
Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

PINA: A PYTORCH FRAMEWORK FOR SOLVING DIF-
FERENTIAL EQUATIONS BY DEEP LEARNING FOR RE-
SEARCH AND PRODUCTION ENVIRONMENTS

Dario Coscia ∗

Mathematics Area
mathLab, SISSA
via Bonomea 265, I-34136 Trieste, Italy
dario.coscia@sissa.it

Nicola Demo
FAST Computing Srl
Via Mazzini 20, 34121, Trieste, Italy
nicola.demo@fastcomputing.net

Gianluigi Rozza
Mathematics Area
mathLab, SISSA
via Bonomea 265, I-34136 Trieste, Italy
gianluigi.rozza@sissa.it

ABSTRACT

We present a versatile software designed for solving differential equations em-
ploying neural networks. The package is called PINA, an open-source Python li-
brary built upon the robust foundations of PyTorch and Lightning. It allows
end-users to formulate their problem and craft their models to effortlessly compute
solutions of PDEs by Physics Informed Neural Networks and Neural Operators.
The modular structure of PINA permits it to adapt for user specifics, thus offer-
ing the freedom to select the most suitable learning techniques for their particular
problem domain. Furthermore, by leveraging the capabilities of the Lightning
package, PINA adapts to various hardware setups, including GPUs and TPUs.
This adaptability positions PINA as an ideal candidate for the transition of these
methodologies into production and industrial pipelines, where computational effi-
ciency and scalability are of paramount importance. The package is open-source
and available at: https://github.com/mathLab/PINA.

1 INTRODUCTION

In recent years, the world has seen an unprecedented revolution in artificial intelligence (AI) and
machine learning (ML), that has permeated numerous sectors, transforming solutions and processes
in many different fields of applied sciences. Within the scientific computing community, this revo-
lution has manifested itself as a powerful tool for overcoming the limitations inherent in traditional
methods for solving complex differential equations.

Among the promising developments in this arena, two standout approaches have emerged as
central players for differential equation learning: Physics-Informed Neural Networks (PINNs)
Raissi et al. (2019) and Neural Operators (NOs) Li et al. (2020); Lu et al. (2021a); Bhattacharya
et al. (2021). These methodologies exploit the knowledge of the equations, symmetries, and
data to approximate the unknown solution of the differential equation or the differential operator
defining the problem. These recent advancements combined with the evolution of open-source
frameworks, such as TensorFlow (Abadi et al., 2015), and PyTorch (Paszke et al., 2019)
led to the development of several libraries for solving ODEs and PDEs via PINNs and NOs.
PINN TensorFlow-based libraries include DeepXDE (Lu et al., 2021b) (which also supports
PyTorch), TensorDiffEq (McClenny et al., 2021) and PyDEns (Koryagin et al., 2019); while
PyTorch-based libraries include NeuroDiffEq (Chen et al., 2020), IDRLNet (Peng et al.,

∗Corresponding Author

1

https://github.com/mathLab/PINA


Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Figure 1: PINA package application programming interface. Starting from the problem definition,
a specific model is passed to the solver, which defines, together with the trainer, the optimization
strategy of the model.

2021). For NO NeuralOperator (Li et al., 2020; Kovachki et al., 2021) is the main library.
Finally, hybrid software for PDE learning includes (Bouziani & Ham, 2023; Kidger, 2022).

There are multiple challenges with the packages mentioned above that limit their usage for research
and production environments. First, most of the packages lack abstract interfaces which limit the
possibility of adding extensions, like new loss functions or training procedures. Additionally, the
packages presented are sectorized to only PINNs or NOs, without the possibility of combining the
two methodologies, which is a new research direction in the field (Li et al., 2021; Wang et al., 2021b).
Another common problem of the libraries is the absence of common deep learning advancements
for training such as multiple device training, modern model compression techniques, gradient ac-
cumulation, and so on. Finally, the possibility of inserting common deep-learning loggers into the
training for monitoring is missing. For this reason, we present Physics Informed Neural network
for Advanced modeling (PINA), an open-source Python library providing an intuitive interface for
solving differential equations using PINNs, NOs or both together. The contribution is organized to
show features, capabilities, and practical applications of PINA, illustrating how this software tool
can be exploited for solving complex differential equations using deep learning.

2 PINA

Physics Informed Neural network for Advanced modeling (PINA) is an open-source Python li-
brary built-in PyTorch, with PyTorchLightning (Falcon & The PyTorch Lightning team,
2019) as backhand to solve differential equations using artificial intelligence model. Employing
PyTorchLightning as the backhand offers professional AI researchers and machine learning
engineers the possibility of using advancement training strategies provided by the library. In ad-
dition, it provides the possibility to add arbitrary self-contained routines (callbacks) to the training
for easy extensions without the need to touch the underlying code. The application programming
interface (API) of PINA is schematized in Figure 1. The pipeline to solve differential equations
with PINA follows five steps: problem definition, data generation, model and solver selection, and
training. To show the full capabilities of PINA the next sections will follow the prototypical pipeline
for solving a problem, highlighting the various features provided by the software. The mathematical
notation and a background introduction to PINNs and NOs can be found in Appendix B.

2



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

2.1 PROBLEM DEFINITION

The first step is the formalization of the problem. In PINA the problem is formulated by constructing
a class inheriting from one or more problem classes (at the moment the available classes are Ab-
stractProblem, SpatialProblem, TimeDependentProblem, ParametricProblem, InverseProb-
lem), depending on the nature of the problem treated. For example, a simple ODE that depends
only on a spatial variable is defined via a class that inherits only from SpatialProblem. Differ-
ently, for a parametric time-independent PDE, the problem class inherits from both SpatialProblem
and ParametricProblem. In case the user wants to define its own problem, the AbstractProblem
interface must be used as the base class. In the problem formulation class, the user must include
information about the domains — e.g. spatial, temporal, parametric —, the output variables, and
the conditions that the neural network has to satisfy. Multiple types of geometries are available
currently in PINA for defining the domain (see Section 2.2). The output variables are represented
by a list of symbols constituting the unknowns of the problem. Indeed, standard PyTorch tensors
carry a label (LabelTensor) in PINA, allowing the user an easy way to manipulate the tensors. Fi-
nally, for training PINNs and NOs it is essential to give appropriate constraints as a form of loss
function. The Condition class encapsulates all the possible ways the loss could be defined, i.e.,
physical loss, boundary loss, or data loss. The users must use the Condition class to define all the
constraints the unknown field needs to satisfy. Moreover, PINA already implements differential op-
erators (e.g. laplacian or grad) and common equations (e.g. Dirichlet boundary conditions, systems
of equations) to ease the problem formulation for the users.

2.2 DATA GENERATION

NO learning procedure uses a finite set of observations and it is trained in a fully supervised manner.
These observations, obtained by numerical solver solutions, in PINA can be passed as LabelTensor
in the Condition class defined in Section 2.1. Differently, some training strategies, e.g. PINNs,
use collocation points sampled inside the domain where the residual of the differential equation
(see equation 3) must be evaluated. For these types of solvers, PINA provides a simple sampling
strategy for multiple different geometries. In PINA each domain is a Location object, which defines
the geometry of the domain. There are already multiple sampling methods in PINA e.g. random
uniform, grid sampling, or latin hypercube sampling for the different available multidimensional
geometries, e.g. hypercube, hypersphere. In addition to multidimensional geometries, the software
also provides set operations (difference, union, intersection, and so on) allowing the user to build a
custom domain. Finally, in Condition class the user can also employ available scatter points, and
pass them as LabelTensors.

2.3 MODEL AND SOLVER SELECTION

Once the model is defined, the user must choose the neural network model to optimize, and
the optimization strategy. In PINA the model is represented as a standard torch.nn.Module.

Table 1: PyTorch models and layers available in PINA.

Method Source
Feed Forward Neural Network (MLP) -

Modified MLP Wang et al. (2021a)
Models DeepONet Lu et al. (2021a)

MiONet Jin et al. (2022)
Fourier Neural Operator (FNO) Li et al. (2020)

Residual Layer Li et al. (2020)
Fourier Layer He et al. (2016)

Layers Continuous Convolution Coscia et al. (2023b)
Spectral Convolution -

Proper Orthogonal Decomposition -

The package is equipped
with many customizable
models and layers (see Ta-
ble 1) already implemented
using PyTorch. The
user can then decide to
use built-in models (e.g.
for benchmarking) or build
new models and layers for
research purposes.

For optimizing the model
a specific solver must be
used. A solver is a Python
object which defines the
optimization strategy for the model. In PINA the solver is constructed by inheriting from Solver-
Interface, an abstract class wrapping Lightning Modules. Available solvers include a supervised
learning solver (SupervisedSolver), particularly crafted for data-driven problems and NO approach,

3



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

a physics-informed solver (PINN) (Raissi et al., 2019), and an adversarial solver (GAROM) (Cos-
cia et al., 2023a). We plan to continuously add solvers as the state–of–the–art evolves. Notice that
all solvers are customizable by the user. For example, the PINN solver allows changing the loss
(e.g. using a variational loss (Kharazmi et al., 2019)), or extending the solver with regularization
strategies (Yu et al., 2022), or modifying the optimizer (Davi & Braga-Neto, 2022). All of these,
apparently different solvers, can be changed by a keyword argument in the PINN class.

2.4 PINA TRAINING

The last stage on the PINA pipeline consist in training the model. This is done using the Trainer
class, which wraps the Lightning Trainer class. In the Trainer class, the user must pass a Solver-
Interface object in addition to all the available arguments of the Lightning Trainer. This strategy
allows the user maximal training flexibility by exploiting fully PytorchLightning capabilities,
e.g. low precision training, gradient accumulation, multiple GPU training, and different hardware
training. Finally, the callbacks argument in the trainer can be used to insert a small part of code at
different positions inside the training step.

3 EXPERIMENTS

In this section, we show possible benchmark results obtainable with PINA. We want to highlight
that the purpose of this section is not to provide accurate measurements of model performance, but
rather to show how easily is to benchmark on PINA. As model cases, we use four different models
all implemented in PINA: a standard multilayer perceptron (MLP); the skip connection MLP (Wang
et al., 2021a) (m-MLP); a hard constraint MLP (Lu et al., 2021c) (hard-MLP); the Deep Operator
Network (Lu et al., 2021a) (DeepONet). The models are benchmarked on four different problems
using different PINN’s learning methodologies: the Burgers and Parametric Poisson equations,
with classical PINN learning; the Poisson’s equation using extra features (Demo et al., 2023); and
the Wave equation, using R3 adaptive refinement (Daw et al., 2023). For a complete description of
training details and differential problems see Appendix D and C. In Table 2 the mean square residual
for all the simulations done employing PINA is reported. It is worth mentioning that all simulations
have been done by changing just a few lines of code (the problem class, and model definition),
which shows the great versatility of the software. Finally, in Figure 2 we show how solutions can be
visualized in PINA via the software plotting API with the Poisson problem example.

Table 2: Benchmark results for multiple problems and training model in PINA.

Model Burger Poisson Wave Parametric Poisson

MLP 6.20× 10−4 1.87× 10−7 1.02× 10−3 8.13× 10−5

m-MLP 4.60× 10−4 2.30× 10−7 1.71× 10−4 6.91× 10−6

hard-MLP 9.55× 10−4 1.67× 10−6 4.64× 10−4 2.95× 10−4

DeepONet 2.49× 10−2 5.71× 10−7 2.02× 10−2 5.66× 10−3

Figure 2: Example of visualization API for the Poisson problem in PINA. Left: PINA solution,
center: real solution, right: absolute value difference of real and predicted solution.

4



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

4 CONCLUSIONS

We present in this contribution PINA, a software framework for learning differential equations lever-
aging deep learning. With a focus on centralizing research efforts in this domain, PINA aims to ex-
pedite the integration of these methodologies into production environments while providing a highly
customizable entry point for active research. We introduced the most important features, highlight-
ing the modular structure, the PyTorch and PyTorchLighting inheritance, the extensibility
for defining problems and domains, the capability to use several built-in models or crafting from
scratch a new one. We showed how PINA can be used to solve different problems, using different
benchmarking cases.

ACKNOWLEDGMENTS

The authors thank the reviewers for their time and dedication to providing invaluable comments
to improve the manuscript. The authors thank Niccolò Tonicello for his helpful comments on this
work. Finally, the authors acknowledge the support from all package contributors. This work is
partially supported by European Union Funding for Research and Innovation - Horizon 2020 Pro-
gram - in the framework of European Research Council Executive Agency: H2020 ERC CoG 2015
AROMA-CFD project 681447 “Advanced Reduced Order Methods with Applications in Computa-
tional Fluid Dynamics” P.I. Professor Gianluigi Rozza, by European Union Funding for Research
and Innovation — Horizon Europe Program — in the framework of European Research Council
Executive Agency: ERC POC 2022 ARGOS project 101069319 “Advanced Reduced order mod-
ellinG: Online computational web server for complex parametric Systems” P.I. Professor Gianluigi
Rozza, by European High-Performance Computing Joint Undertaking project Eflows4HPC GA N.
955558, by PRIN “Numerical Analysis for Full and Reduced Order Methods for Partial Differential
Equations” (NA-FROM-PDEs) project.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduc-
tion and neural networks for parametric pdes. The SMAI journal of computational mathematics,
7:121–157, 2021.

Nacime Bouziani and David A Ham. Physics-driven machine learning models coupling pytorch and
firedrake. arXiv preprint arXiv:2303.06871, 2023.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv
preprint arXiv:2202.03376, 2022.

Feiyu Chen, David Sondak, Pavlos Protopapas, Marios Mattheakis, Shuheng Liu, Devansh Agarwal,
and Marco Di Giovanni. Neurodiffeq: A Python package for solving differential equations with
neural networks. Journal of Open Source Software, 5(46):1931, 2020. doi: 10.21105/joss.01931.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE transactions
on neural networks, 6(4):911–917, 1995.

Dario Coscia, Nicola Demo, and Gianluigi Rozza. Generative adversarial reduced order modelling.
arXiv preprint arXiv:2305.15881, 2023a.

5

https://www.tensorflow.org/


Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Dario Coscia, Laura Meneghetti, Nicola Demo, Giovanni Stabile, and Gianluigi Rozza. A continu-
ous convolutional trainable filter for modelling unstructured data. Computational Mechanics, pp.
1–13, 2023b.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
and Francesco Piccialli. Scientific machine learning through physics–informed neural networks:
Where we are and what’s next. Journal of Scientific Computing, 92(3):88, 2022.

Caio Davi and Ulisses Braga-Neto. Pso-pinn: Physics-informed neural networks trained with parti-
cle swarm optimization. arXiv preprint arXiv:2202.01943, 2022.

Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. Mitigating propagation failures
in physics-informed neural networks using retain-resample-release (r3) sampling. 2023.

Nicola Demo, Maria Strazzullo, and Gianluigi Rozza. An extended physics informed neural network
for preliminary analysis of parametric optimal control problems. Computers & Mathematics with
Applications, 143:383–396, 2023.

William Falcon and The PyTorch Lightning team. PyTorch Lightning, March 2019. URL https:
//github.com/Lightning-AI/lightning.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Pengzhan Jin, Shuai Meng, and Lu Lu. Mionet: Learning multiple-input operators via tensor prod-
uct. SIAM Journal on Scientific Computing, 44(6):A3490–A3514, 2022.

Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. Variational physics-informed
neural networks for solving partial differential equations. arXiv preprint arXiv:1912.00873, 2019.

Patrick Kidger. On neural differential equations. arXiv preprint arXiv:2202.02435, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alexander Koryagin, Roman Khudorozkov, and Sergey Tsimfer. Pydens: A Python framework for
solving differential equations with neural networks. arXiv preprint arXiv:1909.11544, 2019. doi:
10.48550/arXiv.1909.11544.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces.
arXiv preprint arXiv:2108.08481, 2021.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. arXiv preprint arXiv:2111.03794, 2021.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021a.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learn-
ing library for solving differential equations. SIAM Review, 63(1):208–228, 2021b. doi:
10.1137/19m1274067.

Lu Lu, Raphael Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G Johnson.
Physics-informed neural networks with hard constraints for inverse design. SIAM Journal on
Scientific Computing, 43(6):B1105–B1132, 2021c.

6

https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning


Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Levi McClenny and Ulisses Braga-Neto. Self-adaptive physics-informed neural networks using a
soft attention mechanism. arXiv preprint arXiv:2009.04544, 2020.

Levi D McClenny, Mulugeta A Haile, and Ulisses M Braga-Neto. Tensordiffeq: Scalable
multi-gpu forward and inverse solvers for physics informed neural networks. arXiv preprint
arXiv:2103.16034, 2021. doi: 10.48550/arXiv.2103.16034.

Keith W Morton and David Francis Mayers. Numerical solution of partial differential equations:
an introduction. Cambridge university press, 2005.

Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. Efficient training of physics-
informed neural networks via importance sampling. Computer-Aided Civil and Infrastructure
Engineering, 36(8):962–977, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Wei Peng, Jun Zhang, Weien Zhou, Xiaoyu Zhao, Wen Yao, and Xiaoqian Chen. Idrlnet: A physics-
informed neural network library. arXiv preprint arXiv:2107.04320, 2021. doi: 10.48550/arXiv.
2107.04320.

Alfio Quarteroni and Silvia Quarteroni. Numerical models for differential problems, volume 2.
Springer, 2009.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Chuwei Wang, Shanda Li, Di He, and Liwei Wang. Is l2 physics informed loss always suitable for
training physics informed neural network? Advances in Neural Information Processing Systems,
35:8278–8290, 2022.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
gies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–
A3081, 2021a.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric par-
tial differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605,
2021b.

Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-
adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 403:115671, 2023.

Jeremy Yu, Lu Lu, Xuhui Meng, and George Em Karniadakis. Gradient-enhanced physics-informed
neural networks for forward and inverse pde problems. Computer Methods in Applied Mechanics
and Engineering, 393:114823, 2022.

7



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

A SOFTWARE

The PINA software is available at: https://github.com/mathLab/PINA.

B MATHEMATICAL NOTATION AND NEURAL SURROGATE MODELS

ODEs and PDEs are used to describe different physical phenomena in a mathematical form. Local
updates expressed by partial or total derivatives are used to represent the evolution of a function
characterizing a system. Following the notation presented in (Cuomo et al., 2022), the general form
of a differential equation, which we aim to solve, can be written as:

F(u(z);α) = f(z) z ∈ Ω,

B(u(z)) = g(z) z ∈ ∂Ω,
(1)

where the solution field is u living in a suitable space U, the variables z = [x1, . . . , xdz−1, t] in-
dicate all the spatiotemporal coordinates in a domain Ω ⊂ Rdz with ∂Ω its boundaries and dz the
space dimension, α ∈ A the physical parameters in the suitable space A ⊂ Rdα with dα the space
dimension. Finally, F is a differential operator describing the dynamics with forcing term f , and B
is the operator which indicates arbitrary initial or boundary conditions, with g the function on the
boundaries.

Solving ODEs and PDEs of the form in Equation equation 1 is one of the main computational
challenges in mathematics and engineering. Numerical solvers, such as finite element methods
(FEM), finite difference methods (FDM), or finite volume method (FVM), rely on discretizing the
domain Ω (Morton & Mayers, 2005; Quarteroni & Quarteroni, 2009). For many complex domains,
the discretization is not straightforward, and a specific study is needed to ensure the final accuracy
of the solver. Moreover, these solvers are often computationally expensive, resulting in high energy
consumption, and slow computational time.

Over the past decades, multiple deep learning methods have risen for solving the problem formalized
in equation 1, aiming to overcome the classical numerical solver issues. Eventually, a dichotomy of
methodologies can be made: Neural Operator (NO) methods, which assume knowledge of the sys-
tem in the form of data; and Physics Informed Neural Networks (PINNs), which use the underlying
equation to learn the solution.

B.1 NEURAL OPERATOR METHODS

Neural Operator (NO) methods (Li et al., 2020; Lu et al., 2021a; Bhattacharya et al., 2021; Kovachki
et al., 2021; Brandstetter et al., 2022) build a mapping from infinite-dimensional function spaces by
using a supervised learning strategy. Given a specific ODE or PDE as in the form of equation 1, a
neural operator G : U′ → U is trained by a finite set of N observations {(u′

i,ui)}Ni=1, such that:

G(u′
i) ≈ ui ∀i = 1, . . . , N. (2)

For example, a NO could map the field at the initial temporal condition of a PDE, to the evolution
at a specific time step; or the parameter of a differential equation to its solution for the specific
parameter. NO possesses important characteristics: they are discretization invariant, i.e. the model
is not defined on a fixed grid; the input and output is a function; the universal approximation theorem
for operator holds Chen & Chen (1995).

B.2 PHYSICS INFORMED NEURAL NETWORKS

In many situations training data are not available, and NO can not be trained using a supervised
loss. As an alternative, PINNs (Raissi et al., 2019) have been proposed. PINNs are trained by
approximating the true solution of equation 1 with a neural network uθ ≈ u with parameters θ.
In PINNs the network is trained directly with the ODE or PDE itself, ensuring that equation 1 is
satisfied by the network:

L(θ) = LF + LB. (3)
The first term is the physics-informed loss inside the domain Ω, while the second one is a supervised
loss for boundary or initial conditions. Different types of losses can be implemented, for example

8

https://github.com/mathLab/PINA


Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

using the MSE loss equation 3 becomes:

L(θ) = 1

Nf

Nf∑
i=1

∥F(uθ(zi);αi)− f(zi)∥22 +
1

Nb

Nb∑
i=1

∥B(uθ(zi))− g(zi)∥22, (4)

where Nf is the number of collocation points sampled inside Ω, and Nb the number of collocation
points sampled in ∂Ω.

Since PINN’s inception, many follow-up improvements have been made to improve training sta-
bility and convergence. Examples of further research include studying different losses (Kharazmi
et al., 2019; Wang et al., 2022; McClenny & Braga-Neto, 2020), sample strategies for collocation
points (Wu et al., 2023; Nabian et al., 2021; Daw et al., 2023) to speed up convergence, or specific
network architecture (Wang et al., 2021a;b) and input augmentation (Demo et al., 2023; Lu et al.,
2021c) to ease the neural network training.

C DIFFERENTIAL PROBLEMS

In this section, we provide the mathematical formulations of the problem presented in the experiment
section 3.

C.1 BURGER’S EQUATION

Burger’s equation is a convection-diffusion equation widely used in many fields of mathematics.
The problem is crafted as the benchmark presented in (Raissi et al., 2019). Let x = (x, t) be the
spatio-temporal variables, and u be the unknown field. The Burger equation is:

∂
∂tu(x) + u(x) ∂

∂xu(x)−
0.01
π

∂2

∂x2u(x) = 0 x ∈ [−1, 1] , t ∈ [0, 1]

u(1, t) = u(−1, t) = 0 t ∈ [0, 1]

u(x, 0) = − sin(πx) x ∈ [−1, 1].

(5)

For solving the equation we sample 10000 points uniformly random in the domain [−1, 1]× [0, 1].

C.2 POISSON’S EQUATION

Poisson’s equation is an elliptic partial differential equation widely used in physics. The problem is
crafted as the benchmark presented in (Demo et al., 2023). Let x = (x, y) be the spatial variables,
u be the unknown field, and Ω = [−1, 1]2 the domain. The Poisson equation is:{

∇2u(x) = sin(πx) sin(πy) x ∈ Ω

u(x) = 0 x ∈ ∂Ω,
(6)

where ∂Ω indicates the boundary of the domain, and the Laplacian operator ∇2 acts on the spatial
variables. For solving the equation we sample 10000 points uniformly random in the domain Ω.
During problem learning we employ extra features, by augmenting the input with the forcing term,
i.e. the model input is given by (x, y, sin(πx) sin(πy)).

C.3 WAVE’S EQUATION

The Wave’s Equation is a linear differential equation vastly used in fluid dynamics. Let x = (x, y, t)
be the spatio-temporal variables, u be the unknown field, Ω = [0, 1]2 the domain, and T = [0, 1]2

the parameter domain. The Wave equation is:
∇2u(x) = ∂2

∂t2u(x) x ∈ Ω× T
u(x) = 0 x ∈ ∂Ω× T,
u(x) = sin(πx) sin(πy) x ∈ Ω× ∂T,

(7)

where ∂Ω indicates the boundary of the domain, and the Laplacian operator ∇2 acts on the spatial
variables. For solving the equation we sample 10000 points uniformly random in the domain Ω. We
use R3 adaptive refinement for moving the collocation points during training every 100 epochs.

9



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

C.4 PARAMETRIC POISSON’S EQUATION

Parametric Poisson’s equation is an example of a Poisson equation where the forcing term depends
on external parameters. The problem is crafted as the benchmark presented in (Demo et al., 2023),
where the objective is to learn a function for different parameters. The problem can be considered
as a NO problem since we map different initial functions (for different parameters) to the field
functions. In the experiment section, we use PINN learning to solve the problem. Let x = (x, y)
be the spatial variables, u be the unknown field, Ω = [0, 1]2 the domain, and Ξ = [−1, 1]2 the
parameter domain. The Poisson equation is:{

∇2u(x) = e−2[(x−ξ1)
2+(y−ξ2)

2] x ∈ Ω× Ξ

u(x) = 0 x ∈ ∂Ω× Ξ,
(8)

where ∂Ω indicates the boundary of the domain, and the Laplacian operator ∇2 acts on the spatial
variables. For solving the equation we sample 10000 points uniformly random in the domain Ω.

D EXPERIMENT DETAILS

In this section, we provide the network specifics for the experiments performed in Section 3. All the
models were trained using the Adam optimizer (Kingma & Ba, 2014), with a learning rate of 0.001
for 10000 epochs minimizing the mean square error loss. The training was done on an Intel CPU.

D.1 BURGER’S EQUATION

The networks’ composition:

• MLP: Three linear layers of size [20, 10, 5] with hyperbolic tangent activation on all layers
except the last

• m-MLP: Three linear layers of size [20, 20, 20] with hyperbolic tangent activation on all
layers except the last. The transformer networks were two linear layers mapping the input
to the inner size of 20

• hard-MLP: Same as MLP. Hard constraints on boundary conditions are imposed by mul-
tiplying the network output with the term (1 + x)(1− x)

• DeepONet: The branch and trunk net are the same architecture of two linear layers of size
[20, 20] with hyperbolic tangent activation on all layers except the last. The reduction is
done by aggregating with a linear layer with input dimension 20 and output dimension 1.
The trunk net takes t as input. The branch net takes x as input.

The input dimension of the problem is 2 (one spatial + one temporal variables), and the output
dimension is 1.

D.2 POISSON’S EQUATION

The networks’ composition:

• MLP: Same architecture as Burgers’s problem.

• m-MLP: Same architecture as Burgers’s problem.

• hard-MLP: Same architecture as Burgers’s problem.

• DeepONet: Same architecture as Burgers’s problem, but the trunk net takes x, t as input.
The branch net takes sin(πx) sin(πy) as input.

The input dimension of the problem is 3 (two spatial + augmentation variables), and the output
dimension is 1.

10



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

D.3 WAVE’S EQUATION

The networks’ composition:

• MLP: Same architecture as Burgers’s problem.
• m-MLP: Same architecture as Burgers’s problem.
• hard-MLP: Same architecture as Burgers’s problem.
• DeepONet: Same architecture as Burgers’s problem, but the trunk net takes t as input. The

branch net takes x, y as input.

The input dimension of the problem is 3 (two spatial + two parametric variables), and the output
dimension is 1.

D.4 PARAMETRIC POISSON’S EQUATION

The networks’ composition:

• MLP: Same architecture as Burgers’s problem.
• m-MLP: Same architecture as Burgers’s problem.
• hard-MLP: Same architecture as Burgers’s problem.
• DeepONet: Same architecture as Burgers’s problem, but the trunk net takes x, t as input.

The branch net takes ξ1, ξ2 as input.

The input dimension of the problem is 4 (two spatial + two parametric variables), and the output
dimension is 1.

11


	Introduction
	PINA
	Problem Definition
	Data Generation
	Model and Solver Selection
	PINA Training

	Experiments
	Conclusions
	Software
	Mathematical Notation and Neural Surrogate Models
	Neural Operator Methods
	Physics Informed Neural Networks

	Differential Problems
	Burger's equation
	Poisson's equation
	Wave's equation
	Parametric Poisson's equation

	Experiment Details
	Burger's equation
	Poisson's equation
	Wave's equation
	Parametric Poisson's equation


