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Abstract

Generic event boundary detection (GEBD) aims to identify
natural boundaries in a video, segmenting it into distinct
and meaningful chunks. Despite the inherent subjectivity
of event boundaries, previous methods have focused on de-
terministic predictions, overlooking the diversity of plausi-
ble solutions. In this paper, we introduce a novel diffusion-
based boundary detection model, dubbed DiffGEBD, that
tackles the problem of GEBD from a generative perspec-
tive. The proposed model encodes relevant changes across
adjacent frames via temporal self-similarity and then iter-
atively decodes random noise into plausible event bound-
aries being conditioned on the encoded features. Classifier-
free guidance allows the degree of diversity to be controlled
in denoising diffusion. In addition, we introduce a new
evaluation metric to assess the quality of predictions con-
sidering both diversity and fidelity. Experiments show that
our method achieves strong performance on two standard
benchmarks, Kinetics-GEBD and TAPOS, generating di-
verse and plausible event boundaries.

1. Introduction

Through the intricate workings of visual perception, hu-
mans can effortlessly detect and interpret a wide range of
changes in subjects, objects, and scenes. Research in cogni-
tive science demonstrates that the human visual system eas-
ily divides a temporal sequence of images into units of se-
mantic significance [48]. The task of generic event bound-
ary detection (GEBD) has recently been proposed to iden-
tify these natural event boundaries in a similar spirit [20,
22-25, 34, 38, 39]. While conventional video tasks in com-
puter vision, such as action recognition [3, 5,40, 41,43, 44],
temporal action detection [19, 46, 50, 51, 56], and tem-
poral action segmentation [9, 11, 26, 47] mainly focus on
identifying class labels or boundaries of predefined action
classes, GEBD aims to localize more generic and class-
agnostic event boundaries from a video.
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Figure 1. Generic event boundary detection from a generative
perspective. Our method generates diverse and plausible bound-
ary predictions for generic events via denoising diffusion.

Since generic event boundaries are inherently subjective
and variable, the problem of GEBD needs to consider the
diversity of human judgment; perception of these bound-
aries can differ significantly among individuals, leading to
variation in how people identify boundaries. To account for
such human subjectivity, Kinetics-GEBD [34], the bench-
mark dataset for GEBD, provides multiple annotations from
human annotators for each video. However, previous meth-
ods [20, 22-25, 34, 38, 39] all focus on predicting accurate
boundaries with a deterministic model for a given video, ig-
noring the diversity of potential solutions. Diffusion models
are well-suited for this challenge, as they naturally enable
sampling diverse outputs conditioned on the same input by
varying the initial noise during the stochastic denoising.

In this paper, we introduce a diffusion-based boundary
detection model, dubbed DiffGEBD, which formulates the
problem of GEBD from a generative perspective (Fig. 1).
The proposed method consists of a temporal self-similarity
encoder and a denoising decoder, where the encoder cap-
tures dynamic visual changes across adjacent frames using
temporal self-similarity [54], and then the decoder itera-
tively denoises random noise into plausible event bound-



aries being conditioned on the encoded features. Since our
model outputs distinct predictions from different noises, we
control the prediction diversity incorporating classifier-free
guidance (CFG) [15] into our denoising process. By con-
trolling the guidance weight, DiffGEBD effectively per-
form diverse yet accurate boundary detection while better
reflecting human judgment variability. Given the ability of
our model to generate diverse predictions, a key challenge
emerges in how to properly evaluate them.

The conventional evaluation metric for GEBD, the F1
score, measures the alignment between a single prediction
and multiple ground-truth annotations. However, it does
not account for many-to-many alignments when a model
generates multiple predictions, nor does it capture the di-
versity across those predictions. To address these limita-
tions, we introduce a diversity-aware evaluation protocol
with two metrics: symmetric F1 and diversity score. The
symmetric F1 captures many-to-many alignments between
sets of predictions and ground-truth annotations, while the
diversity score directly quantifies variation among the pre-
dictions themselves. Together, these metrics enable a more
comprehensive evaluation of GEBD, better reflecting the in-
herent ambiguity and variability of event boundaries.

Our contributions can be summarized as follows: 1) we
introduce a novel diffusion-based event boundary detec-
tion model, dubbed DiffGEBD, formulating GEBD from
a generative perspective. 2) The degree of diversity
in generated predictions can be controlled by adopting
classifier-free guidance in the denoising process. 3) We
propose a diversity-aware evaluation protocol introducing
two metrics: symmetric F1 and diversity scores. 4) Dif-
fGEBD achieves strong performance on standard bench-
mark datasets, Kinetics-GEBD and TAPOS, generating di-
verse and plausible event boundaries.

2. Related Work

Generic event boundary detection. GEBD [34] is a video
boundary detection task that segments a video into discrete
event units, similar to how humans naturally perceive and
distinguish events. Each event boundary marks a transition,
dividing the video into shorter, taxonomy-agnostic seg-
ments. Existing approaches have primarily focused on how
to effectively utilize visual information for boundary de-
tection. UBoCo [20] proposes the temporal self-similarity
matrix (TSM) to capture semantic inconsistency existing at
video boundaries. DDM-Net [39] introduces the progres-
sive attention to fuse spatial features and temporal similar-
ities. LCVS [52] further enhances boundary detection by
incorporating motion vectors with similarity features. Re-
cent approaches [23, 54, 55] improve the effectiveness of
TSM by applying it in a sliding window manner over local
temporal regions. All of these previous methods are de-
terministic, yielding a single prediction for each video. In

contrast, we introduce a generative perspective to the task,
which enables diverse and plausible boundary detections.
Diversity-aware prediction. Generating diverse predic-
tions is a key challenge in tasks with inherent ambiguity,
such as future action anticipation [1, 49] and medical image
segmentation [21, 29]. In these domains, prior works have
successfully used generative models to capture the under-
lying data distribution. UAAA [1] proposes a framework
that models probability distributions and generates multi-
ple samples corresponding to different possible sequences
of future activities. GTDA [49] leverages diffusion models
to capture the distribution of activities and propose a metric
for measuring the diversity of generated samples. In med-
ical image segmentation, multiple expert annotations often
lead to ambiguity. Probabilistic U-Net [21] addresses this
challenge by learning to capture the distribution of anno-
tations. They propose using Generalized Energy Distance
(GED) [4, 32, 37] to evaluate the similarity between the
distribution of predicted samples and annotations. In this
paper, we propose a diffusion-based model that generates
diverse boundary predictions for a single video and enables
effective control over the degree of diversity. Furthermore,
we introduce new evaluation metrics tailored for diversity-
aware prediction in the context of GEBD.

Diffusion model. The diffusion model [35] is a generative
model inspired by non-equilibrium statistical physics [18],
that learns a data distribution by reversing a gradual nois-
ing process. The remarkable success of the diffusion model
in image generation [16, 27, 30, 31, 36] and their con-
ditional variants [8, 15] has recently extended to a range
of computer vision domains, including image segmenta-
tion [2, 45], object detection [6], and video understand-
ing [12, 26]. Following this paradigm, we introduce a
diffusion-based boundary detection model that addresses
the problem of GEBD from a generative perspective.

3. Preliminary

In this section, we provide the preliminaries on diffusion
models [16, 35]. A diffusion model consists of two key
components: a forward process that progressively adds
Gaussian noise to the data, and a reverse process that re-
constructs the original sample by iteratively denoising it.
Forward Process. The forward process involves adding
small Gaussian noise € over 7' timesteps to create noisy data
from the given real data distribution xo ~ ¢(x). The size of
the noise added during the forward process is controlled by
a variance schedule {3; € (0,1)}_,. Let oy = 1 — 3; and
o = szl a;. The forward process is defined as:

q(x¢|xe—1) = N(x¢; v/ouxi—1, ouI), (N

=

g(x1.7lx0) = | | a(xe|xe=1)- ()

t=1
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Figure 2. Overview of DiffGEBD. Input video V is given to the backbone network g, producing visual features F' as output. Then, the
extracted visual features F' are produced to the encoder f, generating E. During training, Gaussian noise ¢ is added to the ground-truth
label yo following the diffusion forward step. The decoder h then predicts boundaries from a noisy label y; at time step ¢ conditioned
on E. During inference, the decoder iteratively denoises starting from the random Gaussian noise yr, generates the predictions, i.e.,
Yyr — Yr—a — --- — Yo, following DDIM inference step [36]. By differently initializing the Np random Gaussian noises, we can

generate Np diverse predictions using a single model.

By the Markovian chain, this can be formulated as follows:

q(x¢[x0) = N (x¢]v/a@oxo, (1 — aol)). 3)

Finally, with the reparameterization trick, we obtain:
x; = Vayxg +ev/1 —a, e~ N(0,I). 4)

Reverse Process. The reverse process estimates xo from
Xy, inverting the forward process. This requires estimat-
ing the posterior ¢(x;_1|x;), which is intractable as it de-
pends on the real data distribution g(xp). Therefore, we
approximate the posterior with a learned model distribution

pe(Xt—1|Xt)1
po(Xi—1]%:) = N (x¢—1; o (%4, 1), 071), @)

where p9(x¢, t) is a predicted mean parameterized by deep
neural network, and Uf is a variance term determined by f3;.
Instead of predicting g (x¢,t) directly, we let the model
predict xo by neural network fy(x;,t). Starting from pure
random noise x7, the model can reduce the noise using the
following update rule:

Xt—1 =V Q-1 fo(xe, 1)+

— t
1 (jlt—l _ O't2 . Xt CthGf(Xt, )

V1-— (077

By iteratively applying Eq. 6, the model can generate sam-
ples from py via a trajectory from 7" to 0. DDIM sam-
pling [36] improves efficiency by skipping intermediate
steps, i.e., X7 — XA — ... = Xg.

+ o (6)

4. Proposed Approach

We introduce DiffGEBD, a novel diffusion-based frame-
work for generic event boundary detection. This sec-

tion provides the problem setup (Sec. 4.1), details of Dif-
fGEBD (Sec. 4.2), the training objective (Sec. 4.3), and in-
tegration of the classifier-free guidance(Sec. 4.4).

4.1. Problem setup

Given a video V' € REXHXWX3 congsisting of L frames,
where each frame has height H, width W, and RGB
channels, the goal of generic event boundary detection
(GEBD) is to identify a sequence of event boundaries y €
{0,1}£. Each element y; is a binary indicator that repre-
sents whether an event boundary is present, with 1 indicat-
ing presence and O indicating absence at frame (.

4.2. DIffGEBD

The overall architecture of Diff GEBD is illustrated in Fig. 2.
The input video is fed into a backbone network g to extract
visual feature representations. The encoder f captures rele-
vant temporal changes across adjacent frames via temporal
self-similarity, and the denoising decoder / refines random
Gaussian noise into event boundary predictions conditioned
on the visual embeddings produced by the encoder.

During training, we randomly sample a diffusion time
step t € {1,2,...,T} and add noise ¢ ~ N(0,I) to the
ground-truth boundary label y, following Eq. 4, generating
noisy boundary label y; at time step ¢. The decoder takes y;
as input and is trained to reconstruct the original boundary
label yq. For each video with N¢ ground-truth (GT) anno-
tations, we select one annotation per iteration to serve as the
GT, ensuring that every annotation is used once per epoch.

During inference, the decoder starts from Gaussian noise
yr and progressively denoises it through multiple steps, i.e.,
Yyr — Yr—A — -+ — Yo, following DDIM sampling
procedure [36]. Here, ¢ denotes predicted boundaries. For
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Figure 3. Detailed architecture of encoder and decoder

diverse and plausible predictions, DiffGEBD can generate
Np predictions with a single model by randomly initializing
the starting Gaussian noise g for each prediction.

Backbone. Given an input video V', we first extract video
features F' € RE*P through a backbone network g:

F=g4(V), )

where D denotes the feature dimension. We employ pre-
trained ResNet-50 [14] as g.

Encoder. The encoder f is designed to capture diverse
temporal variations between adjacent frames by leverag-
ing temporal self-similarity, which helps identify subtle
changes in scene dynamics that indicate event boundaries.
Following [54], we adopt the temporal self-similarity en-
coder as f. Specifically, the encoder f comprises a 1D
convolution (kernel size=3), followed by a sliding-window
temporal self-similarity module, a fully convolutional net-
work (FCN), and a 2D pooling operation, as shown in
Fig. 3. The encoder f takes video features F' as input and
produces temporal embeddings E € RZ*C as output:

E:f(F)a (3

where C' denotes the feature dimension. For further archi-
tectural details, please refer to [54].

Decoder. The decoder h is built upon the Transformer en-
coder layer [42], denoises the input noisy boundary labels
y; at time-step ¢ into ground-truth labels, conditioned on
temporal embeddings E. As illustrated in Fig. 3, the input

vy, is first processed by an MLP layer, then concatenated with
FE along the channel dimension. A sinusoidal position em-
bedding is added to this combined feature, which is then fed
into self-attention layers [42]. The diffusion time step ¢, en-
coded via sinusoidal embedding and MLP layers, is injected
into the model through a scale-and-shift operation [16, 28].
Finally, the output from the decoder h is processed by an
MLP layer to produce the final prediction g;:

:gt = h(yhtaE) (9)

4.3. Training objective

The model is trained using mean squared error loss £ be-
tween the ground-truth boundary label yq and the prediction
Y at time-step ¢:

L
1 .
L= I l_zl(yo,l —9i1)>. (10)

4.4. Classifier-free guidance (CFG)

To address the inherent ambiguity in event boundary detec-
tion, we use classifier-free guidance [15]. This guidance
strategy balances prediction diversity and fidelity by com-
bining conditional and unconditional diffusion models.

Training with CFG. Both conditional and unconditional
diffusion models are trained for classifier-free guidance. To
achieve this, we randomly drop the conditional features E
with probability p € [0,1] in Eq. 9, jointly training the
model to predict with and without conditioning:

Y= Wyt E), with probability 1 — p,
Y= 9y = h(y:,t,0pxc), with probability p.
1D

where 0,,, «,, denotes a zero matrix with size of m and n.

Inference with CFG. During inference, diversity can be
adjusted by changing the value of classifier-free guidance
weight w:

g = (1+w)ygy — wyy, (12)

where gy§ and g;' denote the conditional and unconditional
predictions, respectively, obtained from Eq. 11. A larger w
leads to more deterministic predictions that closely follow
the video content, while a smaller w allows for more diverse
predictions that reflect the inherent ambiguity in boundary
distribution. The overall training and inference algorithms
are provided in the supplementary material.



5. Experiments
5.1. Setup

In our experiment, we evaluate our method on two standard
GEBD benchmarks: Kinetics-GEBD [34] and TAPOS [33].
Each video is uniformly sampled to 100 frames. We
use ResNet-50 [14] pretrained on ImageNet-1K [7] as the
backbone network g. We employ the BasicGEBD-L4 en-
coder [54] and a 6-layer Transformer [42] for our encoder
f and decoder h, . We adopt FiLM [28] for the diffusion
timestep embedding. During training, we set probability p
of classifier-free guidance as 0.1. For Kinetics-GEBD [34],
which provides five annotations per video, we use a maxi-
mum of four annotations, selected based on F1 consistency
score [23, 34, 54]. Please refer to our supplementary materi-
als for more details of the datasets and our implementation.

5.2. Evaluation Metrics
5.2.1. F1 score

In the conventional evaluation of GEBD, a single predic-
tion is evaluated for each video [23, 34, 54, 55]. The F1
score based on relative distance (Rel.Dis. [34]) is the basic
evaluation metric. When multiple annotations are available,
the F1 score is computed by taking the maximum F1 score
among all possible prediction-annotation pairs.

However, the F1 score does not account for scenarios
where multiple solutions are generated, nor does it capture
the inherent diversity among ground-truth annotations. In
the following, we introduce new evaluation metrics, i.e.,
symmetric F1 and diversity scores, that consider both mul-
tiple predictions and the diversity of GT annotations.

5.2.2. Symmetric F1 score

When multiple predictions are generated for a video, evalu-
ating the many-to-many alignment between predictions and
GT annotations requires considering two key aspects: (1)
how accurately each prediction matches one of the GT an-
notations (Pred-to-GT alignment) and (2) how well each GT
annotation is covered by the predictions (GT-to-Pred align-
ment). To address these aspects, we propose the symmet-
ric F1 score (Flgyy,), which combines two directional F1
scores: the Pred-to-GT alignment score (F1,,¢) and the GT-
to-Pred alignment scores (Flg,). This bi-directional met-
ric ensures a comprehensive evaluation by jointly measur-
ing how well predictions capture the ground truth and vice
versa, reflecting both prediction accuracy and diversity.

To formally define our metrics, we first establish our
notation. For each video with L frames, we denote Ng
ground truth annotations and Np model predictions by Y €
RNe*L and Y € RNP <L respectively.

Pred-to-GT alignment score Flp,. The Pred-to-GT
alignment score, Fl,,,, measures how well each predicted
boundary aligns with at least one ground truth annotation,

similar to the conventional GEBD evaluation. It is com-
puted by taking each prediction Y, finding its highest F1
score across all ground truth annotations Y}, and averaging
these maximum scores across all predictions as:

Np

N 1 N
Flyp(Y,Y) = — F1(Y;,Y;), (13
Pe(Y) = 0 2o FIOR Y0, 9

where F1(X,Y") computes the F1 score between X and Y.

GT-to-Pred alignment score Flg,. To account for the
variability and diversity in GT annotations, the GT-to-Pred
score, Flg,, evaluates how well each annotation is covered
by any of the predictions. This is achieved by reversing the
formulation to assess each ground truth annotation against
all predictions, as follows:

Ng
~ 1 N
Flgzp(Y,Y):N—GZ_ max  F1(Y;,Y;). (14)

j=1

Symmetric F1 score Flg,,. The symmetric F1 score fi-
nally combines the two directional F1 scores, i.e., F1,, and
Flgp, by taking a harmonic mean as:

. 2 % Flye(Y,Y) x Flg(Y,Y
Flym(Y,Y) = e Y) X Pl Y) )
Flpg(Y,Y) + Flgp(Y,Y)
The final symmetric F1 score for the entire dataset is ob-
tained by computing the score for each video individually
and then taking an average across all videos in the dataset.

5.2.3. Diversity score

Although the proposed symmetric F1 score measures a
comprehensive alignment between multiple predictions and
ground truth annotations, it does not directly measure the
diversity among predictions. We thus introduce the diver-
sity score that directly quantifies the average pairwise dis-
similarity among predictions, following [53]. The diversity
score among Np predictions Y is defined as:

Np Np

Diversity(¥) = < > (1~ FI(V,¥;)),  (16)

P i=1j=1

which computes the average dissimilarity among all pre-
dictions. Here, the F1 score serves as the similarity mea-
sure, ensuring that the diversity score reflects how different
the generated predictions are from one another. Note that
higher values indicate greater diversity. Similar to the sym-
metric F1 score, the diversity score is averaged across all
videos in the dataset.
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Figure 4. Effect of CFG weight w. The x-axis represents the CFG
weight w, while the y-axis shows (a) Flsym, (b) Flpzg, (c)Flg2p, and
(d) diversity, respectively.

5.3. Effect of the CFG Weight w

The CFG weight w is a key factor in balancing the condi-
tional and unconditional diffusion models. A larger w in-
creases the influence of the conditional model, strengthen-
ing the impact of the temporal self-similarity feature in the
diffusion process. In contrast, a smaller w increases the in-
fluence of the unconditional model, enabling the generation
of more diverse predictions by relying less on the condition-
ing signal. To evaluate the effect of w in Eq. 12, we vary
its value from 0.0 to 10.0 during inference, following [15].
Figure 4 presents the results, where the x-axis corresponds
to the value of w, while the y-axis indicates (a) Flgym, (b)
Flpog, (¢) Flgop, and (d) diversity score.

The Pred-to-GT alignment score F1, initially increases
with larger values of w (Fig. 4-(b)), as the model bene-
fits from stronger conditioning of temporal self-similarity.
However, when w becomes greater than 5.0, the score starts
to decline, likely due to over-reliance on the conditional
signal, which may hinder the model from capturing subtle
motion. In contrast, the GT-to-Pred alignment score Flg,
(Fig.4-(c)) and the diversity score (Fig.4-(d)) exhibit a simi-
lar trend—both decrease as w increases, since stronger con-
ditioning reduces variability in the generated predictions.
However, when w becomes too small (i.e., close to zero),
Flg, also drops, as overly diverse samples tend to devi-
ate from the ground truth, making alignment more difficult.
Overall results suggest that higher F1,,, score does not al-
ways guarantee diverse predictions, and that excessive di-
versity may negatively impact Pred-to-GT alignment.

These observations motivate the introduction of a unified
metric that captures both diversity and fidelity of the gener-
ated predictions. The symmetric F1 score Flgyy, defined
as the harmonic mean of Fl,5, and Flg,, exhibits a non-
monotonic relationship with the guidance weight, reaching
its peak at w = 0.6. This result highlights the trade-off be-

Method Flgym Flype Flgp, Diversity

Temporal Perceiver! [38] 694 72.2 67.4 14.6

SC-Transformer' [23] 729 749 71.6 18.9
BasicGEBD' [54] 722 745  70.6 18.6
EfficientGEBDT [54] 726 760 70.2 14.9
DiffGEBD (ours) 740 756 729 20.4

Table 1. Diversity-aware evaluation on Kinetics-GEBD. Bold-
face and underline indicate the best and the second-best scores. T
Results are obtained using reproduced models.

tween Pred-to-GT alignment and GT-to-Pred alignment. A
moderate guidance weight effectively balances these trade-
offs, maximizing the symmetric F1 score by preserving
alignment with the ground truth while ensuring sufficient
diversity in predictions. The complete numerical results are
provided in the supplementary material.

5.4. Diversity-aware Evaluation of GEBD

In Table 1, we compare DiffGEBD with previous meth-
ods [23, 38, 54] on the Kinetics-GEBD dataset. For mul-
tiple prediction generations, we set the number of predic-
tions Np to 5, as the average number of annotations per
video in the dataset is 4.93 [34]. Since all previous methods
produce deterministic outputs, we reproduce and evaluate
each model by training it five times with random initial-
ization to obtain multiple predictions. Please note that our
experiments are conducted on models with publicly avail-
able code'. The reproduced models are marked with . and
their performances is reported in the supplementary mate-
rial. Unlike these deterministic models, DiffGEBD gen-
erates diverse predictions from a single trained model by
varying the initial Gaussian noise ¥, eliminating the need
for multiple training runs to achieve diversity. In this ex-
periment, we set the CFG weight w to 0.6 and the relative
distance threshold for the F1 score to 0.05.

Table | presents the overall results, where Dif-
fGEBD achieves the state-of-the-art performance on Flyy,,
Flep, and the diversity score, while showing compara-
ble results on Fl,,, compared to the previous methods.
These results indicate that DiffGEBD is capable of generat-
ing diverse predictions while maintaining strong alignment
with ground-truth annotations, thereby achieving an effec-
tive balance between diversity and plausibility. Efficient-
GEBD [54] achieves the highest score in Flpy,; however,
its lower Flg, results in a reduced Flgyn, and its diver-
sity score is also notably low. These results suggest that
the model generates highly precise but less diverse predic-
tions, covering fewer ground-truth annotations and priori-
tizing precision over diversity. By comparing the results of

'We utilize the official Github repositories for Temporal Perceiver [38]:
https://github.com/MCG-NJU/TemporalPerceiver, SC-
Transformer [23]: https:/ /github.com/ lufficc/sSC-—
Transformer, and BasicGEBD/EfficientGEBD [54]: https: //
github.com/Ziwei-Zheng/EfficientGEBRBD.
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Figure 5. Effect of the number of annotations. Model perfor-
mance with varying numbers of annotations (1-5).

Conditioning Flgym Flpg Flg, Diversity
F 68.5 69.3 68.3 24.3
E 74.0 75.6 72.9 20.4

Table 2. Effect of conditioning in diffusion. Using temporal self-
similarity feature F as a diffusion condition is effective.

EfficentGEBD to BasicGEBD [54], we observe that a sig-
nificant increase in diversity does not necessarily lead to a
proportional improvement in Flg,. This finding implies
that higher diversity alone does not guarantee better GT-to-
Pred alignment, emphasizing the importance of plausibility
in predictions. Full results with varying relative distance
values are presented in the supplementary material.

5.5. Analysis

Effect of the number of annotations Ng. Since each an-
notation represents individual subjective interpretations of
event boundaries, we experiment by adjusting the number
of annotations N¢ used during training. Instead of random
selection, we prioritize annotations based on their reliability
measured by the F1 consistency scores [34]. Specifically,
we increase Ng from 1 to 5 by selecting the top-Ng anno-
tations with the highest consistency scores.

Figure 5 presents the results, where the x-axis denotes
Ng, and the y-axis shows (a) Flgym, (b) Flyg, (¢) Flgp,, and
(d) diversity score. We observe a consistent improvement
in overall performance as Ng increases from 1 to 4, indi-
cating that incorporating multiple reliable annotators helps
the model better capture variations in boundary annotations
while improving fidelity. However, when all five annota-
tors are included, we observe a decline in Flgyy,, Fl,,, and
Flg,, while the diversity score continues to increase. This
suggests that although using more annotations enhances di-
versity, incorporating low-consistency annotations can neg-
atively impact performance.

Effect of conditioning in diffusion. To examine the ef-
fect of the conditioning feature in denoising diffusion, we

Steps Flgym Flpog Flgp Diversity
1 64.0 71.3 59.1 9.2
2 72.3 75.2 70.8 17.9
4 734 75.5 71.9 18.5
8 73.7 75.6 72.4 194
16 73.8 75.4 72.6 19.9
32 74.0 75.6 72.9 20.4
50 73.9 75.5 72.9 20.8

Table 3. Effect of inference step. Following the DDIM sampling
strategy, the model can skip the timestep T.

F1@0.05
Method
Kinetics-GEBD TAPOS

BMN [25] 18.6 -
BMN-StartEnd [25] 49.1 -
ISBA [10] - 10.6
TCN [22] 58.8 23.7
CTM [17] - 24 .4
TransParser [33] - 239
PC [34] 62.5 52.2
SBoCo [20] 73.2 -
Temporal Perceiver [38] 74.8 55.2
DDM-Net [39] 76.4 60.4
CVRL [24] 74.3 -
LCVS [52] 76.8 -
SC-Transformer [23] 77.7 61.8
BasicGEBD [54] 76.8 60.0
EfficientGEBD [54] 78.3 63.1
DyBDet [55] 79.6 62.5
DiffGEBD (ours) 78.4 65.8

Table 4. Conventional evaluation of GEBD

conduct experiments by varying the conditioning feature in
the diffusion process. Specifically, we replace the temporal
self-similarity feature E with visual features F' extracted
directly from the backbone network g. Table 2 presents the
results. We observe a significant performance drop when
using F', demonstrating the importance of temporal self-
similarity features as a conditioning input for the diffusion
model. Since self-similarity captures subtle changes across
frames, using E is more effective.

Effect of the number of inference steps. We investigate
the impact of the number of diffusion inference steps by
varying T from 1 to 50. As shown in Table 3, overall per-
formance improves as T increases, but no further gains are
observed when T exceeds 32. Therefore, we set T to 32 as
the optimal number of steps.

5.6. Conventional Evaluation of GEBD

Table 4 compares the performance of the proposed method
on two standard GEBD benchmark datasets, Kinetics-
GEBD and TAPOS, under the conventional evaluation set-
ting, following previous method [34]. Note that all methods
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Figure 6. Example results on Kinetics-GEBD. The figure illustrates (a) Ground-truth annotations, (b) predictions with w = 0.3, and (c)

predictions with w = 7.0.

use ResNet-50 [13] trained on ImageNet [7] as the back-
bone network for a fair comparison. In this experiment, we
set the CFG weight w to 4.0 to improve the fidelity of the
predictions by strengthening the influence of temporal self-
similarity features in the video. Diff GEBD achieves com-
parable results on Kinetics-GEBD and outperforms prior
methods on TAPOS. These results demonstrate that Dif-
fGEBD can effectively generate highly feasible predictions
with a high guidance weight, ensuring stronger adherence
to the conditioning features.

5.7. Example Results

Figure 6 illustrates example results of DiffGEBD on the
Kinetics-GEBD dataset, showing (a) ground-truth annota-
tions, (b) predictions with w = 0.3, and (c) predictions with
w = 7.0. All outputs were generated using the same model
with different initial noise. We observe that clear bound-
aries (e.g., subject’s movements between 1.24s to 1.45s) are
consistently detected across the predictions, regardless of
the guidance weight. However, boundaries that exhibit hu-

man ambiguity, such as subtle action changes (e.g., hockey
stick movements at 2.91s and 4.29s in Pred. 3 of (b)), vary
across different generations. Notably, we observe that lower
weight guidance allow for diverse predictions, while higher
guidance weights lead to more consistent predictions.

6. Conclusion

We have presented DiffGEBD, a diffusion-based boundary
detection model from a generative perspective. The pro-
posed method encodes temporal dynamics based on self-
similarity, then iteratively refines the Gaussian noise into
plausible boundaries via denoising diffusion. By integrat-
ing classifier-free guidance, our model enables to explic-
itly control the degree of diversity. Furthermore, we have
introduced the symmetric F1 and diversity scores, which
jointly capture many-to-many alignments and the variabil-
ity in model predictions. We believe that our model offers a
new perspective on producing diverse yet plausible generic
event boundaries, paving the way for a richer and nuanced
understanding of event boundaries.
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