
Bayesian Kernelized Tensor Factorization as Surrogate
for Bayesian Optimization

Anonymous Author(s)
Affiliation
Address
email

Abstract

Bayesian optimization (BO) primarily uses Gaussian processes (GP) as the key sur-1

rogate model, mostly with a simple stationary and separable kernel function such as2

the squared-exponential kernel with automatic relevance determination (SE-ARD).3

However, such simple kernel specifications are deficient in learning functions with4

complex features, such as being nonstationary, nonseparable, and multimodal.5

Approximating such functions using a local GP, even in a low-dimensional space,6

requires a large number of samples, not to mention in a high-dimensional set-7

ting. In this paper, we propose to use Bayesian Kernelized Tensor Factorization8

(BKTF)—as a new surrogate model—for BO in a D-dimensional Cartesian product9

space. Our key idea is to approximate the underlying D-dimensional solid with a10

fully Bayesian low-rank tensor CP decomposition, in which we place GP priors11

on the latent basis functions for each dimension to encode local consistency and12

smoothness. With this formulation, information from each sample can be shared13

not only with neighbors but also across dimensions. Although BKTF no longer14

has an analytical posterior, we can still efficiently approximate the posterior dis-15

tribution through Markov chain Monte Carlo (MCMC) and obtain prediction and16

full uncertainty quantification (UQ). We conduct numerical experiments on both17

standard BO test functions and machine learning hyperparameter tuning problems,18

and our results show that BKTF offers a flexible and highly effective approach for19

characterizing complex functions with UQ, especially in cases where the initial20

sample size and budget are severely limited.21

1 Introduction22

For many applications in sciences and engineering, such as emulation-based studies, design of23

experiments, and automated machine learning, the goal is to optimize a complex black-box function24

f(x) in a D-dimensional space, for which we have limited prior knowledge. The main challenge in25

such optimization problems is that we aim to efficiently find global optima rather than local optima,26

while the objective function f is often gradient-free, multimodal, and computationally expensive27

to evaluate. Bayesian optimization (BO) offers a powerful statistical approach to these problems,28

particularly when the observation budgets are limited [1, 2, 3]. A typical BO framework consists of29

two components to balance exploitation and exploration: the surrogate and the acquisition function30

(AF). The surrogate is a probabilistic model that allows us to estimate f(x) with uncertainty at a new31

location x, and the AF is used to determine which location to query next.32

Gaussian process (GP) regression is the most widely used surrogate for BO [3, 4], thanks to its33

appealing properties in providing analytical derivations and uncertainty quantification (UQ). The34

choice of kernel/covariance function is a critical decision in GP models; for multidimensional35

BO problems, perhaps the most popular kernel is the ARD (automatic relevance determination)—36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Squared-Exponential (SE) or Matérn kernel [4]. Although this specification has certain numerical37

advantages and can help automatically learn the importance of input variables, a key limitation is that38

it implies/assumes that the underlying stochastic process is both stationary and separable, and the39

value of the covariance function between two random points quickly goes to zero with the increase of40

input dimensionality. These assumptions can be problematic for complex real-world processes that41

are nonstationary and nonseparable, as estimating the underlying function with a simple ARD kernel42

would require a large number of observations. A potential solution to address this issue is to use more43

flexible kernel structures. The additive kernel, for example, is designed to characterize a more “global”44

and nonstationary structure by restricting variable interactions [5], and it has demonstrated great45

success in solving high-dimensional BO problems (see, e.g., [6, 7, 8]). However, in practice using46

additive kernels requires strong prior knowledge to determine the proper interactions and involves47

many kernel hyperparameters to learn [9]. Another emerging solution is to use deep GP [10], such as48

in [11]; however, for complex multidimensional functions, learning a deep GP model will require a49

large number of samples.50

In this paper, we propose to use Bayesian Kernelized Tensor Factorization (BKTF) [12, 13, 14] as a51

flexible and adaptive surrogate model for BO in a D-dimensional Cartesian product space. BKTF is52

initially developed for modeling multidimensional spatiotemporal data with UQ, for tasks such as53

spatiotemporal kriging/cokriging. This paper adapts BKTF to the BO setting, and our key idea is to54

characterize the multivariate objective function f (x) = f (x1, . . . , xD) for a specific BO problem55

using low-rank tensor CANDECOMP/PARAFAC (CP) factorization with random basis functions.56

Unlike other basis-function models that rely on known/deterministic basis functions [15], BKTF uses57

a hierarchical Bayesian framework to achieve high-quality UQ in a more flexible way—GP priors58

are used to model the basis functions, and hyperpriors are used to model kernel hyperparameters in59

particular for the lengthscale that characterizes the scale of variation.60

Figure 1 shows the comparison between BKTF and GP surrogates when optimizing a 2D function that61

is nonstationary, nonseparable, and multimodal. The details of this function and the BO experiments62

are provided in Appendix 7.3, and related code is given in Supplementary material. For this case,63

GP becomes ineffective in finding the global solution, while BKTF offers superior flexibility and64

adaptability to characterize the multidimensional process from limited data. Different from GP-based65

surrogate models, BKTF no longer has an analytical posterior; however, efficient inference and66

acquisition can be achieved through Markov chain Monte Carlo (MCMC) in an element-wise learning67

way, in which we update basis functions and kernel hyperparameters using Gibbs sampling and slice68

sampling respectively [14]. For the optimization, we first use MCMC samples to approximate the69

posterior distribution of the whole tensor and then naturally define the upper confidence bound (UCB)70

as AF. This process is feasible for many real-world applications that can be studied in a discretized71

tensor product space, such as experimental design and automatic machine learning (ML). We conduct72

extensive experiments on both standard optimization and ML hyperparameter tuning tasks. Our73

results show that BKTF achieves a fast global search for optimizing complex objective functions74

under limited initial data and observation budgets.75

Figure 1: BO for a 2D nonstationary nonseparable function: (a) True function surface, where the
global maximum is marked; (b) Comparison between BO models using GP surrogates (with two AFs)
and BKTF with 30 random initial observations, averaged over 20 replications; (c) Specific results of
one run, including the final mean surface for f , in which green dots denote the locations of selected
candidates, and the corresponding AF surface.

2

2 Preliminaries76

Throughout this paper, we use lowercase letters to denote scalars, e.g., x, boldface lowercase letters77

to denote vectors, e.g., x = (x1, . . . , xD)
⊤ ∈ RD, and boldface uppercase letters to denote matrices,78

e.g., X ∈ RM×N . For a matrix X , we denote its determinant by det (X). We use IN to represent79

an identity matrix of size N . Given two matrices A ∈ RM×N and B ∈ RP×Q, the Kronecker80

product is defined as A ⊗B =

 a1,1B · · · a1,NB
...

. . .
...

aM,1B · · · aM,NB

 ∈ RMP×NQ. The outer product of two81

vectors a and b is denoted by a ◦ b. The vectorization operation vec(X) stacks all column vectors82

in X as a single vector. Following the tensor notation in [16], we denote a third-order tensor by83

X ∈ RM×N×P and its mode-k (k = 1, 2, 3) unfolding by X(k), which maps a tensor into a matrix.84

Higher-order tensors can be defined in a similar way.85

Let f : X = X1 × . . .×XD → R be a black-box function that could be nonconvex, derivative-free,86

and expensive to evaluate. BO aims to address the global optimization problem:87

x⋆ = argmax
x∈X

f(x), f⋆ = max
x∈X

f(x) = f(x⋆). (1)

BO solves this problem by first building a probabilistic model for f(x) (i.e., surrogate model) based88

on initial observations and then using the model to decide where in X to evaluate/query next. The89

overall goal of BO is to find the global optimum of the objective function through as few evaluations90

as possible. Most BO models rely on a GP prior for f(x) to achieve prediction and UQ:91

f(x) = f(x1, x2, . . . , xD) ∼ GP (m (x) , k (x,x′)) , xd ∈ Xd, d = 1, . . . , D, (2)

where k is a valid kernel/covariance function and m is a mean function that can be generally assumed92

to be 0. Given a finite set of observation points {xi}ni=1 with xi =
(
xi
1, . . . , x

i
D

)⊤
, the vector of93

function values f = (f(x1), . . . , f(xn))
⊤ has a multivariate Gaussian distribution f ∼ N (0,K),94

where K denotes the n × n covariance matrix. For a set of observed data D = {xi, yi}ni=1 with95

i.i.d. Gaussian noise, i.e., yi = f(xi) + ϵi where ϵi ∼ N (0, τ−1), GP gives an analytical posterior96

distribution of f(x) at an unobserved point x∗:97

f(x∗) | Dn ∼ N
(
kx∗X

(
K + τ−1In

)−1
y, kx∗x∗ − kx∗X

(
K + τ−1In

)−1
k⊤
x∗X

)
, (3)

where kx∗x∗ , kx∗X ∈ R1×n are variance of x∗, covariances between x∗ and {xi}ni=1, respectively,98

and y = (y1, . . . , yn)
⊤.99 Algorithm 1: Basic BO process

Input: Initial dataset D0 and a trained
surrogate model; total budget N .

for n = 1, . . . , N do
Compute the posterior distribution of f

using all available data;
Find next evaluation point xn ∈ RD by

optimizing the AF;
Augment data Dn = Dn−1 ∪ {xn, yn},

update surrogate model.

Based on the posterior distributions of f , one can100

compute an AF, denoted by α : X → R, for a101

new candidate x∗ and evaluate how promising x∗102

is. In BO, the next query point is often determined103

by maximizing a selected/predefined AF, i.e., xn+1 =104

argmaxx∈X α (x | Dn). Most AFs are built on the105

predictive mean and variance; for example, a com-106

monly used AF is the expected improvement (EI)107

[1]:108

αEI (x | Dn) = σ(x)φ

(
∆(x)

σ(x)

)
+ |∆(x)|Φ

(
∆(x)

σ(x)

)
, (4)

where ∆(x) = µ(x)− f⋆
n is the expected difference between the proposed point x and the current109

best solution, f⋆
n = maxx∈{xi}n

i=1
f(x) denotes the best function value obtained so far; µ(x) and110

σ(x) are the predictive mean and predictive standard deviation at x, respectively; and φ(·) and Φ(·)111

denote the probability density function (PDF) and the cumulative distribution function (CDF) of112

standard normal, respectively. Another widely applied AF for maximization problems is the upper113

confidence bound (UCB) [17]:114

αUCB (x | Dn, β) = µ(x) + βσ(x), (5)

where β is a tunable parameter that balances exploration and exploitation. The general BO procedure115

can be summarized as Algorithm 1.116

3

3 Bayesian Kernelized Tensor Factorization for BO117

3.1 Bayesian Hierarchical Model Specification118

Before introducing BKTF, we first construct a D-dimensional Cartesian product space corresponding119

to the search space X . We define it over D sets {S1, . . . , SD} and denote as
∏D

d=1 Sd: S1 × · · · ×120

SD = {(s1, . . . , sD) | ∀d ∈ {1, . . . , D}, sd ∈ Sd}. For ∀d ∈ [1, D], the coordinates set Sd is formed121

by md interpolation points that are distributed over a bounded interval Xd = [ad, bd], represented by122

cd =
{
cd1, . . . , c

d
md

}
, i.e., Sd =

{
cdi
}md

i=1
. The size of Sd becomes |Sd| = md, and the entire space123

owns
∏D

d=1 |Sd| samples. Note that Sd could be either uniformly or irregularly distributed.124

We randomly sample an initial dataset including n0 input-output data pairs from the pre-defined125

space, D0 = {xi, yi}n0

i=1 where {xi}n0

i=1 are located in
∏D

d=1 Sd, and this yields an incomplete126

D-dimensional tensor Y ∈ R|S1|×···×|SD| with n0 observed points. BKTF approximates the entire127

data tensor Y by a kernelized CANDECOMP/PARAFAC (CP) tensor decomposition:128

Y =

R∑
r=1

λr · gr
1 ◦ gr

2 ◦ · · · ◦ gr
D + E, (6)

where R is a pre-specified tensor CP rank, λ = (λ1, . . . , λR)
⊤ denote weight coefficients that129

capture the magnitude/importance of each rank in the factorization, gr
d = [grd(sd) : sd ∈ Sd] ∈ R|Sd|130

denotes the rth latent factor for the dth dimension, entries in E are i.i.d. white noises from N (0, τ−1).131

It should be particularly noted that both the coefficients {λr}Rr=1 and the latent basis functions132

{gr1, . . . , grD}Rr=1 are random variables. The function approximation for x = (x1, . . . , xD)
⊤ can be133

written as:134

f(x) =

R∑
r=1

λrg
r
1 (x1) g

r
2 (x2) · · · grD (xD) =

R∑
r=1

λr

D∏
d=1

grd (xd) . (7)

For priors, we assume λr ∼ N (0, 1) for r = 1, . . . , R and use a GP prior on the latent factors:135

grd (xd) | lrd ∼ GP (0, krd (xd, x
′
d; l

r
d)) , r = 1, . . . , R, d = 1, . . . , D, (8)

where krd is a valid kernel function. We fix the variances of krd as σ2 = 1, and only learn the136

length-scale hyperparameters lrd, since the variances of the model can be captured by λ. One can137

also exclude λ but introduce variance σ2 as a kernel hyperparameter on one of the basis functions;138

however, learning kernel hyperparameter is computationally more expensive than learning λ. For139

simplicity, we can also assume the lengthscale parameters to be identical, i.e., l1d = l2d = . . . =140

lRd = ld, for each dimension d. The prior for the corresponding latent factor gr
d is then a Gaussian141

distribution: gr
d ∼ N (0,Kr

d), where Kr
d is the |Sd| × |Sd| correlation matrix computed from krd.142

We place Gaussian hyperpriors on the log-transformed kernel hyperparameters to ensure positive143

values, i.e., log (lrd) ∼ N
(
µl, τ

−1
l

)
. For noise precision τ , we assume a conjugate Gamma prior144

τ ∼ Gamma (a0, b0).145

For observations, based on Eq. (7) we assume each yi in the initial dataset D0 to be:146

yi
∣∣ {grd (xi

d

)
}, {λr}, τ ∼ N

(
f (xi) , τ

−1
)
. (9)

3.2 BKTF as a Two-layer Deep GP147

Here we show the representation of BKTF as a two-layer deep GP. The first layer characterizes the148

generation of latent functions {grd}Rr=1 for coordinate/dimension d and also the generation of random149

weights {λr}Rr=1. For the second layer, if we consider {λr, g
r
1, . . . , g

r
D}Rr=1 as parameters and rewrite150

the functional decomposition in Eq. (7) as a linear function f (x; {ξr}) =
∑R

r=1 ξr|λr|
∏D

d=1 g
r
d (xd)151

with ξr
iid∼ N (0, 1), we can marginalize {ξr} and obtain a fully symmetric multilinear ker-152

nel/covariance function for any two data points x = (x1, . . . , xD)
⊤ and x′ = (x′

1, . . . , x
′
D)

⊤:153

k
(
x,x′; {λr, g

r
1, . . . , g

r
D}Rr=1

)
=

R∑
r=1

λ2
r

[
D∏

d=1

grd (xd) g
r
d (x

′
d)

]
. (10)

4

As can be seen, the second layer has a multilinear product kernel function parameterized by154

{λr, g
r
1, . . . , g

r
D}Rr=1. There are some properties to highlight: (i) the kernel is nonstationary since155

the value of grd(·) is location-specific, and (ii) the kernel is nonseparable when R > 1. Therefore,156

this specification is very different from traditional GP surrogates:157 
GP with SE-ARD: k (x,x′) = σ2

∏D
d=1 kd (xd, x

′
d) ,

kernel is stationary and separable
additive GP: k (x,x′) =

∑D
d=1 k

1st
d (xd, x

′
d) +

∑D−1
d=1

∑D
e=d+1 k

2nd
d (xd, x

′
d) k

2nd
e (xe, x

′
e) ,

(1st/2nd order) kerenl is stationary and nonseparable

where σ2 represents the kernel variance, and kernel functions
{
kd(·), k1st

d (·), k2nd
d (·), k2nd

e (·)
}

are158

stationary with different hyperparameters (e.g., length scale and variance). Compared with GP-based159

kernel specification, the multilinear kernel in Eq. (10) has a much larger set of hyperparameters and160

becomes more flexible and adaptive to the data. From a GP perspective, learning the hyperparameter161

in the kernel function in Eq. (10) will be computationally expensive; however, we can achieve efficient162

inference of {λr, g
r
1, . . . , g

r
D}Rr=1 under a tensor factorization framework. Based on the derivation in163

Eq. (10), we can consider BKTF as a “Bayesian” version of the multidimensional Karhunen-Loève164

(KL) expansion [18], in which the basis functions {grd} are random processes (i.e., GPs) and {λr} are165

random variables. On the other hand, we can interpret BKTF as a new class of stochastic process that166

is mainly parameterized by rank R and hyperparameters for those basis functions; however, BKTF167

does not impose any orthogonal constraints on the latent functions.168

3.3 Model Inference169

Unlike GP, BKTF no longer enjoys an analytical posterior distribution. Based on the aforementioned170

prior and hyperprior settings, we adapt the MCMC updating procedure in [12, 14] to an efficient171

element-wise Gibbs sampling algorithm for model inference. This allows us to accommodate172

observations that are not located on the grid space
∏D

d=1 Sd. The detailed derivation of the sampling173

algorithm is given in Appendix 7.1.174

3.4 Prediction and AF Computation175

In each step of function evaluation, we run the MCMC sampling process K iterations for model176

inference, where the first K0 samples are taken as burn-in and the last K − K0 samples are177

used for posterior approximation. The predictive distribution for any entry f∗ in the defined grid178

space conditioned on the observed dataset D0 can be obtained by the Monte Carlo approximation179

p (f∗ | D0,θ0) ≈ 1
K−K0

×
∑K

k=K0+1 p
(
f∗
∣∣∣ (gr

d)
(k)

,λ(k), τ (k)
)

, where θ0 = {µl, τl, a0, b0} is180

the set of all parameters used in hyperpriors. Although direct analytical predictive distribution does181

not exist in BKTF, the posterior mean and variance estimated from MCMC samples at each location182

naturally offer us a Bayesian approach to define the AFs.183

BKTF provides a fully Bayesian surrogate model. We define a Bayesian variant of UCB as the AF184

by adapting the predictive mean and variance (or uncertainty) in ordinary GP-based UCB with the185

values calculated from MCMC sampling. For every MCMC sample after burn-in, i.e., k > K0, we186

can estimate a output tensor F̃ (k)
over the entire grid space using the latent factors (gr

d)
(k) and the187

weight vector λ(k): F̃ (k)
=
∑R

r=1 λ
(k)
r (gr

1)
(k) ◦ (gr

2)
(k) ◦ · · · ◦ (gr

D)
(k). We can then compute the188

corresponding mean and variance tensors of the (K −K0) samples {F̃ (k)}Kk=K0+1, and denote the189

two tensors by U and V , respectively. The approximated predictive distribution at each point x in190

the space becomes f̃(x) ∼ N (u(x), v(x)). Following the definition of UCB in Eq. (5), we define191

Bayesian UCB (B-UCB) at location x as αB-UCB (x | D, β, gr
d,λ) = u(x) + β

√
v(x). The next192

search/query point can be determined via xnext = argmaxx∈{
∏D

d=1 Sd−Dn−1} αB-UCB (x).193

We summarize the implementation procedure of BKTF for BO in Appendix 7.2 (see Algorithm 2).194

Given the sequential nature of BO, when a new data point arrives at step n, we can start the MCMC195

with the last iteration of the Markov chains at step n− 1 to accelerate model convergence. The main196

computational and storage cost of BKTF is to interpolate and save the tensors F̃ ∈ R|S1|×···×|SD|197

over (K −K0) iterations for Bayesian AF estimation. This could be prohibitive when the MCMC198

5

sample size or the dimensionality of input space is large. To avoid saving the tensors, in practice,199

we can simply use the maximum values of each entry over the (K −K0) iterations through iterative200

pairwise comparison. The number of samples after burn-in then implies the value of β in αB-UCB. We201

adopt this simple AF in our numerical experiments.202

4 Related Work203

The key of BO is to effectively characterize the posterior distribution of the objective function204

from a limited number of observations. The most relevant work to our study is the Bayesian205

Kernelized Factorization (BKF) framework, which has been mainly used for modeling large-scale and206

multidimensional spatiotemporal data with UQ. The key idea is to parameterize the multidimensional207

stochastic processes using a factorization model, in which specific priors are used to encode spatial208

and temporal dependencies. Signature examples of BKF include spatial dynamic factor model209

(SDFM) [19], variational Gaussian process factor analysis (VGFA) [20], and Bayesian kernelized210

matrix/tensor factorization (BKMF/BKTF) [12, 14, 13]. A common solution in these models is to211

use GP prior to modeling the factor matrices, thus encoding spatial and temporal dependencies. In212

addition, for multivariate data with more than one attribute, BKTF also introduces a Wishart prior213

to modeling the factors that encode the dependency among features. A key difference among these214

methods is how inference is performed. SDFM and BKMF/BKTF are fully Bayesian hierarchical215

models and they rely on MCMC for model inference, where the factors can be updated via Gibbs216

sampling with conjugate priors; for learning the posterior distributions of kernel hyperparameters,217

SDFM uses the Metropolis-Hastings sampling, while BKMF/BKTF uses the more efficient slice218

sampling. On the other hand, VGFA uses variational inference to learn factor matrices, while kernel219

hyperparameters are learned through maximum a posteriori (MAP) estimation without UQ. Overall,220

BKTF has shown superior performance in modeling multidimensional spatiotemporal processes with221

high-quality UQ for 2D and 3D spaces [14] and conducting tensor regression [13].222

The proposed BKTF surrogate models the objective function—as a single realization of a random223

process—using low-rank tensor factorization with random basis functions. This basis function-224

based specification is closely related to multidimensional Karhunen-Loève (KL) expansion [18] for225

stochastic (spatial, temporal, and spatiotemporal) processes. The empirical analysis of KL expansion226

is also known as proper orthogonal decomposition (POD). With a known kernel/covariance function,227

truncated KL expansion allows us to approximate the underlying random process using a set of228

eigenvalues and eigenfunctions derived from the kernel function. Numerical KL expansion is often229

referred to as the Garlekin method, and in practice the basis functions are often chosen as prespecified230

and deterministic functions [15, 21], such as Fourier basis, wavelet basis, orthogonal polynomials,231

B-splines, empirical orthogonal functions, radial basis functions (RBF), and Wendland functions232

(i.e., compactly supported RBF) (see, e.g., [22], [23], [24], [25]). However, the quality of UQ will be233

undermined as the randomness is fully attributed to the coefficients {λr}; in addition, these methods234

also require a large number of basis functions to fit complex stochastic processes. Different from235

methods with fixed/known basis functions, BKTF uses a Bayesian hierarchical modeling framework236

to better capture the randomness and uncertainty in the data, in which GP priors are used to model the237

latent factors (i.e., basis functions are also random processes) on different dimensions, and hyperpriors238

are introduced on the kernel hyperparameters. Therefore, BKTF becomes a fully Bayesian version of239

multidimensional KL expansion for stochastic processes with unknown covariance from partially240

observed data, however, without imposing any orthogonal constraint on the basis functions. Following241

the analysis in section 3.2, BKTF is also a special case of a two-layer deep Gaussian process [26, 10],242

where the first layer produces latent factors for each dimension, and the second layer holds a243

multilinear kernel parameterized by all latent factors.244

5 Experiments245

5.1 Optimization for Benchmark Test Functions246

We test the proposed BKTF model for BO on six benchmark functions that are used for global247

optimization problems [27], which are summarized in Table 1. Figure 2(a) shows those functions with248

2-dimensional inputs together with the 2D Griewank function. All the selected standard functions249

are multimodal, more detailed descriptions can be found in Appendix 7.4. In fact, we can visually250

see that the standard Damavandi/Schaffer/Griewank functions in Figure 2(a) indeed have a low-rank251

6

Table 1: Summary of the studied benchmark functions.
Function D Search space md Characteristics

Branin 2 [−5, 10] × [0, 15] 14 3 global minima, flat
Damavandi 2 [0, 14]2 71 multimodal, global minimum located in small area
Schaffer 2 [−10, 10]2 11 multimodal, global optimum located close to local minima

Griewank 3 [−10, 10]3 11 multimodal, many widespread and regularly
4 [−10, 10]4 11 distributed local optima

Hartmann 6 [0, 1]6 12 multimodal, multi-input

structure. For each function, we assume the initial dataset D0 contains n0 = D observed data pairs,252

and we set the total number of query points to N = 80 for 4D Griewank and 6D Hartmann function253

and N = 50 for others. We rescale the input search range to [0, 1] for all dimensions and normalize254

the output data using z-score normalization.255

Model configuration. When applying BKTF on the continuous test functions, we introduce md256

interpolation points cd in the dth dimension of the input space. The values of md used for each257

benchmark function are predefined and given in Table 1. Setting the resolution grid will require258

certain prior knowledge (e.g., smoothness of the function); and it also depends on the available259

computational resources and the number of entries in the tensor which grows exponentially with md.260

In practice, we find that setting md = 10 ∼ 100 is sufficient for most problems. We set the CP rank261

R = 2, and for each BO function evaluation run 400 MCMC iterations for model inference where262

the first 200 iterations are taken as burn-in. We use Matérn 3/2 kernel as the covariance function for263

all the test functions. Since we build a fully Bayesian model, the hyperparameters of the covariance264

functions can be updated automatically from the data likelihood and hyperprior.265

Effects of hyperpriors. Note that in optimization scenarios where the observation data is scarce, the266

model performance of BKTF highly depends on the hyperprior settings on the kernel length-scales267

of the latent factors and the model noise precision τ when proceeding estimation for the unknown268

points, i.e., θ0 = {µl, τl, a0, b0}. A proper hyper-prior becomes rather important. We discuss the269

effects of {µl, τl} in Appendix 7.5.1. We see that for the re-scaled input space, a reasonable setting270

is to suppose the mean prior of the kernel length-scales is around half of the input domain, i.e.,271

µl = log (0.5). The hyperprior on τ impacts the uncertainty of the latent factors, for example, a large272

model noise assumption allows more variances in the factors. Generally, we select the priors that273

make the noise variances not quite large, such as the results shown in Figure 4(a) and Figure 5(b) in274

Appendix. An example of the uncertainty provided by BKTF is explained in Appendix 7.3.275

Baselines. We compare BKTF with the following BO methods that use GP as the surrogate model.276

(1) GP αEI: GP as the surrogate model and EI as the AF in continuous space
∏D

d=1 Xd; (2) GP αUCB:277

GP as the surrogate model with UCB as the AF with β = 2, in
∏D

d=1 Xd; (3) GPgrid αEI: GP as the278

surrogate model with EI as the AF, in Cartesian grid space
∏D

d=1 Sd; (4) GPgrid αUCB: GP as the279

surrogate model with UCB as the AF with β = 2, in
∏D

d=1 Sd. We use the Matérn 3/2 kernel for all280

GP surrogates. For AF optimization in GP αEI and GP αUCB, we firstly use the DIRECT algorithm281

[28] and then apply the Nelder-Mead algorithm [29] to further search if there exist better solutions.282

Results. To compare optimization performances of different models on the benchmark functions,283

we consider the absolute error between the global optimum f⋆ and the current estimated global284

optimum f̂⋆, i.e.,
∣∣∣f⋆ − f̂⋆

∣∣∣, w.r.t. the number of function evaluations. We run the optimization 10285

times for every test function with a different set of initial observations. The results are summarized in286

Figure 2(b). We see that for the 2D functions Branin and Schaffer, BKTF clearly finds the global287

optima much faster than GP surrogate-based baselines. For Damavandi function, where the global288

minimum (f(x⋆) = 0) is located at a small sharp area while the local optimum (f(x) = 2) is289

located at a large smooth area (see Figure 2(a)), GP-based models are trapped around the local290

optima in most cases, i.e.,
∣∣∣f⋆ − f̂⋆

∣∣∣ = 2, and cannot jump out. On the contrary, BKTF explores the291

global characteristics of the objective function over the entire search space and reaches the global292

optimum within 10 iterations of function evaluations. For higher dimensional Griewank and Hartmann293

functions, BKTF successfully arrives at the global optima under the given observation budgets, while294

GP-based comparison methods are prone to be stuck around local optima. We illustrate the latent295

7

Figure 2: (a) Tested benchmark functions; (b) Optimization results on the six test functions, where
medians with 25% and 75% quartiles of 10 runs are compared; (c) Illustration of performance profiles.

Table 2: Results of
∣∣∣f⋆ − f̂⋆

∣∣∣ when n = N (mean ± std.) / AUC of PPs on benchmark functions.

Function (D) GP αEI GP αUCB GPgrid αEI GPgrid αUCB BKTF αB-UCB

Branin (2) 0.01±0.01/37.7 0.01±0.01/37.7 0.31±0.62/47.8 0.24±0.64/49.2 0.00±0.00/50.5
Damavandi (2) 2.00±0.00/17.6 2.00±0.00/17.6 1.60±0.80/24.2 2.00±0.00/17.6 0.00±0.00/50.6
Schaffer (2) 0.02±0.02/44.9 0.02±0.02/43.1 0.10±0.15/38.3 0.09±0.07/38.0 0.00±0.00/49.6
Griewank (3) 0.14±0.14/48.9 0.25±0.10/47.7 0.23±0.13/47.7 0.22±0.12/47.7 0.00±0.00/50.8
Griewank (4) 0.10±0.07/79.5 0.19±0.12/77.8 0.38±0.19/77.8 0.27±0.17/77.8 0.00±0.00/80.5
Hartmann (6) 0.12±0.07/78.0 0.07±0.07/78.0 0.70±0.70/79.1 0.79±0.61/78.9 0.00±0.00/80.7

Overall -/70.3 -/69.53 -/71.3 -/70.4 -/80.5
Best results are highlighted in bold fonts.

factors of BKTF for 3D Griewank function in Appendix 7.5.3, which shows the periodic (global)296

patterns automatically learned from the observations. We compare the absolute error between f⋆ and297

the final estimated f̂⋆ in Table 2. The enumeration-based GP surrogates, i.e., GPgrid αEI and GPgrid298

αUCB, perform a little better than direct GP-based search, i.e., GP αEI and GP αUCB on Damavandi299

function, but worse on others. This means that the discretization, to some extent, offers possibilities300

for searching all the alternative points in the space, since in each function evaluation, every sample in301

the space is equally compared solely based on the predictive distribution. Overall, BKTF reaches302

the global optimum for every test function and shows superior performance for complex objective303

functions with a faster convergence rate. To intuitively compare the overall performances of different304

models across multiple experiments/functions, we further estimate performance profiles (PPs) [30]305

(see Appendix 7.5.2), and compute the area under the curve (AUC) for quantitative analyses (see306

Figure 2(c) and Table 2). Clearly, BKTF obtains the best performance across all functions.307

5.2 Hyperparameter Tuning for Machine Learning308

In this section, we evaluate the performance of BKTF for automatic machine-learning tasks. Specifi-309

cally, we compare different models to optimize the hyperparameters of two machine learning (ML)310

algorithms—random forest (RF) and neural network (NN)—on classification for the MNIST database311

of handwritten digits1 and housing price regression for the Boston housing dataset2. The details of312

the hyperparameters that need to learn are given in Appendix 7.6. We assume the number of data313

points in the initial dataset D0 equals the dimension of hyperparameters need to tune, i.e., n0 = 4 and314

n0 = 3 for RF and NN, respectively. The total budget is N = 50. We implement the RF algorithms315

using scikit-learn package and construct NN models through Keras with 2 hidden layers. All other316

model hyperparameters are set as the default values.317

Model configuration. We treat all the discrete hyperparameters as samples from a continuous318

space and then generate the corresponding Cartesian product space
∏D

d=1 Sd. One can interpret319

the candidate values for each hyperparameter as the interpolation points in the corresponding input320

dimension. According to Appendix 7.6, the size of the spanned space
∏

Sd is 91× 46× 64× 10 and321

91× 46× 13× 10 for RF classifier and RF regressor, respectively; for the two NN algorithms, the322

size of parameter space is 91× 49× 31. Similar to the settings on standard test functions, we set the323

tensor rank R = 2, set K = 400 and K0 = 200 for MCMC inference, and use the Matérn 3/2 kernel.324

1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

8

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

Final accuracy for (a) and MSE for (b).

Model RF NN

(a)

GP αEI 94.12±0.16 99.96±0.03
GP αUCB 94.07±0.19 99.99±0.02
BO-TPE 94.14±0.20 99.96±0.02
BKTF αB-UCB 94.44±0.15 100.00±0.00

(b)

GP αEI 26.19±0.45 38.46±3.31
GP αUCB 26.29±0.35 36.78±1.91
BO-TPE 26.27±0.31 36.40±4.72
BKTF αB-UCB 25.03±0.18 30.84±1.13

The values are presented as mean±std.
Best results are highlighted in bold fonts.

Figure 3 & Table 3: Results of hyperparameter tuning for automated ML: (a) MNIST classification;
(b) Boston housing regression. The figure compares medians with 25% and 75% quartiles of 10 runs.

Baselines. Other than the GP surrogate-based GP αEI and GP αUCB, we also compare with Tree-325

structured Parzen Estimator (BO-TPE) [31], which is a widely applied BO approach for hyperparam-326

eter tuning. We exclude grid-based GP models as sampling the entire grid becomes infeasible.327

Results. We compare the accuracy for MNIST classification and MSE (mean squared error) for328

Boston housing regression both in terms of the number of function evaluations and still run the329

optimization processes ten times with different initial datasets D0. The results obtained by different330

BO models are given in Figure 3, and the final classification accuracy and regression MSE are331

compared in Table 3. For BKTF, we see from Figure 3 that the width between the two quartiles of the332

accuracy and error decreases as more iterations are evaluated, and the median curves present superior333

convergence rates compared to baselines. For example, BKTF finds the hyperparameters of NN that334

achieve 100% classification accuracy on MNIST using less than four function evaluations in all ten335

runs. Table 3 also shows that the proposed BKTF surrogate achieves the best final mean accuracy and336

regression error with small standard deviations. All these demonstrate the advantage of BKTF as a337

surrogate for black-box function optimization.338

6 Conclusion and Discussions339

In this paper, we propose to use Bayesian Kernelized Tensor Factorization (BKTF) as a new surrogate340

model for Bayesian optimization. Compared with traditional GP surrogates, the BKTF surrogate is341

more flexible and adaptive to data thanks to the Bayesian hierarchical specification, which provides342

high-quality UQ for BO tasks. The tensor factorization model behind BKTF offers an effective343

solution to capture global/long-range correlations and cross-dimension correlations. Therefore, it344

shows superior performance in characterizing complex multidimensional stochastic processes that are345

nonstationary, nonseparable, and multimodal. The inference of BKTF is achieved through MCMC,346

which provides a natural solution for acquisition. Experiments on both test function optimization and347

ML hyperparameter tuning confirm the superiority of BKTF as a surrogate for BO. A limitation of348

BKTF is that we restrict BO to Cartesian grid space to leverage tensor factorization; however, we349

believe designing a compatible grid space based on prior knowledge is not a challenging task.350

There are several directions to be explored for future research. A key computational issue of BKTF351

is that we need to reconstruct the posterior distribution for the whole tensor to obtain the AF. This352

could be problematic for high-dimensional problems due to the curse of dimensionality. It would be353

interesting to see whether we can achieve efficient acquisition directly using the basis functions and354

corresponding weights without constructing the tensors explicitly. In terms of rank determination, we355

can introduce the multiplicative gamma process prior to learn the rank; this will create a Bayesian356

nonparametric model that can automatically adapt to the data. In terms of surrogate modeling, we can357

further integrate a local (short-scale) GP component to construct a more precise surrogate model, as358

presented in [14]. The combined framework would be more expensive in computation, but we expect359

the combination to provide better UQ performance. In terms of parameterization, we also expect that360

introducing orthogonality prior to the latent factors (basis functions) will improve the inference. This361

can be potentially achieved through more advanced prior specifications such as the Matrix angular362

central Gaussian [32]. In addition, for the tensor factorization framework, it is straightforward to363

adapt the model to handle categorical variables as input and multivariate output by placing a Wishart364

prior to the latent factors for the categorical/output dimension.365

9

References366

[1] Roman Garnett. Bayesian Optimization. Cambridge University Press, 2023.367

[2] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking368

the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE,369

104(1):148–175, 2015.370

[3] Robert B Gramacy. Surrogates: Gaussian Process Modeling, Design, and Optimization for the371

Applied Sciences. Chapman and Hall/CRC, 2020.372

[4] Christopher KI Williams and Carl Edward Rasmussen. Gaussian Processes for Machine373

Learning. MIT Press, Cambridge, MA, 2006.374

[5] David K Duvenaud, Hannes Nickisch, and Carl Rasmussen. Additive Gaussian processes.375

Advances in neural information processing systems, 24, 2011.376

[6] Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póczos. High dimensional Bayesian377

optimisation and bandits via additive models. In International conference on machine learning,378

pages 295–304. PMLR, 2015.379

[7] Chun-Liang Li, Kirthevasan Kandasamy, Barnabás Póczos, and Jeff Schneider. High dimen-380

sional Bayesian optimization via restricted projection pursuit models. In Artificial Intelligence381

and Statistics, pages 884–892. PMLR, 2016.382

[8] Paul Rolland, Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. High-dimensional383

Bayesian optimization via additive models with overlapping groups. In International conference384

on artificial intelligence and statistics, pages 298–307. PMLR, 2018.385

[9] Mickael Binois and Nathan Wycoff. A survey on high-dimensional Gaussian process modeling386

with application to Bayesian optimization. ACM Transactions on Evolutionary Learning and387

Optimization, 2(2):1–26, 2022.388

[10] Andreas Damianou and Neil D Lawrence. Deep Gaussian processes. In International Conference389

on Artificial Intelligence and Statistics, pages 207–215, 2013.390

[11] Annie Sauer, Robert B Gramacy, and David Higdon. Active learning for deep gaussian process391

surrogates. Technometrics, 65(1):4–18, 2023.392

[12] Mengying Lei, Aurelie Labbe, Yuankai Wu, and Lijun Sun. Bayesian kernelized matrix393

factorization for spatiotemporal traffic data imputation and kriging. IEEE Transactions on394

Intelligent Transportation Systems, 23(10):18962–18974, 2022.395

[13] Mengying Lei, Aurelie Labbe, and Lijun Sun. Scalable spatiotemporally varying coefficient396

modeling with bayesian kernelized tensor regression. arXiv preprint arXiv:2109.00046, 2021.397

[14] Mengying Lei, Aurelie Labbe, and Lijun Sun. Bayesian complementary kernelized learning for398

multidimensional spatiotemporal data. arXiv preprint arXiv:2208.09978, 2022.399

[15] Noel Cressie, Matthew Sainsbury-Dale, and Andrew Zammit-Mangion. Basis-function models400

in spatial statistics. Annual Review of Statistics and Its Application, 9:373–400, 2022.401

[16] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM Review,402

51(3):455–500, 2009.403

[17] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine404

Learning Research, 3(Nov):397–422, 2002.405

[18] Limin Wang. Karhunen-Loeve expansions and their applications. London School of Economics406

and Political Science (United Kingdom), 2008.407

[19] Hedibert Freitas Lopes, Esther Salazar, and Dani Gamerman. Spatial dynamic factor analysis.408

Bayesian Analysis, 3(4):759–792, 2008.409

10

[20] Jaakko Luttinen and Alexander Ilin. Variational Gaussian-process factor analysis for modeling410

spatio-temporal data. Advances in Neural Information Processing Systems, 22:1177–1185,411

2009.412

[21] Holger Wendland. Scattered Data Approximation, volume 17. Cambridge university press,413

2004.414

[22] Rommel G Regis and Christine A Shoemaker. A stochastic radial basis function method for the415

global optimization of expensive functions. INFORMS Journal on Computing, 19(4):497–509,416

2007.417

[23] Gregory Beylkin, Jochen Garcke, and Martin J Mohlenkamp. Multivariate regression and418

machine learning with sums of separable functions. SIAM Journal on Scientific Computing,419

31(3):1840–1857, 2009.420

[24] Christopher K Wikle and Noel Cressie. A dimension-reduced approach to space-time kalman421

filtering. Biometrika, 86(4):815–829, 1999.422

[25] Mathilde Chevreuil, Régis Lebrun, Anthony Nouy, and Prashant Rai. A least-squares method423

for sparse low rank approximation of multivariate functions. SIAM/ASA Journal on Uncertainty424

Quantification, 3(1):897–921, 2015.425

[26] Alexandra M Schmidt and Anthony O’Hagan. Bayesian inference for non-stationary spatial426

covariance structure via spatial deformations. Journal of the Royal Statistical Society: Series B427

(Statistical Methodology), 65(3):743–758, 2003.428

[27] Momin Jamil and Xin-She Yang. A literature survey of benchmark functions for global429

optimization problems. arXiv preprint arXiv:1308.4008, 2013.430

[28] Donald R Jones, Cary D Perttunen, and Bruce E Stuckman. Lipschitzian optimization without431

the lipschitz constant. Journal of optimization Theory and Applications, 79(1):157–181, 1993.432

[29] John A Nelder and Roger Mead. A simplex method for function minimization. The computer433

journal, 7(4):308–313, 1965.434

[30] Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with performance435

profiles. Mathematical programming, 91(2):201–213, 2002.436

[31] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-437

parameter optimization. Advances in neural information processing systems, 24, 2011.438

[32] Michael Jauch, Peter D Hoff, and David B Dunson. Monte carlo simulation on the stiefel439

manifold via polar expansion. Journal of Computational and Graphical Statistics, 30(3):622–440

631, 2021.441

11

	Introduction
	Preliminaries
	Bayesian Kernelized Tensor Factorization for BO
	Bayesian Hierarchical Model Specification
	BKTF as a Two-layer Deep GP
	Model Inference
	Prediction and AF Computation

	Related Work
	Experiments
	Optimization for Benchmark Test Functions
	Hyperparameter Tuning for Machine Learning

	Conclusion and Discussions
	Supplementary Material
	Model inference
	Sampling latent functions
	Sampling kernel hyperparameters
	Sampling weight vector
	Sampling model noise precision

	Algorithm of BKTF for BO
	Optimization for nonstationary and nonseparable function
	Data generation
	Results

	Benchmark test functions
	Supplementary results on benchmark test functions
	Effects of hyperpriors on kernel hyperparameters
	Performance profiles
	Interpretation of results

	Hyperparameter tuning for machine learning

