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Abstract

In Conversational Recommendation System
(CRS), an agent is asked to recommend a set
of items to users within natural language con-
versations. To address the need for both con-
versational capability and personalized recom-
mendations, prior works have utilized sepa-
rate recommendation and dialogue modules.
However, such approach inevitably results in
a discrepancy between recommendation re-
sults and generated responses. To bridge
the gap, we propose a multi-task learning
for a unified CRS, where a single model
jointly learns both tasks via Contextualized
Knowledge Distillation (ConKD). We intro-
duce two versions of ConKD: hard gate and
soft gate. The former selectively gates between
two task-specific teachers, while the latter in-
tegrates knowledge from both teachers. Our
gates are computed on-the-fly in a context-
specific manner, facilitating flexible integration
of relevant knowledge. Extensive experiments
demonstrate that our single model significantly
improves recommendation performance while
enhancing fluency, and achieves comparable
results in terms of diversity.1

1 Introduction

Natural language dialogue systems generally fall
into either task-oriented system (Wen et al., 2016;
Henderson et al., 2019; Peng et al., 2020) or open-
domain dialogue system (Xing et al., 2016; Zhang
et al., 2020; Adiwardana et al., 2020). Despite the
same modality (conversation), the tasks differ in
their objectives; the former aims to achieve certain
tasks (e.g. booking hotels), while the latter engage
in an open-ended dialogue.

Conversational Recommendation (CR) is an
emerging task in natural language dialogue, which
combines the task-oriented and open-domain (Gao
et al., 2021). The task aims to recommend proper

1The code is available at https://github.com/
yeongseoj/ConKD

Figure 1: Illustration of evaluation mismatch. Previous
methods evaluate recommendation and dialogue perfor-
mance independently as separate models are trained for
each task. In contrast, a single model is utilized for both
tasks in ConKD.

items to users through natural language conver-
sations, and the model-generated conversation is
expected to be fluent and suit the context. Unlike
traditional recommendation systems, the interac-
tive nature of multi-turn dialogue allows the agent
to explore explicit user interests that may not be
present in the user’s history. This advantage particu-
larly stands out compared to the traditional models
that have access to only few purchase histories or
implicit feedback (e.g. click) from users.

To generate appropriate responses containing
recommended items aligned with a user’s taste, an
agent needs to possess both recommendation and
dialogue capabilities. Previous works addressed the
issue with separate modules (Li et al., 2018; Chen
et al., 2019; Zhou et al., 2020; Lu et al., 2021). A
recommendation module learns user preferences
based on conversation history and retrieve relevant
items, while a dialogue module generates the final
response sentences. In Conversational Recommen-
dation System (CRS), a major problem lies in in-
corporating the two separate modules. Common

https://github.com/yeongseoj/ConKD
https://github.com/yeongseoj/ConKD


strategies for injecting recommendation ability into
the responses include copy mechanism (Gu et al.,
2016) and pointer network (Gulcehre et al., 2016).

Despite these efforts, the prior approaches (Li
et al., 2018; Chen et al., 2019; Zhou et al., 2020;
Lu et al., 2021) have demonstrated a discrepancy
between the separate modules: the results of a rec-
ommendation model are not integrated in the gener-
ated response as depicted in Figure 1. The dialogue
module suggests “The Avengers”, while the recom-
mendation module recommends “Titanic”, reveal-
ing a clear disagreement between the two modules.
Accordingly, the probability distribution of the rec-
ommendation model is not directly reflected in the
output of the dialogue model. Such mismatch is
inevitable when CR is formulated as two separate
tasks, failing to serve the original purpose of the
task.

To address this challenge, we propose a multi-
task learning approach for a unified CRS using
Contextualized Knowledge Distillation (ConKD).
We build a CRS with a single model via knowledge
transfer by two teacher models, a dialogue teacher
and a recommendation teacher. However, combin-
ing the knowledge is not straightforward due to the
nature of CRS; the task differs in each time step
depending on the context.

In this light, we introduce two gating mecha-
nisms, hard gate and soft gate, to effectively fuse
teachers’ knowledge. With hard gate, knowledge
transfer comes solely from either of the teachers,
while soft gate integrates both sources of knowl-
edge. We introduce an adaptive nature in the gates
which is context-specific and computed on-the-fly
during forward propagation. To our knowledge,
this is the first work to explicitly demonstrate the
existence of the discrepancy, and provide a ded-
icated training mechanism to address it. More-
over, our approach offers the flexibility in selecting
model architectures, enabling integration of diverse
language and recommendation models.

Extensive experiments conducted on a widely
used benchmark dataset (Li et al., 2018) demon-
strate that our single model significantly outper-
forms baselines in terms of recommendation per-
formance and response fluency, while achieving
comparable results in response diversity.

The contributions of our work can be summa-
rized as follows:

• We propose a multi-task learning approach for a
unified CRS using Contextualized Knowledge

Distillation.

• We introduce two versions of ConKD, employ-
ing different gate mechanisms: hard gate and
soft gate.

• Our approach surpasses strong baseline mod-
els in making coherent recommendations and
fluent responses, while competitive results are
observed in response diversity.

2 Preliminaries & Related Work

2.1 Open-Ended Conversational
Recommendation System

Conventional recommendation systems mainly fo-
cus on building a static user preference based on
previous histories, such as clicks, purchases, and
ratings (Sarwar et al., 2001; Koren et al., 2009;
Kuchaiev and Ginsburg, 2017; Kang and McAuley,
2018). In such environment, where feedback from
users is static, implicit, and sparse, recommen-
dation systems have difficulty reflecting dynamic
changes in users’ preferences as well as suffer the
cold-start problem (Gao et al., 2021).

ReDial (Li et al., 2018) is one of the first attempts
at handling such issue; the work combines open-
ended chit-chat with recommendation task, called
Conversational Recommendation System (CRS).
Specifically, let (x,y) be a dialogue sample, where
x = {x1, x2, ..., xm} is a set of previous dialogue
turns. m is the lengths of turns in the dialogue his-
tory and y is the corresponding response (ground
truth). In each turn, a recommendation module is
expected to provide an item set Iu for a user u ∈ U ,
while a dialogue module produces a response y
based on a dialogue history x.

To incorporate recommended items into a re-
sponse, a copy mechanism (Gu et al., 2016) or
pointer network (Gulcehre et al., 2016) is generally
adopted in prior works (Li et al., 2018; Chen et al.,
2019; Zhou et al., 2020; Lu et al., 2021; Zhou et al.,
2023). In such methods, additional networks are
trained to predict whether the next token is a word
or an item by aggregating representations from rec-
ommendation and dialogue modules.

In the aim of improving a CRS, previous studies
leverage external knowledge in training. In KBRD
(Chen et al., 2019), an item-oriented knowledge
graph is introduced as an auxiliary input to a rec-
ommendation module. KGSF (Zhou et al., 2020)
utilizes both word-level and item-level knowledge
graphs in training a CRS. In addition to the knowl-



Models Mismatch R@1 ReR@1 R@10 ReR@10 R@50 ReR@50
KBRD 0.931 0.034 0.008 (76.47%) 0.168 0.040 (76.19 %) 0.360 0.096 (74.17%)
KGSF 0.926 0.038 0.008 (78.95%) 0.183 0.043 (76.50%) 0.382 0.109 (73.33%)

RevCore 0.971 0.052 0.006 (88.46%) 0.195 0.031 (84.10%) 0.341 0.077 (77.42%)

Table 1: Comparisons of Recall (R@k) by recommendation modules and Recall in Response (ReR@k) by dialogue
modules. Numbers in parenthesis indicate relative decrease in recall score by dialogue module compared to the
recall score by a recommendation module. The scores are averaged over three runs with random seeds.

edge graphs, movie review data is utilized in
RevCore (Lu et al., 2021), and the meta informa-
tion of items is encoded in (Yang et al., 2022) to
enrich item representation. However, these works
employ separate modules to manage CRS, which
inevitably introduces discrepancy issues.

To address this problem, prompt-based learning
strategies are introduced in (Wang et al., 2022b;
Deng et al., 2023). Despite the unified architecture,
these approaches fail to dynamically incorporate
multiple recommendations into a response. RecIn-
Dial (Wang et al., 2022a) introduces a vocabulary
pointer and knowledge bias to produce a unified
output by combining two modules.

2.2 Knowledge Distillation
The core idea behind Knowledge Distillation (KD)
(Hinton et al., 2015) is transferring knowledge
of a high-capacity teacher network to a relatively
smaller student model. In knowledge distillation, a
student network is guided by not only a one-hot en-
coded ground-truth but also a soft target mapped by
the teacher network (probability distribution). This
is known to transfer a class-wise relation mapped
by a teacher is commonly termed the dark knowl-
edge. Given a data sample from a joint distribution
(x, y) ∈ X × Y , a student model is optimized by
combining two cross-entropy terms.

LKD(θ) = −
|Y |∑
k=1

γŷk logPθ(yk|x)

+ (1− γ)P̃ϕ(yk|x) log P̃θ(yk|x)

(1)

where |Y | and ŷk denote the number of classes and
a k-th target label (one-hot encoded) respectively.
γ, and P̃ denote a balancing parameter, and a prob-
ability distribution scaled with a temperature. θ and
ϕ are parameters of a student and teacher network
respectively.

3 Unified CRS via ConKD

In this section, we first demonstrate the mismatch
issue with preliminary experiments and introduce
our approach that mitigates such problem.

3.1 Preliminary Experiments

In our preliminary experiments on REDIAL (Li et al.,
2018) dataset2, we aim to identify the mismatch
problem in evaluation. In Table 1, we compare the
recommendation results from two separate modules
using recall metrics: R@k (Recall) and ReR@k
(Recall in Response) which evaluates the top-k
items predicted by a recommendation module and
a dialogue module respectively. In all metrics, a sig-
nificant degradation is observed when recall is com-
puted on the dialogue response. The relative de-
creases in the performance are ranged from 73.33%
to 88.46%, implying that a large discrepancy exists
between the outputs of recommendation modules
and generated responses. However, incorporating
the recommendation module’s outputs during in-
ference does not provide the fundamental solution
to the problem. Further discussion on this issue is
provided in Appendix D.

To address the discrepancy, we propose a multi-
task learning approach for a unified conversa-
tional recommendation system via Contextualized
Knowledge Distillation (ConKD). ConKD consists
of three key components: a dialogue teacher and
a recommendation teacher as experts on each task,
and a student model - a multi-task learner, as de-
scribed in Figure 2.

3.2 Recommendation Teacher

A recommendation teacher models the item-user
joint distribution and provides a set of items that
suit a user’s preference. We adopt the model struc-
ture of (Zhou et al., 2020), where an item-oriented
Knowledge Graph (KG) (Bizer et al., 2009) and
word-oriented KG (Speer et al., 2016) are encoded
to build a user preference. To learn item represen-
tations with structural and relational information,
R-GCN (Schlichtkrull et al., 2017) is adopted for

2Li et al. (2018) proposed a dataset and a model, which
we term the dataset as REDIAL and the model as ReDial here-
inafter.



(a) Learning from a dialogue teacher (λt = 0) (b) Learning from a recommendation teacher (λt = 1)

Figure 2: The main structure of the proposed contextualized knowledge distillation with the hard gate. D-Teacher
and R-Teacher denote dialogue teacher and recommendation teacher respectively. I and V denote item space and
vocabulary space respectively. The dashed arrow indicates backward propagation. One can easily extend the above
to the soft gate, where λt is continuous.

the item-oriented KG as follows.

h(l+1)
e = σ(

∑
r∈R

∑
e′∈Er

e

1

Ze,r
W(l)

r h
(l)
e′ +W(l)h(l)

e )

(2)
where h

(l)
e denotes the representation of node e at

(l)-th layer and h(0) is the initial node embedding.
Ere is the set of neighbor nodes for node e under the
relation r. W(l)

r and W(l) are learnable matrix for
handling various edge types and self-loop respec-
tively. Ze,r is a normalization constant. Similarly,
word-oriented KG is encoded with the GCN (Kipf
and Welling, 2016) and the description in detail is
illustrated in Appendix B.

Given the learned node embeddings, a user repre-
sentation pu is acquired by aggregating words v(x)

and items n(x) that appear in previous dialogue
turns x as follows3.

pu = β · v(x) + (1− β) · n(x)

β = σ(Wg[v
(x);n(x)])

(3)

where Wg are learnable parameters for computing
the balancing parameter β. Finally, a matching
score between a user u and an item i is calculated
as follows.

Pψ(i) = softmax(pTuni) (4)

where ψ is model parameters optimized to max-
imize the likelihood of predicting ground-truth
items.

3For the detailed aggregation process, please refer to Sec-
tion 4.3 in (Zhou et al., 2020)

3.3 Dialogue Teacher
To handle the chit-chat task, we train a conditional
language model that intakes dialogue history and
generates a context-aware response. We explore
two primary structural variations for our language
model:

• KGSF (Zhou et al., 2020): A standard trans-
former (Vaswani et al., 2017) and a knowledge-
enhanced transformer (Zhou et al., 2020) are
utilized for each as an encoder and a decoder.

• DialoGPT (Zhang et al., 2020): A transformer-
based pre-trained language model (PLM) trained
on a large-scale dialogue dataset.

Both dialogue models are trained to maximize the
likelihood of predicting the ground truth response
as follows:

L(ϕ) = −
|Y |∑
j=1

T∑
t=1

1

T
ŷt,j logPϕ(yt,j |y1:t−1,x)

(5)

where T and j are the length of a response y and
a token index respectively. Y is a union of the
vocabulary set and item set (Y = V ∪ I), and ϕ
denotes the parameters of the dialogue model.

3.4 Contextualized Knowledge Distillation
We elaborate on how a student model learns both
the recommendation and dialogue tasks. Specifi-
cally, two gating mechanisms are introduced: dis-
crete and continuous gate, which integrate knowl-
edge between the two teachers in an adaptive man-
ner.



Hard Gate
A student model is trained to minimize the gap
between its conditional probability distribution and
the conditional probabilities mapped by the teacher
networks. However, it is not ideal to equally weight
the knowledge from both teacher models at every
time step as seen in the following response.

y1: If you like romance movies, I would
recommend Titanic.

At the last time step, where the item Titanic ap-
pears, knowledge of a recommendation teacher can
help a student learn the recommendation ability.
On the contrary, a student can learn to generate a
coherent and suitable utterance by accessing knowl-
edge from the dialogue model except the time of
recommendation.

Taking all these factors into account, we intro-
duce a token-level hard gate between teacher net-
works, where supervision solely comes from either
of the teachers at each time step. To distinguish
which knowledge of the two teachers to be trans-
ferred, we aggregate the probability mass of item
indexes mapped by the dialogue teacher in each
time step. This is built on an assumption that the di-
alogue model assigns a relatively large probability
mass on item indexes at the time of recommenda-
tion.

Given the distribution Pϕ(yt|y1:t−1,x) mapped
by the dialogue teacher, we calculate a sum of item
probabilities which answers the question of “is this
time to recommend an item?". Therefore, a time
step-specific hard gate is computed on-the-fly dur-
ing forward propagation as follows.

λt =

{
0, if

∑
y′∈I Pϕ(y

′|y1:t−1,x) < η

1, otherwise
(6)

where I denotes the set of items in the vocabulary,
and η is a predefined threshold. When λt is com-
puted to be 1, it is a clear indication that a CRS is
expected to output a recommendation result. On
the contrary, when the hard gate is 0, a dialogue
teacher defines the current time step as a dialogue
time step; hence, the CRS is expected to make a
coherent chit-chat.

Soft Gate
The hard gate inevitably introduces a hyper-
parameter η due to the thresholding approach. To
remove the hyper-parameter search on η, we intro-
duce a continuous gating mechanism. This can be

applied under the assumption that a sum of item
probabilities mapped by the dialogue teacher re-
flects the extent to which recommendation is ex-
pected. Therefore, the aggregated mass answers the
question of ‘how much to learn the recommenda-
tion ability at the time step”. Based on the intuition,
we introduce a soft gate as follows.

λt =
∑
y′∈I

Pϕ(y
′|y1:t−1,x) (7)

where the gate λt takes continuous values within
the range of [0, 1]. A gate close to 1 indicates that
the system should focus more on recommendation,
while a gate close to 0 suggests that the agent is
expected to prioritize the conversation task.

To validate our assumption regarding the behav-
ior of the dialogue teacher, we conducted a prelimi-
nary experiment using a smaller model, KGSF. We
computed the average sum of item probabilities in
a dialogue time step λv and in a recommendation
time step λr. The computed value of λr was found
to be 0.653, while λv was measured to be 0.023.
These results support our assumption that the dia-
logue teacher assigns relatively large probability
mass to item indexes in recommendation time. We
provide further discussion on the validity of λ in
Appendix C.

The gating computation differs from the previ-
ous gating approaches (Zhou et al., 2020; Li et al.,
2018; Chen et al., 2019; Lu et al., 2021) in two
ways : 1) we leverage a teacher distribution as a
signal of gating, where the gates can be discrete
λt ∈ {0, 1} or continuous λt ∈ [0, 1]. 2) our gates
are not learned but a simple sum of probabilities.

Contextualized Knowledge Distillation Loss

With the two pre-trained teachers and the gating
mechanisms, we now introduce loss for contextual-
ized knowledge distillation.

KD losses for each task are formulated as fol-
lows.

LDIAL-KD(θ) = −
|Y |∑
k=1

T∑
t=1

1

T
Pϕ(yt,k|y1:t−1,x)×

logPθ(yt,k|y1:t−1,x)
(8)

LREC-KD(θ) = −
|Y |∑
k=1

T∑
t=1

1

T
Pψ(yt,k|x)×

logPθ(yt,k|y1:t−1,x)

(9)



where θ is the parameter of the student. Then, the
final KD losses for each task are derived as follows.

LDIAL(θ) = (1− γ)LNLL + γLDIAL-KD

LREC(θ) = (1− γ)LNLL + γLREC-KD
(10)

where γ is the balancing parameter between ground
truth and teacher distribution, and LNLL is the cross
entropy with ground truth. Finally, the losses are
aggregated with our gate λt per time step.

L(θ) = (1− λt)LDIAL + λtLREC (11)

When the hard gate is applied, a supervision is
made by either of the teachers with the discrete
λt. On the other hand, the soft gate fuses knowl-
edge from the two teachers with the λt being the
weight. By optimizing the combined objective, a
single model is capable of learning the dialogue
and recommendation tasks simultaneously, allevi-
ating the mismatch that comes from two separate
modules in previous methods.

An evident advantage of employing contextu-
alized knowledge distillation lies in taking the
class-wise relation into consideration beyond the
observed data (Hinton et al., 2015). With a one-
hot encoded label, a neural network is trained to
maximize the difference between the ground-truth
and remaining classes; the dark knowledge is over-
looked with one-hot supervision where a single
index is set to 1 and the remaining indexes to 0s. In
our work, the dark knowledge from both teachers is
engaged in an adaptive manner to generate a fluent
and user-specific response.

Special Tokens

Under CR, a dialogue turn falls into either a turn
with recommendation result or a turn for querying
a user preference. In this light, to inject an extra
signal to the student model, we add two special
tokens, [REC] and [GEN], at the beginning of each
turn. During training, the ground truth prefix starts
with either [REC] if the response includes an item ,
or [GEN] if it is chit-chat. This explicit scheme en-
ables the model to learn turn-specific actions based
on the preceding context and generate appropriate
sequences.

During inference, we employ a pre-trained classi-
fier to predict one of the two special tokens at each
dialogue turn. The classifier is built with standard

transformer layers and optimized as follows.

L(θcls) = E(k,x)∼D[−
|K|∑
j=1

logP (kj |x; θcls)]

(12)
where K = {0, 1} is the label set, and θcls denotes
the classifier’s parameters. The model learns to
classify whether the current turn is intended for
chit-chat or recommending an item, based on the
dialogue history x.

4 Experiments

4.1 Dataset
The proposed approach is tested on the recently
introduced REDIAL (Recommendation Dialogues)
dataset (Li et al., 2018). REDIAL is a conversation
dataset which the dialogues are centered around
recommendation, and the subject of the recommen-
dation is movie. REDIAL contains 10,006 multi-turn
dialogues, which amount to 182,150 utterances.
The total number of unique movies in the dataset
is 6,924, and the size of vocabulary is 23,928.

4.2 Baselines
ReDial (Li et al., 2018) consists of dialogue, rec-
ommendation, and sentiment analysis modules.
Pointer network (Gulcehre et al., 2016) is intro-
duced to bridge the modules. KBRD (Chen et al.,
2019) introduces item-oriented KG (Bizer et al.,
2009) and the KG representation is added when
building a logit for the dialogue module (Michel
and Neubig, 2018). KGSF (Zhou et al., 2020) inte-
grates word-oriented KG (Speer et al., 2016) and
item-oriented KG (Bizer et al., 2009) for seman-
tic alignment. KG-enhanced transformer and copy
network (Gu et al., 2016) are employed. RevCore
(Lu et al., 2021) incorporates movie-review data
for review-enriched item representations and uti-
lizes a copy network (Gu et al., 2016). DialoGPT
(Zhang et al., 2020) is fine-tuned on the REDIAL
dataset. RecInDial (Wang et al., 2022a) finetunes
DialoGPT-small with R-GCN(Schlichtkrull et al.,
2017) and introduces a vocabulary pointer and
knowledge-aware bias to generate unified outputs.

4.3 Evaluation Metrics
To validate the recommendation performance, we
employ a top-k evaluation approach with k val-
ues of 1, 10, and 50. Consistent with prior re-
search (Zhou et al., 2020; Lu et al., 2021), we re-
port Recall@k (R@k) in Section 3.1. However,



Models ReR@1 ReR@10 ReR@50 PrR@1 PrR@10 PrR@50 F1@1 F1@10 F1@50 Rec Ratio
REDIAL 0.002 0.017 0.039 0.002 0.021 0.048 0.002 0.019 0.043 0.014
KBRD 0.008 0.040 0.096 0.011 0.052 0.126 0.009 0.045 0.109 0.317
KGSF 0.008 0.043 0.109 0.009 0.048 0.123 0.009 0.045 0.116 0.445

REVCORE 0.006 0.031 0.077 0.014 0.075 0.183 0.008 0.044 0.109 0.203
DialoGPT 0.011 0.070 0.172 0.011 0.071 0.174 0.011 0.070 0.173 0.462
RecInDial 0.017 0.088 0.203 0.022 0.114 0.264 0.020 0.099 0.229 0.438

KGSF + ConKD (hard) 0.023 0.110 0.249 0.024 0.113 0.257 0.023 0.111 0.253 0.499
KGSF + ConKD (soft) 0.022 0.105 0.241 0.023 0.111 0.255 0.023 0.108 0.248 0.479

DialoGPT + ConKD (hard) 0.022 0.120 0.250 0.021 0.112 0.235 0.022 0.116 0.243 0.525
DialoGPT + ConKD (soft) 0.019 0.101 0.219 0.02 0.104 0.226 0.019 0.102 0.222 0.505

Table 2: Automatic evaluation results on recommendation task. The scores are averaged over three runs with random
seeds. ReR@k and PrR@k are recall and precision in response for the top k items. F1@k is the harmonic mean
of ReR@k and PrR@k. Rec Ratio is the ratio of recommendation turns to total turns. All scores are computed
on final outputs predicted by dialogue modules. Bold and underlined numbers denote the best and second-best
performance, respectively.

Models Qualitative Quantitative
Flu Info Cohe Average PPL DIST-2 DIST-3 DIST-4

REDIAL 1.772 0.334 1.194 1.100 17.577 0.075 0.123 0.166
KBRD 1.640 0.729 1.321 1.230 19.039 0.123 0.223 0.304
KGSF 1.811 0.502 1.433 1.249 11.191 0.168 0.305 0.420

REVCORE 1.854 0.512 1.187 1.184 9.283 0.098 0.170 0.235
DialoGPT 1.766 0.781 1.580 1.376 17.552 0.206 0.419 0.595
RecInDial 1.812 0.726 1.606 1.381 5.858 0.065 0.124 0.183

KGSF + ConKD (hard) 1.831 0.856 1.571 1.419 8.886 0.138 0.249 0.344
KGSF + ConKD (soft) 1.858 0.878 1.644 1.460 8.689 0.132 0.236 0.326

DialoGPT + ConKD (hard) 1.894 0.859 1.688 1.480 12.412 0.179 0.344 0.489
DialoGPT + ConKD (soft) 1.870 0.829 1.591 1.430 12.336 0.180 0.350 0.505

Table 3: Qualitative and quantitative evaluation results on conversation task. The qualitative scores are averaged over
three hired annotators. Flu, Info and Cohe indicate fluency, informativeness, and coherence of model-generated
responses. Average is the average of the quantities. In quantitative method, scores are averaged over three runs
with random seeds. PPL is the perplexity of dialogue calculated by a language model, and DIST-n is the distinct
n-gram in corpus level.

given the conversational nature of the task, it is
crucial to evaluate recommendation performance
within generated responses. We introduce Recall in
Response (ReR@k) following Liang et al. (2021)
and Wang et al. (2022a), with a refined calcula-
tion approach to ensure scores range within [0, 1].
Specifically, we take the average of correct item pre-
dictions over the total number of item predictions
instead of responses containing items. Addition-
ally, we introduce Precision in Response (PrR@k)
and compute the harmonic mean of ReR@k and
PrR@k, denoted as F1@k. Furthermore, we assess
the system’s ability to make active recommenda-
tions by introducing the recommendation turn ratio,
calculated as the number of dialogue turns with
recommended items over the total dialogue turns.

To evaluate dialogue performance, we report per-
plexity (PPL) and distinct n-grams (Li et al., 2016)
(DIST), assessing the fluency and the diversity of
generated responses, respectively. In prior studies,
DIST was computed by counting distinct n-grams

at the corpus-level and averaging them over sen-
tences, which can lead to scores greater than 1. To
address this, we have updated the metric calcula-
tion to count distinct n-grams and calculate rates at
the corpus-level, ensuring the scores fall within the
range of 0 to 1. The results evaluated on original
metrics are illustrated in Appendix F.

Recent studies find that the n-gram based evalu-
ation methods may not be sufficient to assess the
performance of a language model (Zhang* et al.,
2020). Therefore, we conduct human evaluation
to comprehensively assess model performance as
done in previous works (Zhou et al., 2020; Wang
et al., 2022a). Detailed human evaluation setup is
described in Appendix E.

4.4 Results

Evaluation of Recommendation

In Table 2, we present the recommendation perfor-
mance of the models. The results clearly demon-
strate that models with ConKD (hard) consistently



achieve the highest scores in F1@k, indicating su-
perior performance in the recommendation task.
Notably, KGSF integrated with ConKD doubles the
scores compared to KGSF, while DialoGPT with
ConKD achieves the scores 1.5 times as high as
DialoGPT. These improvements are observed not
only in single predictions, but also in top-10 and
top-50 predictions, indicating superior user-item
mapping. We hypothesize that such gain stems
from the “dark knowledge” distilled from the rec-
ommendation teacher within our framework. This
knowledge encompasses inter-class relations that
are absent in the one-hot encoded hard targets but
are expressed through the probability distribution
provided by the recommendation teacher. Further-
more, the models with ConKD make active recom-
mendations, as depicted by the high recommenda-
tion ratio, reflecting their focus on task-oriented
conversation. Among our gating mechanisms, the
hard gate outperforms the soft gate, which can be
attributed to the stronger supervision made by the
hard gate; a student is guided solely by the recom-
mendation teacher in recommendation time.

Evaluation of Dialogue Generation
In addition to the recommendation performances,
ConKD exhibits comparable results in conversa-
tion metrics, as shown in Table 3. Under quanti-
tative evaluation, the proposed models outperform
the backbone models in PPL, indicating enhanced
fluency of responses. We observed that RecIn-
Dial tends to generate relatively simple responses
without active engagement, resulting in lower PPL
scores. Regarding the slight decrease in the DIST
metric compared to the backbone models in our
results, two important observations should be high-
lighted: 1) The base models fail to effectively ad-
dress the recommendation task in their responses,
and 2) DIST scores alone are insufficient for evalu-
ating the quality of model-generated responses.

These findings are supported by the results of
qualitative evaluation, where the single models
with ConKD outperform all baselines in average
scores. Specifically, when applied to KGSF, the
proposed methods significantly enhance informa-
tiveness and coherence. This implies our training
mechanism performs consistently regardless of the
model size, aligning with the automatic evaluation
results. We also observe that ConKD-soft outper-
forms ConKD-hard with KGSF as the backbone,
and the opposite holds true for DialoGPT. This dis-
crepancy is attributed to the model capacity of the

Models F1@1 F1@10 F1@50
RecInDial 0.087 0.283 0.424

DialoGPT + ConKD (hard) 0.124 0.331 0.465

Table 4: Recommendation results evaluated on contex-
tullay relevant items.

dialogue teacher, which influences the gate value. It
suggests that the choice between hard and soft gates
depends on the capacity of the dialogue teacher.

4.5 Quality of Recommendation

In CRS, evaluating recommendations based solely
on a single ground-truth item may not fully capture
a model’s potential, as user preferences can span
a wide range of items. To address this, we expand
the evaluation by considering contextually relevant
items. These relevant items are those located within
a 2-hop distance from previously mentioned items
in the item-oriented KG (Bizer et al., 2009), shar-
ing attributes such as genre and actor. We compare
two models, RecInDial and DialoGPT + ConKD
(hard), both of which use the same backbone model
to produce unified outputs. Table 4 shows that
ConKD consistently outperforms RecInDial across
all metrics, with a significant improvement over the
single-item evaluation results in Table 2. This high-
lights ConKD’s capability not only to recommend
a gold item but also to comprehend the underly-
ing knowledge structures, even in the absence of a
knowledge graph.

4.6 Efficiency Comparison

Ensuring real-time efficiency is of importance in
enhancing the user experience in CRS. This sec-
tion compares the inference speeds of three mod-
els: DialoGPT, DialoGPT + ConKD (hard), and
RecInDial. DialoGPT and DialoGPT+ConKD
(hard) achieve inference latencies of 5.464ms and
5.306ms per token, respectively. In contrast, RecIn-
Dial incurs a slightly higher latency of 6.100ms
per token. This additional latency in RecInDial can
be attributed to the computation of the knowledge-
aware bias and vocabulary pointer. The compo-
nents involve making decisions between generat-
ing items or words in every time step. In ConKD,
a language model handles the knowledge-aware
recommendations without sacrificing efficiency.

4.7 Ablations

To verify the efficacy of each component intro-
duced in this work, we conduct ablation studies



Models F1@1 F1@10 F1@50 Rec Ratio
Vanilla 0.012 0.062 0.155 0.337
(+) D 0.017 0.063 0.165 0.334
(+) R 0.019 0.066 0.146 0.293

(+) D&R 0.020 0.093 0.200 0.313
(+) D&R&ST 0.023 0.111 0.253 0.499
λt ↔ 0.5 0.021 0.105 0.245 0.471

Table 5: Ablations on the recommendation task. (+)
indicates adding corresponding components to Vanilla,
a model without ConKD. D and R refer to the dialogue
teacher and recommendation teacher. ST is the special
token mechanism, and ↔ indicates replacement. Hard
gate is applied for combining the KGSF teachers.

Models DIST-1 DIST-2 DIST-3 DIST-4 PPL
Vanilla 0.029 0.100 0.176 0.246 7.538
(+) D 0.029 0.100 0.172 0.241 7.071
(+) R 0.019 0.066 0.115 0.164 12.331

(+) D&R 0.028 0.097 0.166 0.232 6.349
(+) D&R&ST 0.035 0.138 0.249 0.344 8.886
λt ↔ 0.5 0.031 0.121 0.219 0.306 9.211

Table 6: Ablations on the dialogue task.

using several variants of our model. The results are
depicted in Table 5 and 6.

We observed that the role of teachers signifi-
cantly affects the performance of a student. Learn-
ing solely from the recommendation teacher en-
hances recommendation performance but comes
at the cost of PPL and DIST scores. In contrast,
learning from the dialogue teacher improves flu-
ency. When both teachers are present within the
training framework, the student’s performance im-
proves in both tasks, highlighting the effectiveness
of knowledge transfer through our gating mecha-
nism. Scores decline in all metrics when we replace
our gate with a static value of 0.5. Lastly, the spe-
cial token also brings meaningful gains, depicted
with the increased F1@k and DIST scores.

4.8 Case Study

The responses generated by the baselines and
ConKD are shown in Table 7. In the conversa-
tion, the user has expressed a clear preference for
action movies and has previously mentioned actors
“bruce willis” and “Tom Cruise”. However, the
three baselines generate chit-chat responses with-
out recommendations. Although KGSF suggests a
movie, the response lacks coherence and fluency.
DialoGPT generates a coherent response but recom-
mends “Mr.& Mrs.Smith”, which does not align
with the user’s preference; neither Bruce Willis nor
Tom Cruise are associated with it. On the other
hand, our models produce apt responses that are

Case 1
Context

User Hi!
Agent How are you?
User I like action movies. I like Bruce Willis. He is

a great actor. Or Tom Cruise. I am doing well,
thanks for asking.

Model Output
ReDial What can I help you find today ?
KBRD What would you like?
KGSF I’m doing well. Edge of Tomorrow
RevCore I am not sure, but I will have to give you some

good ideas.
DialoGPT Have you seen the movie Mr.& Mrs.Smith? It

is a really good movie...!
KGSF* Have you seen Edge of Tomorrow?
KGSF** I like action movies too. Have you seen Edge of

Tomorrow?
DialoGPT* Have you seen Mission: Impossible?
DialoGPT** Have you seen Mission: Impossible?
Ground Truth Have you seen Gladiator?

Table 7: Sample outputs generated by the baselines and
ConKD. * and ** indicate a model with ConKD (hard)
and ConKD (soft) respectively. The last three dialogue
turns are depicted for context. Bold words indicate
user’s preference and recommended items.

both fluent and informative; it makes user-specific
recommendations, suggesting Edge of Tomorrow
and Mission: Impossible, both of which are action
movies featuring Tom Cruise. Notably, these rec-
ommendations are more aligned with the user’s ex-
pressed preferences compared to the ground-truth
movie “Gladiator”, which is an action movie with-
out the mentioned actors. Additional examples are
provided in the Appendix G.

5 Conclusion

In this study, we introduce contextualized knowl-
edge distillation with hard gate and soft gate. In
hard gate, a student is either learned from a rec-
ommendation teacher or from a dialogue teacher
with a discrete value, while the soft gate fuses
knowledge from both teachers, removing a hyper-
parameter from the hard gate. The gates are com-
puted in a context-specific manner by aggregating
the probability mass on the interest set (a movie
item set in our experiment). Our work verifies
the idea in the popular benchmark dataset and the
result illustrates the superior performance of our
approach compared to strong baselines. In addi-
tion, human evaluation mainly conforms with the
automatic evaluation, demonstrating that the pro-
posed approach is a well-balanced model with both
recommendation and chit-chat ability.



Limitations

This work is grounded on the student-teacher
framework, hence requiring additional computa-
tion when obtaining knowledge of a teacher; our
approach requires two teachers, one for dialogue
and one for recommendation. This extra compu-
tation can be a burden in an environment lack of
resource. Nonetheless, the proposed approach uti-
lizes a single model for inference. Furthermore, our
approach requires the teachers to be well-trained.
This, however, is also a shared problem within KD
training.

Ethical Consideration

Since REDIAL dataset (Li et al., 2018) contains
multi-turn dialogue histories, the dataset, by nature,
may pose a privacy issue. If a dialogue teacher in
our framework learns such information, the student
in our framework can also learn to output private
information while in conversation. Such issue may
possibly be handled by employing a privacy clas-
sifier model, where a model is trained to identify
certain outputs containing private information of a
user.

Acknowledgements

Lei Chen’s work is partially supported by National
Science Foundation of China (NSFC) under Grant
No. U22B2060, the Hong Kong RGC GRF Project
16213620, CRF Project C2004-21GF, RIF Project
R6020-19, AOE Project AoE/E-603/18, Theme-
based project TRS T41-603/20R, China NSFC
No. 61729201, Guangdong Basic and Applied
Basic Research Foundation 2019B151530001,
Hong Kong ITC ITF grants MHX/078/21 and
PRP/004/22FX, Microsoft Research Asia Collabo-
rative Research Grant and HKUST-Webank joint
research lab grants.

References
Daniel Adiwardana, Minh-Thang Luong, David R. So,

Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang,
Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu,
and Quoc V. Le. 2020. Towards a human-like open-
domain chatbot.

Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören
Auer, Christian Becker, Richard Cyganiak, and Se-
bastian Hellmann. 2009. Dbpedia - a crystallization
point for the web of data. Journal of Web Semantics,
7(3):154–165. The Web of Data.

Qibin Chen, Junyang Lin, Yichang Zhang, Ming Ding,
Yukuo Cen, Hongxia Yang, and Jie Tang. 2019. To-
wards knowledge-based recommender dialog system.

Yang Deng, Wenxuan Zhang, Weiwen Xu, Wenqiang
Lei, Tat-Seng Chua, and Wai Lam. 2023. A unified
multi-task learning framework for multi-goal con-
versational recommender systems. ACM Trans. Inf.
Syst., 41(3).

Chongming Gao, Wenqiang Lei, Xiangnan He, Maarten
de Rijke, and Tat-Seng Chua. 2021. Advances and
challenges in conversational recommender systems:
A survey. AI Open, 2:100–126.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li.
2016. Incorporating copying mechanism in sequence-
to-sequence learning. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1631–
1640, Berlin, Germany. Association for Computa-
tional Linguistics.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing
the unknown words. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 140–149,
Berlin, Germany. Association for Computational Lin-
guistics.

Matthew Henderson, Ivan Vulić, Daniela Gerz, Iñigo
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768. The recommendation teacher and token clas-
sifier in the DialoGPT+ConKD models follow the
same settings as those in the KGSF+ConKD mod-
els. For hyper-parameters, we use a batch size of
32, a learning rate of 1e-3, and train for 20 epochs.
For ConKD, we set the η and γ to 0.6 and 0.4,
respectively.

During inference, we only use the student model
for the response generation in both settings.

B Graph Convolutional Network (GCN)

GCN is adopted to encode the word-oriented KG
ConceptNet (Speer et al., 2016). A triple in the
KG is denoted by (w1, r, w2), where w1 and w2

are word nodes, and r is a relationship between
the nodes. The node features are updated with an
aggregation function as follows:

H(l) = ReLU(D̃− 1
2 ÃD̃− 1

2H(l−1)W(l)) (13)

H(l) ∈ Rn×d and W(l) denote the node represen-
tations and a learnable matrix at the l-th layer re-
spectively. n is the number of nodes and d denotes
the dimension size of node features. Ã = A + I
is the adjacency matrix of the graph with self-loop,
where I is the identity matrix. D̃ =

∑
j Ãij refers

to a degree matrix.

C Validity of λ

To explore the validity of the λ, we illustrate varia-
tions of the response y1 introduced in 3.4.

y2: If you like romance movies, I would
recommend you Titanic.
y3: If you like romance movies, I would
recommend some romantic comedies.

After the word recommend, the vocab (you and
some) can be replaced with the item Titanic in the
y1. Therefore, the average value λr of 0.653 is
acceptable in soft gate, indicating the mass reflects
the level to which recommendation is expected.

D Item Refilling

We discuss a two-step inference, in which a re-
sponse is first generated, and items in the response
are refilled with the output of a recommendation
module. The recommendation module predicts
a probability distribution in each dialogue turn,
which remains fixed at each time step during the
response generation. Hence, the module cannot
directly handle the variable number of items in a

response. Additionally, the output does not reflect
the dynamic changes of the context, which fails to
provide a context-aware recommendation as seen
in the following responses.

y4: Blended with Adam Sandler is a fav
of mine.

y5: Love Actually with Adam Sandler is
a fav of mine.

y4 and y5 are generated under the original setting
and the two-step inference setting respectively4.
The dialogue module generates the coherent and in-
formative response y4, describing the actor Adam
Sandler who stars in the movie Blended. On the
other hand, the item refilling fails to incorporate a
suitable item into the response, which causes a fac-
tual error; there is no relationship between Adam
Sandler and the movie Love Actually. This in-
dicates that the simple integration cannot be the
fundamental solution for the mismatch issues; it
leads to semantic discrepancy between the recom-
mendations and generated responses. In our unified
system, the output distribution over items dynami-
cally changes depending on the context, generating
coherent and user-specific responses. This is done
by a single model in a single step, thereby reducing
the model size and inference time.

E Human Evaluation Setup

We engaged three annotators who were tasked with
assessing model outputs given a dialogue history.
100 model outputs from each model are randomly
sampled and collected, the total being 1000 dia-
logue turns. The annotators score each model out-
put from the range of 0 to 2 on the level of informa-
tiveness, coherence, and fluency of model output.
The following instructions were provided to guide
annotators in their assessments:

Fluency: Fluency encapsulates the naturalness
of the generated text. It involves an assessment
of how the output adheres to linguistic standards,
avoiding grammatical flaws. Annotators should
evaluate the syntactic flow, word choice, and over-
all readability. The scores should be shown as 0, 1,
and 2, where each indicates “not fluent”, “readable
but with some flaws”, and “fluent”, respectively.

Informativeness: The informativeness encom-
passes the model’s ability to convey relevant and

4The samples are generated by KGSF. We leverage top k
sampling to handle the variable number of items in responses,
where k is set to 1.



accurate information. Annotators should assess the
depth and accuracy of the conveyed information.
The scores need to be displayed 0, 1, and 2 where
each corresponds to “information is missing or in-
correct”, “information is included but insufficient
or partially inaccurate”, and “comprehensive and
accurate information”, respectively.

Coherence: Coherence entails the harmonious
integration of the model’s output within the evolv-
ing conversation. Annotators should assess how
well the model comprehends and adheres to the
conversation’s theme, avoiding abrupt shifts and
ensuring a natural conversational flow. The scores
should be valued using 0, 1, and 2. Each rating
represents “awkward conversation flow”, “make
sense but somewhat disconnected”, and “coherent”,
respectively.

F Results Evaluated Using Original
Metrics

Models DIST-2 DIST-3 DIST-4 ReR@1 ReR@10 ReR@50
RecInDial 0.413 0.663 0.815 0.023 0.118 0.273

Ours 1.326 2.217 2.704 0.03 0.161 0.337

Table 8: Dialogue and recommendation performance
evaluated on the conventional metric. DialoGPT +
ConKD (hard) is employed for ours.

G Additional Cases

Our models generate diverse movies that differ
from the ground truth but align with the user’s pref-
erences. For example, in Case 2, when the user re-
quests old classics, our models suggest Gone with
the Wind (1939), It’s a Wonderful Life (1946),
The Big Lebowski (1998), The Outsiders (1967)
and Driving Miss Daisy (1989), all of which are
considered old classics. In contrast, other baselines
fail to provide recommendation, except for KBRD.
In the Case 3, when the user expresses a prefer-
ence for family friendly movies like Peter Rabbit,
and Finding Dory, our models recommend Beauty
and the Beast, Jumanji, Coco, and Troll all of
which are family-friendly, with three of them being
animations. This contrasts with other baselines that
produce contextually incorrect responses without
recommendations or mention Peter Rabbit again,
which the user had previously mentioned in the
dialogue context.

Case 2
Context

Agent Hey! What is a movie you love?
User Hello, I am looking for a old classic. What would

you suggest?
Model Output

ReDial Hello
KBRD Have you seen Jumanji?
KGSF I can recommend some movies for you?
RevCore I love comedy movies!
DialoGPT Do you have a favorite actor or actress? I love

how many types of movies today.
KGSF* Have you seen Gone with the Wind? Or maybe

something like It’s a Wonderful Life?
KGSF** Have you seen The Big Lebowski?
DialoGPT* I would suggest The Outsiders It’s a classic!
DialoGPT** Have you seen Driving Miss Daisy?
Ground Truth The Gold Rush and Invasion of the Body

Snatchers are classics.
Case 3
Context

User Hello! Do you know of any family friendly movies?
Agent Good Morning have you seen The Sixth Sense?
User Yes, but it is too scary for my children. something

like, Peter Rabbit we saw that and it was cute.
Agent A old classic will be Finding Nemo.
User Oh yes, and Finding Dory.

Model Output
ReDial I liked it a lot.
KBRD Glad to help. Have a great day!
KGSF I also recommend watching Captain Underpants:

The First Epic Movie again. It’s pretty good I can
think of some people haven’t seen

RevCore I think you would like it .
DialoGPT I have not seen Peter Rabbit but I have heard good

things about it
KGSF* I also really liked Beauty and the Beast
KGSF** I also recommend watching the new Jumanji. It

was cute.
DialoGPT* Coco was good too
DialoGPT** I also recommend Troll. If your looking at animals

that one is really good too!
Ground Truth I saw Peter Rabbit with my daughter she loved it"

Table 9: Additional sample outputs generated by the
baselines and ConKD. * and ** indicate a model with
ConKD (hard) and ConKD (soft) respectively. The last
four dialogue turns are depicted for context. Bold words
indicate user’s preference and recommended items.


