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Abstract

Generic event boundary detection (GEBD) aims to identify001
natural boundaries in a video, segmenting it into distinct002
and meaningful chunks. Despite the inherent subjectivity003
of event boundaries, previous methods have focused on de-004
terministic predictions, overlooking the diversity of plausi-005
ble solutions. In this paper, we introduce a novel diffusion-006
based boundary detection model, dubbed DiffGEBD, that007
tackles the problem of GEBD from a generative perspec-008
tive. The proposed model encodes relevant changes across009
adjacent frames via temporal self-similarity and then iter-010
atively decodes random noise into plausible event bound-011
aries being conditioned on the encoded features. Classifier-012
free guidance allows the degree of diversity to be controlled013
in denoising diffusion. In addition, we introduce a new014
evaluation metric to assess the quality of predictions con-015
sidering both diversity and fidelity. Experiments show that016
our method achieves strong performance on two standard017
benchmarks, TAPOS and Kinetics-GEBD, generating di-018
verse and plausible event boundaries.019

1. Introduction020

Through the intricate workings of visual perception, hu-021
mans can effortlessly detect and interpret a wide range of022
changes in subjects, objects, and scenes. Research in cogni-023
tive science demonstrates that the human visual system eas-024
ily divides a temporal sequence of images into units of se-025
mantic significance [49]. The task of generic event bound-026
ary detection (GEBD) has recently been proposed to iden-027
tify these natural event boundaries in a similar spirit [20,028
22–25, 35, 39, 40]. While conventional video tasks in com-029
puter vision, such as action recognition [3, 5, 41, 42, 44, 45],030
temporal action detection [19, 47, 51, 52, 57], and tem-031
poral action segmentation [9, 11, 26, 48] mainly focus on032
identifying class labels or boundaries of predefined action033
classes, GEBD aims to localize more generic and class-034
agnostic event boundaries from a video.035

Since generic event boundaries are inherently subjective036
and variable, the problem of GEBD needs to consider the037
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Figure 1. Illustration of our approach. Our method generates
diverse and plausible boundary predictions for generic events via
denoising diffusion.

diversity of human judgment; perception of these bound- 038
aries can differ significantly among individuals, leading to 039
variation in how people identify boundaries. To account 040
for the human subjectivity, Kinetics-GEBD [35], the bench- 041
mark dataset for GEBD, provides multiple annotations from 042
human annotators for each video. However, previous meth- 043
ods [20, 22–25, 35, 39, 40] all focus on predicting accurate 044
boundaries with a deterministic model for a given video, ig- 045
noring the diversity of potential solutions. 046

In this paper, we introduce a diffusion-based boundary 047
detection model, dubbed DiffGEBD, which formulates the 048
problem of GEBD from a generative perspective (Fig. 1). 049
The proposed method consists of a temporal self-similarity 050
encoder and a denoising decoder, where the encoder cap- 051
tures dynamic visual changes across adjacent frames using 052
temporal self-similarity [55], and then the decoder itera- 053
tively denoises random noise into plausible event bound- 054
aries being conditioned on the encoded features. Since our 055
model outputs distinct predictions from different noises, we 056
control the prediction diversity incorporating classifier-free 057
guidance (CFG) [15] into our denoising process. By con- 058
trolling the guidance weight, DiffGEBD effectively perform 059
diverse yet accurate boundary detection while better reflect- 060
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ing human judgment variability.061
Given our model’s ability to generate diverse predictions,062

a key challenge emerges in how to properly evaluate them.063
Conventional GEBD evaluation metric, F1 score, measures064
the alignment of a single prediction only against multiple065
GT annotations and thus fails to capture both the many-066
to-many alignments when a model outputs multiple predic-067
tions and the diversity among the predictions themselves.068
To address this limitation, we propose a novel diversity-069
aware evaluation protocol introducing two metrics: sym-070
metric F1 and diversity scores. The symmetric F1 effec-071
tively captures many-to-many alignments between two sets072
of predictions and GT annotations, while the diversity score073
directly measures diversity between predictions, enabling074
comprehensive GEBD evaluation that reflects the inherent075
variability of event boundaries.076

Our contributions can be summarized as follows: 1) we077
introduce a novel diffusion-based event boundary detec-078
tion model, dubbed DiffGEBD, formulating GEBD from079
a generative perspective. 2) CFG is employed to control080
the degree of diversity in denoising diffusion. 3) We pro-081
pose a novel diversity-aware evaluation protocol introduc-082
ing two metrics: symmetric F1 and diversity scores. 4)083
DiffGEBD achieves strong performance on standard bench-084
mark datasets, TAPOS and Kinetics-GEBD, generating di-085
verse and plausible event boundaries.086

2. Related Work087

Generic event boundary detection. GEBD [35] is a video088
boundary detection task that segments a video into units089
of events, similar to how humans perceive and distinguish090
events in a video. Each event divides the video into shorter,091
taxonomy-free segments compared to traditional criteria for092
video segmentation. Existing approaches have primarily fo-093
cused on how to effectively utilize visual information for094
boundary detection. UBoCo [20] propose the temporal self-095
similarity matrix (TSM) for capturing semantic inconsis-096
tency existing at video boundaries. Building on this insight,097
subsequent works have proposed various extensions. DDM-098
Net [40] proposes the progressive attention to fuse spatial099
features and temporal similarities. LCVS [53] further en-100
hances boundary detection by incorporating motion vectors101
with similarity features. Recent approaches [23, 55, 56]102
improve the effectiveness of TSM by applying it in a slid-103
ing window manner over local temporal regions. All of the104
previous methods deterministically detect boundaries based105
on visual features. In this paper, we introduce a generative106
perspective to the task, which enables diverse and plausible107
boundary detections.108
Diverse prediction. Generating diverse predictions has be-109
come important in future action anticipation [1, 50] and110
ambiguous segmentation tasks [21, 30], where predictions111
are inherently uncertain. UAAA [1] proposes a framework112

that models probability distributions and generates multi- 113
ple samples corresponding to different possible sequences 114
of future activities. GTDA [50] leverages diffusion models 115
to capture the distribution of activities and propose a metric 116
for measuring the diversity of generated samples. In med- 117
ical image segmentation, multiple expert annotations often 118
lead to ambiguity. Probabilistic U-Net [21] addresses this 119
challenge by learning to capture the distribution of anno- 120
tations. They propose using Generalized Energy Distance 121
(GED) [4, 33, 38] to evaluate the similarity between the dis- 122
tribution of predicted samples and annotations. Going fur- 123
ther, we propose a mechanism to directly control the degree 124
of diversity, along with metrics to evaluate such controlled 125
diverse predictions. 126
Diffusion model. Diffusion [36] is a generative algorithm 127
that models data distribution, inspired by non-equilibrium 128
statistical physics [18] and sequential Monte Carlo meth- 129
ods [27]. They gradually transform the data distribution 130
into a Gaussian distribution and then reverse this process to 131
recover the data distribution from a random Gaussian distri- 132
bution. Diffusion models have shown impressive interest in 133
image generation [16, 37]. Following the advent of class- 134
conditional diffusion models [8, 15], high-resolution dif- 135
fusion [28, 31, 32] models leveraging text conditions have 136
been developed. Additionally, diffusion models have made 137
significant impacts in various generative fields. Diffusion 138
models have recently been applied to the field of human 139
perception. They have been utilized for image segmen- 140
tation [2, 46], object detection [6] and video understand- 141
ing [12, 26]. These models leverage visual features as dif- 142
fusion conditions to generate accurate labels. Similarly, we 143
address boundary detection by conditioning on video fea- 144
tures in a generative manner. 145

3. Preliminary 146

In this section, we provide the background of diffusion 147
models [16, 36]. Diffusion models consists of two main 148
components: the forward process, which progressively adds 149
Gaussian noise to the data, and the reverse process, which 150
reconstructs the original data by iteratively denoising. 151
Forward Process. The forward process involves adding 152
small Gaussian noise ϵ over T timesteps to create noisy data 153
from the given real data distribution x0 ∼ q(x). The size of 154
the noise added during the forward process is controlled by 155
a variance schedule {βt ∈ (0, 1)}Tt=1. Let αt = 1− βt and 156
ᾱt =

∏t
i=1 αi. The forward process is defined as: 157

q(xt|xt−1) = N (xt;
√
αtxt−1, αtI), (1) 158

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1). (2) 159

By the Markovian chain, this can be formulated as follows: 160

q(xt|x0) = N (xt|
√
ᾱ0x0, (1− ᾱ0I)). (3) 161
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Figure 2. Overview of DiffGEBD. Input video V is given to the backbone network g, producing visual features F as output. Then, the
extracted visual features F are produced to the encoder f , generating E. During training, Gaussian noise ϵ is added to the ground-truth label
y0 following the diffusion forward step. The decoder h then predicts boundaries from a noisy label yt conditioned on E. During inference,
the decoder iteratively denoises starting from the random Gaussian noise ŷT , generates the predictions, i.e., ŷT → ŷT−∆ → · · · → ŷ0,
following DDIM inference step [37].

Finally, using the reparameterization trick, this can be for-162
mulated as follows:163

xt =
√
ᾱtx0 + ϵ

√
1− ᾱt, ϵ ∼ N (0, I). (4)164

Reverse Process. The reverse process involves estimat-165
ing x0 from xt, which is the opposite of the forward pro-166
cess. Since it is difficult to estimate the true data distri-167
bution q(xt−1|xt), it is defined using a model distribution168
pθ(xt−1|xt):169

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I), (5)170

where σ2
t is controlled by βt. µθ(xt, t) is a predicted mean171

parameterized by deep neural network. Instead of predict-172
ing µθ(xt, t) directly, we let the model predict x0 by neural173
network fθ(xt, t). From pure random noise xT , the model174
can reduce the noise through an update rule as follows:175

xt−1 =
√
ᾱt−1fθ(xt, t)+176

√
1− ᾱt−1 − σ2

t√
1− ᾱt

xt −
√
ᾱtfθ(xt, t)√
1− ᾱt

+ σtϵ. (6)177

By iteratively applying Eq. 6, a model can generate samples178
from pθ via a trajectory from T to 0. DDIM sampling [37]179
strategies skip steps in the trajectory, i.e., xT → xT−∆ →180
. . . → x0, for better efficiency.181

4. Proposed Approach182

We introduce DiffGEBD, a novel diffusion-based frame-183
work for generic event boundary detection. This sec-184
tion provides the problem setup (Sec. 4.1), details of Dif-185
fGEBD (Sec. 4.2), the training objective (Sec. 4.3), and in-186
tegration of the classifier-free guidance(Sec. 4.4).187

4.1. Problem setup 188

Given a video V ∈ RL×H×W×3 consisting of L frames, 189
where each frame has height H , width W , and RGB 190
channels, the goal of generic event boundary detection 191
(GEBD) is to identify a sequence of event boundaries y ∈ 192
{0, 1}L. Each element yl is a binary indicator that repre- 193
sents whether an event boundary is present, with 1 indicat- 194
ing presence and 0 indicating absence at frame l. 195

4.2. DiffGEBD 196

The overall architecture of DiffGEBD is illustrated in Fig. 2. 197
The input video is fed into a backbone network g to extract 198
visual feature representations. The encoder f captures rele- 199
vant temporal changes across adjacent frames via temporal 200
self-similarity, and the denoising decoder h refines random 201
Gaussian noise into event boundary predictions conditioned 202
on the visual embeddings produced by the encoder. 203

During training, we randomly sample a diffusion time 204
step t ∈ {1, 2, . . . , T} and add noise ϵ ∼ N (0, I) to the 205
ground-truth boundary label y0 following Eq. 4, generating 206
noisy boundary label yt at time step t. The decoder takes yt 207
as input and is trained to reconstruct the original boundary 208
label y0. For each video with NG ground-truth (GT) anno- 209
tations, we select one annotation per iteration to serve as the 210
GT, ensuring that every annotation is used once per epoch. 211

During inference, the decoder starts with random Gaus- 212
sian noise ŷT and iteratively denoises for generating final 213
predictions, i.e., ŷT → ŷT−∆ → · · · → ŷ0, follow- 214
ing DDIM inference step [37]. Here, ŷ denotes predicted 215
boundaries. For diverse and plausible boundary predictions, 216
DiffGEBD can generate NP predictions with a single model 217
by randomly initializing the starting Gaussian noise ŷT for 218
each prediction. 219
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Figure 3. Detailed architecture of encoder and decoder

Backbone. Given an input video V , We first extract video220
features F ∈ RL×D through a backbone network g:221

F = g(V ), (7)222

where D denotes the feature dimension. We employ pre-223
trained ResNet-50 [14] as g.224

Encoder. The encoder f is designed to capture diverse225
temporal variations between adjacent frames by leverag-226
ing temporal self-similarity, which helps identify subtle227
changes in scene dynamics that indicate event boundaries.228
Following [55], we adopt the temporal self-similarity en-229
coder as f . Specifically, the encoder f comprises a 1D230
convolution (kernel size=3), followed by a sliding-window231
temporal self-similarity module, a fully convolutional net-232
work (FCN), and a 2D pooling operation, as shown in233
Fig. 3. The encoder f takes video features F as input and234
produces temporal embeddings E ∈ RL×C as output:235

E = f(F ), (8)236

where C denotes the feature dimension. For further archi-237
tectural details, please refer to [55].238

Decoder. The decoder h is built upon the Transformer en-239
coder layer [43], which aims to denoise input noisy bound-240
ary labels yt at time-step t into the ground-truth bound-241
ary labels, conditioned on the temporal embeddings E. As242
illustrated in Fig. 3, the input yt is first processed by an243
MLP layer, then concatenated with E along the channel di-244
mension. A sinusoidal position embedding is added to this245
combined feature, which is passed through self-attention246

layers [43]. The diffusion time step t, encoded via sinu- 247
soidal embedding and MLP layers, is injected into the model 248
through a scale-and-shift operation [16, 29]. Finally, the 249
output from the decoder h is processed by an MLP layer to 250
produce the final prediction ŷt: 251

ŷt = h(yt, t,E). (9) 252

4.3. Training objective 253

The model is trained using mean squared error loss L be- 254
tween the ground-truth boundary label y0 and the prediction 255
ŷt at time-step t: 256

L =
1

L

L∑
l=1

(y0,l − ŷt,l)
2. (10) 257

4.4. Classifier-free guidance (CFG) 258

To address the inherent ambiguity in event boundary detec- 259
tion, we use classifier-free guidance [15]. This method bal- 260
ances prediction diversity and fidelity by combining condi- 261
tional and unconditional diffusion models. 262

Training with CFG. Both conditional and unconditional 263
diffusion models are trained for classifier-free guidance. To 264
achieve this, We randomly drop the conditional features E 265
with probability p ∈ [0, 1] in Eq. 9, effectively training the 266
model to predict with and without conditioning jointly: 267

ŷt =

{
ŷc
t = h(yt, t,E), with probability 1− p,

ŷu
t = h(yt, t,0L×C), with probability p.

(11) 268
where 0m×n denotes a zero matrix with size of m and n. 269

Inference with CFG. During inference, diversity can be 270
adjusted by changing the value of classifier-free guidance 271
weight w: 272

ŷt = (1 + w)ŷc
t − wŷu

t , (12) 273

where ŷc
t and ŷu

t denote the conditional and unconditional 274
predictions, respectively, obtained from Eq. 11. A larger w 275
leads to more deterministic predictions that closely follow 276
the video content, while a smaller w allows for more diverse 277
predictions that reflect the inherent ambiguity in boundary 278
distribution. The overall training and inference algorithms 279
are provided in the supplementary material. 280

5. Experiments 281

5.1. Setup 282

In our experiment, we evaluate our method on two standard 283
GEBD benchmarks: Kinetics-GEBD [35] and TAPOS [34]. 284
Each video is uniformly sampled to 100 frames. We 285
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use ResNet-50 [14] pretrained on ImageNet-1K [7] as the286
backbone network g. We employ the BasicGEBD-L4 en-287
coder [55] and a 6-layer Transformer [43] for our encoder288
f and decoder h, . We adopt FiLM [29] for the diffusion289
timestep embedding. During training, we set probability p290
of classifier-free guidance as 0.1. For Kinetics-GEBD [35],291
which provides five annotations per video, we use a maxi-292
mum of four annotations, selected based on F1 consistency293
score [23, 35, 55]. Please refer to our supplementary materi-294
als for more details of the datasets and our implementation.295

5.2. Evaluation Metrics296

5.2.1. F1 score297

In the conventional evaluation of GEBD, a single predic-298
tion is evaluated for each video [23, 35, 55, 56]. The F1299
score based on relative distance (Rel.Dis. [35]) is the basic300
evaluation metric. When multiple annotations are available,301
the F1 score is computed by taking the maximum F1 score302
among all possible prediction-annotation pairs.303

However, the F1 score does not account for scenarios304
where multiple solutions are generated, nor does it capture305
the inherent diversity among ground-truth annotations. In306
the following, we introduce new evaluation metrics, i.e.,307
symmetric F1 and diversity scores, that consider both mul-308
tiple predictions and the diversity of GT annotations.309

5.2.2. Symmetric F1 score310

When multiple predictions are generated for a video, evalu-311
ating the many-to-many alignment between predictions and312
GT annotations requires considering two key aspects: (1)313
how accurately each prediction matches one of the GT an-314
notations (Pred-to-GT alignment) and (2) how well each GT315
annotation is covered by the predictions (GT-to-Pred align-316
ment). To address these aspects, we propose the symmet-317
ric F1 score (F1sym), which combines two directional F1318
scores: the Pred-to-GT alignment score (F1p2g) and the GT-319
to-Pred alignment scores (F1g2p). This bi-directional met-320
ric ensures a comprehensive evaluation by jointly measur-321
ing how well predictions capture the ground truth and vice322
versa, reflecting both prediction accuracy and diversity.323

To formally define our metrics, we first establish our no-324
tation. For each video with L frames, we denote Ng ground325
truth annotations and Np model predictions by Y ∈ RNg×L326

and Ŷ ∈ RNp×L, respectively.327

Pred-to-GT alignment score F1p2g. The Pred-to-GT328
alignment score, F1p2g, measures how well each predicted329
boundary aligns with at least one ground truth annotation,330
similar to the conventional GEBD evaluation. It is com-331
puted by taking each prediction Ŷi, finding its highest F1332
score across all ground truth annotations Yj , and averaging333

these maximum scores across all predictions as: 334

F1p2g(Ŷ ,Y ) =
1

Np

Np∑
i=1

max
j∈{1,...,Ng}

F1(Ŷi, Yj), (13) 335

where F1(X,Y ) computes the F1 score between X and Y . 336

GT-to-Pred alignment score F1g2p. To account for the 337
variability and diversity in GT annotations, the GT-to-Pred 338
score, F1g2p, evaluates how well each annotation is covered 339
by any of the predictions. This is achieved by reversing the 340
formulation to assess each ground truth annotation against 341
all predictions, as follows: 342

F1g2p(Ŷ ,Y ) =
1

Ng

Ng∑
j=1

max
i∈{1,...,Np}

F1(Ŷi, Yj). (14) 343

Symmetric F1 score F1sym. The symmetric F1 score fi- 344
nally combines the two directional F1 scores, i.e., F1p2g and 345
F1g2p, by taking a harmonic mean as: 346

F1sym(Ŷ ,Y ) =
2× F1p2g(Ŷ ,Y )× F1g2p(Ŷ ,Y )

F1p2g(Ŷ ,Y ) + F1g2p(Ŷ ,Y )
. (15) 347

The final symmetric F1 score for the entire dataset is ob- 348
tained by computing the score for each video individually 349
and then taking an average across all videos in the dataset. 350

5.2.3. Diversity score 351

Although the proposed symmetric F1 score measures a 352
comprehensive alignment between multiple predictions and 353
ground truth annotations, it does not directly measure the 354
diversity among predictions. We thus introduce the diver- 355
sity score that quantifies the average pairwise dissimilar- 356
ity among predictions, following [54]. The diversity score 357
among Np predictions Ŷ is defined as: 358

Diversity(Ŷ ) =
2

N2
p

Np∑
i=1

Np∑
j=1

(1− F1(Ŷi, Ŷj)), (16) 359

which computes the average dissimilarity among all predic- 360
tions. Here, the F1 score serves as the similarity measure, 361
ensuring that the diversity score reflects how different the 362
generated predictions are from each other. Note that higher 363
values indicate higher diversity. Similar to the symmetric 364
F1 score, the diversity score is averaged across all videos in 365
the dataset. 366

5.3. Effect of the CFG Weight w 367

The CFG weight w is a key factor in balancing the con- 368
ditional and unconditional diffusion models. A larger w 369
increases the influence of the conditional model, strength- 370
ening the impact of the temporal self-similarity feature in 371
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Figure 4. Effect of CFG weight w. The x-axis represents the CFG
weight w, while the y-axis shows (a) F1sym, (b) F1p2g, (c)F1g2p, and
(d) diversity, respectively.

the diffusion process. In contrast, a smaller w increases the372
influence of the unconditional model, enabling the genera-373
tion of more diverse predictions by relying less on the con-374
ditioning signal. To evaluate the effect of w, we conduct375
experiments by varying its value in Eq. 12 from 0.0 to 10.0376
during inference, following [15]. Figure 4 presents the re-377
sults, where the x-axis represents w, while the y-axis shows378
(a) F1sym, (b) F1p2g, (c) F1g2p, and (d) diversity score.379

The Pred-to-GT alignment score F1p2g increases380
(Fig. 4b) as w increases, indicating that the model places381
greater emphasis on visual features when generating pre-382
dictions. In contrast, both the GT-to-Pred alignment score383
F1g2p (Fig. 4c) and the diversity score (Fig. 4d) decreases384
with higher w, as stronger conditioning reduces variabil-385
ity in predictions. Conversely, a smaller w increases di-386
versity by enhancing the influence of the unconditional387
model while relatively reducing dependence on the condi-388
tional model. Interestingly, F1p2g exhibits an opposite pat-389
tern to both F1g2p and diversity score, while F1g2p and di-390
versity score follow a similar tendency. This also suggests391
that a higher F1p2g score does not always guarantee diverse392
predictions, and excessive diversity may negatively impact393
Pred-to-GT alignment. Furthermore, diversity appears to be394
closely related to GT-to-Pred alignment, as a higher F1g2p395
indicates better coverage of ground truth annotations, which396
inherently requires greater diversity in predictions.397

The symmetric F1 score F1sym, defined as the harmonic398
mean of F1p2g and F1g2p, exhibits a non-monotonic re-399
lationship with the guidance weight, reaching its peak at400
w = 0.7. This result highlights the trade-off between Pred-401
to-GT alignment and GT-to-Pred alignment. A moderate402
guidance weight effectively balances these trade-offs, max-403
imizing the symmetric F1 score by preserving alignment404
with the ground truth while ensuring sufficient diversity in405
predictions. The complete numerical results are provided in406
the supplementary material.407

Method F1sym F1p2g F1g2p Diversity

Temporal Perceiver† [39] 69.4 72.2 67.4 14.6
SC-Transformer† [23] 72.9 74.9 71.6 18.9
BasicGEBD† [55] 72.2 74.5 70.6 18.6
EfficientGEBD† [55] 72.6 76.0 70.2 14.9
DiffGEBD(Ours) 73.9 75.7 72.8 20.0

Table 1. Diversity-aware evaluation of GEBD on Kinetics-
GEBD. † reproduced by out setup. Boldface and underline in-
dicate the best and the second-best scores, respectively.

5.4. Diversity-aware Evaluation of GEBD 408

In Table 1, we compare DiffGEBD with previous meth- 409
ods [23, 39, 55] on the Kinetics-GEBD dataset using the 410
diversity-aware evaluation protocol in Sec. 5.2.2. For mul- 411
tiple prediction generations, we set the number of predic- 412
tions Np to 5, as the average number of annotations per 413
video in the dataset is 4.93 [35]. Since all previous methods 414
produce deterministic outputs, we reproduce and evaluate 415
each model by training it five times with random initial- 416
ization to obtain multiple predictions. Please note that our 417
experiments are conducted on models with publicly avail- 418
able code1. The reproduced models are marked with † in 419
Table 1, and their performance is presented in the supple- 420
mentary material. In contrast to these deterministic mod- 421
els, DiffGEBD generates diverse predictions from a single 422
trained model by varying the initial Gaussian noise ŷ, elim- 423
inating the need for multiple training runs to achieve diver- 424
sity. In this experiment, we set the CFG weight w to 0.7 and 425
the relative distance threshold for the F1 score to 0.05. 426

Table 1 presents the overall results, where Dif- 427
fGEBD achieves the state-of-the-art performance on F1sym, 428
F1g2p, and the diversity score, while showing comparable 429
results on F1p2g compared to the previous methods. This 430
result indicates that DiffGEBD not only generates diverse 431
predictions but also maintains solid alignment with ground 432
truth annotations, achieving an optimal balance between di- 433
versity and plausibility. EfficientGEBD [55] achieves the 434
highest score in F1p2g; however, its lower F1g2p leads to 435
lower score on F1sym, and its diversity score is also low. 436
This suggests that its predictions cover fewer ground truth 437
annotations with lower diversity, prioritizing precision over 438
diversity. By comparing the results of EfficentGEBD to Ba- 439
sicGEBD [55], we observe that a significant increase in di- 440
versity does not necessarily lead to a proportional improve- 441
ment in F1g2p. This finding implies that higher diversity 442
alone does not guarantee better GT-to-Pred alignment, em- 443
phasizing the importance of plausibility in predictions. Full 444
results with varying relative distance values are presented in 445

1We utilize the official Github repositories for Temporal Perceiver [39]:
https://github.com/MCG-NJU/TemporalPerceiver, SC-
Transformer [23]: https : / / github . com / lufficc / SC -
Transformer, and BasicGEBD/EfficientGEBD [55]: https://
github.com/Ziwei-Zheng/EfficientGEBD.
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Figure 5. Effect of the number of annotations. Model perfor-
mance with varying numbers of annotations (1-5).

Conditioning F1sym F1p2g F1g2p Diversity

F 66.9 69.2 65.3 15.8
E 73.9 75.7 72.3 20.0

Table 2. Effect of conditioning in diffusion. Using temporal self-
similarity feature E as a diffusion condition is effective.

the supplementary material.446

5.5. Analysis447

Effect of the number of annotations Ng. Since each an-448
notation represents an individual’s subjective interpretation449
of event boundaries, we experiment by adjusting the num-450
ber of annotations used during training. Rather than select-451
ing annotations randomly, we rank them based on reliabil-452
ity using the F1 consistency scores introduced in [35]. We453
incrementally increase Ng from 1 to 5, prioritizing annota-454
tions from annotators with the highest consistency scores.455

Figure 5 presents the results, where the x-axis repre-456
sents Ng, while the y-axis shows (a) F1sym, (b) F1p2g, (c)457
F1g2p, and (d) diversity score. We observe a consistent im-458
provement in overall performance as Ng increases from 1459
to 4, indicating that incorporating multiple reliable annota-460
tors helps the model better capture variations in boundary461
annotations while improving fidelity. However, when all462
five annotators are included, we observe a decline in F1sym,463
F1p2g, and F1g2p, while the diversity score continues to in-464
crease. This suggests that although using more annotations465
enhances diversity, incorporating low-consistency annota-466
tions can negatively impact performance.467

Effect of conditioning in diffusion. To examine the im-468
pact of the conditioning feature in denoising diffusion, we469
conduct experiments by varying the conditioning feature in470
the diffusion process. Specifically, we replace the temporal471
self-similarity feature E with visual features F extracted472
directly from the backbone network g. Table 2 presents the473
results. We observe a significant performance drop when474

Steps F1sym F1p2g F1g2p Diversity

1 54.0 60.5 50.2 20.7
2 72.6 75.9 71.1 19.2
4 73.4 75.7 71.8 18.0
8 73.8 75.8 72.4 18.8
16 73.9 75.8 72.6 19.5
32 73.9 75.7 72.8 20.0
50 73.9 75.6 72.8 20.4

Table 3. Effect of inference step. Following the DDIM sampling
strategy, the model can skip the timestep T .

Method
F1@0.05

Kinetics-GEBD TAPOS

BMN [25] 18.6 -
BMN-StartEnd [25] 49.1 -
ISBA [10] - 10.6
TCN [22] 58.8 23.7
CTM [17] - 24.4
TransParser [34] - 23.9
PC [35] 62.5 52.2
SBoCo [20] 73.2 -
Temporal Perceiver [39] 74.8 55.2
DDM-Net [40] 76.4 60.4
CVRL [24] 74.3 -
LCVS [53] 76.8 -
SC-Transformer [23] 77.7 61.8
BasicGEBD [55] 76.8 60.0
EfficientGEBD [55] 78.3 63.1
DyBDet [56] 79.6 62.5

DiffGEBD (ours) 78.7 66.0

Table 4. Conventional evaluation of GEBD. We report F1 scores
based on the conventional GEBD evaluation protocol. Boldface
and underline indicate the best and the second-best, respectively.

using F , demonstrating the importance of temporal self- 475
similarity features as a conditioning input for the diffusion 476
model. Since self-similarity captures subtle changes across 477
frames, using E is more effective. 478

Effect of DDIM inference steps. We investigate the im- 479
pact of diffusion steps by varying T from 1 to 50. As shown 480
in Table 3, while diversity remains consistently high regard- 481
less of the number of steps, other metrics show improve- 482
ment with increasing steps with diminishing marginal ben- 483
efits. Considering the linear increase in computational cost 484
with the number of steps, we choose T = 32 as a balanced 485
choice between performance and efficiency. 486

5.6. Conventional Evaluation of GEBD 487

Table 4 compares the performance of the proposed method 488
on two standard GEBD benchmark datasets, Kinetics- 489
GEBD and TAPOS, following the conventional evaluation 490
protocol [35] as described in Sec. 5.2.1. Note that all meth- 491
ods use ResNet-50 [13] trained on ImageNet [7] as the 492

7
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Pred. 1 

Pred. 2 

Pred. 3 
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GT 1 

GT 2 

GT 3 

(a) Ground-truth (GT)

(b) DiffGEBD, CFG ! = 0.3

(c) DiffGEBD, CFG ! = 7.0
Figure 6. Example results on Kinetics-GEBD. The figure illustrates (a) Ground truth annotations, (b) predictions with w = 0.3, and (c)
predictions with w = 7.0.

backbone network for a fair comparison. In this experiment,493
we set the CFG weight w to 7.0 to enhance the influence of494
temporal self-similarity features in the video when gener-495
ating predictions. DiffGEBD achieves comparable results496
on Kinetics-GEBD and outperforms on TAPOS. This re-497
sult demonstrates that DiffGEBD can effectively generate498
highly feasible predictions with a high guidance weight, en-499
suring stronger adherence to the conditioning features.500

5.7. Example Results501

Figure 6 illustrates example results of DiffGEBD on the502
Kinetics-GEBD dataset, showing (a) ground-truth annota-503
tions, (b) predictions with w = 0.3, and (c) predictions with504
w = 7.0. All outputs were generated using the same model505
with different initial noise. We observe that clear bound-506
aries (e.g., subject’s movements between 1.24s to 1.45s) are507
consistently detected across the predictions, regardless of508
the guidance weight. However, boundaries that exhibit hu-509
man ambiguity, such as subtle action changes (e.g., hockey510
stick movements at 2.91s and 4.29s in Pred. 3 of (b)), vary511

across different generations. Notably, we observe that lower 512
weight guidance allow for diverse predictions, while higher 513
guidance weights lead to more consistent predictions. 514

6. Conclusion 515

We have presented DiffGEBD, a novel diffusion-based 516
boundary detection model from a generative perspective. 517
The proposed method encodes temporal changes between 518
adjacent frames using self-similarity, then iteratively refines 519
random noise into plausible boundaries via denoising diffu- 520
sion. By integrating classifier-free guidance, it enables ex- 521
plicit control over the degree of diversity. Furthermore, we 522
present a diversity-aware evaluation protocol, introducing 523
the symmetric F1 and diversity scores, which jointly cap- 524
ture many-to-many alignments and the variability in model 525
predictions. We believe that our model offers a novel per- 526
spective on producing diverse yet plausible generic event 527
boundaries, paving the way for a richer and more nuanced 528
understanding of event boundaries. 529
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Segmental spatiotemporal cnns for fine-grained action seg- 615
mentation. In Computer Vision–ECCV 2016: 14th European 616
Conference, Amsterdam, The Netherlands, October 11-14, 617
2016, Proceedings, Part III 14, pages 36–52. Springer, 2016. 618
1, 7 619

[23] Congcong Li, Xinyao Wang, Dexiang Hong, Yufei Wang, 620
Libo Zhang, Tiejian Luo, and Longyin Wen. Structured con- 621
text transformer for generic event boundary detection. arXiv 622
preprint arXiv:2206.02985, 2022. 2, 5, 6, 7 623

[24] Congcong Li, Xinyao Wang, Longyin Wen, Dexiang Hong, 624
Tiejian Luo, and Libo Zhang. End-to-end compressed video 625
representation learning for generic event boundary detection. 626
In Proceedings of the IEEE/CVF Conference on Computer 627
Vision and Pattern Recognition, pages 13967–13976, 2022. 628
7 629

[25] Tianwei Lin, Xiao Liu, Xin Li, Errui Ding, and Shilei Wen. 630
Bmn: Boundary-matching network for temporal action pro- 631
posal generation. In Proceedings of the IEEE/CVF Interna- 632
tional Conference on Computer Vision (ICCV), 2019. 1, 7 633

[26] Daochang Liu, Qiyue Li, Anh-Dung Dinh, Tingting Jiang, 634
Mubarak Shah, and Chang Xu. Diffusion action segmenta- 635
tion. In Proceedings of the IEEE/CVF International Con- 636
ference on Computer Vision, pages 10139–10149, 2023. 1, 637
2 638

[27] Radford M Neal. Annealed importance sampling. Statistics 639
and computing, 11:125–139, 2001. 2 640

[28] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, 641
Pranav Shyam, Pamela Mishkin, Bob Mcgrew, Ilya 642
Sutskever, and Mark Chen. Glide: Towards photorealis- 643
tic image generation and editing with text-guided diffusion 644

9



ICCV
#0018

ICCV
#0018

ICCV 2025 Submission #0018. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

models. In International Conference on Machine Learning,645
pages 16784–16804. PMLR, 2022. 2646

[29] Ethan Perez, Florian Strub, Harm De Vries, Vincent Du-647
moulin, and Aaron Courville. Film: Visual reasoning with a648
general conditioning layer. In Proceedings of the AAAI con-649
ference on artificial intelligence, 2018. 4, 5650

[30] Aimon Rahman, Jeya Maria Jose Valanarasu, Ilker Haci-651
haliloglu, and Vishal M Patel. Ambiguous medical image652
segmentation using diffusion models. In Proceedings of653
the IEEE/CVF conference on computer vision and pattern654
recognition, pages 11536–11546, 2023. 2655

[31] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,656
and Mark Chen. Hierarchical text-conditional image gener-657
ation with clip latents. arXiv preprint arXiv:2204.06125, 1658
(2):3, 2022. 2659

[32] Robin Rombach, Andreas Blattmann, Dominik Lorenz,660
Patrick Esser, and Björn Ommer. High-resolution image661
synthesis with latent diffusion models. In Proceedings of662
the IEEE/CVF conference on computer vision and pattern663
recognition, pages 10684–10695, 2022. 2664

[33] Tim Salimans, Han Zhang, Alec Radford, and Dimitris665
Metaxas. Improving gans using optimal transport. arXiv666
preprint arXiv:1803.05573, 2018. 2667

[34] Dian Shao, Yue Zhao, Bo Dai, and Dahua Lin. Intra-and668
inter-action understanding via temporal action parsing. In669
Proceedings of the IEEE/CVF Conference on Computer Vi-670
sion and Pattern Recognition, pages 730–739, 2020. 4, 7671

[35] Mike Zheng Shou, Stan Weixian Lei, Weiyao Wang, Deepti672
Ghadiyaram, and Matt Feiszli. Generic event boundary de-673
tection: A benchmark for event segmentation. In Proceed-674
ings of the IEEE/CVF international conference on computer675
vision, pages 8075–8084, 2021. 1, 2, 4, 5, 6, 7676

[36] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,677
and Surya Ganguli. Deep unsupervised learning using678
nonequilibrium thermodynamics. In International confer-679
ence on machine learning, pages 2256–2265. PMLR, 2015.680
2681

[37] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-682
ing diffusion implicit models. In International Conference683
on Learning Representations, 2020. 2, 3684
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