequent class representation learning. The class-aware
refiner learns class representations from different graph classes, which are used to refine graph rep-
resentations. A class loss is proposed to further improve class separability. The two new components
in CARE only contain a small number of parameters and are easy to plugin arbitrary GNN backbone.

Graph Encoder A graph encoder extracts the node representations H and the graph-level rep-
resentation hgG for graph G. CARE does not impose any constraint on the architecture of the
graph encoder. Any message-passing GNN model could be applied here, which is formalized

as H
(l+1)
v = UP(l)

(
H

(l)
v , AGG (l)

({
H

(l)
u

}
∀u∈N (v)

))
, where H(l+1) ∈ Rn×m denotes the

(l + 1)-th layer node representation with m dimensions, UP and AGG are arbitrary differentiable
update and aggregate functions, N (v) represents the neighbor node set of node v ∈ VG, and H

(0)
v

is initialized as the input feature vector Xv .

After a few message-passing layers, we can obtain a set of node representations. A READOUT
function can be applied to produce the graph representation hgG ∈ Rm as hgG =
READOUT({Hv | v ∈ VG}).

3

Subgraph Selector The class-aware refiner in CARE aims to maintain generic features for graph
samples from different classes. However, the READOUT function treats all nodes equally without
considering the class information. In fact, graphs in different classes are likely to have various
substructures. To address this limitation, CARE introduces a subgraph selector sub(·) to filter nodes
in the original graph, which is defined as A(l+1), H(l+1) = sub(A(l), H(l)).

Any graph pooling methods could be applied here to select subgraphs. Typical ones include node
drop pooling methods (Lee et al., 2019) and node clustering pooling methods (Baek et al., 2021).

Class-Aware Refiner As existing GNN models ignore the relationships of graphs from different
classes, a new component is designed in CARE to fill this gap. In the training process, the class-
aware refiner utilizes the ground truth label of each training instance. It maintains a bag of encoded
(sub)graph representations Bi and aggregates these representations to obtain a class representation
hci for each class i ∈ Y . The aggregation function is a universal Set Encoder, e.g., DeepSets (Zaheer
et al., 2017) or PointNet (Qi et al., 2016). Herein, we apply DeepSets as in Eq. (1), in which ρ(·) is
a multilayer perceptron (MLP) with a non-linear function ReLU, and ϕ(hg) = hg/|Bi|.

hci = ρ

 ∑
hgsub

G ∈Bi

ϕ(hgsubG)

 , (1)

where hgsubG is the subgraph representation of a graph G ∈ G, obtained by passing the output of
the subgraph selector through the READOUT function. The class representation hci is then used to
refine graph representations for all graphs in the same class:

hg′G = Trans([hgG | hci]), (2)

where Trans(·) is a transformation function and hg′G is the refined graph representation. Herein,
we set Trans(·) = ρ(·).
In the validation and the test processes, the ground truth label yG is not available for a validation/test
graph G. However, we need a label for each validation/test graph to determine which class repre-
sentation to be used to composite its refined representation. In this case, the Class-Aware Refiner
will predict a pseudo label ỹG for graph G by classifying it to the most similar class and use the
corresponding class representation for graph representation refinement. We use the cosine similarity
as a metric to quantify the similarity between a graph representation and a class representation. The
pseudo label is obtained as ỹG = argmax

i∈Y
(cos sim(hgsubG , hci)). Note that class representations

are kept unchanged in the validation/test process. The training algorithm of the class-aware refiner
is summarized in Algorithm 1.

Algorithm 1 Training of Class-Aware Refiner

Input: Subraph representation hgsubG of graph G (output by Subgraph Selector), graph representation hgG,
and ground-truth label yG of G;
Output: Refined graph representation hg′G, intra-class loss Lintra and inter-class loss Linter;

1: Use hgsubG to update the bag of (sub)graph representations Bi for i = yG;
2: Calculate the class representation hci by Eq. (1);
3: Use hci and hgG to obtain the refined graph representation hg′G by Eq. (2);
4: Calculate the intra-class loss Lintra and inter-class loss Linter by Eqs. (3) and (4);

Class Loss For graph classification task, it would be beneficial to exploit the graph similarity within
the same class and the graph discrepancy between different classes. This is essential for making
different classes more separable. Using the classification loss only fails to learn such graph-level
relations. Therefore, a class loss Lclass(·) is proposed in CARE to enforce the intra-class similarity
and the inter-class discrepancy. The former Lintra is defined as the similarity between each graph
representation and its class representation, while the latter Linter is defined as the similarity between
different class representations:

4

Lintra = AV G
i∈Y

(AV G
yG=i

(cos sim(hci, hg
sub
G))), (3)

Linter = AV G
i∈Y

(AV G
j>i,j∈Y

(cos sim(hci, hcj))), (4)

We again use the cosine similarity as a metric. The class loss Lclass = exp(Linter −Lintra) is then
defined as a function that maximizes Lintra and minimizes Linter, where AV G(·) is the average
function.

The predicted class label is still supervised by a classification loss Lcls(·). Herein, we apply the
commonly used cross-entropy loss (Cox, 1958). The overall loss L of CARE is defined as:

L = Lcls + λ ∗ Lclass, (5)

where λ is a trade-off hyperparameter for balancing the classification loss and the class loss.

2.3 MODEL ARCHITECTURE VARIANTS

As GNNs can be categorized as hierarchical ones and non-hierarchical ones, we design two corre-
sponding architectures that apply CARE to plug-and-play in different GNN backbones.

Global Architecture Several GNN models (e.g., GCN (Kipf & Welling, 2016a), GAT (Veličković
et al., 2017) and GraphSAGE (Hamilton et al., 2017)) apply the readout function only at the end of
graph convolution. The global architecture of CARE is designed to apply the Class-Aware Refiner
only after the readout function. The outputs are then passed to a linear layer for graph classification.

Hierarchical Architecture Some other GNN models, such as GIN (Xu et al., 2018) and UGformer
(Nguyen et al., 2019), have a readout function in each graph convolutional layer. The graph repre-
sentations from each layer are taken into account when making the final prediction. The hierarchical
architecture of CARE is designed to apply the class-aware refiner on each layer in order to cope with
the hierarchical GNN backbones.

2.4 GENERALIZATION ANALYSIS

In this section, we present the theoretical support that the proposed CARE has a better model gen-
eralization than its GNN backbone in the case of binary classification. We use the VC dimension
to measure the capacity of a model. Based on the VC theory (Vapnik, 2000), reducing the VC
dimension of a model has the effect of eliminating potential generalization errors.

Our analysis is grounded on the VC theory for neural nets (Bartlett & Maass, 2003): the VC di-
mension of a neural network is upper bounded by a function with respect to the number of model
parameters t and the number of operations p. In the following, we first derive the computational
complexity of the GNN backbone and CARE measured by the number of multiplications, based on
which we obtain an upper bound of the VC dimension for each model. We then present a theorem
that states that CARE has a lower VC dimension upper bound than its GNN backbone when the
number of parameters is identical. In subsequent discussions, we use GCN as an example backbone.
The conclusion generally applies to other backbones by plugging in their corresponding computa-
tional complexity. We present the theoretical results here and defer the detailed proofs to Appendix.

Computational Complexity of Models. CARE and its backbone GCN are both composed of GCN
layers, an embedding layer, and several fully-connected layers.

[Complexity of GCN Backbone.] We denote the GCN layer in the GCN model as gcn(·) and
its input/output dimensions as hgcnin /hgcnout . The layer mapping is given by gcn(A,H) =

σgcn(ÂHWgcn), where σgcn is the activation function, Wgcn ∈ Rhgcnin
×hgcnout is the weight ma-

trix, and Â is the normalized adjacency matrix. The computational complexity of the GCN network
measured by the multiplication number, denoted as q1(d) , for d number of layers, is given by:

5

q1(d) =

d∑
l=0

(n2hl
gcnin

+ nhl
gcnin

hl
gcnout

). (6)

[Complexity of CARE.] The GCN-based CARE network with a hierarchical architecture is composed
of the following:

• a GCN layer same as the GCN backbone, whose computational complexity is qlgcn =

n2hl
gcnin

+ nhl
gcnin

hl
gcnout

.

• a subgraph selector (SAGPool), which contains a score layer (GCN with 1 dimensional out-
put) and a top-k pooling algorithm. The complexity is qlsubgraph = n2hl

gcnout
+ nhl

gcnout
.

• a class-aware refiner contains a set encoder Eq. (1) and a transformation layer Eq. (2).
The mapping of the fully-connection layer fc(·) from input H is given by fc(H) =
σfc(HWfc), where σfc is the activation function, Wfc ∈ Rhfcin

×hfcout , and hfcin/hfcout

are the input/output dimensions. The complexities for the set encoder and the transforma-
tion layer are qlset = nhl

setinh
l
setout

and qltrans = nhl
transinh

l
transout

, respectively.

Therefore, the computational complexity of the GCN-based CARE is given by:

q2(d) =

d∑
l=0

(qlgcn + qlsubgraph + qlset + qltrans). (7)

VC Dimension Upper Bound. Inspired by the theoretical analysis in Kabkab et al. (2016) that
derives an upper bound of the VC dimension for a CNN model, we extend its result to a GCN
model, as given by the following lemma.

Lemma 1 Let Cd be the set of GCN models with d convolutional layers. Let Hd ≜ {hc : I →
{0, 1}|c ∈ Cd} be the set of boolean functions implementable by all GCNs in Cd. The VC dimension
of GCNs, as well as CARE, satisfies V Cdim(Hd) ⩽ α(d · q(d))2 for some constant α. Here, q(d)
is the computational complexity of the model under consideration.

VC Dimension Comparison We now compare the upper bounds of VC dimension on the GCN
backbone and CARE, which is formalized by the following theorem.

Theorem 1. Assume that the number of parameters in a GCN backbone and CARE is identical.
Let upperVC(GCN) and upperVC(CARE) be the upper bounds of VC dimension on the two models,
respectively, which are given by Lemma 1. We have upperVC (GCN) > upperVC (CARE).

Based on Theorem 1 and the VC theory, we conclude that our CARE has a better generalization
potential than its GCN backbone.

3 EXPERIMENTS

Due to the space limitation, we provide the experiment setup in Appendix C. In this section, we
first assess the performance of CARE in comparison with state-of-the-art GNN backbones. We then
conduct ablation studies to analyze the effects of different components in CARE. A case study is
presented to further investigate how CARE affects the separability of graphs from different classes.
Finally, an evaluation of model efficiency is performed. The sensitivity test of hyperparameters in
CARE is discussed in Appendix D.

3.1 PERFORMANCE COMPARISON WITH GNN BACKBONES

Effectiveness Analysis. We assess the graph classification performance on the first 8 datasets and
the last dataset using two different metrics. The former is assessed by the classification accuracy
and the latter by the ROC-AUC. This is because the OGBG-MOLHIV dataset has a severe class
imbalance issue. The results on the first 8 datasets are reported in Table 1. Each row in the table

6

shows the performance of an original GNN backbone and the performance after applying CARE.
Each column reports the results on a dataset. In total there are 80 backbone/dataset pairs and the
best result in each pair is highlighted in bold. As shown in Table 1, CARE is a clear winner: it
outperforms the GNN backbone in 74 out of 80 cases. CARE gains over 1% improvement in the
absolute accuracy in 47 out of 74 winning cases, while it drops over 1% in accuracy in only 1 out
of 6 losing cases. In particular, the improvement of CARE is up to 11.48%, which is achieved
on the FRANKENSTEIN dataset with GraphSAGE as backbone. The same observation is made
when testing on the OGBG-MOLHIV dataset. As shown in Table 2, CARE outperforms the GNN
backbones in most cases with improvements up to 5.63%. To sum up, the results demonstrate that
CARE is able to serve as a general framework to boost up the graph classification performance
over state-of-the-art GNN models on various datasets. To match with the setting of Theorem 1,
we also conduct experiments under the same parameter numbers in Appendix E. The experimental
comparison with GIB (Yu et al., 2020) is provided in Appendix F.

Model D&D PROTEINS MUTAG NCI1 NCI109 FRANK Tox21 ENZYMES

GraphSAGE Original 72.18 ± 2.93 74.87 ± 3.38 75.48 ± 6.11 63.94 ± 2.53 65.46 ± 1.12 52.95 ± 4.01 88.36 ± 0.15 52.50 ± 5.69
CARE 73.26 ± 3.25 75.92 ± 2.84 81.97 ± 6.42 75.23 ± 1.76 73.58 ± 1.68 64.43 ± 3.15 90.14 ± 0.74 53.67 ± 5.67

GCN Original 71.02 ± 3.17 73.89 ± 2.85 77.52 ± 10.81 78.80 ± 2.01 75.06 ± 2.50 55.58 ± 0.11 88.14 ± 0.29 62.17 ± 6.33
CARE 72.15 ± 3.88 75.01 ± 2.91 79.30 ± 11.81 79.66 ± 1.71 75.75 ± 1.63 59.15 ± 2.25 90.31 ± 0.56 65.00 ± 5.63

GIN Original 73.10 ± 2.44 72.41 ± 4.45 89.36 ± 4.71 81.96 ± 2.03 81.01 ± 1.84 67.23 ± 1.93 92.10 ± 0.59 62.79 ± 7.64
CARE 74.70 ± 3.37 72.32 ± 4.25 90.44 ± 4.58 82.34 ± 2.11 82.15 ± 1.79 67.33 ± 2.74 92.43 ± 0.78 68.17 ± 7.05

GAT Original 74.25 ± 3.76 74.34 ± 2.09 77.56 ± 10.49 78.07 ± 1.94 74.34 ± 2.18 62.85 ± 1.90 90.35 ± 0.71 67.67 ± 3.74
CARE 75.38 ± 2.93 76.72 ± 1.74 77.69 ± 8.99 78.52 ± 2.12 76.39 ± 2.76 62.57 ± 2.37 90.76 ± 0.73 69.17 ± 5.02

GXN Original 67.62 ± 5.85 70.32 ± 3.03 83.22 ± 7.97 73.34 ± 2.54 72.18 ± 2.24 60.86 ± 2.17 89.93 ± 0.73 63.13 ± 4.68
CARE 69.24 ± 6.97 72.70 ± 2.73 84.24 ± 8.53 74.75 ± 2.90 73.78 ± 1.66 62.64 ± 2.27 90.16 ± 0.85 64.44 ± 6.96

UGformer Original 75.51 ± 3.92 70.17 ± 5.42 75.66 ± 8.67 68.84 ± 1.54 66.37 ± 2.74 56.13 ± 2.51 88.06 ± 0.50 64.57 ± 4.53
CARE 76.23 ± 4.45 71.84 ± 3.87 77.66 ± 5.93 67.03 ± 1.69 66.92 ± 1.58 57.10 ± 2.27 88.21 ± 0.24 65.24 ± 5.91

SAGPool Original 71.46 ± 3.60 74.12 ± 3.46 78.12 ± 8.35 78.34 ± 1.96 76.15 ± 2.25 59.07 ± 2.23 90.78 ± 0.63 62.00 ± 4.76
CARE 73.28 ± 2.25 74.75 ± 3.14 79.81 ± 7.52 78.91 ± 2.21 76.44 ± 1.74 59.67 ± 2.04 90.64 ± 0.38 63.17 ± 4.37

DiffPool Original 70.45 ± 2.54 72.18 ± 2.80 85.26 ± 4.79 79.78 ± 2.11 76.98 ± 1.88 65.01 ± 3.17 91.02 ± 0.37 48.33 ± 6.67
CARE 72.90 ± 4.58 72.57 ± 2.97 86.33 ± 8.14 80.47 ± 1.67 78.49 ± 1.72 64.36 ± 3.43 91.58 ± 0.65 51.17 ± 6.75

HGPSLPool Original 71.25 ± 3.25 73.06 ± 3.20 80.82 ± 6.63 79.26 ± 1.44 75.83 ± 1.98 60.82 ± 2.85 90.12 ± 0.47 63.33 ± 5.06
CARE 71.61 ± 3.36 75.47 ± 3.98 82.31 ± 6.91 79.77 ± 1.97 76.87 ± 1.94 63.36 ± 1.73 90.44 ± 0.69 66.00 ± 4.48

MEWISPool Original 76.03 ± 2.59 68.10 ± 3.97 84.73 ± 4.73 74.21 ± 3.26 75.30 ± 1.45 64.63 ± 2.83 88.13 ± 0.05 53.66 ± 6.07
CARE 75.18 ± 3.90 69.64 ± 3.69 85.39 ± 5.85 76.48 ± 2.74 75.34 ± 2.86 65.39 ± 1.67 88.65 ± 0.07 55.67 ± 6.33

Table 1: Graph Classification Results (Average Accuracy ± Standard Deviation). Winner in each
backbone/dataset pair is highlighted in bold.

GraphSAGE GCN GIN GAT GXN
Original 70.37 ± 0.42 73.49 ± 1.99 65.11 ± 2.56 75.83 ± 1.78 69.15 ± 0.01
CARE 74.33 ± 2.12 74.29 ± 1.07 65.42 ± 3.70 76.89 ± 2.18 69.17 ± 0.02

UGformer SAGPool DiffPool HGPSLPool MEWISPool
Original 77.23 ± 3.54 73.80 ± 1.86 71.63 ± 2.25 76.08 ± 2.86 79.66 ± 1.71
CARE 78.04 ± 3.19 74.42 ± 1.53 70.21 ± 2.79 77.23 ± 2.16 77.37 ± 1.05

Table 2: Graph Classification Results (Average ROC-AUC ± Standard Deviation) on OGBG-
MOLHIV dataset. Winner in each backbone/dataset pair is highlighted in bold.

Figure 2: Accuracy curves of CARE-GCN and
GCN on PROTEINS dataset.

Generalization Performance. We also ob-
serve that CARE is able to alleviate the overfit-
ting in GNN backbones. An example is shown
in Figure 2, where we plot the accuracy curves
on the PROTEINS dataset with GCN as the
backbone. It shows that the test accuracy of
GCN (in blue) exhibits a steep and continuous
downward trend starting from epoch 120, while
its corresponding training accuracy continues
to climb up. This indicates an obvious over-
fit of GCN to the training data. After applying
CARE on GCN (in red), the steep drop in the
test accuracy vanishes, which demonstrates the ability of CARE in remitting overfitting.

7

Backbone Subgraph Selector D&D PROTEINS MUTAG NCI1 NCI109

GraphSAGE
None 67.24 ± 4.64 75.01 ± 4.15 82.95 ± 5.86 77.66 ± 1.98 73.67 ± 1.28

SAGPool 73.26 ± 3.25 75.92 ± 2.84 81.97 ± 6.42 75.23 ± 1.76 73.58 ± 1.68
HGPSLPool 71.82 ± 3.99 75.28 ± 3.76 77.57 ± 7.33 75.84 ± 1.50 74.36 ± 2.17

GCN
None 71.05 ± 3.89 73.39 ± 3.45 78.74 ± 9.67 79.15 ± 1.66 76.30 ± 2.31

SAGPool 72.15 ± 3.88 75.01 ± 2.91 79.30 ± 11.81 79.66 ± 1.71 75.75 ± 1.63
HGPSLPool 68.75 ± 3.45 73.39 ± 3.45 77.66 ± 5.13 79.25 ± 1.90 75.35 ± 2.57

GIN
None 75.64 ± 3.38 71.96 ± 5.49 88.80 ± 5.05 82.85 ± 1.27 82.11 ± 1.60

SAGPool 74.70 ± 3.37 72.32 ± 4.25 90.44 ± 4.58 82.34 ± 2.11 82.15 ± 1.79
HGPSLPool 75.06 ± 3.49 72.86 ± 4.66 90.47 ± 6.10 81.63 ± 1.80 81.05 ± 1.10

GAT
None 74.28 ± 2.43 75.74 ± 2.88 78.22 ± 6.77 75.30 ± 3.01 74.90 ± 2.24

SAGPool 75.38 ± 2.93 76.72 ± 1.74 77.69 ± 8.99 78.52 ± 2.12 76.39 ± 2.76
HGPSLPool 74.79 ± 2.73 75.46 ± 3.56 79.33 ± 9.73 75.74 ± 2.32 74.15 ± 3.53

Table 3: Ablation Study on Different Subgraph Selectors. Winner is highlighted in bold.

3.2 ABLATION STUDIES

We perform two ablation studies to show how different designs of the Subgraph Selector and the
loss function L influence the performance of CARE.

Subgraph Selector We compare the performance of three CARE variants with different subgraph
selectors on 5 datasets with 4 GNN backbones. The results are presented in Table 3. The first CARE
variant, denoted as ”None”, uses the whole graph for class representation learning without selecting
any subgraph. The other two models apply SAGPool and HGSPLPool respectively as the subgraph
selector. The pooling ratio for both SAGPool and HGSPLPool is set to 0.5. We can see that using the
subgraph selector achieves the best result in 15 out of 20 cases. When comparing the performance
of using SAGPool and HGSPLPool, the former beats the latter in 14 out of 20 cases. Therefore, we
choose SAGPool as the default subgraph selector.

Backbone Loss D&D PROTEINS MUTAG

Graph
SAGE

cls 72.24 ± 2.72 75.82 ± 3.34 75.50 ± 6.05
intra 70.12 ± 3.27 75.83 ± 2.83 77.02 ± 10.45
inter 70.30 ± 3.61 75.02 ± 3.55 81.87 ± 7.67

combine 73.26 ± 3.25 75.92 ± 2.84 81.97 ± 6.42

GCN

cls 71.39 ± 2.81 74.21 ±2.74 77.11 ± 9.48
intra 71.89 ± 5.35 74.65 ± 4.10 78.22 ± 7.17
inter 71.31 ± 2.06 74.20 ± 3.88 78.18 ± 10.41

combine 72.15 ± 3.88 75.01 ± 2.91 79.30 ± 11.81

Table 4: Ablation Study on Design of Loss Function
in terms of Classification Accuracy. Winner in each
backbone/dataset pair is highlighted in bold.

Class Loss We investigate different designs
of the loss function to study the impact of
the class loss we proposed. We consider
four designs of the overall loss function L:
a) cls: uses the classification loss Lcls only;
b) intra: uses a combination of the classifi-
cation loss and the intra-class loss as given
by L = Lcls − λ ∗ exp(Lintra); c) inter :
uses a combination of the classification loss
and the inter-class loss as given by L =
Lcls+λ∗exp(Linter); and d) combine, the
overall loss function in Eq. (5). The results
in Table 4 show that the proposed loss func-
tion performs the best among all designs.
This demonstrates the effectiveness of the
proposed class loss that takes into account the intra-class similarity and inter-class discrepancy.

3.3 CASE STUDY FOR CLASS SEPARABILITY

We design a case study to further investigate the effect of CARE, in particular its class-aware com-
ponents, in refining graph representations for the classification task. The idea is to study how CARE
affects the separability of graph classes in the training process. Is it able to direct the graph repre-
sentation learning to move towards better class separability? In order to answer this question, we
use four class separability metrics as follows. For all metrics, the larger their values, the better the
class separability is. We refer the reader to Appendix H for their formal definitions.

Silhouette Coefficient (Rousseeuw, 1987) It measures how similar a sample is to its own class
(cohesion) compared to those from other classes (separation). Its value ranges from -1 to 1. Separa-
bility Index (Thornton, 1998) It computes the fraction of samples that have a nearest neighbour with
the same class label. Its value ranges from 0 to 1. Hypothesis Margin (Gilad-Bachrach et al., 2004)
It measures the distance between a sample’s nearest neighbor from the same class (near-hit) and
the nearest neighbor from the opposing class (near-miss) and averages over all samples. Centroid

8

0

0.05

0.1

0.15

0.2

0.25

0.3

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

epoch

Silhouette Coefficient

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

epoch

Separability Index

0

2

4

6

8

10

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

epoch

Hypothesis Margin

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

epoch

Centroid Distance

0

1

2

3

4

5

6

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

epoch

Centroid Distance

2
2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

epoch

Hypothesis Margin

0.56

0.61

0.66

0.71

0.76

0.81

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

epoch

Separability Index

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

epoch

Silhouette Coefficient

epoch

CARE-GCN GCN(a) (b)

Figure 3: (a) Class Separability on PROTEINS with GCN Backbone (Training Set). (b) Class
Separability on PROTEINS with GCN Backbone (Test Set). The results were obtained by passing
the test data once at the end of each training epoch. Note that this process doesn’t affect the training
in any way as the model parameters/loss are not updated when passing the test data.

Distance It sums up the distances between the centroids for all pairs of classes, where the centroid
of a class is the mean of all samples in the class.

Figure 4: Visualization of Graph
Representations Produced by GCN
and CARE-GCN on PROTEINS
dataset.

Figure 3 reports the results on the PROTEINS dataset with
GCN as the backbone. We compute the four metrics on the
graph representations produced by CARE and GCN on the
training data. CARE uses the refined graph representations,
while GCN uses the original ones. It can be seen that the
training curves of CARE exhibit an upward trend under all
the four separability metrics. At the time when models con-
verge, CARE outperforms GCN in all metrics. In particular,
CARE achieves 49.26% improvement on Silhouette Coeffi-
cient, 1.96% on Separability Index, 45.21% on Hypothesis
Margin, and 30.51% on centroid distance. A visualization of
the graph representations in each model is shown in Figure 4.
Graph representations are passed into T-SNE (Van der Maaten
& Hinton, 2008) for dimensionality reduction and colored by
their class labels. This demonstrates that CARE is indeed able
to steer the graph representation learning towards better class
separability, which is also reflected by its superior classifica-
tion performance over GNN backbones. Similar conclusions can be drawn from the results on the
test data, which indicates that the class separability of CARE generalizes well to the test data.

3.4 TIME EFFICIENCY

CARE, when applied to a GNN backbone, introduces an additional refiner and the class loss. A
natural question arises: will CARE significantly sacrifice the efficiency of its GNN backbone for
better classification performance? This subsection aims to answer this question. Table 5 in Appendix
reports the number of epochs and the total time needed (including training, validation and test) for
CARE and the backbones GraphSAGE and GCN. It can be seen that CARE takes less number of
epochs to converge than its GNN counterpart in all cases. Consequently, the running time of CARE
is shorter than (4 out of 6 cases) or comparable to its backbones. The results demonstrate that CARE
is able to work on top of existing GNN models with superior effectiveness and improved/comparable
efficiency, making it a practical choice in real applications.

4 CONCLUSIONS

In this paper, we proposed CARE, a novel graph representation refinement framework for GNN-
based graph classification. It fills the gap that existing GNNs fail to consider graph-level relation-
ships in model design, and meanwhile improves the model generalization as proven theoretically

9

and evidenced empirically. Its plug-in-play nature makes it a powerful framework to build upon
arbitrary GNN models and boost up their classification performance without sacrificing efficiency.

REFERENCES

Yaser S Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning from data, volume 4.
AMLBook New York, 2012.

Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations with
graph multiset pooling. arXiv preprint arXiv:2102.11533, 2021.

Peter L Bartlett and Wolfgang Maass. Vapnik-chervonenkis dimension of neural nets. The handbook
of brain theory and neural networks, pp. 1188–1192, 2003.

Jonathon Byrd and Zachary Lipton. What is the effect of importance weighting in deep learning?
In International Conference on Machine Learning, pp. 872–881. PMLR, 2019.

David R Cox. The regression analysis of binary sequences. Journal of the Royal Statistical Society:
Series B (Methodological), 20(2):215–232, 1958.

Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for struc-
tured data. In International conference on machine learning, pp. 2702–2711. PMLR, 2016.

Ming Ding, Jie Tang, and Jie Zhang. Semi-supervised learning on graphs with generative adversarial
nets. In Proceedings of the 27th ACM International Conference on Information and Knowledge
Management, pp. 913–922, 2018.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. Advances in neural information processing systems, 28, 2015.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417–426, 2019.

Fuli Feng, Xiangnan He, Jie Tang, and Tat-Seng Chua. Graph adversarial training: Dynamically
regularizing based on graph structure. IEEE Transactions on Knowledge and Data Engineering,
33(6):2493–2504, 2019.

Ran Gilad-Bachrach, Amir Navot, and Naftali Tishby. Margin based feature selection-theory and
algorithms. In Proceedings of the twenty-first international conference on Machine learning, pp.
43, 2004.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 1025–1035, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Maya Kabkab, Emily Hand, and Rama Chellappa. On the size of convolutional neural networks
and generalization performance. In 2016 23rd International Conference on Pattern Recognition
(ICPR), pp. 3572–3577. IEEE, 2016.

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann. Bench-
mark data sets for graph kernels, 2016. URL http://graphkernels.cs.tu-dortmund.
de.

Byung-Hoon Kim and Jong Chul Ye. Understanding graph isomorphism network for rs-fmri func-
tional connectivity analysis. Frontiers in neuroscience, pp. 630, 2020.

10

http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016b.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International Confer-
ence on Machine Learning, pp. 3734–3743. PMLR, 2019.

Maosen Li, Siheng Chen, Ya Zhang, and Ivor W Tsang. Graph cross networks with vertex infomax
pooling. arXiv preprint arXiv:2010.01804, 2020.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017.

Dai Quoc Nguyen, Tu Dinh Nguyen, and Dinh Phung. Universal graph transformer self-attention
networks. arXiv preprint arXiv:1909.11855, 2019.

Amirhossein Nouranizadeh, Mohammadjavad Matinkia, Mohammad Rahmati, and Reza
Safabakhsh. Maximum entropy weighted independent set pooling for graph neural networks.
arXiv preprint arXiv:2107.01410, 2021.

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: random
dropouts increase the expressiveness of graph neural networks. Advances in Neural Information
Processing Systems, 34, 2021.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. computer vision and pattern recognition, 2016.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Grover: Self-supervised message passing transformer on large-scale molecular data. Advances in
Neural Information Processing Systems, 2020.

Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analy-
sis. Journal of computational and applied mathematics, 20:53–65, 1987.

Shuhao Shi, Kai Qiao, Shuai Yang, Linyuan Wang, Jian Chen, and Bin Yan. Boosting-gnn: Boosting
algorithm for graph networks on imbalanced node classification. Frontiers in neurorobotics, pp.
154, 2021.

Xiang Song, Runjie Ma, Jiahang Li, Muhan Zhang, and David Paul Wipf. Network in graph neural
network. arXiv preprint arXiv:2111.11638, 2021.

Qingyun Sun, Jianxin Li, Hao Peng, Jia Wu, Yuanxing Ning, Philip S Yu, and Lifang He. Sugar:
Subgraph neural network with reinforcement pooling and self-supervised mutual information
mechanism. In Proceedings of the Web Conference 2021, pp. 2081–2091, 2021.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos, Petar Veličković,
and Michal Valko. Bootstrapped representation learning on graphs. arXiv preprint
arXiv:2102.06514, 2021.

Chris Thornton. Separability is a learner’s best friend. In 4th Neural Computation and Psychology
Workshop, London, 9–11 April 1997, pp. 40–46. Springer, 1998.

11

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. In Measures of complexity, pp. 11–30. Springer, 2015.

VN Vapnik. The nature of statistical learning theory (information science and statistics) springer-
verlag. New York, 2000.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,
Qi Huang, Chao Ma, et al. Deep graph library: Towards efficient and scalable deep learning
on graphs. 2019.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series, 2(9):12–16, 1968.

Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A discriminative feature learning approach
for deep face recognition. In European conference on computer vision, pp. 499–515. Springer,
2016.

Shiwen Wu, Fei Sun, Wentao Zhang, and Bin Cui. Graph neural networks in recommender systems:
a survey. arXiv preprint arXiv:2011.02260, 2020a.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020b.

Wenwen Xia, Yuchen Li, Jianwei Tian, and Shenghong Li. Forecasting interaction order on temporal
graphs. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, pp. 1884–1893, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Mingqi Yang, Yanming Shen, Heng Qi, and Baocai Yin. Soft-mask: Adaptive substructure extrac-
tions for graph neural networks. In Proceedings of the Web Conference 2021, pp. 2058–2068,
2021.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling. arXiv preprint
arXiv:1806.08804, 2018.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in Neural Information Processing Systems,
33:5812–5823, 2020.

Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, and Ran He. Graph information
bottleneck for subgraph recognition. arXiv preprint arXiv:2010.05563, 2020.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

12

Xiaotong Zhang, Han Liu, Qimai Li, and Xiao-Ming Wu. Attributed graph clustering via adaptive
graph convolution. arXiv preprint arXiv:1906.01210, 2019a.

Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhi Yu, and Can Wang.
Hierarchical graph pooling with structure learning. arXiv preprint arXiv:1911.05954, 2019b.

Qian Zhou, Bo Sun, Yunsheng Song, and Shuang Li. K-means clustering based undersampling
for lower back pain data. In Proceedings of the 2020 3rd International Conference on Big Data
Technologies, pp. 53–57, 2020.

Model D&D PROTEINS MUTAG
Epoch # ± s.d. Time Epoch # ± s.d. Time Epoch # ± s.d. Time

GraphSAGE Original 500.6 ± 123.2 1.205 320.5 ± 53.2 1.209 384.1 ± 101.3 0.180
CARE 293.5 ± 12.0 1.142 282.0 ± 51.5 0.911 302.2 ± 34.1 0.159

GCN Original 267.4 ± 3.4 0.692 365.0 ± 27.9 0.670 352.4 ± 69.9 0.132
CARE 264.1 ± 5.2 0.848 306.5 ± 17.2 0.665 332.4 ± 57.3 0.143

Table 5: Time Efficiency of CARE and Backbones . Total time (h) was recorded for a single run
(including training, validation, and test) with batch size 20 and 10-fold CV. Best time in each back-
bone/dataset pair is highlighted in bold.

Notation Description
G An input graph
A Adjacency matrix of G
X Node feature matrix of G
VG Node set of G
v A node in G
n Number of nodes in G
c Dimensionality of node feature vector Xv

D Input dataset
G Input graph set
Y Input label set
Bi Bag of (sub)graph representations of class i
yG Label of G
H Node representations
l Number of layers in GNN

hgG Whole graph representation of G
Hv Node representation of v
m Dimensionality of node representation Hv

Gsub Subgraph of G
Asub Adjacency matrix of Gsub

Hsub Node representations of Gsub

i i-th class in Y
hci Class representation of class i
hg′G Refined representation of G
ŷ Predicted class label

Table 6: Notation Table

A RELATED WORKS

A.1 GRAPH NEURAL NETWORKS

Kipf and Welling (Kipf & Welling, 2016a) were the first to introduce the convolution operation to
graphs. Later on, Hamilton et al. Hamilton et al. (2017) proposed to use sampling and aggrega-
tion to learn node representations. The attention mechanism was introduced to graph convolution
in Veličković et al. (2017) to yield node representations by unequally considering messages from
different neighbors. The Graph Isomorphism Network (GIN) was proposed in Xu et al. (2018),
which has been shown to be as powerful as the Weisfeiler-Lehman (WL) test (Weisfeiler & Leman,
1968). Recently, the transformer architecture (Vaswani et al., 2017) has been introduced to GNN

13

(Nguyen et al., 2019; Rong et al., 2020), which considers the relatedness between nodes in the node
representation learning.

For GNN-based graph classification, graph pooling is commonly applied as the readout function
to generate graph representations. Existing pooling methods can be categorised under node drop
pooling (Duvenaud et al., 2015; Zhang et al., 2018; Lee et al., 2019) and node clustering pooling
(Ying et al., 2018; Zhang et al., 2019b; Li et al., 2020; Nouranizadeh et al., 2021). Node drop
pooling uses learnable scoring functions to drop nodes with lower scores while node clustering
pooling casts the graph pooling problem into the node clustering problem (Baek et al., 2021). In
a recent development, Yang et al. (Yang et al., 2021) leverage the mask mechanism to select the
subgraph by considering the consistency over samples. Both categories of the pooling methods
focus on node level manipulations and neglect the graph-level information.

A.2 METHODS TO TREAT GNN OVERFITTING

Expressiveness of GNN could be improved by increasing the number of model parameters through
e.g., expanding the hidden dimension of the GNN layer or adding more layers. However, this process
could detriment the performance and induce overfitting (Song et al., 2021).

A typical method to treat GNN overfitting is via data augmentation. Several works (Papp et al., 2021;
Rong et al., 2019) used node/edge dropping augmentations. Ding et al. (2018) proposed a generator-
classifier network under the adversarial learning setting to generate fake nodes. Feng et al. (2019)
performed adversarial perturbations to node features. Recently, the paradigm of contrastive learn-
ing has been introduced to GNN to perform graph contrastive learning (You et al., 2020; Thakoor
et al., 2021). SUGAR (Sun et al., 2021) generates subgraphs and uses these subgraphs for recon-
struction, which still follows the graph contrastive learning paradigm. All these methods perform
augmentation on individual graphs and again neglect the graph-level information.

Several resampling (Byrd & Lipton, 2019; Zhou et al., 2020) and reweighting (Lin et al., 2017; Shi
et al., 2021) methods have also been proposed to prevent GNN from overfitting. In general, these
methods design algorithms to control the influence of each sample on the model, while the sample
relations are not taken into account.

To the best of our knowledge, our work is the first to explore the use of class-aware graph-level
relationships to alleviate the overfitting in GNNs.

B THEORETICAL PROOFS

B.1 PROOF SKETCH OF LEMMA 1

Our proof follows the same flow as Lemma 1 in Kabkab et al. (2016).

A parametrized class of functions with parameters in Rt that is computable in no more than p
operations has a VC dimension which is O(t2p2) (Bartlett & Maass, 2003). t in GCN and CARE
can be formulated as:

tGCN =

d∑
l=0

hl
gcnin

hl
gcnout

; (8)

tCARE =

d∑
l=0

(hl
gcnin

hl
gcnout

+ hl
gcnout

+ hl
setinh

l
setout

+ hl
transinh

l
transout

). (9)

By plugging in the number of multiplications q1(d) and q2(d) given by Eqs. (6) and (7), together
with the above equations on the number of parameters t, into O(t2p2), we complete the proof of
Lemma 1 for both GCN and CARE.

14

B.2 PROOF OF THEOREM 1

We compare the VC dimension upper bounds of a GCN layer and a GCN-based CARE layer under
the identical number of parameters. According to Section 2.2 of Abu-Mostafa et al. (2012), the
VC dimension provides a loose generalization bound for models and can be used as a guideline for
generalization comparison - models with a lower upper bound tend to have better generalization
capability. The number of parameters in a GCN layer t1 and that in a GCN-based CARE layer t2
are formulated as:

t1 = hgcnin
hgcnout

, (10)

t2 = hgcninhgcnout + hgcnout + hsetinhsetout + htransinhtransout . (11)

In our setting, we choose a basic hidden dimension h1 and h2 for GCN and CARE respectively.
We set each layer to be an integer multiple of the basic hidden dimension. Thus, t1 = h2

1 and
t2 = h2

2 + h2 + h2
2 + 2h2

2 = 4h2
2 + h2, respectively.

Note that htransin = hsetout +hgcnout as we concatenate the class representation with the subgraph
representation.

Similarly, the computational complexities q1 and q2 can be rewritten as:

q1(d) =

d∑
l=0

(nh2
1 + n2h1), (12)

q2(d) =

d∑
l=0

(4nh2
2 + (2n2 + n)h2). (13)

When d = 1, the complexity can be written as:

q1(1) = nh2
1 + n2h1, (14)

q2(1) = 4nh2
2 + (2n2 + n)h2. (15)

Under the identical number of parameters, we let t1 = t2, and have h1 =
√
4h2

2 + h2. Thus,

q1(1) = 4nh2
2 + nh2 + n2

√
4h2

2 + h2. (16)

The difference between q1(1) and q2(1) satisfies:

q1(1)− q2(1) = n2(
√
4h2

2 + h2 − 2h2). (17)

Because
√
4h2

2 + h2 − 2h2 > 0, we have:

q1(1) > q2(1). (18)

According to our setting, the input and output feature map sizes of all layers is identical, which
means that the ‘n’ in each layer’s complexity equation are identical. Thus, we extend Eq. (18) to the
full model and have:

q1(d) > q2(d). (19)

With Eq. (19) and Lemma 1, we complete the proof of Theorem 1.

15

C EXPERIMENTAL SETUP

In this section, we present the experimental setup, including datasets, GNN backbones and detailed
model implementation.

C.1 DATASETS

Dataset Graph# Class# Avg Node# Avg Edge#
D&D 1178 2 284.32 715.66
PROTEINS 1113 2 39.06 72.82
MUTAG 188 2 17.93 19.79
NCI1 4110 2 29.87 32.30
NCI109 4127 2 29.68 32.13
FRANKENSTEIN 4337 2 16.90 17.88
Tox21 8169 2 18.09 18.50
ENZYMES 600 6 32.63 62.14
OGBG-MOLHIV 41127 2 25.50 27.50

Table 7: Statistics of Datasets.

Nine commonly used benchmark datasets were tested in our experiments. Eight of them were
selected from TUDataset (Kersting et al., 2016) and include DD, PROTEINS, MUTAG, NCI1,
NCI109, FRANKENSTEIN (FRANK), Tox21 and ENZYMES. The last dataset OGBG-MOLHIV
was selected from Open Graph Benchmark (Hu et al., 2020) and consists of 41K+ graphs. The
statistics of the datasets are summarized in Table 7.

C.2 GNN BACKBONES

We test the effectiveness of CARE on a wide range of GNN backbones, including GCN (Kipf &
Welling, 2016a), GraphSAGE (Hamilton et al., 2017), GIN (Xu et al., 2018), GAT (Veličković
et al., 2017), UGformer (Nguyen et al., 2019) , GXN (Li et al., 2020), SAGPool (Lee et al., 2019),
DiffPool (Ying et al., 2018), HGPSLPool (Zhang et al., 2019b) and MEWISPool (Nouranizadeh
et al., 2021). We apply CARE on each of them and compare the performance with the original
backbone model. Among the 10 models selected, GIN and UGformer are hierarchical ones. We
thus apply the hierarchical architecture CARE on them. The global architecture CARE is applied to
the rest models. A brief introduction of each model is provided as follow:

GCN (Kipf & Welling, 2016a) is a mean pooling baseline with graph convolution network as a
message-passing layer.

GAT (Veličković et al., 2017) is a mean pooling baseline, which adopts an attention mechanism to
learn the relative weights between the node and its neighbors.

GraphSAGE (Hamilton et al., 2017) is a mean pooling baseline, which adopts sampling to obtain a
fixed number of neighbors for each node.

GXN (Li et al., 2020) is a sort pooling (Zhang et al., 2018) baseline, which uses vertex infomax
pooling to select nodes that can maximally express their corresponding neighborhoods.

SAGPool (Lee et al., 2019) is a graph pooling method that uses graph convolution in graph pooling
to consider both node features and graph structure.

DiffPool (Ying et al., 2018) is an end-to-end trainable graph pooling method that can produce hier-
archical representations for graphs.

HGPSLPool (Zhang et al., 2019b) is a pooling method that introduces a structure learning mecha-
nism to refine graph structure after pooling.

MEWISPool (Nouranizadeh et al., 2021) is a pooling method, which introduces Shannon capacity
to maximize the mutual information between the input graph and the output graph.

16

GIN (Xu et al., 2018) is a sum pooling baseline that uses a learnable parameter to adjust the weight
of the central node, thus improving the message-passing network’s ability to distinguish different
graph structures.

UGformer (Nguyen et al., 2019) is a sum pooling baseline which identifies meta-paths to transform
the graph structure for node representation learning and adopts Transformer for aggregation.

C.3 IMPLEMENTATION DETAILS

The default number of graph convolutional layers in both CARE and GNN backbones is 4. We use
SAGPool with a pooling ratio of 0.5 as the default subgraph selector in CARE. Notice that we did
not apply any subgraph selector on GNNs that are already equipped with their own pooling methods
for substructure extraction. This includes SAGPool, DiffPool, HGPSLPool and MEWISPool. The
trade-off hyperparameter λ in Eq. (5) is set to 1 by default. The whole network is trained in an
end-to-end manner using the Adam optimizer (Kingma & Ba, 2014). We use the early stopping
criterion, i.e., we stop the training once there is no further improvement on the validation loss during
25 epochs. The learning rate is initialized to 10−4 and the maximum number of epochs is set to
1000. We set the hidden size to 146 and batch size to 20 for all models. The only exception is
DiffPool when tested on the D&D dataset. Since the D&D dataset has a large number of nodes
(see Table 7), the hidden size and batch size are set to 32 and 6 to achieve an acceptable number of
parameters in DiffPool.

For TUdataset, we split it into 8:1:1 for training, validation and test. For all experiments of
CARE and GNN backbones, we evaluate each model with the same random seed for 10-fold cross-
validation. We use the scaffold splits for the OGBG-MOLHIV dataset and report the average ROC-
AUC with 10 random seeds. All the codes were implemented using PyTorch (Paszke et al., 2017)
and Deep Graph Library (Wang et al., 2019) packages. The experiments were conducted in a Linux
server with Intel(R) Core(TM) i9-10940X CPU (3.30GHz), GeForce GTX 3090 GPU, and 125GB
RAM.

D HYPERPARAMETER ANALYSIS

In this section, we study the sensitivity of two important hyperparameters in CARE, the trade-off
parameter λ in the loss function and the number of layers. We test on three datasets using GIN as
backbone for this set of experiments.

Trade-off Parameter λ. This hyperparameter is used in the overall loss function L (Eq. (5)) to
trade-off between the classification loss and the class loss. We tune the value of λ from 0.01 to
105. The results are presented in Table 8. It shows that the choice of λ affects the performance
marginally and there doesn’t exist a value that works best for all datasets. In practice, we could use
the validation set to find the best value of λ.

λ D&D PROTEINS MUTAG
0.01 74.20 ± 3.65 71.78 ± 4.84 89.91 ± 4.35
0.1 74.11 ± 4.38 71.87 ± 4.99 90.47 ± 5.11
1 74.70 ± 3.37 72.32 ± 4.25 90.44 ± 4.58
10 74.45 ± 3.12 72.14 ± 4.71 89.88 ± 4.39
100 74.28 ± 3.19 72.59 ± 4.56 89.39 ± 4.68
105 74.20 ± 3.33 72.05 ± 4.85 89.36 ± 4.08

Table 8: Results when Tuning λ.

Number of Layers. The depth of the neural network can certainly affect the model performance.
We adjust the number of layers to investigate whether CARE can adapt to different depths of neural
networks. We vary the number of layers from 2 to 5, and report the results in Table 9. For each
dataset, we underline the best result among all the numbers of layers tested.

As shown in Table 9, CARE consistently outperforms GIN at different number of layers, except for
4 layers on PROTEINS where the performance difference is marginal at 0.09%. The best results

17

Layer# module D&D PROTEINS MUTAG

2 GIN 74.11 ± 3.42 72.42 ± 2.06 89.91 ± 4.35
CARE 76.40 ± 2.14 73.22 ± 2.78 90.47 ± 5.11

3 GIN 74.53 ± 3.36 70.79 ± 5.18 87.78 ± 4.07
CARE 75.13 ± 3.39 71.69 ± 4.65 90.47 ± 5.11

4 GIN 73.10 ± 2.44 72.41 ± 4.45 89.36 ± 4.71
CARE 74.70 ± 3.37 72.32 ± 4.25 90.44 ± 4.58

5 GIN 73.93 ± 2.62 70.71 ± 4.00 91.49 ± 4.83
CARE 74.70 ± 3.50 72.69 ± 3.24 91.52 ± 5.39

Table 9: Results when Tuning Number of Layers.

are achieved with 2 layers on D&D and PROTEINS and with 5 layers on MUTAG. Therefore, the
number of layers should also be selected through the validation process for different datasets.

E EFFECTIVENESS ANALYSIS UNDER THE SAME PARAMETER NUMBER

CARE is proposed as a plug-and-play framework. However, in addition to directly plugging it in
a GNN backbone without changing the number of model parameters in the backbone (as what we
have done in experiments in the submitted version), it could also be used in a way that the resultant
CARE after plug-in has a comparable number of parameters to the original GNN backbone before
plug-in. This can be achieved by adjusting the number of parameters in the GNN backbone at the
time when CARE is plugged in. To demonstrate this, we conduct a new experiments to match with
the setting of Theorem 1. For each GNN backbone, we first set its number of parameters to 100K.
For CARE, we adjust the hidden dimension of each GNN backbone to which CARE is applied such
that the number of parameters of CARE is also 100K. As shown in the table below, CARE still
outperforms its GNN backbone in 8 out of 9 cases. The results demonstrate that CARE can boost
up the graph classification performance without introducing additional parameters.

DD PROTEINS MUTAG

GraphSAGE original 72.18 ± 2.93 74.87 ± 3.38 75.48 ± 6.11
CARE 72.22 ± 3.10 75.74 ± 1.68 76.08 ± 10.83

GCN original 71.02 ± 3.17 73.89 ± 2.85 77.52 ± 10.81
CARE 71.73 ± 4.12 74.91 ± 3.59 79.27 ± 4.31

GIN original 73.10 ± 2.44 72.41 ± 4.45 89.36 ± 4.71
CARE 73.19 ± 4.44 70.43 ± 4.69 89.70 ± 5.53

Table 10: Graph Classification Results (Average Accuracy ± Standard Deviation) under the same
parameters setting. The parameter numbers of all models are 100K. Winner in each backbone/dataset
pair is highlighted in bold.

F COMPARISON WITH GIB

GIB proposes a novel objective to recognize the maximally informative subgraph. It designs a bi-
level optimization scheme and a connectivity loss to optimize the GIB objective. As both GIB and
our work consider graph-level similarity, we add it as a new baseline in our experiments. The results
of GIB are taken from its original paper. As shown in the table below, as a plugin component, CARE
outperforms GIB in 7 out of 12 cases.

G ABLATION STUDY ON SIMILARITY METRIC FOR CLASS LOSS

We study the effect of the similarity metric in computing the class loss. Besides the cosine similarity,
L2 distance is also commonly used to measure the dissimilarity between two vectors. We use L2
distance in place of the cosine similarity in Eqs. (3) and (4) to define the intra-class and inter-class
losses. As L2 distance measures the dissimilarity, we take an inverse of the class loss when L2

18

DD PROTEINS MUTAG

GraphSAGE

original in GIB paper 72.9 ± 4.1 72.1 ± 4.2 74.3 ± 7.7
GIB 78.1 ± 4.2 73.4 ± 4.3 76.0 ± 7.4

original in our paper 72.2 ± 2.9 74.9 ± 3.4 75.5 ± 6.1
CARE 73.3 ± 3.3 75.9 ± 2.8 82.0 ± 6.42

GCN

original in GIB paper 72.5 ± 4.6 71.9 ± 4.1 74.3 ± 11.0
GIB 76.5 ± 5.0 74.8 ± 4.6 77.6 ± 7.5

original in our paper 71.0 ± 3.2 73.9 ± 2.9 77.5 ± 10.8
CARE 72.2 ± 3.9 75.0 ± 2.9 79.3 ± 11.8

GIN

original in GIB paper 73.0 ± 3.3 70.7 ± 4.8 82.5 ± 6.8
GIB 74.7 ± 3.9 74.9 ± 5.0 83.9 ± 6.4

original in our paper 73.1 ± 2.4 72.4 ± 4.5 89.4 ± 4.7
CARE 74.7 ± 3.4 72.3 ± 4.3 90.4 ± 4.6

GAT

original in GIB paper 69.5 ± 4.5 71.4 ± 4.0 73.8 ± 7.4
GIB 76.9 ± 4.0 73.7 ± 4.4 74.9 ± 9.7

original in our paper 74.3 ± 3.8 74.3 ± 2.1 77.6 ± 10.5
CARE 75.4 ± 2.9 76.7 ± 1.7 77.7 ± 9.0

Table 11: Graph Classification Results (Average Accuracy ± Standard Deviation) comparing with
GIB. Winner in each GIB/CARE pair is highlighted in bold.

distance is used. We then compare the performance of CARE under these two different metrics.
Table 12 shows the results under GCN as the GNN backbone. It shows that CARE with the cosine
similarity is more powerful than that with the L2 distance.

Lintra = norm(

|Y|∑
i=1

norm(
∑
yG=i

dis(hci, hg
sub
G))), (20)

Linter = norm(

|Y|∑
i=1

norm(

|Y|∑
j=i

dis(hci, hcj))), (21)

Lclass = exp(Lintra − Linter). (22)

D&D PROTEINS MUTAG
- 71.39 ± 2.81 74.21 ± 2.74 77.11 ± 9.48
L2 71.91 ± 4.97 74.65 ± 3.54 77.69 ± 8.35
KL 71.85 ± 4.49 74.38 ± 3.16 78.74 ± 5.19
cos sim 72.15 ± 3.88 75.01 ± 2.91 79.30 ± 11.81

Table 12: Ablation Study on Similarity Metric for Class Loss.

H CLASS SEPARABILITY METRICS IN CASE STUDY

H.1 SILHOUETTE COEFFICIENT

The Silhouette of a sample xi is defined as:

sil(xi) =
bi − ai

max(ai, bi)
, (23)

Silhouette = AV ERAGE
xi

({sil(xi)}), (24)

where ai denotes the average distance between xi and all other samples in the same class, and bi

denotes the smallest mean distance from xi to all samples in any other class.

19

H.2 SEPARABILITY INDEX

The Separability Index SI is defined as:

K(xi, xj) =

{
1, if yi = yj , yi ∈ Y, yj ∈ Y
0, otherwise

, (25)

x′
i = argmin

xj ̸=xi

(∥xi − xj∥), (26)

SI =

∑
xi
K(xi, x

′
i)

m
, (27)

where m is the total number of samples, xi denotes the i-th sample, yi denotes its corresponding
class label, and Y denotes the set of classes. The nearest neighbour distance function ∥·∥ is assumed
to utilise a suitable metric, e.g., a Manhalobis metric for symbolic data or a Euclidean metric for
spatial data.

H.3 HYPOTHESIS MARGIN

The Hypothesis Margin (HM) is defined as:

hm(xi) =
∥xi − nearmiss(xi)∥
∥xi − nearhit(xi)∥

, (28)

HM = AV ERAGE
xi

({hm(xi)}), (29)

where nearhit(xi) and nearmiss(xi) denote the nearest sample to xi with the same and different
label, respectively. ∥·∥ denotes the L2 distance. Note that a chosen set of features affects the margin
through the distance measure.

H.4 CENTROID DISTANCE

The Centroid Distance (CD) is defined as:

ci = AV ERAGE({x}yx=i), (30)

CD =

|Y|∑
i=1

|Y|∑
j=i

∥ci − cj∥, (31)

where yx denotes the class label of a sample x, Y denotes the set of classes and ∥ · ∥ denotes the L2
distance.

20

	Introduction
	Our Proposed Method
	Problem Formulation
	Class-Aware Representation Refinement Framework
	Model Architecture Variants
	Generalization Analysis

	Experiments
	Performance Comparison with GNN Backbones
	Ablation Studies
	Case Study for Class Separability
	Time Efficiency

	Conclusions
	Related Works
	Graph Neural Networks
	Methods to Treat GNN Overfitting

	Theoretical Proofs
	Proof Sketch of Lemma 1
	Proof of Theorem 1

	Experimental Setup
	Datasets
	GNN Backbones
	Implementation Details

	Hyperparameter Analysis
	Effectiveness Analysis under the same Parameter Number
	Comparison with GIB
	Ablation Study on Similarity Metric for Class Loss
	Class Separability Metrics in Case Study
	Silhouette Coefficient
	Separability Index
	Hypothesis Margin
	Centroid Distance

