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ABSTRACT

Optimizing the Key-Value (KV) cache of the Large Language Model (LLM) has
been considered critical to saving the cost of inference. Most of the existing KV-
cache compression algorithms attempted to sparsify the sequence of tokens by
taking advantage of the different importance of tokens. However, most of these
methods treat all layers equally, allocating the same KV budget to each layer. This
approach is suboptimal, as some layers may be less sensitive to input tokens yet
still receive the same budget as others. In this work, we found that by identifying
the importance of attention layers, we could optimize the KV-cache jointly from
two dimensions, i.e., sequence-wise and layer-wise. Based on our observations re-
garding layer-wise importance in inference, we propose SQUEEZEATTENTION to
precisely optimize the allocation of KV-cache budget among layers on-the-fly and
then incorporate three representative sequence-wise algorithms to compress the
KV-cache for each layer with its very own budget. Specifically, we first measure
each layer’s importance by calculating the cosine similarity of the input prompt
differences before and after the self-attention layers. Based on this similarity, we
then categorize the layers into two groups and adjust their KV budgets accord-
ingly. By optimizing the KV-cache from both sequence’s and layer’s dimensions,
SQUEEZEATTENTION achieves around 30% to 70% of the memory reductions
and up to 2.2× of throughput improvements in a wide range of LLMs and bench-
marks.

1 INTRODUCTION

The remarkable performance achieved by generative large language models (LLM) across a wide
range of natural language processing (NLP) tasks is making people in the computing industry believe
that it has a great potential to reshape the way they design their products. The past year has witnessed
an unprecedented surge in applications driven by LLMs, such as intelligent chatbots, LLM-powered
search engines, digital personal assistants, automatic programming tools, and so on. Along with
the ever-growing LLM applications, their massive inference cost starts becoming a severe challenge
that hinders the deployment of LLMs and raises concerns regarding their carbon footprint Faiz et al.
(2023).

For a decoder-only autoregressive model, which is the most widely adopted LLM architecture, the
inefficiencies in inference mainly come from the fact that the model can only generate tokens one by
one, and sampling each token requires attending to all previous tokens. In practice, the intermediate
key-value embeddings of each layer have been cached incrementally in each iteration to avoid fre-
quent recomputations. Since the KV-cache increases linearly with the number of attention layers,
context length and batch size, it often ends up being multiple times larger than the model itself
Sheng et al. (2023), and therefore, dominating the I/O cost of inference. Recently, optimizing the
KV-cache has been broadly considered a critical approach to boost the efficiency of inference. From
the perspective of context length, many well-studied algorithms are trying to identify the most ”valu-
able” tokens in the sequence and evict the unimportant ones to reduce the KV-cache and attention
complexity, such as Sliding Window Attention Beltagy et al. (2020), Heavy-Hitter (H2O) Zhang
et al. (2024), StreamingLLM Xiao et al. (2023), Scissorhands Liu et al. (2024), FastGen Ge et al.
(2023) and so on. From the perspective of batching, many studies aim to explore how to efficiently
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Figure 1: Demonstrations of KV-cache policies in inference from the view of the sequence and at-
tention layer. Full Cache (leftmost column) simply stores the KV embeddings for all the tokens in all
the layers. Sequence-wise compression algorithms (middle column) drop tokens in the sequence’s
dimension, where each layer has the same cache budget. SQUEEZEATTENTION (rightmost column)
further compresses the KV-cache by adaptively re-allocating the cache budgets in the layer’s dimen-
sion.

manage the memory of KV-cache on a batch basis with different sequence lengths Zheng et al.
(2023); Kwon et al. (2023). However, the opportunities in the dimension of attention layers have
barely been touched by most, if not all, of the existing methods. In other words, all the attention
layers have always been treated equally by those KV caching strategies. Therefore, in this paper we
ask:

Do all the attention layers that share the same KV caching strategy have to cache the same amount
of tokens? If not, how can we precisely allocate the cache budget for each layer such that we can
further reduce the KV-cache on top of sequence-wise compressions?

To answer these questions, we need to take a closer look at the behaviors of different attention layers
during inference. Some inspiring clues could be found in a few existing studies. Early-exiting LLM
Del Corro et al. (2023), as a widely-adopted inference method, shows that after going through a
certain number of attention layers, the hidden representations are likely to reach saturation, and
therefore, the forward computing can exit early without finishing the entire network and still get
a reasonable prediction. Besides, a very recent work called FastGen Ge et al. (2023) found that
attention layers in different positions have different optimal KV caching strategies. For example,
attention layers in the very early part of the model should simply cache all the tokens in the sequence,
whereas, some middle layers should apply cache eviction strategies based on the token locality or
frequency. Although FastGen could select the optimal eviction strategy for each layer, it is still
unclear how to find the optimal cache budgets, instead of a pre-defined, unified hyperparameter, for
layers that share the same strategy.

Given the fact that attention layers do have different degrees of importance regarding inference,
we can make a reasonable hypothesis that by taking advantage of the layer importance, we could
further ”squeeze” the amount of KV-cache that has already been compressed by those sequence-wise
eviction algorithms, and eventually, achieve even better efficiencies.

To describe the importance of the attention layers quantitatively, we track the cosine similarity,
which has been considered a robust metric to reflect the similarity of embeddings in NLP Sidorov
et al. (2014), between the hidden representations before and after the self-attention computing in
each layer, and then put all layers’ data together to demonstrate how an input embedding evolves
through the entire model in inference. The intuition is that the more similar the embeddings are after
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the attention computing (indicated by higher cosine similarity), the less information this attention
layer could insert into the embedding. After broad investigations into multiple popular LLM models,
e.g., Mistral-7B, Falcon-7B, Llama2-7B, Llama2-70B, and so on, as shown in Figure 2, we found
some common characteristics. Firstly, the first half of attention layers, in general, contributes more
to the output embedding than what second half does. Secondly, some specific layers, typically the
first and last few layers, might be more important than other layers, depending on the specific model
and dataset.

Based on this simple yet effective indicator, we propose SQUEEZEATTENTION, a 2D KV-cache
compression algorithm that prunes KV-cache from not only the sequence’s dimension but also
the layer’s dimension. Since the layer importance is highly dependent on the model and task,
SQUEEZEATTENTION categorizes all the layers into groups on the fly by clustering their cosine
similarities measured during the prompt prefilling phase. Given a sequence-wise KV-cache eviction
policy (like Sliding Window Beltagy et al. (2020) or H2O Zhang et al. (2024)), and a unified cache
budget (like 4096 tokens or 20% of prompt length), SQUEEZEATTENTION automatically reallocates
the cache budgets among groups of layers such that the important layers could cache more tokens to
stabilize the model accuracy and the unimportant layers could drop more tokens to save the I/O cost.
What’s even better is that SQUEEZEATTENTION is orthogonal to all those sequence-wise KV-cache
compression algorithms, so it can be smoothly combined with any of them. Figure 1 demonstrates
how the SQUEEZEATTENTION works jointly with two representative sequence-wise KV-cache evic-
tion algorithms, i.e., H2O Zhang et al. (2024) and Sliding Window Attention Beltagy et al. (2020).
More details about the SQUEEZEATTENTION algorithm can be found in Section 4.

To the best of our knowledge, SQUEEZEATTENTION is the first algorithm considering the KV-
cache budget in a layer-wise way, making it a valuable addition to all those sequence-wise com-
pression algorithms for inference. In our experiments, we integrate SQUEEZEATTENTION into 7
popular LLM models ranging from 7B to 70B, i.e., Llama2-7B, Mistral-7B, Falcon-7B, OPT-6.7B,
GPT-Neox-20B, Mixtral-8×7B, and Llama2-70B, combining with 3 representative sequence-wise
KV-cache compression algorithms, i.e., Heavy-Hitter Oracle (H2O), Sliding Window Attention and
StreamingLLM. The results show that SQUEEZEATTENTION can achieve better model performance
with even lower cache budgets than all three algorithms under a wide range of models and tasks,
which lead to approximately 30% to 70% of the memory savings and up to 2.2 × of throughput
improvements for inference.

2 PRELIMINARIES AND RELATED WORK

2.1 ANATOMY OF KV-CACHE IN LLM INFERENCE

For a decoder-only transformer-based model, the inference process typically involves two phases:
prefilling and decoding. In prefilling, LLM takes the entire prompt as input to calculate and cache
the key-value embeddings of each token in each attention layer. Then the decoding phase takes
one embedding at a time to generate tokens by iterations, and meanwhile, concatenates the newly
calculated KV embedding to the KV-cache.

Let p be the length of the prompt, o be the length of the output, b be the batch size, nlayer be the
total number of attention layers, and dmodel be the hidden dimension. In the i-th layer, denote the
model weights regarding attention Key and Value by wi

K and wi
V , where wi

K ∈ Rdmodel×dmodel , and
wi

V ∈ Rdmodel×dmodel .

In the prefilling phase, denote the hidden states of the i-th layer by hi
prompt, where hi

prompt ∈
Rb×p×dmodel . Then the KV-cache of the i-th layer after prefilling can be formulated as:

Ci
K = hi

prompt · wi
K ;Ci

V = hi
prompt · wi

V (1)

In the decoding phase, denote the hidden states of the j-th output token in i-th layer by hi
outputj

(1 ⩽ j ⩽ o), where hi
outputj ∈ Rb×1×dmodel . Then the KV-cache of the i-th layer after generating

j-th tokens can be formulated as:
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Ci
K = CONCAT(Ci

K ,hi
outputj · w

i
K) (2)

Ci
V = CONCAT(Ci

V ,hi
outputj · w

i
V ) (3)

As the decoding process goes along, KV-cache is growing incrementally until the output sequence
is fully finished. Therefore, the maximum number of floats in total of the KV-cache is:

2 ·
nlayer∑
i=1

[b · (p+ o) · dmodel] (4)

or simply 2 · dmodel · nlayer · b · (p+ o).

Taking Llama-2-7B in FP16 as an example, where nlayer = 32, dmodel = 4096. The entire model
weights consumes around 14GB of memory, whereas, the KV-cache takes around 0.5MB per token.
In other words, the KV-cache starts to exceed model weights when processing more than 28K tokens,
which could be easily made up of a batch of 28 requests with 1K content length.

2.2 EXISTING KV-CACHE OPTIMIZATIONS

As analyzed above, the number of layers, batch size, and context length are three critical factors
that decide the size of the KV-cache. Therefore, existing optimization studies are likely to seek
opportunities from these perspectives.

Sparsifying the context sequence is an effective way to break the linear relationship between the
context length and the KV-cache Del Corro et al. (2023); Zhang et al. (2024); Anagnostidis et al.
(2023); Sukhbaatar et al. (2019); Rae & Razavi (2020). The general intention of these algorithms
is to find out the unimportant tokens in the sequence and drop the KV-cache of these tokens. For
example, Sliding Window Attention Beltagy et al. (2020) only caches a certain number of the most
recent tokens and drops the rest. StreamingLLM Xiao et al. (2023) found that in addition to the
recent tokens, tokens at the beginning of the sequence are also crucial to the output. Heavy-Hitter
Zhang et al. (2024) and Scissorhands Liu et al. (2024) rank the importance of tokens by comparing
their attention scores. As mentioned above, these algorithms treat all the attention layers equally,
and therefore, have a fixed KV-cache budget for each layer.

Optimizing the KV-cache on a batch basis mainly needs to manage the memory of different requests
efficiently. For example, vLLM Kwon et al. (2023) allocates small chunks of memory in an on-
demand way, instead of a fixed big block for each prompt, to reduce the memory fragmentation in a
batch. RadixAttention Zheng et al. (2023) manages to share the KV-cache across requests in a batch
when they have the same prefix in the prompt.

Last but not least, how to relax the linear relationship between the KV-cache and the layers remains
largely unexplored compared with the other two dimensions. FastGen Ge et al. (2023) is a very
recent work that found layers in different positions may have different optimal sequence-wise KV-
cache eviction strategies. It then proposed an algorithm to choose the best eviction strategy from
1) Locality strategy (like Sliding Window), 2) Special Tokens strategy (like StreamingLLM), 3)
Local and Frequency strategy (like Scissorhands, H2O) and so on for each attention head during the
inference. However, for all the attention heads that have been assigned the same eviction strategy,
FastGen simply gives them a unified pre-defined cache budget, like 30% of the sequence length.
Therefore, how to adaptively allocate the KV-cache budget to layers with the same sequence-wise
token eviction strategy is still largely unclear.

3 OBSERVATIONS

Inspired by some previous works that managed to optimize the LLM inference from a layer-wise
perspective Del Corro et al. (2023); Ge et al. (2023), we make a hypothesis that attention layers in
different positions play distinct roles in terms of importance, and therefore, should have different op-
timal KV-cache budgets. To better understand the layer-wise contribution to the output embedding,
we employ cosine similarity as the metric to quantify the importance of each layer during inference.
Specifically, in each attention layer, we track the hidden states of each input embedding at two spots,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

i.e., the embedding before and after the self-attention block. Denote the hidden state before the self-
attention by A, and the hidden state after the self-attention by B. The cosine similarity between two
embeddings A and B is calculated as follows:

CosineSimilarity(A,B) =
A ·B

∥A∥ · ∥B∥
=

n∑
i=1

Ai ·Bi√
n∑

i=1

A2
i ·

√
n∑

i=1

B2
i

(5)

where A = (A1, A2, . . . , An) and B = (B1, B2, . . . , Bn) are the vectors, and n is the dimension-
ality.

Figure 2: Visualization of cosine similarity before
and after the self-attention calculation of attention
each layer. The layers with higher cosine similar-
ity, represented by lighter colors, exert a relatively
lower impact on the input vectors.

For any given input embedding, we could get
a cosine similarity of each attention layer that
roughly quantifies how much the embedding
changes after the self-attention computing of
this layer. Then by comparing the cosine sim-
ilarity among layers, we could find a way to
rank attention layers by their importance. Fol-
lowing this line of thought, we choose 4 rep-
resentative LLMs, i.e., Mistral-7B Jiang et al.
(2023), Llama2-7B-32K Touvron et al. (2023),
Llama2-70B Touvron et al. (2023), Falcon-7B
Almazrouei et al. (2023), to conduct the ex-
periments. Each model is fed by 200 prompts
and we track the cosine similarity of each to-
ken in each layer. Figure 2 shows the results
after averaging over prompts. Each row of the
heatmap demonstrates how an input embedding
at the given position evolves through all the lay-
ers. From the brightness of the figures, we can
get some insights as follows: 1) In general, the
first half of layers (in a darker color) contributes
more to the output embeddings than the second
half of layers (in a lighter color) does; 2) The first and last few layers tend to be more critical than
other layers, depending on the specific models and tasks; 3) The cosine similarity can effectively
depict the layer-wise importance, as the trend it reflects aligns with the previous studies, like Early-
exiting Del Corro et al. (2023) and FastGen Ge et al. (2023).

This observation gives us a simple yet effective metric to design a new algorithm that is able to
optimize the KV-cache from not only the context’s dimension, but also the layer’s dimension.

4 ALGORITHM

In this section, we describe the SQUEEZEATTENTION algorithm inspired by our observations from
the last chapter. The most distinct feature of the proposed algorithm is that it considers tokens in the
KV-cache as a 2D matrix with one dimension of sequence and another dimension of layer, and both
dimensions are going to be optimized jointly.

4.1 SQUEEZEATTENTION

In the sequence’s dimension, there are various cache eviction policies that we could directly combine
with, like Least Recently Used methods (Sliding Window, StreamingLLM), Least Frequently Used
methods (Scissorhands, H2O), and so on. We denote a policy that compresses the KV-cache in
sequence’s dimension by Cseq , and its cache budget by binit. Note that all the layers have the
same cache budget by default, just like the assumptions made by all these sequence-wise KV-cache
compression algorithms.
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In the layer’s dimension, SQUEEZEATTENTION firstly tracks the layer importance with the given
prompt in the prefilling phase by collecting the cosine similarities of each layer whenever the self-
attention is conducted. At the end of prefilling, each layer ends up with a set of cosine similarities,
each of which corresponds to a token that has flowed through this layer. Then we use the averaged
value over prompt tokens to represent the layer-wise importance of this layer regarding this task. By
clustering the layers into groups based on the layer-wise importance with KMeans, we reallocate
the binit for each layer in a way that more budgets are assigned to the more ”important” layer groups.
Since layers have different cache budgets, in the decoding phase, Cseq works separately with each
layer’s very own budgets. The detailed process is described in Algorithm 1.

Algorithm 1 SQUEEZEATTENTION

Require: prompt: input sequence; Cseq: a KV-cache compressor in sequence dimension; binit:
the initial cache budget of each layer; nlayer: number of attention layers; p: hyperparameter
(0 < p < 1); K(i): KV-cache of the i-th layer;

1: Feed the prompt into the model for prefilling, calculate cos sim
(i)
j of the j-th token in the i-th

layer by Equation 5;
2: for i← 1 to nlayer do

3: cos sim(i) =
∑len(prompt)

j=1 cos sim
(i)
j

len(prompt)

4: end for
5: G1, G2, G3 ← KMeans(cos sim(i)) ▷ Cluster layers into 3 groups by

cos sim(i)(1 ⩽ i ⩽ nlayer), where G3 has the biggest cos sim on average
6: for i← 1 to nlayer do
7: if i ∈ G3 then
8: b(i) = binit × p
9: else

10: b(i) =
nlayer×binit−len(G3)×binit×p

len(G1)+len(G2)

11: end if
12: K(i) = KV(prompt) ▷ the prompt’s KV is cached after prefilling
13: end for
14: for o← 1 to len(output) do ▷ Decoding output tokens one by one
15: for i← 1 to nlayer do
16: if len(K(i)) > b(i) then
17: K(i) = Cseq(K

(i), b(i)) ▷ Compress the KV-cache of this layer by its own budget
18: end if
19: Finish the Self-attention based on the compressed K(i).
20: end for
21: end for

4.2 DISCUSSIONS

4.2.1 HOW TO DECIDE THE VALUE OF p

SQUEEZEATTENTION involves a hyperparameter p to control the percentage of initial budgets that
could be removed from the ”unimportant” layers. The smaller the p is, the more budgets will be re-
assigned. In experiments, we found 0.3-0.4 is a reasonable choice range in most cases. To precisely
understand the impact of p, we have conducted extra experiments to demonstrate how the model
accuracy changs with the value of p, please refer to A.2 for more details.

4.2.2 WHY CLUSTERING INTO THREE GROUPS?

Based on the observations of 7 models we have tried, we found they all have a typical pattern (3
groups) with respect to the layer importance. Specifically, Group 1 consists of a few special layers
(always the first and last few layers) which can be seen as an analogy of special tokens that should
never be evicted. Then Group 2 and Group 3 do not have a fixed borderline with each other, but
we found that Group 3 makes obviously less impact on the embeddings, which can be seen as an
analogy of ”frequent” and ”unfrequent” tokens in the sequence-wise methods. Therefore, our 3-
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group policy could be rephrased as: ”we firstly identify and prioritize the special layers (Group 1),
then classify the rest layers into two groups: important (Group 2) and unimportant (Group 3), then
reallocate the cache budget based on the clustering. Even if we cluster the layers into more than 3
groups, we just break down Group 2 and Group 3 into many small groups, but they eventually need
to be reduced into two classes again, that is, either reducing the budget or increasing the budget.
To preserve the model accuracy, we only reduce cache budgets from Group 3, which accounts for
around 50% to 70% of total layers.

Table 1: Datasets used in our experiments.

Task Task Type Eval metric Avg len Language Sample
CNN/ Daily Mail Summarization (3 sentence) Rouge-2 2,000 EN 1,000
XSUM Summarization (1 sentence) Rouge-2 2,000 EN 1,000
SAMSUM Few shot Rouge-L 6,258 EN 200
NarrativeQA Single-doc QA F1 18,409 EN 200
TriviaQA Few shot F1 8,209 EN 200

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

LLM Models. We choose 7 representative LLMs, with model sizes ranging from 6.7B to 70B and
context lengths ranging from 2K to 32K, to evaluate the proposed algorithm: GPT-NeoX-20B, OPT-
6.7B, Falcon-7B, Mistral-7B, Mixtral-8×7B, LLama2-7B-32k, LLama2-70B.

Datasets. We conduct experiments on 5 datasets: CNN/Daily Mail, XSUM, TriviaQA, SAMSUM,
and NarrativeQA. TriviaQA, SAMSUM, and NarrativeQA originate from LongBench Bai et al.
(2023), where the data length typically exceeds 8k. CNN/Daily Mail and XSUM have an average
length of about 2k. Detailed information about datasets can be found in Table 1.

Baselines. 3 sequence-wise sparsification algorithms are chosen as the baselines to integrate into
SQUEEZEATTENTION and we assign each algorithm to the model that works beat, which we call
the beat baseline algorithms:

• Heavy-Hitter (H2O) Zhang et al. (2024): Identify the important tokens within the sequence
by comparing the accumulated attention score of each token.

• Sliding Window Attention Beltagy et al. (2020): A ”Local” strategy that only caches the
most recent tokens’ KV embeddings. This method works especially well with Mistral and
Mixtral.

• StreamingLLM Xiao et al. (2023): In addition to the most recent tokens, StreamingLLM
always caches the first n tokens in the sequence, as they are identified as ”sink tokens”. We
take n = 4 as recommended by the paper.

Hardwares. We conduct all the experiments on the AWS platform (p4d.24xlarge) with 8 Nvidia
A100-40GB GPUs, interconnected by the NVLinks (600 GB/s GPU peer-to-peer bandwidth).

5.2 END-TO-END RESULT

Figure 3 demonstrates the comparison results of SQUEEZEATTENTION and other 3 baseline algo-
rithms over all 7 models and 5 datasets. Full Cache (dashed line) means all tokens’ KV embeddings
are fully cached during the inference, therefore, it represents a relatively good model accuracy. The
blue and orange curves in each subfigure illustrate how the model accuracy changes with the KV-
cache budgets ranging from 10% to 100% of the total sequence length. Note that applying different
sequence-wise compression algorithms to different tasks would lead to quite different model accura-
cies. Therefore, for each task, we choose the best sequence-wise compression algorithm to represent
the best case, and then apply SQUEEZEATTENTION on top of the best case. As shown in the fig-
ure, SQUEEZEATTENTION consistently manages to improve the model accuracies under various

7
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Figure 3: Performance of SQUEEZEATTENTION, best baselines, and Full Cache under different
cache budgets.

KV-cache budgets by reallocating the cache budgets among layers. In other words, SQUEEZEAT-
TENTION can achieve similar inference accuracies with much less KV-cache in total.

5.3 MEMORY CONSUMPTION

Now we evaluate the memory consumption of the proposed algorithm. We choose three settings
to compare how much GPU memory it needs to run the inference without degradation of model
accuracy. We select Mistral-7B (Sliding Window), GPT-NeoX-20B (Heavy-Hitter), and LLama2-
70B (StreamingLLM) to cover all three baseline algorithms and models in small, middle, and large
sizes. We utilize multi-GPU inference if the model and KV-cache do not fit into a single GPU.

Table 2 demonstrates that in all three settings, by achieving the same model accuracy, SQUEEZEAT-
TENTION consumes the least amount of KV-cache budgets compared with the algorithms that only
compress from the sequence’s dimension. In some cases, it only takes one-third of the cache bud-
get of H2O algorithm. Subsequently, we employ PYTORCH PROFILER to evaluate the dimin-
ished memory usage of generating one token during the inference (w/o memory usage of model
weights). Figure 4 shows that SQUEEZEATTENTION can save 70% to 80% of memory usage per
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Table 2: Comparisons of the required KV-cache budget to achieve the best accuracy. Three models
are selected to represent the small (7B), medium (20B), and large models (70B). For each task, we
choose the best existing sequence-wise sparsification algorithm as the baseline.

Model Size Dataset Best Baseline
Performance / Used KV Budget

Full Cache w/ SQUEEZEATTENTION w/o SQUEEZEATTENTION

Mistral 7B SAMSUM Sliding Window 43.53 / 100% 41.05 / 20% 40 / 30%
GPT-NeoX 20B XSUM Heavy-Hitter Oracle 0.09 / 100% 0.09 / 20% 0.08 / 60%

LLama2 70B XSUM StreamingLLM 0.18 / 100% 0.17 / 30% 0.19 / 40%

(a) LLama2-70B (b) Mistral-7B (c) GPT-NeoX-20B

Figure 4: Comparisons of per-token decoding memory usage among the Full cache, SQUEEZEAT-
TENTION, and best baselines in order to achieve the same accuracy, as shown in Table 2.

token compared with Full Cache method, and 25% to 66% of memory usage compared with baseline
algorithms.

5.4 THROUGHPUT OF TOKEN GENERATION

Since SQUEEZEATTENTION manages to save the memory cost of inference, as shown in the previous
sections, we want to explore how these memory reductions can be interpreted into improvements of
token throughput. We choose 2 models, i.e., Mistral-7B and Llama-70B, to represent models in
small and large sizes. With a fixed content length, we increase the batch size from 1 to 224 for
Mistral-7B, and 1 to 64 for Llama2. For each task, we select the best baseline algorithm, that is,
Sliding Window for Mistral-7B and StreamingLLM for Llama2-70B.

Table 3 shows the token throughput on 8 A100-40GB GPUs. With the same batch size,
SQUEEZEATTENTION can enhance throughput by up to 2.2× for Mistral-7B and 1.4× for Llama2-
70B compared to the Full Cache. Besides, SQUEEZEATTENTION also enables batch sizes up to
224 and 64 for two models, which would cause out-of-memory for the Full Cache method. The
throughput comparison between best baseline and SQUEEZEATTENTION is reported in A.4.

5.5 OVERHEAD OF THE ALGORITHM

The computational overhead of SQUEEZEATTENTION comes from two operations: Cosine similar-
ity and Kmeans. The execution of all these computations only happens during the prefilling phase.
Therefore, the cost of SQUEEZEATTENTION is a one-time price, which is much more cost-efficient
than those algorithms (like H2O) that require extra calculations in each iteration of token generation.

We profiled the entire prefilling phase of Mistral-7B with/without SQUEEZEATTENTION to compare
the wall-clock time. The prompt length is up to 8k tokens. As shown in Table 4, the SQUEEZEAT-
TENTION only caused 6.3% increasement of prefilling time. Note that if we take the decoding time
into consideration, this ratio is going to be much smaller, depending on the actual number of tokens
generated. Therefore, the overhead of SQUEEZEATTENTION is basically neglectable. The more
detailed overhead of SQUEEZEATTENTION can be found in A.1.
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Table 3: Generation throughput (token / s) on eight A100 GPUs of Mistral-7B and LLama2-70B
with SQUEEZEATTENTION and Full Cache. To maintain the model accuracy, SQUEEZEATTENTION
uses 20% of the cache budget for Mistral-7B and 30% of the cache budget for LLama2-70B. ”OOM”
means out-of-memory.

Model Size prompt len + gen len Algorithm
Batch size

1 32 64 128 224

Mistral 7B 512 + 1024
SQUEEZEATTENTION 20.5 496.5 682.7 824.4 892.5

Full Cache 20.9 254.0 304.8 OOM OOM

Model Size prompt len + gen len Algorithm
Batch size

1 8 16 32 64

LLama2 70B 256 + 512
SQUEEZEATTENTION 5.2 37.2 71.2 116.2 170.7

Full Cache 5.2 36.0 62.5 84.8 OOM

Table 4: Overhead of SQUEEZEATTENTION (Prefilling Time in seconds on one Nvidia A100-40GB)

Model w/o SQUEEZEATTENTION w/ SQUEEZEATTENTION Overhead Ratio
Mistral-7B 0.636 0.676 6.3%

5.6 LIMITATIONS AND BROADER IMPACTS

SQUEEZEATTENTION works jointly with a sequence-wise sparsification policy, so the assumption
we make is that for a given model and dataset, there exists a sequence-wise KV-cache eviction
policy that won’t hurt the model accuracy under a certain tolerance. However, the generalizability
of these sequence-wise algorithms is still an active research topic. If this assumption cannot be met,
SQUEEZEATTENTION might not work as expected.

The positive social impacts include reducing the energy cost and carbon emissions of LLM infer-
ence. Besides, it can optimize the user experience of LLM applications. Since the proposed algo-
rithm could accelerate the LLM inference, the potential negative impact is that it might exaggerate
the improper usage of LLM, like generating harmful information.

6 CONCLUSION

In this paper, we propose a 2D KV-cache compression algorithm called SQUEEZEATTENTION. By
tracking the cosine similarity of each attention layer, we found that layers in different positions
have distinct degrees of importance regarding the output embedding. Inspired by this observa-
tion, SQUEEZEATTENTION reallocates the KV-cache budgets over attention layers to further re-
duce the memory cost of inference. Experiments over a wide range of models and tasks show that
SQUEEZEATTENTION can achieve better model accuracies with lower memory consumption com-
pared with state-of-the-art algorithms that only compress KV-cache in a sequence-wise way.
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A APPENDIX

A.1 DETAILED OVERHEAD OF SQUEEZEATTENTION

In this section, we further evaluate the overhead introduced by SQUEEZEATTENTION, we broke
down the time taken for two primary operations: cosine similarity computation and K-means clus-
tering. The experiment setup follows the same setup as 5.5. This experiment was conducted using a
single Nvidia A100-40GB GPU with prompt lengths of up to 8k tokens.

Table 5: detailed onverhead

Cosine similarity K-means Total time

0.00068s 0.001s 0.02276s

The operation of computing cosine similarity involves calculating between two arrays of size
8000×4096, repeated 32 times (since Mistral has 32 layers). Additionally, K-means clus-
ters 32 numbers into 3 classes. Therefore, the total time consumption can be calculated as
0.00068×32+0.001=0.02276 seconds. It is noteworthy that this overhead is incurred only once,
regardless of the number of tokens processed.

A.2 THE FUNCTION OF p

The hyperparameter p is crucial in the SqueezeAttention mechanism, as it directly determines the
final allocation of the KV cache. To illustrate this with a concrete example: suppose we have a
model with 32 layers, where 18 layers are deemed important and the remaining 14 are considered
less important. Each layer initially has a budget of 1000 tokens. If we set p to 0.3, we will take 70%
of the budget from the less important layers and redistribute it equally among the important layers.

Specifically, the budget for the less important layers will be reduced to 1000×0.3=300. Meanwhile,
the budget for the important layers will be calculated as follows: (1000×18+1000×0.7×14)/18=1544.
In this way, the total budget remains unchanged.

To evaluate the sensitivity of the hyperparameter p, we tested the Mistral-7B model on the Samsum
dataset with p values ranging from 0.1 to 1.0. The total KV budget was set to 20% of the prompt
length. The results are presented in the table below:

Table 6: The precision changing with p

ROUGE-L 15.7 34.01 37.26 37.69 27.41 26.29 11.11 10.48 8.72 9.07

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

100% means we do not alter the structure of the model’s KV cache. As p decreases, more KV bud-
get will be transferred to other layers, which can yield better results up to a certain point. When p
decreases to 10% or even lower, the performance decreases as the less important layers’ KV budget
becomes severely inadequate. We can clearly observe an accuracy improvement when adjusting p
while keeping the overall budget unchanged. This demonstrates the impact of p on model perfor-
mance, highlighting its importance in optimizing KV budget allocation.

A.3 LAYER IMPORTANCE ACROSS DIFFERENT TASK

We conducted an extra experiment using two models and various datasets to determine whether the
importance of different layers is an intrinsic property of the model.
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Table 7: Mistral-7B

Dataset Samsum TriviaQA LCC
Important 17 18 19

Unimportant 15 14 13

Table 8: LLama2-70B

Dataset Xsum Samsum LCC
Important 17 21 18

Unimportant 63 59 62

Tabel7 displays the distribution of important layers for the Mistral model across three different
datasets: Samsum (Few shot), TriviaQA (Single-document QA), and LCC (Code, Python/C#/Java)
and table 8 shows the distribution of important layers for the LLama2-70B model across three dif-
ferent datasets: Xsum (Summarization), Samsum (Few shot), and LCC (Code, Python/C#/Java).

From these tables, we can observe that there is a rough pattern regarding the layer’s group with task-
specific fluctuations. We believe there exist some task-sensitive layers that may be classified into
different groups with different tasks. Similarly, there are also some layers that are always important /
unimportant. A detailed analysis of this phenomenon could be an interesting extension of this work.
However, we would still recommend an adaptive way since it can precisely capture the importance
of layers.

A.4 THROUGHPUT COMPARISON BETWEEN BEST BASELINE ALGORITHMS AND
SQUEEZEATTENTION

Table 9: Generation throughput (token / s) on eight A100 GPUs of Mistral-7B and LLama2-7B with
SQUEEZEATTENTION and best baseline algorithms. To maintain the model accuracy, SQUEEZEAT-
TENTION uses 20% of the cache budget for Mistral-7B and 40% of the cache budget for LLama2-7B
while Sliding Window uses 30% of the cache budget for Mistral-7B and StreamingLLM use 60% of
the cache budget for LLama2-7B. ”OOM” means out-of-memory.

Model Size prompt len + gen len Algorithm
Batch size

1 32 64 128 224

Mistral 7B 512 + 1024
SQUEEZEATTENTION 20.5 496.5 682.7 824.4 892.5

Sliding Window 20.6 404.5 512.2 587.8 OOM

Model Size prompt len + gen len Algorithm
Batch size

1 32 64 128 256

LLama2 7B 512 + 1024
SQUEEZEATTENTION 20.0 143.0 150.4 144.9 OOM

StreamLLM 20.4 113.7 102.4 OOM OOM

We also conducted experiments to compare throughput of SQUEEZEATTENTION with best baseline
under a set of batch sizes. Both experiments used an input length of 512 and an output length of 1024.
We choose the compression hyperparameters for each algorithm such that they could all achieve the
best mode accuracy. The result show that our algorithm can obviously increase the throughput com-
pared with those SOTA algorithms that only compress KV-cache from the sequence’s dimension.
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