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Abstract: Developing robots capable of executing various manipulation tasks,
guided by natural language instructions and visual observations of intricate real-
world environments, remains a significant challenge in robotics. Such robot agents
need to understand linguistic commands and distinguish between the requirements
of different tasks. In this work, we present Σ-agent , an end-to-end imitation
learning agent for multi-task robotic manipulation. Σ-agent incorporates con-
trastive Imitation Learning (contrastive IL) modules to strengthen vision-language
and current-future representations. An effective and efficient multi-view query-
ing Transformer (MVQ-Former) for aggregating representative semantic informa-
tion is introduced. Σ-agent shows substantial improvement over state-of-the-art
methods under diverse settings in 18 RLBench tasks, surpassing RVT [1] by an
average of 5.2% and 5.9% in 10 and 100 demonstration training, respectively.
Σ-agent also achieves 62% success rate with a single policy in 5 real-world ma-
nipulation tasks.

Keywords: Contrastive Imitation Learning, Multi-task learning, Robotic Manip-
ulation

1 Introduction

One of the ultimate goals of robotic manipulation learning is to enable robots to perform a variety of
tasks based on instructions given by humans in natural language. This requires robots to understand
and distinguish minor variations in linguistic commands and visual cues. However, training robots
is difficult due to the limited rewards available in simulated environments and the lack of extensive
real-world data. Imitation learning is an effective off-policy method that avoids complex reward
design and low-efficient agent-environment interactions [2, 3, 4, 1]. In this paper, we focus on
imitation learning for 3D object manipulation.

Previous works have mainly concentrated on improving the perception ability of robotic agents,
but ignoring the development of discriminating different instructions and related tasks. A portion
of these studies has been directed towards enhancing the transferability from 2D pre-trained visual
representation to the real-world [2, 7, 8, 9]. Nonetheless, to maintain geometric details for both
simulated and real-world environments, 3D vision learning dominates in instruction-guided manip-
ulation [4, 3, 10, 1, 11, 12, 13, 14]. For instance, C2FARM [4] leveraged 3D ConvNets to aggregate
visual representations based on pre-constructed voxel space. PerAct [3] constructed voxelized obser-
vations and discrete action space on RGB-D images, utilizing Percevier [15] Transformer to encode
features. Moreover, PolarNet [11] directly encoded the point cloud features reconstructed from
RGB-D to predict actions. However, these works do not address how to train visual representations
to align with linguistic features and differentiate between multiple tasks.

Previous methods [2, 3, 16, 11, 1, 12, 13, 14] can be summarized as training the agent to learn a
parameterized policy πθ that imitates the target policy π+ based on data collected using the target
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Figure 1: Left: t-SNE [5] visualization of multi-task representation learning without/with con-
trastive IL, and learning with contrastive IL shows a much more obvious separation of features
belonging to different tasks. Right: Visualize the interested regions with Grad-CAM [6], which
shows accurate object-level understanding.

policy via behavior cloning (BC) loss. These approaches typically involve mapping visual rep-
resentations ϕ, linguistic representations ψ, and vision-language interactions δ to low-level end-
effector actions. To tackle the aforementioned misalignment problem, we introduce an end-to-end
contrastive Imitation Learning (contrastive IL) strategy to the original language-conditioned policy
learning, inspired by contrastive Reinforcement Learning (contrastive RL) methods [17, 18, 19, 20].
The contrastive IL framework strengthens the training process by establishing: 1) a relationship be-
tween language instructions and corresponding visual inputs, which helps differentiate multi-task
representations, and 2) a link between current and future states, which enhances the recognition of
movement trajectories across different tasks. This contrastive loss provides additional supervision
to the feature extraction ϕ and interaction δ components (as shown in Fig. 2 (b)), complementing
the standard BC loss.

Based on the contrastive IL, we present an end-to-end trained language-conditioned multi-task agent
to complete 6-DoF manipulation, dubbed as contraStive Imitation learninG for Multi-tAsk ma-
nipulation agent (SIGMA-agent, abbreviated as Σ-agent ). Σ-agent follows the state-of-the-art
baseline model, RVT [1], and leverages the re-rendered virtual images from RGB-D reconstruc-
tion to explicitly represent visual information. We propose a Multi-View Querying Transformer
(MVQ-Former) [21, 22, 23] to minimize the number of tokens for efficient contrastive IL. The
Σ-agent framework offers guidance on how to incorporate contrastive learning into existing imita-
tion learning methods, while the inference process stays the same.

Experiments on RLBench [24] and real-world tasks demonstrate the effectiveness of the Σ-agent .
The results on RLBench show Σ-agent significantly outperforms previous agents in both the 10
demonstrations (by +5.2% on average) and the 100 demonstrations (by +5.9% on average) training
under the setting of one policy for 18 tasks with 249 variations. Also, we integrate the contrastive
IL module into existing methods (PolarNet [11], RVT [1]) and experiment Σ-agent on another
simulation environment (Ravens [25]). The significant improvements show the general applicability
of our approach across various models and environments. Σ-agent also achieves 62% multi-task
success rate on average with a single policy over 5 tasks in real-world robot experiments.

2 Related Work

2.1 Language-conditioned Robotic Manipulation

Language-conditioned robotic manipulation has emerged as a pivotal research branch in the robotics
domain due to its extensive applicability in human-robot interaction [26, 2, 3, 1, 11, 16, 12, 13, 14,
27, 28, 29, 30]. Many previous studies have delved into vision-based representations and strategies
for vision-language interaction in policy learning. For example, RT-1 [31] encodes multi-modal
tokens via a pre-trained FiLM EfficientNet model and feeds them into the Transformer for multi-
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modal information aggregation. The later version RT-2 [32] leverages the auto-regressive generative
capacity of LLMs to project visual tokens into linguistic space, and uses LLMs to generate the
actions directly. Diverse benchmarks have been curated to benchmark the language-conditioned
manipulation [24, 25, 33, 34, 35, 36]. In this paper, we mainly focus on RLBench [24], which
provides hundreds of challenging tasks and diverse variants covering object poses, shapes, colors,
sizes, and categories to evaluate agents based on RGB-D cameras.

Numerous efforts have been made in this challenging benchmark. C2FARM [4], PerAct [3] and GN-
Factor [14] harness the 3D voxel representation for policy learning. C2FARM [4] detects actions
at two levels of voxelization in a coarse-to-fine manner. PerAct utilizes the Perceiver network [15]
to encode 3D voxel features to predict the next keyframe positions with lower voxel resolution than
C2FARM [4]. To refine the 3D scene geometry understanding, GNFactor [14] incorporates a gen-
eralized neural feature fields module to distill 2D semantic features into NeRFs [37] based on Per-
Act [3]. Besides the voxelized features, policy learning based on 3D point cloud representation has
gained significant attention such as PolarNet [11], Act3D [12] and ChainedDiffuser [13]. PolarNet
trains agents on 3D point clouds constructed from RGB-D and adopts pre-trained PointNext [38]
to extract point-wise features. Both Act3D [12] and ChainedDiffuser [13] employ a coarse-to-fine
sampling strategy to select 3D points in space and feature them with relative spatial attention, while
ChainedDiffuser [13] synthesize end-effector trajectories with a diffusion model. Our work follows
RVT [1], which re-renders virtual view images from reconstructed 3D point clouds and processes
the images using a Transformer network.

2.2 Contrastive Learning in RL

A large volume of prior work combines representation learning objective with RL objective [39, 40,
41, 42, 43, 44]. Contrastive learning has gained significant attention among these representation
learning methods [40, 41, 45, 46, 43, 47]. Recently, the paradigm of unifying the representation
learning and reinforcement learning objective has emerged as a research hotspot in the field of
RL [19, 45, 18, 48, 49, 50, 51]. For instance, C-learning [19] regards goal-conditioned RL as es-
timating the probability density over future states, learning a classifier to distinguish the positive
future state from the random states. Eysenbach et al. [17] demonstrate that contrastive representa-
tion learning can be used as value function estimation, connecting the learned representations with
reward maximization. Zheng et al. [18] propose to stabilize contrastive RL in offline goal-reaching
tasks, analyzing the intrinsic mechanism of contrastive RL deeply to explore ingredients for stabiliz-
ing offline policy learning. Note that the contrastive RL methods above mainly focus on reinforce-
ment learning with reward updating. One of the most similar works to ours is GRIF [52], which
learns linguistic representations that are aligned with the collected transitions in the trajectory via
contrastive learning. However, our contrastive IL is different from GRIF [52] in three aspects. First,
contrastive IL is an end-to-end training paradigm, while the GRIF [52] decouples the contrastive
representation pre-training and policy learning into two phases. Second, we target the 3D multi-task
setting in this paper, whereas GRIF [52] utilizes RGB images and single policy training. Lastly,
GRIF [52] performs contrastive learning on (state, goal) pairs with language instructions. For con-
trastive IL, we perform contrastive learning to refine both the feature extraction and vision-language
feature interaction. More related work is present in Appendix D.

3 Method

Fig. 2 provides an overview of the Contrastive IL design in Σ-agent (Fig. 2 (a)) and how to apply to
the previous language-guided imitation learning paradigm (Fig. 2 (b)). In this section, we introduce
the components of Σ-agent . Additional details about Σ-agent are provided in Appendix C.

3.1 Preliminaries

We assume a language-conditioned Markov decision process (MDP) defined by states st ∈ S,
actions at ∈ A and language instructions l ∈ L. S,A are the state and action spaces, and L
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Figure 2: (a) The pipeline of Contrastive IL in Σ-agent . (b) The overview of imitation learning
for language-conditioned multi-task manipulation, where representation ϕ, ψ, δ and policy network
θ are learned for policy πθ to mimic target policy π+. Red Dotted Line: The contrastive IL aim
to refine visual representation ϕ (visual encoder) and joint vision language representation δ (MVQ-
Former and Feature Fusion).

represents the set of language instructions. The goal is to learn a policy π : S×L → A to maximize
the expected rewards of predicted actions. Following previous work [3], we utilize behavior cloning
to maximize the Q-function without specific rewards. Therefore, the objective of the policy learning
can be formulated as:

θ = argmax
θ

E(st,at)∼D log πθ(at|st, l), (1)

where θ means parameters of the policy network and D represents the transitions from demonstra-
tions collected for behavior cloning. Note that D is sampled from the expert policy π+, and we train
the θ to drive πθ to mimic the π+. In this paper, the state st includes aligned RGB and depth images
from the front, left shoulder, right shoulder, and wrist position. We follow RVT [1] by adopting
re-rendered virtual images from the RGB-D inputs to feed into the model. The action space A is
composed of translation in Cartesian coordinates atranst ∈ R3, rotation in quaternion arott ∈ R4,
gripper open aot ∈ {0, 1} and collision state act ∈ {0, 1}.

3.2 Visual and Language Encoder

We acquire re-rendered virtual images following RVT [1] from 5 cubic viewpoints: the front, left,
right, behind and top. Each view image comprises RGB, depth, and (x, y, z) coordinates channels.
The visual encoder comprises a patch embedding layer and a two-layer self-attention Transformer.
We split the images into 20 × 20 patches and leverage an MLP layer to project the embeddings of
patch tokens for self-attention. For the self-attention Transformer, each patch token only attends to
other tokens within the same virtual view image, which aims to aggregate the information from the
same view. The visual encoder is trained from scratch with normalized initialization.

For the language encoder, we follow previous works [3, 16, 11, 1, 12] and use pre-trained language
encoder from CLIP [53] for fair comparison. The language encoder remains frozen during training.
The language token embeddings from the encoder are then projected by a trainable MLP for the
cross-attention with visual tokens.

3.3 Multi-View Query Transformer (MVQ-Former)

With the extracted visual features from the visual encoder, we follow the query Transformer [23,
53, 21, 22] to pre-define a set of learnable queries. These queries are utilized by the contrastive IL
module, minimizing the computational complexity by reducing the number of original visual tokens.
The number of learnable queries is set to 5, one for each virtual view to aggregate the intra-view
information. The MVQ-Former in Fig. 2 consists of two cross-attention layers, where the query
tokens co-attend to the extracted visual features. We denote the queries produced by MVQ-Former
as qv .
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The query tokens, visual tokens and language tokens are then concatenated together and fed into
4 self-attention layers for feature fusion. During this process, the queries interact sufficiently with
both the visual and language features, resulting in queries at this stage named qv,l. The qv and qv,l
are utilized for contrastive IL as described in the following section. Finally, the context features
(denote as v) after the self-attention layers are input to the decoder for action prediction.

3.4 Contrastive Imitation Learning

For multi-task agents conditioned by language instructions, we propose the key question: What
are effective task representations for accurate, fine-grained controls? Two factors matter. First,
aligning task and language representations is essential for the agent to comprehend correlations and
differentiate between tasks. Second, the agent needs discriminative features to accurately perceive
the current state.

Learning Objective. Inspired by contrastive RL [19, 17, 20, 18], we propose to integrate the con-
trastive representation learning into current imitation learning framework to train the policy in an
end-to-end manner. The contrastive IL comprises state-language (s ↔ l) and (state, language)-
future (s, l ↔ g) contrastive learning to refine both the feature extraction and interaction as shown
in Fig. 2.

For the s ↔ l, we define the similarity function as fϕ,ψ = exp (ϕ(st)
⊤ψ(l)/τ) (τ : temperature

parameter), where ϕ and ψ are the state and language instruction representations, respectively. The
contrastive IL objective between states and language instructions is:

Ls↔l(st, l) =
1

N

∑
N

log
fϕ,ψ(s

+
t , l

+)

fϕ,ψ(s
+
t , l

+) +
∑
l−∈L− fϕ,ψ(s

+
t , l

−)

+
1

N

∑
N

log
fψ,ϕ(l

+, s+t )

fψ,ϕ(l+, s
+
t ) +

∑
s−t ∈S− fψ,ϕ(l+, s

−
t )
,

(2)

where N is the batch size in training, and s+t , l
+ denotes corresponding positive states and instruc-

tions. L− and S− stand for all negative language and state samples in the current batch. Essentially
this enforces the network to learn more discriminative representations by aligning state and language
pairs in the joint embedding space.

For the (s, l ↔ g), we randomly sample future states g from D, and applying network φ to encode.
δ encodes the joint representation of (st, l). The negative samples are from the other tasks in the
same batch. Similar to Eqn. 2, we formulate the contrastive training loss between the future and
state, language pairs as:

L(s,l)↔g(st, l, g) =
1

N

∑
N

log
fδ,φ((s

+
t , l

+), g+)

fδ,φ((s
+
t , l

+), g+) +
∑
g−∈G− fδ,φ((s

+
t , l

+), g−)

+
1

N

∑
N

log
fφ,δ(g

+, (s+t , l
+))

fφ,δ(g+, (s
+
t , l

+)) +
∑

(s−t ,l
−)∈Ω− fφ,δ(g+, (s

−
t , l

−))
.

(3)

The L(s,l)↔g aims to refine the representation of vision-language interaction δ, which is crucial for
the vision-language understanding of agents. G− and Ω− signify negative space of future states and
(st, l) in the current batch. Based on the Ls↔l and L(s,l)↔g , we re-formulate the learning objective
in Eqn. 1 as:

max
θ

E (st,at,l,g)∼D,

g+∼P
π+(·|st,l)

[λ log πθ(at|st, l)

+ (1− λ)[Ls↔l(st, l) + L(s,l)↔g(st, l, g)]︸ ︷︷ ︸
LCL

], (4)

where λ is the coefficient. The positive future state g+ conforms to the transition probability Pπ+

of the target policy π+. More discussions can be found in Appendix C.2.

Module Details. For the contrastive training between language and state observations, we choose
the last token (i.e., [EOS]) as the feature representation of the whole text following CLIP [53], which
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Table 1: Multi-task performance trained with 100 episodes and evaluated using 25 episodes per task
on RLBench (5 times average). The input resolution is 128× 128. In Train Time, the d represents
days and h represents hours. All other results are success rates, measured in percentage (%).

Avg
Succ.

Train
Time

open
drawer

slide
block

sweep to
dustpan

meat off
grill

turn
tap

put in
drawer

close
jar

drag
stick

I-BC(CNN) [2] 1.3 - 4.0 0 0 0 8.0 8.0 0 0
I-BC(ViT) [2] 0.9 - 0 0 0 0 16.0 0 0 0
C2FARM [4] 16.0 - 20.0 16.0 0 20.0 68.0 4.0 24.0 24.0
Hiveformer [16] 45.3 - - - - - - - - -
PolarNet [11] 44.7 ∼20h 81.3 53.3 52.0 92.0 78.7 28.0 37.3 92.0
PerAct [3] 49.4 ∼16d 88.0±5.7 74.0±13.0 52.0±0.0 70.4±2.0 88.0±4.4 51.2±4.7 55.2±4.7 89.6±4.1
RVT [1] 62.9 ∼23h 71.2±6.9 81.6±5.4 72.0±0.0 88.0±2.5 93.6±4.1 88.0±5.7 52.0±2.5 99.2±1.6
Σ-agent 68.8 ∼22h 76.8±3.8 74.4±4.5 80.8±1.3 97.6±1.9 95.2±1.3 70.4±3.8 78.4±2.9 100.0±0.0

stack
blocks

screw
bulb

put in
safe

place
wine

put in
cupboard

sort
shape

push
buttons

insert
peg

stack
cups

place
cups

I-BC(CNN) [2] 0 0 4.0 0 0 0 0 0 0 0
I-BC(ViT) [2] 0 0 0 0 0 0 0 0 0 0
C2FARM [4] 0 8.0 12.0 8.0 0 8.0 72.0 4.0 0 0
HiveFormer [16] - - - - - - - - - -
PolarNet [11] 1.3 41.3 84.0 41.3 12.0 8.0 96.0 1.3 5.3 0
PerAct [3] 26.4±3.2 17.6±2.0 84.0±3.6 44.8±7.8 28.0±4.4 16.8±4.7 92.8±3.0 5.6±4.1 2.4±2.0 4.0±2.5
RVT [1] 28.8±3.9 48.0±5.7 91.2±3.0 91.0±5.2 49.6±3.2 36.0±2.5 100±0.0 11.2±3.0 26.4±8.2 4.0±2.5
Σ-agent 51.2±5.4 73.2±2.2 98.4±1.9 90.4±3.5 66.4±4.5 36.0±3.2 100.0±0.0 15.2±2.9 33.6±6.7 0.8±1.3

is then linearly projected into the multi-modal embedding space. The queries qv are projected along
the token dimension to aggregate the representative visual features as shown in Fig. 2 (a). Then, the
visual token and text token are trained to align in the joint embedding space based on Eqn. 2.

We utilize the next state in the trajectory as the future state. The visual encoder of the future state
shares the same backbone parameters with that of the current state as shown in Fig. 2. Hence, the
φ in Eqn. 3 equals to ϕ in Eqn. 2. The queries qv,l, which include both the visual features of the
current state and the language features, are projected to perform contrastive training with average-
pooled future-state features. This process conforms to Eqn. 3. Note that the contrastive IL module
is designed to enhance representations during training but is disabled during the inference process.

4 Experiments

4.1 Simulation Experiments

Simulation Setup. RLBench is a robot manipulation benchmark built on CoppelaSim [54] and
PyRep [55]. We follow the protocols of PerAct [3] and RVT [1] to test the model on 18 tasks in
RLBench [24]. These tasks, which include picking and placing, bulbs screwing, and drawer opening
etc., are all performed by controlling a Franka Panda robot with a parallel gripper. Details of the
18 tasks and their variations are provided in Appendix A.1. The input RGB-D observations are
obtained from four RGB-D cameras at the front, left shoulder, right shoulder, and wrist positions.
The input resolution is 128× 128 for experiments on RLBench unless otherwise specified.

Table 2: RLBench results evaluated on 100
episodes per task with 256×256 input resolution.

Method Avg
Succ.

Train
Time

Act3D [12] 65.1 ∼5.5d
ChainedDiffuser [13] 66.1 ∼4.5d
Σ-agent 68.4 ∼22h

Implementation Details. We follow RVT [1]
to perform training on cube-viewed re-rendered
images from 3D point clouds. We evaluate
Σ-agent with 10 and 100 demonstrations per
task for training. Following previous work [24,
56, 3, 1], we perform behavior cloning on the
replay buffer of extracted keyframes rather than
all frames from episodes. Similar to PerAct [3],
we adopt translation and rotation data augmentations during training, perturbing the point clouds
randomly in the range of ±0.125m for translation and rotating the point clouds along the z-axis
within ±45◦. For the training scheme, we train Σ-agent for 25K steps with a batch size of 96 and
an initial learning rate of 9.6×10−4. The LAMB [57] optimizer is applied, with cosine learning rate
decay and 2K warming steps. The training is conducted on 8×NVIDIA A6000 GPUs for around 22
hours. Σ-agent is evaluated on all 18 tasks with variants. The initial observations are given to the
agent, and the agent explores to reach the final state by the observation-action loop. The agent scores
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Table 3: Multi-task performance of integrating contrastive IL into baselines. Σ-PolarNet and Σ-RVT
represents PolarNet [11] and RVT [1] model trained with proposed contrastive IL module.

Methods Avg
Succ.

Model
Param.(M)

open
drawer

slide
block

sweep to
dustpan

meat off
grill

turn
tap

put in
drawer

close
jar

drag
stick

PolarNet [11] 44.7 14.1 81.3 53.3 52.0 92.0 78.7 28.0 37.3 92.0
Σ-PolarNet 47.5 15.3 74.7 59.3 54.7 94.7 81.3 40.0 37.3 93.3
improvement +2.8 - -6.6 +6.0 +2.7 +2.7 +2.6 +12.0 +0 +1.3

RVT [1] 62.9 36.4 71.2 81.6 72.0 88.0 93.6 88.0 52.0 99.2
Σ-RVT 64.7 38.2 82.6 81.3 53.3 96.0 94.7 70.7 65.3 100.0
improvement +1.8 - +11.4 -0.3 -18.7 +8.0 +1.1 -17.3 +13.3 +0.8

stack
blocks

screw
bulb

put in
safe

place
wine

put in
cupboard

sort
shape

push
buttons

insert
peg

stack
cups

place
cups

PolarNet [11] 1.3 41.3 84.0 41.3 12.0 8.0 96.0 1.3 5.3 0.0
Σ-PolarNet 9.3 37.3 85.3 54.6 16.0 6.7 100.0 4.0 4.0 4.0
improvement +8.0 -4.0 +1.3 +13.3 +4.0 -1.3 +4.0 +2.7 -1.3 +4.0

RVT [1] 28.8 48.0 91.2 91.0 49.6 36.0 100.0 11.2 26.4 4.0
Σ-RVT 42.7 52.0 92.0 93.3 69.3 33.3 100.0 21.3 12.0 4.0
improvement +13.9 +4.0 +0.8 +2.3 +19.7 -2.7 +0 +10.1 -14.4 4.0

100 for reaching the final state and 0 for failures without partial credits. Following PerAct [3], we
report the average success rates on 25 episodes for each task and the average success rates on all 18
tasks.

Comparison with the State-of-the-art Methods. We evaluate the Σ-agent five times on the same
25 episodes for each task and report the mean results due to the randomness of the sampling-based
motion planner. The evaluation comprises two settings, training with 10 (Table 8) or 100 (Table 1)
demonstrations per task. We re-implement the results of PolarNet (100 demos) and RVT (10 demos)
since they are missing from the original paper. Other results are taken from the related literature.
From Table 1 and 8, Σ-agent outperforms previous methods on both the 10 and 100 demonstrations
by a large margin, up to 5.2% and 5.9% in average success rate over 18 tasks, respectively. In
specific tasks, our Σ-agent achieves state-of-the-art performance on 13 out of 18 tasks for both the
10 and 100 demonstration settings.

Moreover, we compare Σ-agent with two state-of-the-art models, Act3D [12] and ChainedDif-
fuser [13], which are trained on 256 × 256 input resolution and tested on 100 episodes for each
task. As shown in Table 2, our Σ-agent surpasses the two methods by 3.3% and 2.3% respectively,
with 5x less training time. Results of Σ-agent in other simulated environments are present in
Appendix A.2.

Contrastive Imitation Learning for Baselines. To validate the effectiveness of contrastive IL,
we integrate the contrastive IL module into other baseline models. We choose PolarNet [11] and
RVT [1] as the baselines to demonstrate improvements in representations of point clouds and 3D
re-rendered images. The main network and inference pipeline are kept unchanged, with only a con-
trastive IL module incorporated, adding a negligible increase in parameter count during the training
process. As shown in Table 3, the contrastive IL module improves the performance of both Po-
larNet [11] and RVT [1] by +2.8% and +1.8% in average success rate over 18 tasks, respectively.
Specifically, the performance of most tasks is improved (13 out of 18 and 11 out of 18), with a largest
margin of 13.9% improvement. These improvements demonstrate two points: first, our proposed
contrastive imitation learning can transfer across multiple models. Second, the learning method is
effective for both 3D re-rendered images (RVT [1]) and point cloud representations (PolarNet [11]).

Future State and Language Ablations. We ablate the influence of future state and language con-
trastive IL as shown in Fig. 3 (a). We summarize three key points from the results. (1) Both language
and future-state contrastive learning with current observations enhance performance. (2) Contrastive
learning between current observations and language instructions accelerates the convergence speed
of agent training, achieving higher performance at the early stage of training. (3) When future-state
contrastive learning is added to a model that already includes language-state contrastive learning,
the performance achieves a more substantial gain. We believe that the limited improvement in only
utilizing future-state contrastive learning can be attributed to the insufficient demonstrations as the
trajectory is the unit for constructing contrastive learning categories. Consequently, without lever-
aging language features, it is challenging to learn discriminative features.
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(a) (b) (c)

Figure 3: Ablation experiments. (a). The success rate of Σ-agent ablating language & future-state
contrastive learning with current observations. (b). The success rate of Σ-agent ablating batch size
of contrastive IL. (c). The success rate of Σ-agent ablating different λ.

Batch-size Influence in Contrastive IL. Contrastive training is sensitive to the scale of batch
size [58, 53]. We vary the batch size as shown in Fig. 3 (b). It can be concluded that scaling up
batch size plays a crucial role in boosting the agent’s performance as it can include more negative
samples.

Coefficient λ Ablations. In Eqn. 4, λ is the hyper-parameter that conditions the relation between
contrastive IL and behavior cloning. We vary the λ ranging from [0, 1] to find the optimal value.
From Fig. 3 (c), we train the agent with five different λ values and observe it makes slightly different
results. We choose λ = 0.5 for agent training as it is the relatively optimal value.

4.2 Real-world Experiments

Table 4: Performance of Σ-agent on 5
real-world tasks.

Task Succ. %

Stack cups 60
Put fruit in plate 90
Hang mug 60
Put item in barrel 50
Put tennis in mug 50

Average 62

We conduct experiments on a real robot, a 6-DoF UR5
robotic arm. The Σ-agent is validated on 5 real-
world tasks, including a total of 9 variants. For each
task, we collect 10 human demonstrations and train the
Σ-agent with a single policy from scratch using all task
demonstrations. Details of the real-world setup and data-
collecting are provided in Appendix B. Table 4 presents
the real-world results. We test the Σ-agent in 10 episodes
for each task, and it achieves an average success rate of
62% across all tasks. We show the failure cases in Fig. 8.
To analyze the reasons for failure: first, the limitation of a single front-view camera cannot pro-
vide precise visual information for tasks that require aiming, such as “Put tennis in barrel” and
“Stack cups”. Second, during the grasping process, imperfect grasp poses result in the translation
or orientation of objects, worsening the collision problems. In the future, we plan to add an extra
RGB-D camera at the wrist position to provide a first-person view. Additionally, integrating a pose
estimation model for objects into Σ-agent would improve grasping poses and avoid collisions.

5 Conclusions and Limitations
In this work, we propose contrastive IL, a plug-and-play imitation learning strategy for language-
guided multi-task 3D object manipulation. The contrastive IL optimizes the original imitation learn-
ing framework by integrating the contrastive IL module to refine both the feature extracting and in-
teracting. Based on the contrastive IL, we design an end-to-end imitation learning agent Σ-agent uti-
lizing the re-rendered virtual images from RGB-D input. Σ-agent is effective and efficient in both
simulated environments and real-world experiments. However, we identify some limitations that
exist. First, the scale and the number of camera views of our real-world experiments are limited.
Second, the contrastive IL module in our method only demonstrates the effectiveness of closed-set
scenarios like RLBench, but does not show the applicability in open-vocabulary scenarios. Lastly,
like previous work, the generalization capacity of Σ-agent is limited, as shown in Table 7. We leave
these issues for future work.
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Task Language Template # of Variations Avg. Keyframes

open drawer “open the drawer” 3 3.0
slide block “slide the block to target” 4 4.7
sweep to dustpan “sweep dirt to the dustpan” 2 4.6
meat off grill “take the off the grill” 2 5.0
turn tap “turn tap” 2 2.0
put in drawer “put the item in the drawer” 3 12.0
close jar “close the jar” 20 6.0
drag stick “use the stick to drag the cube onto the target” 20 6.0
stack blocks “stack blocks” 60 14.6
screw bulb “screw in the light bulb” 20 7.0
put in safe “put the money away in the safe on the shelf” 3 5.0
place wine “stack the wine bottle to the of the rack” 3 5.0
put in cupboard “put the in the cupboard” 9 5.0
sort shape “put the in the shape sorter” 5 5.0
push buttons “push the button, [then the button]” 50 3.8
insert peg “put the peg in the spoke” 20 5.0
stack cups “stack the other cups on top of the cup” 20 10.0
place cups “place cups on the cup holder” 3 11.5

Table 5: Tasks in RLBench. We evaluate agents on 18 RLBench tasks, which include 249 variations
like PerAct [3] does.

Table 6: Multi-task performance in the Ravens [25] environment. The results show the effectiveness
of both Σ-agent and contrastive IL (LCL in table).

Methods Put Blocks
in Bowl

Pack
Box Pairs

Packing Google
Object Seq

Packing Google
Objects Group

Stack
Block Pyramid

Align
Rope

CLIPort [27] 92.3 88.8 80.1 85.4 75.0 51.2
Σ-agent w/o LCL 95.5 94.1 81.3 87.2 79.1 60.8
Σ-agent w/ LCL 96.7 97.3 82.1 87.6 83.5 65.3

A Simulation Experiments

A.1 RLBench Tasks

The RLBench setting in our paper is elaborated in Table 5. We follow the PerAct [3] to use the 18
tasks with 249 variations in the RLBench. The examples of the 18 tasks and corresponding human
instructions of specific variants in these tasks are shown in Fig. 4.

A.2 Effectiveness in Other Simulated Environments.

Ravens [25] is a simulated benchmark environment built with PyBullet [59] for robotic rearrange-
ment based on a Universal Robot UR5e. There are 3 simulated 640x480 RGB-D cameras covering
the 0.5×1m tabletop workspace from the front, left shoulder and right shoulder. We train the model
on six tasks in the Ravens environment [25] as shown in Table 6, selecting from the seen split of
CLIPort [27]. The models are trained on 100 demonstrations and evaluated on 100 evaluation in-
stances for each task. The Ravens benchmark scores 0 for task failure and 100% for success. The

Table 7: Evaluation on the generalization capacity of models. We test the models trained on 18 seen
tasks directly on the 14 unseen tasks selected from the 74 tasks of RLBench [24].

Method 18 seen
tasks

14 unseen
tasks

PerAct [3] 49.4 1.52
RVT [1] 62.9 2.95
Σ-agent 68.8 3.81
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put the item in 
middle drawer

use the stick to drag 
the cube onto the 

yellow target

turn left tap slide the block to 
green target

open the bottom 
drawer

put the coffee in the 
cupboard

put the money away 
in the safe on the 

middle shelf

push the maroon 
button, then push 
the green button, 

then push the 
purple button

close the silver jar stack 3 white 
blocks

place 2 cups on the 
cup holder

stack the wine 
bottle to the middle 

of the rack

screw in the azure 
light bulb

sweep dirt to the 
short dustpan

put the ring on the 
lime spoke

take the steak off 
the grill

stack the other cups 
on top of the black 

cup

put the cube in the 
shape sorter

put item in 
drawer

reach and drag turn tap slide block to 
color target

open drawer put groceries in 
cupboard

place shape in 
shape sorter

put money in 
safe

push buttons close jar stack blocks place cups

sweep to 
dustpan of size

place wine at 
rack location light bulb in insert onto 

square peg meat off grill stack cups

Figure 4: Examples of the 18 RLBench tasks (front view) with corresponding human instructions.
Table 8: Multi-Task performance rained with 10 episodes and evaluated using 25 episodes per task
on RLBench (3 times average). The input resolution is 128× 128. In Train Time, the d represents
days and h represents hours. All other results are success rates, measured in percentage (%).

stack
blocks

screw
bulb

put in
safe

place
wine

put in
cupboard

sort
shape

push
buttons

insert
peg

stack
cups

place
cups

I-BC(CNN) [2] 1.8 - 4.0 4.0 0 0 20.0 0 0 0
I-BC(ViT) [2] 4.4 - 16.0 8.0 8.0 0 24.0 0 0 0
C2FARM [4] 22.7 - 28.0 12.0 4.0 40.0 60.0 12.0 28.0 72.0
PerAct [3] 30.0 ∼16d 68.0 32.0 72.0 68.0 72.0 16.0 32.0 36.0
RVT [1] 42.1 ∼23h 77.3 52.0 65.3 68.0 93.3 45.3 34.7 100.0
Σ-agent 47.3 ∼22h 74.6 56.0 46.7 80.0 94.7 90.7 64.0 100.0

stack
blocks

screw
bulb

put in
safe

place
wine

put in
cupboard

sort
shape

push
buttons

insert
peg

stack
cups

place
cups

I-BC(CNN) [2] 0 0 0 0 0 0 4.0 0 0 0
I-BC(ViT) [2] 0 0 0 4.0 4.0 0 16.0 0 0 0
C2FARM [4] 4.0 12.0 0 36.0 4.0 8.0 88.0 0 0 0
PerAct [3] 12.0 28.0 16.0 20.0 0 16.0 56.0 4.0 0 0
RVT [1] 13.3 25.3 40.0 57.3 14.7 6.7 61.3 4.0 0 0
Σ-agent 5.3 14.6 45.3 62.6 18.6 14.7 72.0 5.3 4.0 1.3

evaluation also assigns partial credit for different tasks, such as 40% for packing 2 out of 5 objects
required by the instruction. The results in Table 6 show improvements in both our Σ-agent and
contrastive IL, surpassing the CLIPort [27] by a large margin in all six tasks.
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Close jar

Open drawer
Turn tap

Screw bulb
Sort shape

Close jar

Open drawer
Turn tap

Screw bulb
Sort shape
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Figure 5: We visualize the similarity of a key-point trajectory of close jar task with multiple
tasks’ language instructions. Training with contrastive IL module maximizes the similarity between
the visual observations and related language instructions (deeper color), reducing the similarity with
negative instructions (lighter color).

A.3 Visualization.

To qualitatively illustrate the effectiveness of contrastive IL, we visualize the multi-modal similarity
between visual observations and language instructions. As shown in Fig. 5, we compute the co-
sine similarity between the embeddings of observations in a trajectory of close jar and different
language instructions. For Σ-agent without contrastive IL module, we utilize the original text pro-
jection layer of CLIP [53] to project the textual embeddings for similarity computation. It is evident
that contrastive IL amplifies the alignment between language instructions and local visual observa-
tions. For example, in the third keyframe, the agent without CL tends to confuse the close jar

task with screw bulb and sort shape, as the three task instructions have close similarity with the
visual observation.

B Real-world Experiments

B.1 Hardware Setup

We conduct real-world experiments on a table-top setup with a 6-DoF UR5 robotic arm. The vi-
sual input is provided by a third-person perspective Orbbec Femto Bolt 2 (RGB-D) camera mounted
directly above and facing forward. The camera streaming the RGB-D images of 1280× 960 (hard-
ware D2C align) at 30 Hz. The images will be resized to 640× 480 for feeding into the model. The
extrinsics of the RGB-D camera and robotic arm are calibrated via hand-eye calibration. We mount
the ARUCO 3 AR marker in the base of UR5 arm. Additionally, we mount a DJI Osmo Action 4 4

for recording inference demos. The hardware setup is shown in Fig. 6.

B.2 Data Collection

We collect the human demonstrations by manual teaching, dragging the robotic arm to pre-defined
keypoints and collecting the visual observations and gripper poses. These poses are executed with
a motion-planner using ROS 5 and MoveIt 6. We define 5 tasks to experiment, including Stack

cups, Put fruit in plate, Hang mug, Put item in barrel, and Put tennis in mug. We

2https://www.orbbec.com/products/tof-camera/femto-bolt/
3https://github.com/pal-robotics/aruco_ros
4https://www.dji.com/cn/osmo-action-4
5https://ros.org/
6https://docs.ros.org/en/kinetic/api/moveit_tutorials/html/
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Figure 6: Real robot setup with Orbbec Femto Bolt and UR5.

Task Language Template # of Variations Variants Category

stack cups “stack the cup on top of the cup” 2 color
put fruit in plate “put the in the plate” 2 object
hang mug “hang the mug on the rack” 2 color
put item in barrel “put the in the barrel” 1 object
put tennis in mug “put the tennis in the mug” 2 color

Table 9: Tasks in real-world. There are 5 tasks and 9 variants totally.

collect 10 demonstrations for each task. The details of the collected data samples are shown in
Table 9 and Fig 7.

Figure 7: Illustration of the 5 real-world tasks.

B.3 Training and Evaluating

The Σ-agent is trained on 50 demonstrations for 5 tasks. The training samples are augmented with
±0.125m translation perturbations and ±45◦ yaw rotation perturbations following PerAct [3]. The
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training is from scratch, not fine-tuning based on checkpoints trained in simulated environments.
For evaluation, Σ-agent is validated on 10 episodes for each task.

Imprecise 
aiming

Collision

Figure 8: Failure cases.

C Additional Model Details

C.1 Action Prediction

Based on the context features v after feature fusion, the decoder outputs the 6-DoF end-effector pose
(3-DoF for translation and 3-DoF for rotation), the gripper state (open or close) and a binary value
for whether to allow collision for the motion planner. We simply utilize a 2D convolution layer and
bi-linear upsampling to decode and upsample the encoded context features to the original rendered
image size (220× 220). Following RVT [1], Σ-agent predicts the heatmaps for the 5 virtual views,
and the heatmaps will be projected back to the 3D space to predict the point-wise scores for the
robot workspace. Then, the translation of the end-effector is determined by the 3D point with the
highest score. The rotations, gripper state and collision indicator are predicted based on the max-
pooled image features and the sum of image features weighted by the heatmaps. Suppose the h is
the view-wise heatmaps predicted, the features for predicting rotations, gripper state and collision
indicator are formulated as:

f = [sum(v ⊙ h), maxpool(v)] (5)

where sum and maxpool denote the sum and max-pooling operation across the spatial dimension of
tokens. ⊙ represents the element-wise multiplication between the context features and heatmaps.

Then, following the PerAct [3] and RVT [1], we utilize the Euler angles representation for the
rotation, and each angle is discretized into bins of 5◦ for dx, dy, dz. In that case, the rotation
prediction is converted to a classification problem, where the agent is trained to classify the angles
into 216 categories (3 × 360◦/5◦). Hence, we project the features f onto a 220-dimensional space
using a linear layer. Within this space, 216 dimensions are allocated for rotation prediction, while 2
dimensions each are dedicated to binary gripper state prediction and binary collision state prediction.

For the training loss for action prediction, we use the cross-entropy loss for the translation and
rotation. Binary classification loss is utilized for the gripper state and collision state. Contrastive loss
is utilized besides the aforementioned losses to supervise representation learning in the contrastive
IL module.

C.2 Q-Function Analysis

Same as PerAct [3], we decode the features to estimate the Q-function of action-values, as
Q(at|st, l). The Q(at|st, l) is equivalent to the transition probability Pπ of state st and l to the
next state st+1 under the discounted state occupancy measure [19, 17, 20]:

Qπ(at|st, l) ≜ Pπ(st+1|st, l) (6)
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When the g+ is the next state of st in Eqn. 3, the fδ,φ maximizes the similarity between (st, l) and
st+1. In other words, training fδ,φ aims to maximize the transition probability from st to st+1 with
the language instruction l by minimizing the distance between corresponding pairs [(st, l), st+1],
while simultaneously maximizing the distance of negative pairs. Therefore, training of fδ,φ with
L(st,l)↔g=st+1

is beneficial for maximizing the Pπ(st+1|st, l), thereby maximizing the Qπ(at|st, l).
fδ,φ can be an extra critic function to facilitate the policy π mimicking target policy π+ in the level
of representation learning.

D Related Multi-Task Learning in RL

Learning a single agent for multiple tasks is of vital significance to robotic learning. One of the
main challenges in multi-task learning is the conflicting representations and gradients among differ-
ent tasks. Previous works address multi-task learning via strategies like knowledge transfer [60, 61],
representation sharing [62, 63, 64], and gradient surgery [65]. With the advent of large vision-
language models [53, 21, 22, 66] and LLMs [67, 68, 69], language instructions serve as comple-
mentary hints to differentiate task representations in policy learning [31, 32, 16, 11, 3, 1, 12, 13, 14].
In this paper, we leverage contrastive learning to amplify the distinction function of linguistic hints.
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