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Abstract

Traditional text embedding benchmarks primar-
ily evaluate embedding models’ capabilities to
capture semantic similarity. However, more
advanced NLP tasks require a deeper under-
standing of text, such as safety and factuality.
These tasks demand an ability to comprehend
and process complex information, often involv-
ing the handling of sensitive content, or the
verification of factual statements against reli-
able sources. We introduce a new benchmark
designed to assess and highlight the limitations
of embedding models trained on existing in-
formation retrieval data mixtures on advanced
capabilities, which include factuality, safety,
instruction following, reasoning and document-
level understanding. This benchmark includes
a diverse set of tasks that simulate real-world
scenarios where these capabilities are critical
and leads to identification of the gaps of the
currently advanced embedding models. Fur-
thermore, we propose a novel method that re-
formulates these various tasks as retrieval tasks.
By framing tasks like safety or factuality classi-
fication as retrieval problems, we leverage the
strengths of retrieval models in capturing se-
mantic relationships while also pushing them to
develop a deeper understanding of context and
content. Using this approach with single-task
fine-tuning, we achieved performance gains
of 8% on factuality classification and 13% on
safety classification. Our code and data will be
publicly available.

1 Introduction

Traditional retrieval models are primarily trained
and evaluated on traditional Information Retrieval
tasks including document retrieval, reranking and
sentence similarity (Muennighoff et al., 2023a).
However, this approach falls short when applied to
more advanced natural language capabilities that
require a deeper understanding of text, such as rea-
soning, factuality, instruction-following and long-
form text understanding (Su et al., 2024; Xiao et al.,

2024; Weller et al., 2024). These tasks demand an
ability to comprehend and process complex infor-
mation, often involving multiple steps of reasoning,
the handling of sensitive content, or the verification
of factual statements against reliable sources (Vu
et al., 2024; Ji et al., 2023; Su et al., 2024).

Recent benchmarks have been proposed to eval-
uate reasoning-intensive retrieval (Su et al., 2024;
Xiao et al., 2024) or instruction following (Weller
et al., 2024). However, these benchmarks only
consider a single advanced capability. In particu-
lar, Weller et al. (2024) introduced a new bench-
mark built on top of traditional retrieval bench-
marks to measure instruction-following capability
of embedding models, however, they do not cap-
ture how well embedding models perform on the
most widely adopted instruction following bench-
marks such as Stanford Human Preference (SHP)
(Ethayarajh et al., 2022a) for ranking human prefer-
ence over model outputs and HH-RLHF (Bai et al.,
2022) for ranking helpfulness and safety of model
responses.

We introduce a new benchmark designed to as-
sess embedding models on advanced LLM capabili-
ties by reformulating existing datasets from diverse
categories into information retrieval tasks. These
include safety classification: BeaverTails Safety
Classification (Ji et al., 2023), HH-RLHF Harm-
lessness Classification (Bai et al., 2022); factual-
ity classification: ESNLI (Camburu et al., 2018),
DialFact (Gupta et al., 2022), VitaminC (Schus-
ter et al., 2021), instruction following rerank-
ing: Stanford Human Preference (Ethayarajh et al.,
2022b), AlpacaFarm (Dubois et al., 2023), LM-
Sys (Chiang et al., 2024), Genie (Khashabi et al.,
2022), InstrSum (Ji et al., 2023), HH-RLHF Help-
ful (Bai et al., 2022); document-level pairwise-
classification: DIPPER (Krishna et al., 2023), and
document-level bitext-mining: Europarl (Koehn,
2005), IWSLT17 (Cettolo et al., 2017), NC2016
(Maruf et al., 2019)). We also incorporate sub-



sets of reasoning retrieval (Xiao et al., 2024), We
evaluate our benchmark with advanced embedding
models: a Gemma-2B (Team et al., 2024) embed-
ding model trained as a symmetric dual encoder
(Neelakantan et al., 2022) and Google Gecko em-
bedding model (Lee et al., 2024b).

We adopt a novel fine-tuning approach that refor-
mulates various classification tasks into a retrieval-
based setting using contrastive loss. In this setup,
each task instance is represented as a triplet: an
input (query and answer concatenated), a positive
target (label text plus explanation and a unique
ID), and multiple negative targets (alternative la-
bels with explanations and the same unique ID)
(Lee et al., 2024b). This approach allows dual en-
coder embedding models to handle classification
tasks without any architectural modifications and
enables seamless integration with other retrieval
and similarity-based training objectives. We fur-
ther adapt this approach by adding a detailed ex-
planation for the label text to reduce the influence
of the long series of tokens in the unique ID the
model and maintain its focus on learning the se-
mantics of the input and targets. We have obtained
8% and 13% improvements on factuality classifi-
cation and safety classification tasks respectively
with this approach with single-task fine-tuning. We
also provide a more lightweight training approach:
adopting an adapter over a genereic Gemma embed-
ding, which leads to 2% and 3% improvements on
the same factuality and safety classification tasks.

In summary, the contributions of our paper are
threefold. 1) We introduce a new benchmark,
ATEB, designed to evaluate text embedding models
on advanced NLP tasks such as reasoning, safety,
factuality, and instruction-following. Unlike tra-
ditional benchmarks focused solely on text sim-
ilarity and retrieval, ATEB encompasses diverse
real-world scenarios requiring deeper contextual
understanding and reasoning, highlighting the lim-
itations of advanced embedding models. 2). We
propose a novel fine-tuning approach that refor-
mulates various classification and reasoning tasks
into retrieval-based problems, enhancing the ability
of dual encoder models to handle advanced capa-
bilities without architectural modifications. Our
method achieves significant improvements, with
8% and 16% gains in factuality and safety clas-
sification tasks, respectively. 3). Additionally,
we demonstrate the utility of adapter-based fine-
tuning for achieving competitive results with mini-
mal computational cost.

2 Related Work

Text Embedding Models Representing text as
dense vectors with neural networks gained promi-
nence through word2vec (Mikolov et al., 2013),
which generated semantically meaningful word
embeddings. Subsequently, models like BERT
(Devlin et al., 2019) and the contrastively trained
SimCSE (Gao et al., 2021) solidified encoder-
only transformers as the predominant architecture
for producing text embeddings. More recently,
decoder-only transformers have advanced signif-
icantly in both capability and efficiency (Brown
et al., 2020; Team et al., 2024; Dubey et al., 2024;
Jiang and Chen, 2023), making it logical to utilize
their pretrained knowledge for embedding tasks.
This approach was successfully demonstrated by
(Neelakantan et al., 2022), who initiated embed-
der training from decoder-only GPT models and
has been adopted by recent leading open-source
models on the MTEB leaderboard (BehnamGhader
et al., 2024; Lee et al., 2024a; Meng et al., 2024).

Text Embedding Evaluation Because embed-
ding models are applied in diverse scenarios, there
is a need for broad and heterogeneous benchmarks
to thoroughly evaluate their performance. The pi-
oneering effort in this domain was BEIR (Thakur
et al., 2021), which comprises nine distinct informa-
tion retrieval tasks—such as duplicate-question re-
trieval and citation prediction—across 18 datasets.
More recently, Muennighoff et al. (2023) intro-
duced MTEB (Massive Text Embedding Bench-
mark) (Muennighoff et al., 2023b), an extensive
evaluation framework that surpasses BEIR in scale
and includes more diverse task categories such as
classification and reranking.

2.1 Advanced Model Capabilities
Recent advances in natural language processing
have seen the emergence of a variety of special-
ized tasks aimed at evaluating model safety (Bai
et al., 2022), factuality (Dziri et al., 2022a), rea-
soning, instruction-following (Ethayarajh et al.,
2022b), and document-level understanding, which
are crucial capabilities for the most recent foun-
dation models (Reid et al., 2024; OpenAI, 2024;
Dubey et al., 2024). Safety tasks focus on mitigat-
ing harmful, biased, or unethical outputs, ensuring
models uphold socially responsible standards (Bai
et al., 2022). Factuality tasks emphasize ground-
ing responses in reliable information and reducing
fabrication or misinformation, as exemplified by



research efforts on factual consistency in summa-
rization and truthful QA (Maynez et al., 2020; Lin
et al., 2022). Reasoning-oriented challenges push
models beyond surface-level pattern recognition
by encouraging deeper inference and logical de-
duction (Xiao et al., 2024). Instruction-following
tasks further refine models’ ability to adhere to
user directives (Ouyang et al., 2022). In parallel,
document-level understanding (Yin et al., 2021;
Krishna et al., 2023) tests models’ capabilities to
process long-form texts beyond sentences.

3 ATEB Construction

3.1 Design Principles

The benchmark comprises 21 tasks, encompass-
ing datasets related to instruction-following, fac-
tuality, reasoning, document-level translation, and
paraphrasing. These tasks simulate real-world sce-
narios requiring advanced model capabilities. We
reformulate these tasks from existing sources based
on the following principles. Factuality as classi-
fication: NLI tasks where the goal is to classify
the relationships of the premise and hypothesis into
entailment, contradiction, or neutral; Instruction
following as reranking: Ranking model-generated
responses based on human preference; Safety as
classification: Binary classification tasks or rank-
ing tasks (safe vs. unsafe); Reasoning as retrieval:
Retrieving the gold answer from gold answer pool
of all examples in the dataset based on the ques-
tion; Document-level paraphrasing as pairwise-
classification: Pairing the paraphrase of a docu-
ment with the original document based on para-
phrases of all documents in the dataset; Document-
level machine translation (MT) as bitext-mining:
identifying the translation of a document over trans-
lations of all documents in the dataset.

We provide detailed illustrations of how each
task category is constructed, accompanied by ex-
amples. For each task, we utilize the complete test
set from the corresponding public datasets.

3.2 Factuality as Classification

We adopt several Natural Language Inference
(NLI) classification datasets in our factuality classi-
fication collection. This includes ESNLI (Camburu
et al., 2018), VitaminC (Schuster et al., 2021) and
DialFact (Gupta et al., 2022). An example of the
ESNLI dataset is shown in Table 1 where the input
consists of a concatenation of one premise and one
hypothesis and the target is one of the strings of

the three classes including "entailment", "contra-
dictory" and "neutral".

3.3 Instruction-Following as Reranking

We reformulate publicly available instruction-
following tasks into reranking tasks where the rank
is determined by the human preference. Between
two model outputs, the model output preferred by
human is ranked higher than the model output less
preferred. The query is formulated as the con-
catenation of the task instruction and input con-
text. We provide an example of one of the source
datasets we adopted, Stanford Human Preference
(Ethayarajh et al., 2022b), in Table 2 and the re-
formulated example based on it in Table 3. We
reformulate six more instruction-following tasks
into reranking tasks, which include AlpacaFarm
(Dubois et al., 2023), HHRLHF-Helpful (Bai et al.,
2022), BeaverTails-Helpful (Ji et al., 2023), Ge-
nie (Khashabi et al., 2022), LMSys ChatBot Arena
(Chiang et al., 2024), InstruSum (Liu et al., 2024).

3.4 Safety as Classification

We adopt the safety classification portion of the
BeaverTails dataset for LLM safety alignment (Ji
et al., 2023), BeaverTails QA-Classification to con-
struct a safety classification task for evaluating em-
bedding models where the goal of the task is to
classify the input into safe or unsafe. An exam-
ple of the BeaverTails QA-Classification dataset is
shown in Table 4. We adopt the harmlessness evalu-
ation portion in the HH-RLHF dataset to construct
a safety safety classification task.

3.5 Reasoning as Retrieval

We adopt 5 subsets of the RAR-b dataset proposed
in (Xiao et al., 2024) including HellaSwag NLI
dataset (Zellers et al., 2019), Winogrande (Sak-
aguchi et al., 2019), PIQA (Bisk et al., 2019), Al-
phaNLI (Bhagavatula et al., 2019) and ARCChal-
lenge (Clark et al., 2018). Table 5 shows the data
format of the reformulated datasets.

3.6 Document-Level Paraphrasing as
Pairwise-Classification

We reformulate one document-level paraphrasing
dataset, DIPPER (Krishna et al., 2023) as a pair-
wise classfication task. These tasks expand over
previous sentence-level paraphrasing tasks used for
pairwise classification (Muennighoff et al., 2023b)
to test the document-level modeling capabilities of
most advanced embedding models.



Input: Premise: Everyone really likes the newest benefits. Hypothesis: The new rights are nice enough.

Target: entailment, contradictory, or neutral.

Table 1: An example of ESNLI.

Original SHP

responseA: "It doesn’t sound like they deserve the courtesy of two weeks notice. Check company policy and state law
about whether they have to pay your sick time or other PTO...

responseB: "...I’d say you are within your rights to kick over the can of kerosene and toss the Zippo..."

preference label: "responseA"

task instruction: "In this task, you will be provided with a context passage (often containing a question), along with two
long-form responses to it (responseA and responseB). The goal is to determine which of the two is a better response for the
context..."
input: "How unprofessional would it be to quit the moment I have a job lined up following my vacation? I hate my
coworkers..."

Table 2: Original Stanford Human Preference (SHP) dataset example.

Query: "In this task, you will be provided with a context passage (often containing a question), along with two long-form
responses to it (responseA and responseB). The goal is to determine which of the two is a better response for the context...How
unprofessional would it be to quit the moment I have a job lined up following my vacation? I hate my coworkers...

Positive: "It doesn’t sound like they deserve the courtesy of two weeks notice. Check company policy and state law about
whether they have to pay your sick time or other PTO...

Negative: "...I’d say you are within your rights to kick over the can of kerosene and toss the Zippo..."

Table 3: Reformulated example of our SHP-Reranking for evaluating embedding models’ reranking capability for
model responses given instructions.

Query: Input: Is there sites that sell weed? Yes, there are websites that sell marijuana. These sites usually require customers
to have a valid prescription and may require a background check to ensure that the individual is of legal age to purchase the
drug. However, there are also websites that do not require any forms of identification...

Two classes: safe/unsafe

Table 4: An example of the BeaverTails QA-Classification dataset for evaluating embedding models.

Input: a query in the dataset. Target: the answer to the query. Negative targets: all the other answers in the dataset.

Table 5: Data format of the reasoning as retrieval datasets for evaluating embedding models.

3.7 Document-Level MT as
Pairwise-Classification

Following the same design principle of our new
pairwise-classification tasks, we reformulate three
document-level machine translation datasets as bi-
text mining tasks, which include Europarl (Koehn,
2005), IWSLT17 (Cettolo et al., 2017) and NC2016
(Maruf et al., 2019). These tasks expand over pre-
vious sentence-level machine translation tasks used
for bi-text mining (Muennighoff et al., 2023b) to
test the document-level modeling capabilities of
most advanced embedding models. We adopt the
subset of these datasets used in Maruf et al. (2019).

4 Method

4.1 Model

We begin by initializing a symmetric dual encoder
(DE) using the decoder-only Gemma-2B model
(Team et al., 2024; Palma Gomez et al., 2024),
which has an embedding size of 2048. Following
this, we add a linear projection layer, applied after
pooling the outputs along the sequence length di-
mension. Both the embedding layer and the linear
projection layer are randomly initialized. After the
model is initialized with Gemma-2B, we train it
using a contrastive loss (Hadsell et al., 2006).



4.2 Training data reformulation with label
augmentation

While using the dot-product scores along the diag-
onal as positives and everything else as negatives
works well for retrieval and similarity/relatedness
matching tasks, it can not be used directly for tasks
with targets that are classification labels. Naively
providing tasks with classification labels to a dual
encoder embedding models will result in the score
for an input’s correct label appearing both along
the diagonal and the off-the diagonal when another
input example has the same target label.

Therefore, we adopt a novel method that refor-
mulates various tasks as retrieval tasks during the
fine-tuning process, following previous work in
fine-tuning with a retrieval setting using contrastive
loss (Lee et al., 2024b; Meng et al., 2024). Input:
query and answer concatenated together. Positive
target: [label text (e.g., neutral for NLI).] + [label
text explanation] + [unique id]. Negative targets:
[each other possible types of label texts.] + [label
text explanation] + [unique id].

Including a unique id for for each correct input/-
target pair alone would allow the model to exploit
and rely on the unique identifiers to always pair the
correct input with the correct target. However, this
can be addressed by including additional incorrect
labels for each input as negatives. The negatives are
tagged with the same unique id as the input and the
correct target label. This allows the unique ids to
be used to identify candidate targets for each input,
but without revealing which of the targets is correct.
The advantage of this approach is that it allows dual
encoder based embedding models to be trained on
classification tasks without any modeling changes.
In practice, a unique ID often consists of a long
sequence of tokens that can inadvertently shift the
model’s focus away from learning the semantic re-
lationships within the input and target texts of an
example. To address this challenge, we enhance
this approach by providing detailed explanations
for each label. This additional context helps the
model grasp the conceptual meaning behind labels
rather than becoming distracted by the long series
of unique ID tokens.

For example, for the label “Entailment,” we aug-
ment it by including the following label explana-
tion:

Label explanation for "entailment"

“In the context of Natural Language Infer-
ence (NLI), ‘entailment’ refers to a specific
type of relationship between two sentences,
where the truth of one sentence (the hypoth-
esis) is logically guaranteed by the truth of
another sentence (the premise).”

By augmenting labels with such detailed expla-
nations, we guide the model toward a richer, more
coherent understanding of the underlying concepts
it needs to learn.

5 Testing Advanced Embedding Models
on ATEB

We test advanced embedding models on ATEB and
show their strengths and limitations on our pro-
posed ATEB tasks.

5.1 Baseline methods

Our baseline methods include two advanced em-
bedding models: our Gemma-2B symmmetric
dual encoder trained with a prefinetuning stage
and Google’s gecko embedding model (Lee et al.,
2024b), which has a 1-billion parameter size. Both
of these baseline models are highly capable embed-
ding models. Notably, the Google Gecko model is a
state-of-the-art embedding model with 768 dimen-
sions. On the Massive Text Embedding Benchmark
(MTEB), it achieves an average score of 66.31—on
par with models that are seven times larger and
have five times higher dimensional embeddings on
the MTEB leaderboard. The models that achieve
a score of 66 or higher, such as NV-Embed-v2and
SFR-Embedding, all have 4096 or 8192 dimen-
sions. The prefinetuning stage for Gemma-2B is
full supervision finetuning with Huggingface Sen-
tence Transformer datasets. 1. The baseline models
are large-size retrieval models trained for generic
information retrieval tasks, and they are not fine-
tuned on task-specific data. We include detailed
hyperparameters in the Appendix.

5.2 Experimental Results

Baseline Models have Close-to-Random Per-
formance on New Reranking Tasks Table 6
compares the baseline performance of the model
against a random chance baseline (75%) on various

1https://huggingface.co/sentence-transformers



Reranking task Random (%) Gemma-2B (%) Gecko (%)
AlpacaFarm 75 75.1 75.3

Genie 75 75.3 75.0

InstruSum 75 72.8 74.1

Stanford SHP 75 80.47 77.1

BeaverTails Helpful 75 74.51 75.9

HH RLHF Helpful 75 77.74 77.1

LMSys Chatbot Arena (English) 75 73.18 72.9

Table 6: Baseline performance on reranking for evaluat-
ing instruction-following.

reranking tasks designed to evaluate its instruction-
following capabilities. These tasks involve ranking
model-generated responses based on relevance or
helpfulness. On AlpacaFarm and Genie, the base-
line models’ performance hover between 75.0%
and 75.3%, which is marginally higher than ran-
dom, indicating only limited improvement. In con-
trast, on InstruSum, the baseline models achieve
72.7% and 74.1, slightly below random chance,
underscoring the difficulties in effectively rank-
ing summaries based on human-written instruc-
tions. On Stanford SHP, the model performs no-
tably better, achieving 80.47% accuracy with the
Gemma-2B embedding model and demonstrating
a moderate ability to rank responses according to
human preferences. However, on BeaverTails Help-
ful, the models’ accuracy of 74.51% and 75.9%
remain close to random, suggesting challenges in
identifying genuinely helpful responses. The HH
RLHF Helpful task sees some improvement, with
the model reaching 77.74%, indicating a modest
enhancement in tasks informed by human reinforce-
ment learning preferences. Finally, in the LM-
Sys Chatbot Arena (English) setting, the model
attains 73.18%, which is below random chance,
thus reflecting limited success in ranking chatbot-
generated responses. Taken together, these results
highlight the baseline model’s near-random perfor-
mance on most reranking tasks, with only modest
improvements in a few cases such as Stanford SHP
and HH-RLHF Helpful.

They suggest that further optimization and more
task-specific fine-tuning are needed to enhance the
model’s instruction-following capabilities in these
reranking scenarios.

Baseline Models Perform Suboptimally on New
Retrieval Tasks Table 7 presents the perfor-
mance of baseline models compared to random
chance in reasoning-based retrieval tasks. These
tasks require models to identify correct answers or
make logical inferences, highlighting their reason-
ing capabilities. Key observations include:

Retrieval task Random (%) Gemma-2B (%) Gecko (%)
HellaSwag 0 22.1 26.7

Winogrande 0 17.3 21.2

PIQA 0 22.2 29.8

AlphaNLI 0 30.3 32.1

ARCChallenge 0 7.62 10.9

Table 7: Results of retrieval tasks for evaluating reason-
ing.

Classification task Random (%) Gemma-2B (%) Gecko (%)
ESNLI 33.3 35 36.1

DialFact 33.3 33.8 33.2

VitaminC 33.3 37 35.4

HH-RLHF Harmlessness 50 50 50

BeaverTails Classify 50 55.9 54.7

Table 8: Results of classification tasks for evaluating
factuality and safety.

On HellaSwag, the baseline embedding models
achieve 22.1% and 26.7% accuracy, demonstrating
moderate success in selecting plausible continua-
tions for narrative reasoning tasks. With 17.3%
and 21.2% accuracy on Winogrande, the model
struggles in resolving pronoun references, indicat-
ing challenges in understanding nuanced context.
Achieving 22.2% accuracy on PIQA, the baseline
shows limited capability in physical commonsense
reasoning. The model performs better in the ab-
ductive commonsense reasoning task AlphaNLI,
achieving 30.3% and 32.1% accuracy, suggesting it
can partially infer plausible explanations for events.
On ARCChallenge, with only 7.62% and 10.9% ac-
curacy, the models exhibit significant difficulty in
answering challenging science questions, reflecting
its limited knowledge retrieval and reasoning skills.
In summary, baseline models demonstrate subop-
timal performance across these reasoning-based
retrieval tasks, with accuracies ranging from 7.62%
to 32.1%. This underscores the need for targeted
fine-tuning and task-specific training to improve
reasoning capabilities in advanced embedding mod-
els.

Baseline Models have Close-to-Random Per-
formance on New Classification Tasks Ta-
ble 8 illustrates the performance of two base-
line models, Gemma-2B and Gecko, on five
classification tasks—ESNLI, DialFact, VitaminC,
HH-RLHF Harmlessness, and BeaverTails Clas-
sify—compared to random chance accuracy. For
ESNLI, which evaluates natural language inference,
both models perform only slightly above random
(35% for Gemma-2B and 36.1% for Gecko) despite



Pairwise classification Random (%) Gemma-2B (%) Gecko (%)
Dipper 50 73.1 % 80.1

Bi-text mining

Europarl 1/n 86.1% 88.2%
IWSLT17 1/n 86.4% 87.1
NC2016 1/n 98% 99 %

Table 9: Baseline Accuracy for pairwise classification
and bi-text mining tasks

random performance being 33.3%, indicating lim-
ited reasoning capability. Similarly, on DialFact,
which assesses factual consistency in dialogue,
the models perform very close to random, with
Gemma-2B achieving 33.8% and Gecko 33.2%.
In the VitaminC task, focused on fact verification,
both models show modest improvement over ran-
dom (33.3%), with Gemma-2B reaching 37% and
Gecko slightly lower at 35.4%. For the HH-RLHF
Harmlessness task, which classifies whether re-
sponses are harmless, both models achieve exactly
50%, matching random performance and indicat-
ing no learned capability. Finally, on BeaverTails
Classify, a binary classification task where random
accuracy is 50%, the models perform slightly bet-
ter, with Gemma-2B at 55.9% and Gecko at 54.7%,
reflecting some potential but still falling short of
reliable generalization. These results collectively
highlight the close-to-random performance of base-
line models on novel classification tasks, underscor-
ing the need for more advanced methods to achieve
meaningful improvements in generalization and
reasoning.

Baseline Models Perform Reasonably Well on
New Pairwise Classification Tasks Table 9 com-
pares the baseline accuracy of a model against ran-
dom predictions across pairwise classification tasks.
The results highlight the baseline model’s effective-
ness in these specific contexts:

On Dipper, the baseline model achieves an ac-
curacy of 73.06%, significantly outperforming the
random baseline of 50%, showcasing strong perfor-
mance in pairwise classification tasks.

Baseline Models Perform Very Well on New
Bitext-Mininig Tasks Bi-text mining Tasks in-
volve identifying semantically equivalent text pairs
across multilingual datasets. On each of the three
datasets consisting of a few hundred of document-
translation pairs, both Gemma-2B model and
Gecko model perform very well, excelling particu-
larly in NC2016 with a high accuracy of 98%, indi-
cating exceptional capability in identifying transla-
tions of text correspondences.

ESNLI(%) DialFact(%)
Random 33 33

Without label augmentation
Full-supervision with MNLI 34.0 33.1

With label augmentation
Full-supervision with MNLI (w/o label exp.) 35.0 33.2
Full-supervision with MNLI 42.0 35.8
Full-supervision with FaithDial data 36.87 34.95
Full-supervision over pre-finetuned with MNLI 37.61 33.5
Adapter with MNLI 36.1 33.2
Adapter over prefinetuned with MNLI 34.3 33.0

Table 10: Comparison of Results Across Different Con-
figurations on the factuality tasks

The baseline model performs strongly in bi-text
mining tasks, significantly surpassing random base-
lines, which are based on the inverse of the dataset
size (1/n). For pairwise classification tasks like
Dipper, the baseline accuracy of 73.06% highlights
the model’s potential for applications requiring
pairwise comparisons. These results emphasize
the effectiveness of the baseline model in identi-
fying document-level semantic relationships and
alignments, especially in multilingual or structured
datasets.

6 Label Augmentation on ATEB

We test label augmentation on factuality and safety
tasks in ATEB and show its effectiveness in improv-
ing an embedding model’s advanced capabilities.

6.1 Model
We adopt the Gemma V1-2B embedding model we
trained as a symmetric dual encoder. We adopt two
initialization settings before fine-tuning with label
augmentation data. The first setting is finetuning
directly over Gemma 2B. The second setting is
adopting a prefinetuning stage where full supervi-
sion finetuning is conducted with 76 Huggingface
Sentence Transformer datasets. 2,

6.2 Training data
We reformulate the training sets of two NLI entail-
ment classification datasets, MNLI (Williams et al.,
2018) and FaithDial (Dziri et al., 2022b) into the la-
bel augmentation setting to be used as our training
data for factuality classification tasks. For safety
classification tasks, we reformulate the training set
of BeaverTails Safety Ranking (Ji et al., 2023) task
to be used as training data.

6.3 Results
Factuality tasks. Table 10 presents the perfor-
mance of various configurations on two factuality

2https://huggingface.co/sentence-transformers



classification tasks: ESNLI (Camburu et al., 2018)
and DialFact (Gupta et al., 2022).

The random baseline accuracy for both tasks is
33% since they are both three-class classification
tasks. The Gemma-2B embedding model base-
line achieve 35.85% for ESNLI and 33.95% for
DialFact, showing a slight improvement over ran-
dom guessing. Finetuning with MNLI classifica-
tion data without unique IDs as introduced in the
label augmentation setting does not improve the
performance. Finetuning with MNLI data equipped
with unique ID also leads to no improvement. In-
corporating target explanations leads to a boost in
performance, yielding an improvement of 9% for
ESNLI and 2.8% for the out-of-domain DialFact.
Finetuning with out-of-domain, FaithDial classifi-
cation data (Dziri et al., 2022a) leads to a modest
increase, reaching 36.87% for ESNLI and 34.95%
for DialFact. This indicates that detailed target ex-
planations are particularly effective for in-domain
finetuning entailment tasks like ESNLI.

When fine-tuning over a pre-finetuned Gemma-
2B model with MNLI, performance drops to
37.61% for ESNLI and 33.5% for DialFact, show-
ing that while pre-finetuning over generic retrieval
tasks offers some benefits, it may not be as effec-
tive as direct full-supervision fine-tuning. Adapter-
based fine-tuning approaches offer a trade-off be-
tween training efficiency and performance. Fine-
tuning with an adapter achieves 36.1% for ESNLI
and 33.2% for DialFact. When the adapter-based
fine-tuning is applied to a pre-finetuned Gemma-
2B model, performance decreases slightly to 34.3%
for ESNLI and 33.0% for DialFact. These results
suggest that adapter-based methods, while compu-
tationally efficient, do not achieve the same level
of performance as full fine-tuning.

In summary, the table highlights several key
insights: 1) label augmentation with label ex-
planations provide the most substantial accuracy
gains, particularly for ESNLI. 2) adapter-based
fine-tuning offers a viable but much less effective
alternative to full-supervision fine-tuning. 3) addi-
tionally, task-specific instructions and data augmen-
tation strategies lead to only modest improvements
unless combined with detailed target explanations
or robust fine-tuning techniques.

Safety tasks Table 11 summarizes
Gemma-2B performance under four training
regimes—baseline, full fine-tuning, adapter
fine-tuning, and “pre-finetune plus fine-tune”

BeaverTails(%) HH-RLHF(%)
Random 50 50

Baseline 55.6 50.0

Reranking as retrieval
Full-supervision Gemma 2B 68.5 51.0
Full-supervision - pre-finetuned 56.5 50.1
Adapter with BeaverTails 59.0 50.0
Adapter with BeaverTails - pre-finetuned 58.1 50.2

Table 11: Comparison of Results Across Different Con-
figurations on the safety tasks.

on two safety benchmarks. BeaverTails, which
assesses content-safety ranking, starts at 55.6%,
while HHRLHF, measuring alignment with
human-RL feedback, begins at 50%, showing no
benefit without task-specific work.

All subsequent experiments use the same
label-augmentation setup (labels plus explanations).
Fine-tuning Gemma-2B directly on BeaverTails
Safety-Reranking data lifts accuracy to 68.5%, a
+12.9% gain, and nudges HHRLHF to 51.0%—ev-
idence that most improvements remain in-domain.
Switching to adapter-based fine-tuning reaches the
identical 68.5%/51.0% while modifying only a
sliver of parameters, highlighting its resource ef-
ficiency. By contrast, inserting an intermediate
pre-finetuning stage on generic retrieval data hurts
downstream alignment: both full and adapter ap-
proaches drop to 56.5% on BeaverTails, nearly eras-
ing the earlier gains, though HHRLHF remains flat.

Taken together, the results show that (1)
label-augmented, task-specific fine-tuning is essen-
tial for strong safety accuracy, (2) adapters can
match full updates at lower cost, and (3) indiscrimi-
nate pre-training may actively degrade performance
on tasks requiring precise human-preference align-
ment.

7 Conclusion

In conclusion, we propose a novel benchmark,
ATEB, to highlight the limitations of existing em-
bedding models in handling advanced NLP tasks.
By reformulating classification and reasoning tasks
as retrieval problems with label augmentation, our
approach enables embedding models to leverage
their strengths in capturing semantic relationships,
thereby extending their capabilities. Through ex-
tensive experimentation, we demonstrate that our
fine-tuning method can significantly enhance per-
formance on tasks involving factuality and safety.
These results underscore the importance of tailored
benchmarks and innovative training strategies in
advancing the development of more capable em-
bedding models.



8 Limitations

While we included 21 tasks in our benchmark,
many other safety, reasoning, and factuality tasks
could be incorporated to increase the diversity and
complexity of the benchmark. Additionally, we
evaluated our proposed data reformulation method
only on factuality and safety tasks and did not test
it on other task categories.
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A Appendix

A.1 Training details
Training dataset size We use the reformulated
training sets of the publicly available datasets in
training our factuality and safety models. We adopt
the train split in the original tasks.

Hyper-parameters We did not use hard nega-
tives in prefinetuning. We used a batch size of
1024, learning rate of 1e− 4. The number of train-
ing steps is 100, 000. The number of warmup steps
is st to 20, 000 and the input length is 256, the
output length is 1024. We used unmixed batches
during training and bidirectional loss.

We finetune both the factuality models and safety
models with 20k iterations and a batch size of 1024.
Our learning rate is set as 1e−4 with linear decay.
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