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ABSTRACT

The evaluation of large language models (LLMs) has predominantly relied on static
datasets, which offer limited scalability and fail to capture the evolving reasoning
capabilities of recent models. To overcome these limitations, we propose an agent-
centric benchmarking paradigm that moves beyond static datasets by introducing
a dynamic protocol in which autonomous agents iteratively generate, validate,
and solve problems. Within this protocol, a teacher agent generates candidate
problems, an orchestrator agent rigorously verifies their validity and guards against
adversarial attacks, and a student agent attempts to solve the validated problems.
An invalid problem is revised by the teacher agent until it passes validation. If
the student correctly solves the problem, the orchestrator prompts the teacher to
generate more challenging variants. Consequently, the benchmark scales in diffi-
culty automatically as more capable agents are substituted into any role, enabling
progressive evaluation of large language models without manually curated datasets.
Adopting text anomaly detection as our primary evaluation format, which demands
cross-sentence logical inference and resists pattern-matching shortcuts, we demon-
strate that this protocol systematically exposes corner-case reasoning errors that
conventional benchmarks fail to reveal. We further advocate evaluating systems
along several complementary axes including cross-model pairwise performance and
progress between the initial and orchestrator-finalized problems. By shifting the
focus from fixed datasets to dynamic protocols, our approach offers a sustainable
direction for evaluating ever-evolving language models and introduces a research
agenda centered on the co-evolution of agent-centric benchmarks.

1 INTRODUCTION

Static benchmarks, such as MMLU Hendrycks et al. (2021), GSM8K Cobbe et al. (2021) and
Big-Bench Srivastava et al. (2023), once served as reliable indicators of language model progress.
However, frontier large language models (LLMs) now approach—or even surpass—human-level
accuracy on many of these tasks Pu et al. (2023); Maslej et al. (2024); Phan et al. (2025). Because
these benchmark suites are finite, publicly accessible, and often included in pretraining corpora,
models may inadvertently memorize substantial portions of the test data Deng et al. (2024). This
can lead to inflated leaderboard results that do not reflect genuine improvements in reasoning
ability. Unfortunately, it has become increasingly difficult to draw meaningful distinctions from
these overused datasets. First, data contamination is now common: large-scale data collection often
includes benchmark questions in pretraining datasets, and efforts to remove them afterward are
usually incomplete Raji et al. (2021). Second, because static benchmarks contain a limited number
of items, model developers may—sometimes without realizing it—tune their systems to match the
details of these benchmarks. This creates feedback loops that improve scores without real gains in
general reasoning ability Dodge et al. (2020). Third, once a benchmark is considered “solved", the
research community must quickly create a new one. This leads to a cycle of rapid creation and decline,
which uses up valuable time and provides only short-term insight into model performance Rogers
(2021). These limitations highlight the inherent shortcomings of static benchmarks in evaluating real
reasoning capabilities.
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Artificial intelligence (AI) is transforming healthcare by improving 
diagnostic  accuracy. Healthcare providers now use AI models to optimize 
treatment plans. New wearable devices monitor patient vitals in real time.

ATAD (Ours)🙂

Clarity  ✅
Difficulty  ✅

The tennis champion withdrew due to injury. This marks her second major 
withdrawal of the season. Oil prices fell after OPEC announced increased 
production.

Existing benchmark🙁

Clarity  ✅
Difficulty  ❌

Figure 1: Comparison of text anomaly samples. Left: Existing benchmarks include obvious
anomalies (e.g., complete off-topic from sports news to economy news) that are clear but too trivial.
Right: ATAD examples introduce subtle shifts within context (e.g., benefits to ethics in healthcare
AI), preserving clarity while presenting reasoning-intensive challenges. Our collaborative agents
resolve the clarity-difficulty trade-off through iterative task refinement.

To overcome these shortcomings, dynamic benchmarks for LLMs are essential as they continuously
evolve, mitigating data contamination and preventing models from overfitting to finite test sets.
In particular, text anomaly detection serves as a powerful task to reveal subtle reasoning flaws,
providing clearer insight into the true capabilities and limitations of LLMs Maimon & Tsarfaty
(2023). However, constructing high-quality text anomaly detection problems remains challenging:
increasing the difficulty often sacrifices clarity, while ensuring clarity typically results in overly
simple tasks. Figure 1 illustrates this trade-off and motivates our protocol’s design. We introduce
the Agent-centric Text Anomaly Detection (ATAD), a benchmark protocol that replaces the static-
dataset paradigm with a three-agent system. In this protocol, as illustrated in Figure 2, a teacher
agent generates candidate problems, an orchestrator agent validates them and filters out defective
items, and a student agent attempts to solve the qualified problems. As a problem format, reasoning-
centric anomaly detection tasks are well suited for evaluating LLMs: they require cross-sentence
logical inference, resist pattern-matching shortcuts and training data leakage, and support objective,
fine-grained scoring. Asking a model to identify and explain the single sentence that disrupts a
passage’s coherence offers a precise and robust measure of reasoning ability—one that is less prone
to exploitation than many existing benchmarks. By shifting the focus from fixed datasets to dynamic
protocols, we offer a sustainable direction for evaluating ever-evolving language models and invite
the community to explore a research agenda in which models and the benchmarks that probe them co-
evolve. We will release an open-source reference implementation with empirical results showing that
ATAD surfaces reasoning weaknesses invisible to static benchmarks. A comprehensive discussion of
related work on dynamic benchmarking and text anomaly detection is provided in Appendix.

2 ATAD: BENCHMARK PROTOCOL DESIGN AND OPERATION

We introduce a novel agent-centric dynamic benchmarking protocol, Agent-Centric Text Anomaly
Detection (ATAD), illustrated in Figure 2. ATAD is designed to construct an adaptive benchmark for
text anomaly detection by leveraging a teacher-student competitive loop and an orchestrator-regulated
validation mechanism. Unlike static datasets, our protocol dynamically evolves problem difficulty
based on student model performance while ensuring clarity and fairness through rigorous validation.
This design enables the benchmark to scale with the capabilities of emerging language models,
supporting sustainable and progressively challenging evaluation over time.

2.1 AGENT ROLES

Teacher Agent: Generates problems and increases their difficulty when the Student solves them
correctly, forming a competitive loop that adapts to the Student’s capabilities.
Orchestrator Agent: Validates the generated problem to ensure it is well-formed, unambiguous,
aligned with the expected task type, and free from adversarial design. It also checks whether the
problem is logically coherent and appropriately matches the intended difficulty level.
Student Agent: Attempts to solve the validated problem. If it succeeds, the problem is made harder;
if it fails, the problem is accepted into the benchmark.

The naming of Teacher and Student refers to agent roles in the protocol and is unrelated to model
training paradigms such as knowledge distillation. In our framework, the competitive interaction
between the Teacher and Student agents is leveraged to drive difficulty escalation in benchmark
construction. This dynamic, however, can risk generating ambiguous or adversarial problems in the
pursuit of harder samples. To mitigate this, the Orchestrator agent plays a crucial role in ensuring
quality and fairness at each iteration. This validation process is particularly important for tasks
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Marking

Marking
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b

c

d

e

g

d

g

Attempt to solve the base problem from 

If the answer is correct, generate a harder 
problem

If the answer is incorrect, store the current 
problem as a benchmark item and terminate 
the process

Attempt to solve the harder problem

Evaluate LLMs on the finalized benchmark

Description

b

f

c

Replace the valid case with the harder problem
f

e

a

LLMs

Figure 2: Illustration of the overall ATAD protocol. Three agents iteratively interact to generate
progressively challenging benchmarks designed to uncover subtle reasoning weaknesses in LLMs.

like text anomaly detection, where subtle shifts in coherence, semantics, or phrasing can easily
compromise problem clarity.

2.2 PROTOCOL PHASES

Our proposed benchmark construction protocol operates through a multi-agent system involving a
Teacher, an Orchestrator, and a Student agent. These agents interact through two core phases: the
Initialization Phase and the Adaptive Difficulty Scaling Phase. Each phase features automatic iteration
control mediated by the Orchestrator. A visual summary of the protocol workflow is provided in
Figure 2, with steps annotated from a to g.

2.2.1 INITIALIZATION PHASE (BASE PROBLEM GENERATION)

The protocol begins with the Teacher agent generating a base-level problem for a designated text
anomaly detection task (e.g., semantic deviation, sentence order inconsistency), corresponding to the
label a in Figure 2. These base problems are intended to be of low difficulty and serve as the starting
point for the benchmark construction.

Each generated problem is submitted to the Orchestrator for a multi-criteria validation process. The
Orchestrator evaluates the sample for well-formedness, clarity, logical coherence, task type adherence,
and fairness, while guarding against adversarial design or unanswerable ambiguity.

If the problem is invalid, the Orchestrator returns detailed feedback to the Teacher, prompting
regeneration. This loop is governed by the Orchestrator’s validation decisions and continues until
a valid problem is produced or a maximum number of attempts (max_init_loops) is reached.
Once the problem passes validation, it is stored as a valid base problem and passed on to the Adaptive
Difficulty Scaling Phase.
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2.2.2 ADAPTIVE DIFFICULTY SCALING PHASE

This phase begins with the Student’s first attempt at the validated base problem and corresponds to
the b through f labels in Figure 2. The Student attempts to solve the base problem (label b). If the
Student fails, the problem is finalized as a benchmark item (label d), as it exposes a limitation in the
Student’s current reasoning capacity.

If the Student succeeds, the Orchestrator prompts the Teacher to generate a more challenging variant
of the problem (label c). The Teacher, informed by the Student’s prior success, creates a harder
version aimed at pushing the Student’s capabilities further. This new problem undergoes the same
validation process by the Orchestrator to ensure that difficulty has increased meaningfully without
compromising task clarity or fairness (label e).

Once validated, the harder problem replaces the previous one and is presented to the Student for
another attempt (label f). This cycle—solving, regenerating, validating—continues iteratively until
the Student fails or the iteration cap (max_student_loops) is reached. If the Teacher’s harder
problem is rejected by the Orchestrator, it may be prompted to slightly reduce the difficulty and
regenerate, preserving the same task structure while avoiding ambiguity or excessive complexity.
Although this does not constitute a formal decrease in the difficulty level, it allows for iterative
refinement within the same hardness tier. If multiple regeneration attempts fail to produce a valid
harder problem, the process terminates with the last previously validated problem—typically the one
that the Student successfully solved—being finalized as the benchmark item.

The most difficult validated problem that causes the Student to fail is adopted as the finalized
benchmark item. This structure allows the benchmark to automatically calibrate difficulty per
instance, producing finely tuned evaluation samples based on actual model behavior.

2.2.3 EVALUATION PHASE

This phase corresponds to the label g in Figure 2. After benchmark samples are finalized through the
above process, LLMs can be evaluated using the curated benchmark. Each problem is associated with
its final difficulty level and validation metadata, supporting both overall performance comparisons
and fine-grained reasoning diagnostics.

2.3 KEY FEATURES

Our benchmarking framework is grounded in two complementary principles: a competitive protocol
in which the Teacher challenges the Student with progressively harder problems, and an adaptive
validation mechanism where the Orchestrator ensures that difficulty scaling remains fair, coherent,
and well-formed. Together, these two dynamics enable ATAD to produce reliable, high-quality
benchmarks tailored to a model’s actual reasoning capacity.

Difficulty Scaling via Teacher-Student Competition. The Teacher agent is implicitly incentivized
to analyze the Student’s prior successes and failures. This allows it to generate novel problems that
directly target the Student’s weaknesses or extend beyond its current competence, yielding more
sophisticated samples than mere perturbations of existing items. Difficulty is adjusted dynamically
based on the Student’s performance, forming a competitive loop that drives benchmark depth.
Orchestrator-Regulated Difficulty Control. To prevent uncontrolled or adversarial difficulty escala-
tion, the Orchestrator agent validates each problem before it is presented to the Student. It checks
logical coherence, task adherence, clarity, and difficulty appropriateness, and autonomously decides
whether the Teacher should regenerate a sample. This ensures that problem progression remains both
challenging and fair, balancing the Teacher’s incentives with principled quality control.
Autonomous Iteration Control. Unlike benchmarks with fixed iteration schedules, ATAD relies on
the Orchestrator to dynamically determine when the Teacher should regenerate a problem or proceed
to evaluation. This mechanism replaces manual tuning with agent-driven adaptability, ensuring
high-quality, context-appropriate problems at every step.
Failure-Driven Sample Finalization. Problems are finalized not at creation, but at the point of
Student failure. This empirical approach anchors benchmark difficulty in actual model limitations
rather than manual labels, surfacing failure cases that are often missed in static datasets.
Dynamic Difficulty Localization. Unlike benchmarks that assign difficulty globally, ATAD adjusts
difficulty at the instance level based on Student feedback. This enables precise, localized probing of
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reasoning weaknesses and model-specific blind spots.
Cross-Agent Instantiability. ATAD is modular by design and supports different model pairings (e.g.,
ATADgpt-4o

gemini2-flash), enabling comparative evaluation and tracking of model evolution over time.
Broad Task Coverage. Our benchmark spans seven types of text anomaly detection tasks (see
Section 3.2), capturing a wide range of reasoning capabilities including discourse coherence, contra-
diction detection, referential clarity, and stylistic consistency.

3 TASK DESIGN FOR TEXT ANOMALY DETECTION

This section presents our design of text anomaly detection tasks as a probe of LLM reasoning
(Section 3.1) and introduces a taxonomy of seven anomaly types (Section 3.2).

3.1 TASK OVERVIEW AND MOTIVATION

We identify text anomaly detection as a particularly suitable domain for evaluating the reasoning
capabilities of LLMs. These tasks target subtle inconsistencies in logic, coherence, or semantics,
requiring genuine cross-sentence inference and resisting shortcuts based on surface-level patterns.
However, creating high-quality text anomaly problems remains challenging: increasing task difficulty
often introduces ambiguity, while prioritizing clarity can lead to trivial or shallow problems. This
trade-off is especially pronounced in language-based tasks, where, unlike math or science, answers
lack grounding in formal rules. Yet standardized exams like the GRE, GMAT, and LSAT show that
natural language questions can still demand structured reasoning with clear answer standards. Inspired
by these formats, our benchmark emphasizes deep reasoning while maintaining clarity and objectivity.
Still, generating such problems at scale—especially in text anomaly detection—remains difficult, as
it requires balancing subtlety and unambiguity. Our adaptive benchmarking protocol addresses this
via a teacher-student competition regulated by an orchestrator, forming a self-calibrating system that
reliably surfaces nuanced reasoning failures in LLMs.

3.2 TASK TAXONOMY: SEVEN TYPES OF TEXT ANOMALIES AND REASONING SKILLS
TARGETED

Each task in our taxonomy is designed to assess a distinct aspect of LLM reasoning, such as coherence,
logical consistency, or ambiguity resolution—areas often underrepresented in existing benchmarks.
Together, the seven task types provide a broad and fine-grained evaluation of language understanding.
While each task targets a core reasoning capability, we further diversify the benchmark by selectively
incorporating anomaly factors known to challenge LLMs, including subtle semantic shifts or structural
inconsistencies. These additions are applied to a subset of examples to enhance difficulty without
sacrificing clarity or task diversity.

T1. Sentence Context Anomaly targets contextual reasoning, requiring the model to detect semantic
inconsistencies between individual sentences and the paragraph’s main theme. Challenge factors
include minor topic shifts and semantic deviations that appear grammatically well-formed but subtly
disrupt thematic coherence.
T2. Paragraph Order Consistency assesses discourse coherence by determining the correct order
of sentences based on topic flow, causal and temporal dependencies. Challenge factors involve
sentence reordering that appears locally coherent but requires comprehensive understanding of global
document structure to detect.
T3. Blank-based Choice Anomaly requires both lexical and pragmatic reasoning to identify an
inappropriate word or phrase within context. Challenge factors focus on lexical fit and collocation,
requiring the detection of choices that are grammatically correct but contextually inappropriate. This
demands both common sense and sensitivity to subtle nuances.
T4. Bridge Sentence Evaluation focuses on logical bridging and topic shift detection, requiring the
model to judge whether a candidate sentence logically connects two related paragraphs. Challenge
factors include weak logical connections and abrupt topic shifts, where the sentence itself may seem
plausible but fails to maintain coherent discourse flow.
T5. Referential Ambiguity tests coreference resolution to identify sentences where pronouns or
referring expressions are ambiguous or misleading, disrupting clarity in discourse interpretation.
Challenge factors involve ambiguous pronouns and unclear references that disrupt sentence clarity.
T6. Logical Contradiction measures causal and contradiction reasoning. The model detects
inconsistencies such as violated cause–effect relationships or misinterpreted correlations as causation.
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🔍

Find the bridge sentence that fails to 
logically or thematically connect two 
paragraphs.

① Regulating blockchain demands 
understanding its impacts on 
financial markets and consumer 
protection.

② Policymakers now focus on 
blockchain’s role in streamlining 
cross-border trade.

③ Blockchain’s decentralization forces a 
rethink of traditional rules to ensure 
resilience.

④ Despite its innovation potential, 
blockchain’s environmental footprint 
calls for sustainable regulation.

⑤ Effective oversight relies on 
international cooperation on data 
privacy and cross-border transactions.

✅ Correct Answer: ④

🔍 Choose the most awkward or 
semantically unfitting candidate to fill in 
a sentence blank.

In the context of social identity theory, 
individuals may experience an increase in 
self-esteem when they _____, as they 
derive part of their self-concept from 
group membership.

① engage in in-group favoritism
② Force intergroup harmony
③ accomplish the group’s objectives
④ denigrate out-group members
⑤ enhance group status

✅ Correct Answer: ②

T3. Blank-based Choice Anomaly

🔍

Identify stylistic or tonal shifts that 
disrupt the overall narrative tone.

① In Moby-Dick, Melville explores 
obsession, revenge, and nature’s power 
through a deep psychological lens. ② His 
symbols and complex characters raise big 
questions about existence and 
knowledge. ③ The story blends 
adventure with philosophy, showing the 
range of 19th-century American lit. ④
Detailed whale science adds a cool layer 
of realism and depth. ⑤ The characters' 
emotional chaos? Pure literary beast 
mode.

✅ Correct Answer: ⑤

T7. Tone / Style Violation

Informal and conversational 
expression.

🔍 Identify the sentence that 
semantically or topically deviates from 
the rest within a paragraph.

① The dynamics of social change are 
deeply influenced by technological 
advancements. ② Globalization has led 
to increased interconnectivity. ③ Climate 
change threatens crop yields, rising 
concerns about food security. ④ Digital 
Currencies are changing how people 
interact economically. ⑤ The theory of 
relativity explains time dilation, which 
helps us understand how society views 
time.

✅ Correct Answer: ⑤

Context misalignment 
between society and physics.

T1. Sentence Context Anomaly

🔍 Determine if the order of sentences in 
a paragraph is coherent in terms of logic 
or time.

✅ Correct Answer: False

T2. Paragraph Order Consistency

Paragraph:
Consumer prices rose sharply in early 
2024, fueled by energy and food costs. 
As a result, the central bank raised 
interest rates to cool inflation. Some 
economists expect household spending 
to remain strong in the coming months. 
Job growth, however, slowed slightly 
during the same period.

Logically disorganized. About in-group unity,
But about between-groups.

🔍 Detect sentences with unclear or 
conflicting pronoun references.

① Jane and Mr. Bennet frequently 
walked the countryside, talking about 
their family matters. ② She found solace 
in her library, especially when tension 
rose due to marriage discussions. ③ 
Lady Catherine, Bennet’s aunt, expressed 
concerns about her family’s social 
standing. ④ After Jane met Catherine, 
that changed relations between the 
families. ⑤ Since then, their interactions 
became noticeably more cordial and 
respectful.

✅ Correct Answer: ③

T5. Referential Ambiguity

‘Her’ can be Catherine or 
Jane.

🔍

Spot logically inconsistent or 
reversed-causality statements.

① Balancing the environment and 
growth is a major challenge..② Ignoring 
environmental regulations may lead to 
short-term gains and long-term 
sustainability. ③ Supportive policies, 
such as tax incentives for green tech, can 
drive innovation. ④ Countries with 
strong environmental standards tend to 
develop more resilient and stable 
economies over time. ⑤ Balancing 
growth with sustainability ensures a 
healthier future.

✅ Correct Answer: ②

T6. Logical Contradiction

Causal contradiction.

T4. Bridge Sentence Evaluation

Paragraph 1:
Blockchain technology has generated 
significant interest across various economic 
sectors by offering a decentralized, secure 
method for recording transactions capable of 
disrupting traditional financial systems. But, 
the integration of blockchain into existing 
infrastructures poses substantial regulatory 
and compliance challenges.

Bridge sentence

Paragraph 2:
Regulators worldwide are actively exploring 
methodologies to manage the risks and 
opportunities presented by blockchain 
technology. This involves developing 
comprehensive policies that ensure the 
technology's benefits are maximized while 
minimizing potential threats to economic 
stability. 

Scope mismatch.
(Regularization, but not 

about environment)

Figure 3: Examples of the seven task types of text anomalies. With the exception of T2, each task
requires identifying a guaranteed anomaly within the sample (e.g., by selecting a sentence or choice),
rather than performing a simple binary classification.

Challenge factors include contradictory claims and causal reversals.
T7. Tone/Style Violation evaluates stylistic reasoning by assessing whether all sentences maintain a
consistent tone and register (e.g., formal vs. informal). The model must identify any sentence that
deviates from the overall style. Challenge factors include tone shifts and register mismatches that
subtly undermine stylistic coherence.

While each task focuses on a primary reasoning skill, practical cases often demand the integration of
multiple capabilities—such as critical thinking and fine-grained semantic analysis. For example, T4
not only requires assessing logical coherence but also detailed semantic understanding. Building on
this, we enhance task diversity by incorporating them within six academic domains frequently found
in standardized reasoning exams (e.g., GRE, LSAT), including science, philosophy, politics/society,
psychology, economics, and literature. Rather than assigning domains randomly, we systematically
align them to the tasks where the domain’s inherent characteristics amplify reasoning challenges.
This principled topic-to-task mapping is detailed in Appendix, with additional examples and domain-
specific motivations. Figure 3 outlines representative task formats, with full design details available
in Appendix as well.

4 EXPERIMENTS AND RESULTS

This section presents our experimental evaluation of the benchmark generated through our protocol,
highlighting its utility for assessing LLM reasoning. We evaluate overall performance, examine the
Teacher-Student competition protocol for difficulty scaling, and assess the contribution of Orchestrator
validation. Additionally, we explore its use in forecasting future LLM capabilities and test its
consistency across multiple runs.

4.1 EVALUATION SETUP

To evaluate LLM performance on our text anomaly benchmark, we established the following setup:

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Overall Performance of LLMs on our Text Anomaly Detection Benchmark. Average
accuracy of each LLM, across the four datasets generated by four agent families (GPT, Gemini,
Claude, LLaMA), is shown for each anomaly type (T1-T7) and overall.

Evaluation Model T1 T2 T3 T4 T5 T6 T7 Avg.

GPT-3.5-Turbo OpenAI (2024a) 59.00 16.00 66.75 48.50 55.75 51.75 81.50 54.18
GPT-4o-mini OpenAI (2024c) 57.25 17.00 62.50 54.00 52.50 58.75 83.00 55.00
GPT-4o OpenAI (2024b) 62.00 21.25 68.25 53.25 49.25 56.75 81.00 55.96
GPT-o4-mini OpenAI (2024d) 63.25 30.25 68.50 53.00 47.25 57.25 80.00 57.07
Gemini-1.5-Flash Reid et al. (2024) 6.00 11.25 62.00 48.75 17.50 10.75 21.00 25.32
Gemini-2.0-Flash-Lite Google DeepMind (2024) 64.00 10.75 63.50 52.25 62.75 62.00 86.25 57.36
Gemini-2.0-Flash Google DeepMind (2024) 65.25 25.00 63.00 58.25 51.00 62.00 88.00 58.93
Claude-3-Haiku Anthropic (2024b) 63.75 12.00 61.00 51.75 53.50 60.00 72.75 53.54
Claude-3.5-Haiku Anthropic (2024a) 19.75 55.00 7.25 5.00 5.50 8.50 35.50 19.50
Claude-3.5-Sonnet Anthropic (2024a) 65.75 31.75 65.00 59.50 53.50 57.50 86.75 59.96
LLaMA-3.1-8B Llama Team (2024) 39.50 12.75 35.50 24.50 53.00 38.75 68.75 38.96
LLaMA-3.3-70B Llama Team (2024) 60.75 27.75 63.25 60.00 52.25 57.75 84.25 58.00

Benchmark dataset. The benchmark dataset comprises 700 samples per generation model, with 100
instances for each of the seven task types.
Generation models. We used the following LLMs as Teacher, Student, and Orchestrator agents to
generate the benchmark datasets: GPT-4o OpenAI (2024b), Claude-3.5-Sonnet Anthropic (2024a),
Gemini-2.0-Flash Google DeepMind (2024), and LLaMA-3.3-70B Llama Team (2024). (When not
explicitly stated, the Teacher, Student, and Orchestrator agents within a generation process use the
same LLM.)
Evaluation models. We evaluated the generated datasets using a diverse set of LLMs: GPT-3.5-turbo,
GPT-4o-mini, GPT-4o, GPT-o4-mini, Claude-3.0-Haiku, Claude-3.5-Haiku, Claude-3.5-Sonnet,
Gemini-1.5-Flash, Gemini-2.0-Flash-Lite, and Gemini-2.0-Flash. These models serve as our baseline
for assessing the difficulty and effectiveness of the benchmark.

4.2 OVERALL PERFORMANCE EVALUATION

Table 1 presents the overall performance of various LLMs on our text anomaly detection benchmark.
We report accuracy as the primary evaluation metric, calculated as the proportion of correctly
identified anomalies. Table 1 showcases the average accuracy achieved by each evaluation model
across the four distinct benchmark datasets, each generated by a different agent family: GPT, Gemini,
Claude, and LLaMA. For the benchmark generation process, the Teacher, Student, and Orchestrator
agents were configured to be the same LLM for simplicity (e.g., GPT-4o for all three roles within the
GPT-generated benchmark).

The results reveal a varied landscape of performance across different anomaly types (T1–T7). Notably,
no single evaluation model consistently outperformed others across all categories, suggesting that
the nature of the anomaly significantly influences detection accuracy. Claude-3.5-Sonnet achieved
the highest overall average accuracy (59.96%), indicating strong general capability. However, other
models surpassed Claude on specific types: GPT-4o-mini outperformed Claude on T3 by 3.5%,
and Gemini-2.0-Flash exceeded Claude on T6 by 4.5%. Interestingly, certain evaluation models
showed remarkable proficiency in specific anomaly types. Claude-3.5-Haiku, despite its relatively
lower overall average (53.54%), achieved the highest accuracy in detecting anomalies of type
T2 (55.00%). This highlights the potential for certain models to possess specialized strengths in
identifying particular kinds of textual irregularities. While the overall average accuracy across all
models and anomaly types indicates the inherent difficulty of the task, the varying performance
across different anomaly types underscores the benchmark’s ability to probe diverse aspects of LLM
understanding and reasoning regarding text anomalies.

4.3 VALID DIFFICULTY SCALING VIA COMPETITIVE AGENTS

To assess whether our competitive protocol effectively scales problem difficulty, we compare evalua-
tion model performance on the initial base problems and the finalized benchmark versions. Table 2
presents the average accuracy of each evaluation model, computed across the seven anomaly types
(T1–T7), on four benchmark datasets generated by different agent families. The Base datasets
represent the initial set of generated problems before difficulty scaling, while the Final datasets are the
result of the subsequent Teacher-Student competition and Orchestrator validation processes, designed
to increase the benchmark’s difficulty.
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Table 2: Comparison of the LLMs’ performance on the initial (base) datasets, consisting of the base
problems, and the final versions of the benchmark datasets. Each column represents a different dataset,
generated by GPT-4o, Claude-3.5-Sonnet, Gemini-2.0-Flash, and LLaMA-3.3-70B, respectively. The
observed performance drop from base to final problems highlights the effectiveness of ATAD in
exposing the weaknesses of LLM reasoning.

Evaluation Model GPT-4o Gemini-2.0-Flash Claude-3.5-Sonnet LLaMA-3.3-70B

Base Final Base Final Base Final Base Final

GPT-3.5-turbo 91.00 67.71 80.00 42.00 83.71 61.43 86.00 45.57
GPT-4o-mini 93.00 68.29 80.43 42.71 84.14 57.86 87.43 51.14
GPT-4o 94.29 72.43 83.29 44.71 87.29 62.71 89.29 44.00
GPT-o4-mini 91.86 72.43 83.57 47.14 87.29 61.86 87.71 46.86
Gemini-1.5-Flash 50.57 30.29 40.14 17.00 40.43 28.29 41.43 25.71
Gemini-2.0-Flash-lite 92.43 69.14 81.57 45.43 83.86 58.86 85.14 56.00
Gemini-2.0-Flash 92.29 71.86 82.43 44.29 85.43 61.86 88.00 57.71
Claude-3-Haiku 91.57 67.86 79.43 42.86 82.71 54.57 83.43 48.86
Claude-3.5-Haiku 36.86 18.86 39.86 24.71 39.71 18.57 45.86 15.86
Claude-3.5-Sonnet 91.71 72.86 83.86 47.43 88.86 63.29 88.29 56.29
LLaMA-3.1-8B 67.29 47.00 59.57 28.57 63.57 33.57 64.14 46.71
LLaMA-3.3-70B 93.43 72.43 82.71 43.57 89.29 64.57 92.43 51.43

Table 3: Comparison of LLMs’ Performance and Problem Quality on the benchmark generated
by GPT-4o agents. Problem quality is evaluated by each model acting as a reviewer, comparing
benchmarks generated with and without the use of an Orchestrator.

Evaluation Model
Performance (%) Problem Quality

w/o Orch. w/ Orch. Validity (1–5) Coherence (1–5) Fairness (1–5) Approval Rate (%)
w/o Orch. w/ Orch. w/o Orch. w/ Orch. w/o Orch. w/ Orch. w/o Orch. w/ Orch.

GPT-4o 68.29 72.43 4.30 4.85 3.71 4.74 3.20 4.65 38.14 87.14
Gemini-2.0-Flash 65.00 71.86 5.00 5.00 4.97 5.00 4.93 4.94 99.00 100.00
Claude-3.5-Sonnet 65.00 72.86 4.61 4.92 4.11 4.69 3.41 4.42 55.57 90.43
LLaMA-3.3-70B 65.71 72.43 4.66 4.87 4.37 4.76 4.34 4.80 66.00 88.29

Across all agent families and evaluation models, we observe a consistent drop in accuracy from the
base to final benchmarks. This indicates that our protocol successfully increases task difficulty in a
controlled manner. On average, evaluation accuracy drops by approximately 37.3 percentage points
after the adaptive scaling phase, highlighting the non-trivial nature of the final problems. Importantly,
despite the increased difficulty, the final problems maintain high quality, as validated separately (see
Section 4.4). This substantial reduction in accuracy confirms that the competitive interaction between
the Teacher and Student agents, coupled with the Orchestrator’s validation, successfully led to the
creation of more challenging anomaly detection instances.

4.4 ORCHESTRATOR VALIDATION

This section underscores the crucial role of the Orchestrator agent in ensuring the quality and validity
of our text anomaly detection benchmark. To demonstrate this, we compared the performance of
several LLMs on two versions of a benchmark generated by GPT-4o agents: one created solely through
the Teacher-Student competition protocol (without an Orchestrator) and the other generated using our
full framework, including Orchestrator validation. Table 3 presents this comparison, showing the
evaluation performance of GPT-4o, Gemini-2.0-Flash, Claude-3.5-Sonnet, and LLaMA-3.3-70B on
both benchmark versions.

At first glance, the benchmark generated without an Orchestrator appears more challeng-
ing—evaluation accuracy is consistently lower across all models. However, when we analyze problem
quality along dimensions such as validity, coherence (logical consistency and type adherence), and
fairness, we observe a notable degradation in quality. This suggests that the lower performance is not
due to truly challenging reasoning tasks but rather to flawed or ambiguous question design. In other
words, the competitive protocol without validation tends to inflate difficulty artificially by generating
problems that are confusing or ill-posed.

By contrast, our Orchestrator-guided pipeline maintains higher quality across all metrics while still
increasing difficulty. The Orchestrator filters out problems that are ill-formed, inconsistent, or lack a
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clear solution, ensuring that performance drops are reflective of genuine reasoning challenges—not
annotation noise or design failures. These findings emphasize the critical role of the Orchestrator in
producing challenging yet fair benchmarks, where performance gaps more accurately reflect model
capability rather than dataset artifacts.

4.5 SCENARIO: EVALUATING FUTURE LLM CAPABILITIES

Table 4: Simulated future scenario with GPT-
o3/o4-mini (future) vs. GPT-4o/4o-mini (current),
showing sustained relative evaluation.

Evaluation Model GPT-4o

Base Final

GPT-o3-mini 93.71 72.14
GPT-o4-mini 91.86 72.43

GPT-4o 94.29 72.43
GPT-4o-mini 93.00 68.29

To examine the sustainability of our benchmark
under the rapid pace of LLM advancements, we
simulate a future scenario where newer mod-
els outperform the current generation. Specif-
ically, we assume GPT-4o as the generation
model—serving as Teacher, Student, and Or-
chestrator—and evaluate the resulting bench-
mark using GPT-o3-mini and GPT-o4-mini, hy-
pothetical successors representing future LLMs.

As shown in Table 4, all models—including the
current GPT-4o—achieve near-ceiling accuracy
on the base problems, highlighting the limitation
of static benchmark design. However, when
evaluated on the final benchmark constructed through our difficulty-scaling protocol, performance
drops substantially for all models. Notably, GPT-o3-mini and GPT-o4-mini score lower than GPT-4o,
despite being assumed as future improvements.

This demonstrates that our benchmark not only scales difficulty in response to the generator’s
capability but also maintains long-term relevance. Unlike static benchmarks that saturate over time,
our framework supports relative evaluation, where difficulty dynamically adapts to each generation
model, allowing performance gaps between models to remain meaningful. Even as LLMs grow more
powerful, our protocol preserves discriminative power—enabling robust comparison across models,
regardless of when they are developed.

4.6 CONSISTENCY AND STABILITY IN BENCHMARK GENERATION

세로크기를키운플롯을생성했습니다. /mnt/data/paper_style_performance_plot_vertical_increase.png에서확인해보세요! 

Figure 4: Consistency in Benchmark
Generation.

To ensure that our benchmark protocol supports not
only adaptability but also reliable reproducibility, we
evaluate the consistency of benchmark quality across
repeated generations. In this experiment, we repeat-
edly generate benchmark datasets using the same agent
configuration—Gemini-2.0-Flash as the Teacher, Student,
and Orchestrator—and measure the performance of GPT-
4o-mini, a representative model from a different family
(GPT series), on these benchmarks. We generate 50 sam-
ples per task (350 in total) in the first round, then incremen-
tally add 50 samples per task in each subsequent round,
up to 1000 samples per task. For each round (50 to 1000
samples), we evaluate GPT-4o-mini on the corresponding
benchmark and track its average accuracy across the seven
anomaly detection tasks. Figure 4 plots model accuracy
per task as a function of the number of generated samples. We observe that performance remains
largely stable across sample sizes, with only minor fluctuations. This result shows that our benchmark
generation protocol is not only adaptive and dynamic, but also statistically stable across runs.

5 CONCLUSION

We present ATAD, an agent-centric benchmark protocol that adaptively generates and validates
reasoning-focused anomaly detection tasks. By shifting from static datasets to dynamic protocols,
ATAD enables sustainable, scalable, and stable evaluation of ever-evolving LLMs. Our results
demonstrate that ATAD surfaces reasoning failures missed by conventional benchmarks and enables
model-benchmark co-evolution, offering actionable insights into model-specific reasoning gaps.
Future work includes extending ATAD to track evolving LLMs and advancing text anomaly detection
as a reasoning benchmark.
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A APPENDIX OVERVIEW

In this appendix, we provide extended analyses and additional details to complement the main paper.
Specifically, we include the following: (1) detailed performance results across benchmarks generated
by four different models, expanding upon the averaged results in Table 1 of the main paper; (2)
expanded descriptions of the seven anomaly detection task types, along with their associated topics
and anomaly factors; (3) prompt templates and examples used for task generation and validation; (4)
failure cases rejected by the Orchestrator during the benchmark validation phase; (5) performance
details corresponding to Figure 4 of the main paper; (6) additional related work not included in the
main text due to space constraints; and (7) future research directions for extending our protocol.

B EVALUATION RESULTS BY BENCHMARK GENERATOR

In Table 5, we report detailed accuracy tables for each benchmark individually generated by GPT-4o,
Gemini-2.0-Flash, Claude-3.5-Sonnet, and LLaMA-3.3-70B, complementing the averaged results
shown in Table 1 of the main paper. Each table presents the performance of the twelve evaluation
models on a benchmark created by one of the four generator models.

Interestingly, as shown in Table 5, there is no single evaluation model that consistently outperforms
others across all benchmarks. Although one might expect GPT-family models to perform best on the
benchmark generated by GPT-4o, we observe that Claude-3.5-Sonnet achieves the highest average
score in that case, as reported in Table 5a. This suggests that the identity of the generator model
does not systematically favor or disadvantage any particular evaluation model family. The observed
performance differences are more attributable to the inherent difficulty and heterogeneity of the
benchmarks, rather than to any systematic advantage conferred to evaluation models by alignment
with the generator.

C DESCRIPTIONS OF ANOMALY DETECTION TASK TYPES

This section provides additional details on the seven text anomaly detection tasks introduced in
Section 3 of the main paper. Each task is designed to evaluate a distinct aspect of LLM reasoning,
ranging from contextual and discourse coherence to ambiguity resolution and logical consistency.

As summarized in Table 6, we present the input and output formats for each task, reflecting how
anomaly instances are structured and what form of prediction is expected from the model. These
formats fall into three structural categories: (1) identifying an anomalous sentence within a paragraph
(T1, T5, T6, T7), (2) selecting an inappropriate option from a given list of candidates (T3, T4), and (3)
determining whether the overall sentence order in a paragraph is coherent (T2). The corresponding
outputs are represented either as index selections or binary judgments, depending on the task type.

Beyond structural design, Table 7 outlines the core reasoning types targeted by each task, the specific
challenge factors incorporated to enhance difficulty, and the domain topics used to amplify reasoning
complexity. Challenge factors—such as subtle semantic deviations, logical reversals, or ambiguous
pronouns—are selectively added to a subset of samples to increase difficulty while preserving clarity.
To promote diversity and prevent overfitting to specific patterns, each factor is applied with a 50%
probability during problem generation.

To ensure comprehensive coverage of academic reasoning, task content is curated across six high-level
domains (e.g., science, economics, philosophy). Each task is paired with domains that naturally
emphasize the relevant reasoning challenge, facilitating a principled topic-to-task alignment. This
mapping is shown in the final column of Table 7.

While each task is designed around a primary reasoning capability, many demand compound reasoning
skills—for example, Task T4 (Bridge Sentence Evaluation) requires not only logical coherence but
also sensitivity to topic transitions. Such multifaceted design enables our benchmark to assess
nuanced reasoning failures beyond surface-level understanding.
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Table 5: Performance of evaluation models on benchmarks generated by GPT-4o, Gemini-2.0-Flash,
Claude-3.5-Sonnet, and LLaMA-3.3-70B.

(a) Generated by GPT-4o

Evaluation Model T1 T2 T3 T4 T5 T6 T7 Avg.

GPT-3.5-Turbo OpenAI (2024a) 78.00 22.00 85.00 71.00 50.00 76.00 92.00 67.71
GPT-4o-mini OpenAI (2024c) 80.00 19.00 77.00 74.00 55.00 78.00 95.00 68.29
GPT-4o OpenAI (2024b) 84.00 22.00 80.00 81.00 59.00 86.00 95.00 72.43
GPT-o4-mini OpenAI (2024d) 84.00 30.00 82.00 79.00 54.00 82.00 96.00 72.43
Gemini-1.5-Flash Reid et al. (2024) 5.00 14.00 75.00 65.00 10.00 9.00 34.00 30.29
Gemini-2.0-Flash-Lite Google DeepMind (2024) 85.00 14.00 77.00 73.00 62.00 78.00 95.00 69.14
Gemini-2.0-Flash Google DeepMind (2024) 86.00 23.00 78.00 80.00 56.00 83.00 97.00 71.86
Claude-3-Haiku Anthropic (2024b) 80.00 14.00 78.00 77.00 52.00 84.00 90.00 67.86
Claude-3.5-Haiku Anthropic (2024a) 23.00 50.00 2.00 10.00 6.00 8.00 33.00 18.86
Claude-3.5-Sonnet Anthropic (2024a) 88.00 29.00 78.00 84.00 47.00 86.00 98.00 72.86
LLaMA-3.1-8B Llama Team (2024) 56.00 19.00 48.00 31.00 50.00 51.00 74.00 47.00
LLaMA-3.3-70B Llama Team (2024) 85.00 30.00 78.00 86.00 52.00 80.00 96.00 72.43

(b) Generated by Gemini-2.0-Flash

Evaluation Model T1 T2 T3 T4 T5 T6 T7 Avg.

GPT-3.5-Turbo OpenAI (2024a) 43.00 1.00 54.00 29.00 43.00 30.00 94.00 42.00
GPT-4o-mini OpenAI (2024c) 39.00 5.00 52.00 36.00 37.00 37.00 93.00 42.71
GPT-4o OpenAI (2024b) 44.00 6.00 59.00 33.00 42.00 34.00 95.00 44.71
GPT-o4-mini OpenAI (2024d) 48.00 15.00 62.00 32.00 39.00 41.00 93.00 47.14
Gemini-1.5-Flash Reid et al. (2024) 0.00 1.00 56.00 29.00 11.00 13.00 9.00 17.00
Gemini-2.0-Flash-Lite Google DeepMind (2024) 44.00 1.00 60.00 27.00 45.00 47.00 94.00 45.43
Gemini-2.0-Flash Google DeepMind (2024) 44.00 3.00 52.00 32.00 40.00 43.00 96.00 44.29
Claude-3-Haiku Anthropic (2024b) 47.00 2.00 47.00 32.00 37.00 45.00 90.00 42.86
Claude-3.5-Haiku Anthropic (2024a) 15.00 54.00 19.00 3.00 3.00 11.00 68.00 24.71
Claude-3.5-Sonnet Anthropic (2024a) 44.00 21.00 61.00 33.00 39.00 39.00 95.00 47.43
LLaMA-3.1-8B Llama Team (2024) 29.00 2.00 26.00 10.00 40.00 29.00 64.00 28.57
LLaMA-3.3-70B Llama Team (2024) 42.00 6.00 53.00 31.00 39.00 39.00 95.00 43.57

(c) Generated by Claude-3.5-Sonnet

Evaluation Model T1 T2 T3 T4 T5 T6 T7 Avg.

GPT-3.5-Turbo OpenAI (2024a) 67.00 24.00 69.00 72.00 58.00 54.00 86.00 61.43
GPT-4o-mini OpenAI (2024c) 61.00 14.00 59.00 75.00 55.00 57.00 84.00 57.86
GPT-4o OpenAI (2024b) 73.00 26.00 70.00 73.00 57.00 54.00 86.00 62.71
GPT-o4-mini OpenAI (2024d) 71.00 36.00 72.00 71.00 50.00 54.00 79.00 61.86
Gemini-1.5-Flash Reid et al. (2024) 8.00 13.00 60.00 75.00 20.00 2.00 20.00 28.29
Gemini-2.0-Flash-Lite Google DeepMind (2024) 67.00 8.00 63.00 74.00 62.00 57.00 81.00 58.86
Gemini-2.0-Flash Google DeepMind (2024) 73.00 18.00 70.00 78.00 48.00 55.00 91.00 61.86
Claude-3-Haiku Anthropic (2024b) 69.00 2.00 61.00 72.00 59.00 51.00 68.00 54.57
Claude-3.5-Haiku Anthropic (2024a) 21.00 60.00 2.00 4.00 3.00 12.00 28.00 18.57
Claude-3.5-Sonnet Anthropic (2024a) 71.00 26.00 64.00 78.00 58.00 55.00 91.00 63.29
LLaMA-3.1-8B Llama Team (2024) 22.00 16.00 29.00 42.00 44.00 24.00 58.00 33.57
LLaMA-3.3-70B Llama Team (2024) 67.00 45.00 62.00 78.00 59.00 53.00 88.00 64.57

(d) Generated by LLaMA-3.3-70B

Evaluation Model T1 T2 T3 T4 T5 T6 T7 Avg.

GPT-3.5-Turbo OpenAI (2024a) 48.00 17.00 59.00 22.00 72.00 47.00 54.00 45.57
GPT-4o-mini OpenAI (2024c) 49.00 30.00 62.00 31.00 63.00 63.00 60.00 51.14
GPT-4o OpenAI (2024b) 47.00 31.00 64.00 26.00 39.00 53.00 48.00 44.00
GPT-o4-mini OpenAI (2024d) 50.00 40.00 58.00 30.00 46.00 52.00 52.00 46.86
Gemini-1.5-Flash Reid et al. (2024) 11.00 17.00 57.00 26.00 29.00 10.00 21.00 25.71
Gemini-2.0-Flash-Lite Google DeepMind (2024) 60.00 20.00 54.00 35.00 82.00 66.00 75.00 56.00
Gemini-2.0-Flash Google DeepMind (2024) 58.00 56.00 52.00 43.00 60.00 67.00 68.00 57.71
Claude-3-Haiku Anthropic (2024b) 59.00 30.00 58.00 26.00 66.00 60.00 43.00 48.86
Claude-3.5-Haiku Anthropic (2024a) 20.00 56.00 6.00 3.00 10.00 3.00 13.00 15.86
Claude-3.5-Sonnet Anthropic (2024a) 60.00 51.00 57.00 43.00 70.00 50.00 63.00 56.29
LLaMA-3.1-8B Llama Team (2024) 51.00 14.00 39.00 15.00 78.00 51.00 79.00 46.71
LLaMA-3.3-70B Llama Team (2024) 49.00 30.00 60.00 45.00 59.00 59.00 58.00 51.43

D PROMPT TEMPLATES AND EXAMPLES

This section presents the prompt templates used in our benchmark pipeline. We categorize prompts
into two primary roles: (1) generation prompts used by the Teacher agent to construct task instances,
and (2) validation prompts used by the Orchestrator agent to assess the quality and structure of
those instances.

The generation prompts are designed to be style-specific (e.g., GRE-style) and conditionally in-
corporate difficulty scaling instructions and challenge factors (e.g., semantic deviation, logical
inconsistency). Each prompt guides the Teacher to generate one of the seven anomaly task types
(T1–T7) in a consistent JSON schema.
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Table 6: Input/output structure for each text anomaly detection task.

Task ID Task Name Input Output
T1 Sentence Context Anomaly 5–6 sentence paragraph Index of off-topic sentence
T2 Paragraph Order Consistency 5-sentence paragraph Boolean (True/False)
T3 Blank-based Choice Anomaly Sentence with blank + 5 choices Index of most inappropriate choice
T4 Bridge Sentence Evaluation Two paragraphs + 5 bridge candidates Index of incoherent bridge
T5 Referential Ambiguity 5-sentence paragraph Index of ambiguous sentence
T6 Logical Contradiction 5-sentence paragraph Index of logically inconsistent sentence
T7 Tone / Style Violation 5-sentence paragraph Index of tone/style violation

Table 7: Reasoning types, challenge factors, and domain topics per anomaly detection task.

Task ID Reasoning Type Challenge Factors Topics (Domains)
T1 Contextual reasoning Minor topic shift, semantic deviation Philosophy, society, psychology
T2 Discourse coherence Sentence reordering Science, economics, politics
T3 Lexical + pragmatic reasoning Lexical fit, collocation Literature, psychology, philosophy
T4 Logical bridging + topic shift detection Weak logical connection, abrupt topic shift Economics, society, policy
T5 Coreference resolution Ambiguous pronouns, unclear referents Psychology, literature, philosophy
T6 Causal and contradiction reasoning Contradictory claims, causal reversal Science, economics, politics
T7 Stylistic reasoning Tone shift, register mismatch Literature, philosophy

The validation prompts ensure that the generated problems are well-formed, solvable, and coherent.
These prompts are used by the Orchestrator during three key phases of the protocol: (1) immediately
after the Teacher generates an initial problem (Initial Validation); (2) after the Student solves the
problem correctly, to provide feedback for generating a harder version (Feedback for Difficulty
Escalation); (3) once a new, difficulty-scaled version of the problem is created, to ensure it maintains
quality and appropriate challenge (Validation of Difficulty-Scaled Problem). Below, we present
representative prompt examples for Task T1 across all three phases.

For clarity, we simplify the full prompt, and the full set of prompt templates used for these phases is
available in the supplementary material.

D.1 TEACHER PROMPT FOR TASK T1 (GENERATION)

You are a GRE-style exam question generator. Create a question for task T1 on the topic of
psychology.
Generate 5 to 6 sentences on psychology. One of them should be anomalous (e.g., semantically
inconsistent or conceptually off-topic).
The anomaly should be based on: semantic deviation.
Create a non-trivial anomaly that requires careful reading to detect. It should be noticeable but
not immediately obvious.

Return the result strictly in JSON format:
{

"context": ["..."],
"anomaly_index": <integer>,
"meta": {

"source": "GRE",
"topic": "psychology",
"anomaly_type": "semantic deviation"

}
}
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D.2 ORCHESTRATOR PROMPT FOR TASK T1 (VALIDATION)

D.2.1 INITIAL VALIDATION PROMPT

You are a benchmark quality controller evaluating if this problem is well-formed and structured
correctly for task T1.

Task Type: Sentence Context Anomaly (T1)

Task Description: This task requires generating 5–6 sentences on a topic where one of them
is anomalous (semantically inconsistent or conceptually off-topic). The anomaly should be
detectable but not overly obvious, requiring careful reading to identify.

Expected Structure:
- "context": array of 5–6 sentences
- "anomaly_index": integer indicating the anomalous sentence
- "meta": source, topic, anomaly_type

Context:
1. Sentence A
2. Sentence B
...
5. Sentence E

Correct Answer: Option 4

Evaluate the problem based on these criteria:
1. VALIDITY: Is the problem well-formed and complete?
2. TYPE ADHERENCE: Does the problem follow the expected task type requirements?
3. LOGICAL COHERENCE: Is the anomaly identifiable?
4. FAIRNESS: Is the problem fair and reasonable? Does it have a clear, unambiguous solution?

Return your evaluation in JSON format:
{

"approved": boolean (true if the problem passes all criteria, false otherwise),
"feedback": null if approved, or detailed feedback if rejected addressing:

- Problem construction issues
- Anomaly ambiguity concerns
- Specific improvement suggestions

}

D.2.2 FEEDBACK PROMPT (ORCHESTRATOR TO TEACHER) FOR DIFFICULTY ESCALATION

When a Student successfully solves a task, the Orchestrator analyzes the Student’s explanation and
provides structured feedback to help the Teacher generate a harder version of the problem. This
feedback prompt includes the original problem, the student’s reasoning, and a checklist to guide
difficulty escalation. Below is the full prompt used for this purpose.
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You are helping to create a harder version of a problem that a student has correctly solved.
Analyze the student’s solution and provide feedback.

Task Type: Sentence Context Anomaly (T1)
Current Difficulty: easy

ORIGINAL PROBLEM:
{

"context": [
"Cognitive dissonance occurs when individuals experience conflicting beliefs.",
"It can cause discomfort and lead to attitude change.",
"Festinger’s theory explains how people resolve dissonance.",
"Photosynthesis is the process by which plants convert light into energy.",
"Dissonance reduction strategies include rationalization and denial."

],
"anomaly_index": 3,
"meta": {

"source": "GRE",
"topic": "psychology",
"anomaly_type": "semantic deviation",
"difficulty": "easy"

}
}

Student’s Explanation: "The sentence about photosynthesis is unrelated to the other sentences
on cognitive dissonance. It’s a semantic outlier."

Based on how the student solved this problem, provide feedback to create a more challenging
version:
1. What aspects did the student easily identify?
2. How could the problem be made more subtle or complex?
3. Give specific suggestions for increasing difficulty.

Return your feedback in JSON format:
{

"analysis": "Brief analysis of student solution",
"suggestions": ["Specific suggestion 1", "Specific suggestion 2", ...],
"difficulty_increase": "Summary of how to increase difficulty"

}
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D.2.3 VALIDATION OF DIFFICULTY-SCALED PROBLEM

After the Teacher generates a more difficult version of the original problem, the Orchestrator evaluates
its quality to determine whether the sample meets the necessary criteria for inclusion in the benchmark.
This prompt includes a task-specific description, the expected output structure, the difficulty level, and
the sample content. The Orchestrator then assesses whether the problem is well-formed, challenging,
and coherent. Below is the full prompt used in this validation phase for Task T1.

You are a benchmark quality controller evaluating if a problem with increased difficulty is
well-formed and appropriate for task T1.

Task Type: Sentence Context Anomaly (T1)
Difficulty Level: hard

Task Description: This task requires generating 5–6 sentences on a topic where one of them
is anomalous (semantically inconsistent or conceptually off-topic). The anomaly should be
detectable but not overly obvious, requiring careful reading to identify.

Expected Structure: The expected JSON structure should include ’context’ (array of 5-6
sentences), ’anomaly_index’ (integer indicating which sentence is anomalous), and ’meta’ (with
source, topic, and anomaly_type).

Context:
1. Cognitive dissonance occurs when individuals experience conflicting beliefs.
2. It can cause discomfort and lead to attitude change.
3. Festinger’s theory explains how people resolve dissonance.
4. Social conformity often influences decision-making in groups.
5. Dissonance reduction strategies include rationalization and denial.
6. A dissonance-free state enhances psychological consistency.

Correct Answer: Option 4

Note: While maintaining quality standards, be lenient in your evaluation. Accept problems that
are reasonable and solvable, even if they have minor imperfections.

Evaluate the problem based on these criteria:
1. VALIDITY: Is the problem well-formed and complete?
2. TYPE ADHERENCE: Does the problem follow the expected task type requirements?
3. LOGICAL COHERENCE: Is the correct answer clearly identifiable?
4. FAIRNESS: Is the problem fair and reasonable? Does it have a clear, unambiguous solution?
5. DIFFICULTY: Is the difficulty appropriate for hard level?

Return your evaluation in JSON format:
{

"approved": boolean (true if the problem passes all criteria, false otherwise),
"feedback": null if approved, or detailed feedback if rejected addressing:

- Problem construction issues
- Anomaly ambiguity concerns
- Difficulty appropriateness
- Specific improvement suggestions

}
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E REJECTED CASES FROM THE ORCHESTRATOR VALIDATION

We present two distinct analyses to illustrate the role of the Orchestrator in problem validation. Sec-
tion E.1 examines how rejections lead to improved samples by comparing rejected and subsequently
approved versions. Section E.2 explores the consequences of using format-compliant but semantically
flawed problems that were rejected, showing how such issues can affect model performance when the
Orchestrator is removed.

E.1 REFINED AFTER REJECTION

One of the key functions of the Orchestrator is not just to detect flawed problems but to guide
their improvement. Figure 5 illustrates a representative case from the T1 task (Sentence Context
Anomaly), where the problem was rejected for lacking a clear anomaly and subsequently revised into
a higher-quality version.

In the rejected version (left), all five sentences are factually correct and topically coherent, making it
difficult to identify a distinct anomaly. The fifth sentence about Kant’s influence on epistemology,
while slightly tangential, remains within the bounds of acceptable variation in context. The Orchestra-
tor flagged this problem as ill-suited for high-difficulty evaluation due to the lack of a clear semantic
deviation.

After feedback, the Teacher produced a revised version (right) on existentialist philosophy, where the
anomaly subtly introduces scientifically framed misinformation: it claims Camus’s absurdism was
based on quantum mechanics, which is factually incorrect. This revised problem is more appropriate
for an “extreme” difficulty level as it requires nuanced understanding of philosophical context to
detect the inconsistency.

This example demonstrates how Orchestrator feedback can elevate problem quality by transforming
ambiguous or unfocused items into more challenging and pedagogically valid benchmark samples.

E.2 STRUCTURALLY VALID BUT SEMANTICALLY FLAWED

This example highlights the importance of Orchestrator validation even when the problem format
adheres to the expected task type. While structural correctness (e.g., number of options, sentence
layout) can be verified without the Orchestrator, semantic soundness often cannot.

The problem shown here follows the T3 task format correctly but was rejected due to an unclear
anomaly. Both “literary impressionism” and “hyperrealism” are loosely connected to the context,
making the intended anomaly debatable.

Without validation, such problems could remain in the benchmark and appear reliable—yet when
tested on three strong LLMs, two of them (GPT-4o and Claude 3.5 Sonnet) failed to answer correctly.
This illustrates that structurally valid but semantically underspecified problems can mislead evaluation
outcomes.

While this can happen in any phase, it becomes especially risky during difficulty escalation, where
the Teacher agent may try to make problems harder but instead make them ambiguous.

F PERFORMANCE DETAILS FOR CONSISTENCY FIGURE

To support the results presented in Figure 4 of the main paper, this section provides additional details
on how the consistency plot was computed. The figure tracks the average accuracy of GPT-4o-mini
across different sample sizes—ranging from 50 to 1000 samples per task (T1–T7).

For each sample size, we evaluate the model’s accuracy per task and calculate the average across
tasks. The shaded region around the curve represents the standard deviation of task-wise deviations
from the final round (i.e., the 1000-sample benchmark). For each sample size, we measure how much
each task’s accuracy differs from its corresponding value at 1000 samples, and compute the standard
deviation across these deviations. This provides a straightforward view of consistency over time,
showing that performance remains stable across all sample sizes—not just at the final stage.
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Figure 5: Refined after rejection. The left side shows a rejected T1 (Sentence Context Anomaly)
problem where the anomaly was conceptually weak and difficult to identify. The Orchestrator’s
feedback noted the lack of semantic inconsistency and suggested stronger topic divergence. The
revised version (right) introduces a scientifically framed yet incorrect statement about Camus’s
influences, resulting in a clearer and more pedagogically effective anomaly. This highlights the
Orchestrator’s role in guiding high-difficulty problem construction.

Figure 6: A structurally valid T3 problem rejected by the Orchestrator due to an unclear anomaly.
Despite adhering to the task format, the anomaly is too ambiguous—leading two out of three LLMs
to answer incorrectly.

As shown in the figure, the accuracy remains largely stable with only minor variations, indicating the
robustness and consistency of our benchmark generation process.

G RELATED WORK

G.1 TEXT ANOMALY DETECTION BENCHMARKS

Recent benchmarks have begun explicitly evaluating an LLM’s ability to detect linguistic anomalies
and coherence breaks in text. For example, CoheSentia Maimon & Tsarfaty (2023) introduces a
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human-annotated coherence dataset of 500 AI-generated paragraphs, with both holistic and incremen-
tal (sentence-by-sentence) coherence scores. DECOR Zhang et al. (2024a) focuses on incoherence in
L2 English writing, providing expert-labeled context–sentence pairs for detecting coherence breaks,
explaining their causes (e.g. lack of cohesion or consistency), and even rewriting the incoherent
sentences. Disco-Bench Wang et al. (2023) targets discourse-level anomalies by evaluating model
performance on document-level test suites rich in cohesion and coherence phenomena across multiple
tasks. Other well-known “anomaly” challenges include the Adversarial NLI dataset (ANLI)Nie et al.
(2020), collected in three rounds of human-and-model-in-the-loop adversarial examples, and the
Winograd Schema ChallengeLevesque et al. (2012) for commonsense pronoun disambiguation. These
benchmarks share a focus on uncovering subtle inconsistencies or incoherence in text. However,
they are inherently limited by their static, human-curated nature. Each new example often requires
costly human creativity and annotation, making it difficult to sustainably scale up the dataset or
progressively increase task difficulty. ANLI, for instance, achieved increasing complexity over three
rounds, but this required extensive human involvement at each round. In general, static anomaly
datasets incur high labeling costs and quickly saturate—once models learn to solve the fixed set of
examples, evaluation stagnates, and creating harder cases demands significant manual effort. This
motivates exploration of more dynamic and automated evaluation protocols for textual coherence and
anomaly detection.

G.2 STATIC LLM EVALUATION BENCHMARKS

The standard paradigm for evaluating LLMs has been through fixed benchmarks covering a wide range
of tasks. Notable examples include MMLU (Massive Multitask Language Understanding)Hendrycks
et al. (2021), a 57-task exam covering diverse knowledge domains, GSM8K for grade-school
math word problemsCobbe et al. (2021), and BIG-Bench Srivastava et al. (2023), a crowd-sourced
collection of over 200 tasks probing various aspects of intelligence. These static benchmarks were
initially effective for comparing models, but top-tier LLMs have rapidly saturated many of them.
Models like GPT-4 now exceed or approach human-level performance on MMLU and GSM8K,
leaving little headroom for differentiation. Moreover, concerns have arisen about training data
contamination: since the evaluation sets are public and relatively small, powerful LLMs often
inadvertently memorize or see similar questions during pre-training. This can inflate their scores
without reflecting true reasoning progress, as evidenced by significant performance drops on rephrased
or decontaminated test samples Shi et al. (2023). In short, static benchmarks are increasingly subject
to memorization and ceiling effects. They also struggle to track evolving capabilities—once a
benchmark is “solved” by current models, it cannot capture further improvements or new emergent
reasoning skills. Beyond these, other important static benchmarks exist, such as AgentBench Liu
et al. (2023), VisualAgentBench Liu et al. (2024), GAIA Mialon et al. (2023), ToolBench Qin
et al. (2023), and HumanEval Chen et al. (2021), which primarily focus on isolated reasoning and
generation capabilities of single agents, thereby failing to capture the intrinsic dynamics of multi-
agent interactions. Recent efforts have proposed ever harder test sets (e.g. “MMLU 2.0” variants)
and meticulous data filtering to mitigate leakage, but these are stopgap solutions. The inability of
static evaluations to adapt alongside model progress motivates developing dynamic benchmarks that
can continually pose fresh, unsolved challenges.

G.3 DYNAMIC BENCHMARKS WITHOUT AGENTS

A growing line of work aims to generate evaluation data dynamically – creating new test samples
on the fly to match a model’s ability – without relying on multi-agent interactions. DyVal Zhu
et al. (2024a) pioneered this approach with a general framework to algorithmically spawn new
reasoning problems of controlled complexity. In DyVal, instead of a fixed dataset, a generation
function produces test samples and a constraint mechanism modulates their complexity and validity
in real time. One instantiation uses directed acyclic graphs to compose simple components into
increasingly complex problems (e.g. multi-step math or logic puzzles), allowing systematic scaling of
difficultyZhu et al. (2024a). These graph-based generated tasks require genuine reasoning and cannot
be solved by mere memorization, but DyVal’s template-driven nature limits it to certain domains
(math, logical puzzles, algorithms). DARG (Dynamic LLM Evaluation via Adaptive Reasoning
Graph)Zhang et al. (2024b) extends this idea by extracting the underlying reasoning graph of an
existing benchmark problem and perturbing it to generate novel but related test samples. This yields
new questions with tunable complexity levels while preserving coherence with the original data
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distributionZhang et al. (2024b). Crucially, DARG uses an automated verifier (a code-augmented
LLM) to ensure each generated sample’s label or answer remains correct after perturbation, providing
stronger ground truth guarantees. Broadly, these non-agent dynamic benchmarks demonstrate the
ability to continuously adjust task difficulty and mitigate data contamination. Their main limitations
lie in generality and validation: methods like DyVal rely on hand-crafted generation schemas (e.g.
DAG operations) that are task-specific, while purely LLM-based generators risk producing invalid
or trivial questions without additional checking. Ensuring robust quality control often requires an
auxiliary procedure (such as DARG’s code executor or heuristic filters) given the absence of a human
or agent “referee.” Thus, dynamic sample generation has shown promise in maintaining evaluation
challenge, but incorporating more general and trustworthy validation remains an open challenge.

G.4 AGENT-BASED DYNAMIC EVALUATION FRAMEWORKS

Recent approaches have started to leverage AI agents (LLMs themselves) to both generate new
evaluation items and verify their quality, yielding self-refreshing benchmarks. These can be grouped
by the role agents play:

G.4.1 AGENT-BASED PROBLEM VERIFICATION

Several frameworks employ one or more LLM agents as internal judges or verifiers to ensure
evaluation data quality and correctness. Benchmark Self-Evolving Wang et al. (2025) is a multi-
agent system that iteratively refines existing benchmark questions: one agent perturbs the context or
question (e.g. paraphrasing, adding noise or constraints) to make a new test instance, and another
agent (or the model itself) attempts to solve it to verify that the instance is valid and non-trivial. By
applying a set of such automated “reframing” operations, the benchmark can evolve dynamically
with minimal human input. JudgeLM Zhu et al. (2025b) demonstrates that an LLM fine-tuned as
a specialized evaluator can reliably score or check open-ended answers with >90% agreement to
human judgment, effectively serving as a scalable replacement for human evaluation. This idea of an
LLM-as-judge is also used in many dynamic benchmarks to replace costly human verification: for
example, DyVal’s follow-up work introduces “meta-probing agents” that automatically generate and
check new reasoning challenges Zhu et al. (2024b), and the DARG framework’s pipeline employs
a code-execution agent to validate each generated sample’s solution Zhang et al. (2024b). The
BenchAgents system Butt et al. (2024) goes even further in modularizing the process: it deploys
separate LLM agents for planning what data to create, for actually generating candidate problems,
for verifying the correctness/quality of each candidate, and finally for assembling the evaluation
and scoring models on it. By having agents explicitly double-check answers or filter out flawed
questions, these frameworks instill a degree of robustness into dynamically created benchmarks.
The verification agents can catch mistakes or ambiguities that a single-pass generation might miss,
ensuring that the evolving evaluation data remains challenging yet fair. A downside, however, is that
the agents themselves (being imperfect LLMs) might introduce their own biases or occasional errors
in judgment, so careful design and calibration of the “judge” agents is required to maintain reliability.
Beyond general LLM evaluation, specific frameworks like PersonaGym Samuel et al. (2024) have
emerged for assessing specialized agents, introducing the first dynamic evaluation framework and
automated human-aligned metric (PersonaScore) for persona agents, which are LLM agents designed
to act according to an assigned persona.

G.4.2 PROBLEM GENERATION VIA MULTI-AGENT PROTOCOLS

Other works explore multi-agent interaction protocols—such as collaboration, debate, or competi-
tion— to automatically generate or evaluate content in novel ways. ChatEval Chan et al. (2024) is a
representative example where multiple LLM-based critics form a “referee team” that debates and
deliberates on the quality of a model’s answer. By pitting several AI evaluators with different per-
spectives against each other in discussion, the evaluation becomes more robust than a single model’s
score, and the process mimics how multiple human judges arrive at a consensus. This multi-agent
debate approach focuses on jointly evaluating content rather than generating new problems, but it
showcases how agent interactions can replace and even surpass traditional human evaluation. In terms
of content generation, BenchAgents (mentioned above) explicitly uses agents that cooperate (with
minimal human oversight) to produce entirely new benchmark datasets — effectively automating
the benchmark creation process through agent teamworkButt et al. (2024). There are also emerging
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benchmarks to test the capabilities of multi-agent systems themselves. MultiAgentBenchZhu et al.
(2025a) evaluates how well LLM agents can collaborate or compete in shared environments and tasks,
introducing scenarios where multiple agents communicate to solve a problem. Its contribution is
a suite of multi-agent challenge tasks (with coordination protocols like star or graph networks and
metrics for teamwork quality), rather than an evolving benchmark, but it underscores the interest in
agent-agent interaction. MeeseeksWang (2025) takes an iterative multi-turn approach: it simulates a
realistic user interacting with an LLM by providing feedback on failed requirements, and measures
whether the LLM can self-correct over multiple rounds. While not explicitly framed as multi-agent
(the “user” feedback could be programmatic), it creates a feedback loop akin to two agents – one pos-
ing and refining the request, the other improving its answers – working together to achieve a correct
solution. Many of these multi-agent or multi-turn frameworks successfully generate complex, rich
interactions, but notably, most lack an explicit adversarial or difficulty-raising dynamic. Agents often
cooperate to improve quality (as in collaborative problem solving or debate), rather than engaging in
competitive play where one tries to stump or outpace the other. Likewise, the tasks or evaluations are
usually predefined or randomly sampled rather than progressively ramped up in response to a model’s
mastery. For example, ChatEval’s agents are not trying to make the task harder – they are jointly
judging a given response. MultiAgentBench provides diverse scenarios but does not adapt scenario
difficulty based on performance. In short, current multi-agent evaluation protocols focus on novel
ways to assess or create content (often leveraging the wisdom of multiple AI judges or creators), yet
they stop short of introducing a competitive teacher–student dynamic or automated curriculum that
continuously pushes the model to its limit.

H FUTURE WORKS

H.1 GAME-THEORETIC FORMALIZATION OF THE ATAD PROTOCOL

A promising avenue for extending ATAD is to cast the Teacher–Orchestrator–Student loop itself
as a cooperative game in which each agent’s move (problem generation, validation, or solution)
becomes a unit of experience whose marginal contribution to overall benchmark quality can be
quantified with game-theoretic tools such as Shapley values and their ordered extensions — e.g.,
the Nowak-Radzik value that explicitly respects the temporal ordering of curriculum steps Diaz
et al.. By treating successive rounds of ATAD as a sequence of coalitions, we could estimate how
much each agent (or even each prompt strategy) accelerates difficulty calibration, then allocate
compute or interaction budget proportionally to those cooperative gains; conversely, negative pairwise
interactions would signal adversarial curricula or redundant checks that should be pruned. Embedding
this credit-assignment mechanism inside the protocol would let ATAD adapt not only the problems
it poses but also the roles and incentives of its constituent agents, yielding a self-tuning, game-
theoretic benchmark that co-evolves with frontier LLMs while remaining transparent and fair. This
transposition explicitly links ATAD’s adaptive benchmarking to the proven game-theoretic curriculum
framework Diaz et al., supplying both theoretical grounding and practical guidance for future protocol
optimization.

H.2 META-AGENT EXTENSIONS TO THE ATAD PROTOCOL

Recent advances in meta agents—agents that search over the design space of other agents—offer
a promising path toward making ATAD self-improving, safer, and more sample-efficient. A meta
agent that programs new agents in code—as in Meta Agent Search Hu et al. (2025)—can iteratively
discover superior teachers (richer problem generators) and orchestrators (sharper validators) while
archiving each discovery for reuse. Complementarily, AFLOW’s Monte-Carlo-Tree-Search over
code-represented workflows can refine validation pipelines and student curricula so that even smaller
models, paired with optimized workflows, rival larger baselines at a fraction of the compute cost
Zhang et al. (2025). Casting “make the problem just hard enough", “catch adversarial trickery”,
and “keep tasks unambiguous” as explicit objectives in this unified search space lets the meta agent
optimize difficulty, diversity, and alignment constraints simultaneously. Because each generated
anomaly carries its provenance and (optionally) a machine-checkable proof, the resulting benchmark
remains auditable even as it grows without bound. In short, a meta-agent layer transforms ATAD from
a fixed three-role protocol into a self-refining ecosystem where agents, workflows, and evaluation
criteria co-evolve alongside the LLMs they test.
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