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ABSTRACT

While combinatorial problems are of great academic and practical importance,
previous approaches like explicit search and reinforcement learning have been
complex and costly. To address this, we developed a simple and scalable method to
train a Deep Neural Network (DNN) through self-supervised learning for solving a
goal-predefined combinatorial problem. Assuming that more optimal moves occur
more frequently as a path of random moves connecting two combinatorial states,
we show that the DNN can produce near-optimal solutions by learning to predict
the last move of a random scramble based on the problem state. We compare our
method to an optimal solver and DeepCubeA (Agostinelli et al., 2019), by solving
1,000 Rubik’s Cubes using the beam search. Although our model does not reach
the DeepCubeA baseline, its performance scales up with more training samples
and wider beam widths. The proposed method may apply to other goal-predefined
combinatorial problems, though it has a few constraints.

1 INTRODUCTION

Combinatorial search is a challenging task both in theory and in practice. Representative problems
include Traveling Salesman Problem, in which a salesman tries to travel through multiple cities in
the shortest path possible. Despite how easy it sounds, the problem is labeled NP-hard due to its
combinatorial complexity (Papadimitriou & Steiglitz, 1998); as the number of cities increases, the
number of possible combinations skyrockets. In the real world, algorithms for such problems are
applied in various ways to optimize logistics, supply chain, resource planning, etc.

In the past, researchers have proposed several shortcut algorithms to tackle the combinatorial com-
plexity of such problems. Recently, in particular, reinforcement learning has enabled automatic
search of algorithms to solve combinatorial problems near-optimally (Mazyavkina et al., 2021); by
rewarding efficient moves, DNNs can learn to find increasingly more optimal solutions. Rubik’s
Cube is also one such problem (Demaine et al., 2018), and there have been not only logical search
methods (Korf, 1997; Rokicki et al., 2014) but also heuristic (Korf, 1982; El-Sourani et al., 2010;
Arfaee et al., 2011) and reinforcement learning approaches (McAleer et al., 2018; Agostinelli et al.,
2019; Corli et al., 2021) that can solve any scrambled state of the puzzle. Nevertheless, combinato-
rial search is still no easy task; you need detailed knowledge of the target problem, coding explicit
logic, or configuring a reinforcement learning system. Reinforcement learning is especially notable
for the need to adjust architecture, loss function, and hyperparameters several times to stabilize the
learning process often involving non-differentiable operations.

To overcome this difficulty, we developed a novel method to train DNNs in a self-supervised manner
for solving combinatorial problems with a predefined goal. The method teaches a DNN probabil-
ity distributions of optimal moves associated with problem states, with an assumption that, for a
goal-predefined problem, random moves stemming from the goal state are probabilistically biased
towards optimality. In our experiment, by training a DNN to solve Rubik’s Cube, we evaluate our
method against an optimal solver and DeepCubeA (Agostinelli et al., 2019).

Contribution. We show that self-supervised learning can be all you need for solving some goal-
predefined combinatorial problems near-optimally, without requiring specialized knowledge or re-
inforcement learning.
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Figure 1: A simplified goal-predefined combinatorial problem in training and inference. When
random moves are probabilistically biased toward optimal moves, a model learns this distribution
and uses it for inference. Left: During training, random moves {a, b, c} can occur at every node
by the equal probability of 1/3. If an unknown path consisting of these duplicable moves connects
nodes G (goal) and S (scramble), the optimal (shortest) path (b, b) is most likely of all the paths
possible, followed by the second optimal three-move paths and then four-move paths. At all nodes,
adding up the probabilities of all the possible paths, a move in more optimal paths turns out to
have a higher probability of being in the unknown path. Thus, the model can learn the probability
distributions merely by observing a sufficient number of random moves derived from G. Right:
Using the learned probability distributions, the model can infer reverse paths from node S to the
unknown goal G consisting of the inverse moves {a′, b′, c′}. Since the moves in the shortest path
are learned most frequent of all paths, in this instance, the move b′ is predicted to be more optimal
than a′ and c′ at node S and its subsequent node.

2 PROPOSED METHOD

In this section, we first provide an overview of the proposed method and then discuss its constraints.
Below, we consider a combinatorial problem as a pathfinding task on an implicit graph. Each node
in the graph represents a unique state and has edges as moves to its adjacent nodes with an equal
probability.

2.1 OVERVIEW

The fundamental idea of the proposed method is as follows: 1) apply a sequence of random moves to
the target problem, and 2) train a DNN to predict the last random move based on the problem state.
By learning associations between problem states and probability distributions of the last moves, the
DNN can infer step-by-step moves as a reverse path to the initial goal state. After training, the
multinomial probability distribution of moves at inference step i should approximate

P (Xi = j : j ∈ M) =
∑

k∈ M
P (Xi+1 = k) · P (Xi = j | Xi+1 = k) (1)

where Xi is a choice of move at step i, and j and k belong to the set of all available moves M at
steps i and i+1. Here, the choice at step i does not actually depend on the future step i+1. Rather,
it should approximate how similar states depended on past steps during training, which in turn can
be viewed as future steps at inference. In this sense, the probability distribution of the move Xi

implicitly depends on paths to the current state or similar that appeared during training. Figure 1
shows a miniature example.

2.2 CONDITION AND ASSUMPTIONS

There is one necessary condition for the proposed method to work, one assumption for a DNN to
approximate towards an optimal solver, and another assumption for effective training and inference.
First, to be solved with the proposed method, a problem must meet the following condition.
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Condition 1. For the problem of interest, its goal state is predefined and readily available.

For a DNN to learn probability distributions of moves connecting to the goal state, any path consist-
ing of random moves must be derived from the goal state. Therefore, Condition 1 is necessary for
the proposed method.

Subsequently, the following two assumptions are desirable for a self-supervised DNN to approxi-
mate an optimal solver.

Assumption 1. The more optimal a move is, the more frequently it occurs.

Although Assumption 1 is not necessary for applying the proposed method, the more true Assump-
tion 1 is for the problem, the more optimal the DNN will be. Here, we formulate the statistical
condition for Assumption 1 to be true on a problem when all moves at every node have an equal
likelihood. Let pn,a be the probability of taking a particular move a as the first step to a specific
target node in a path of n moves or more,

pn,a =

kmax∑
k=n

Ck|n

Ak
(2)

where k is the move count to the target state, kmax is the maximum number of k, A is the total
number of possible moves at all nodes, and Ck|n is the number of k-move paths (k ≥ n). Likewise,
let b be an alternative to a that requires n + 1 moves or more, Assumption 1 is true if and only
if pn,a ≥ pn+1,b. Thus, provided pn,a = Cn|n/A

n +
∑kmax

n+1 (Ck|n/A
k), the following must be

satisfied for any n for Assumption 1 to be true:

Cn|n

An
+

kmax∑
k=n+1

Ck|n

Ak
≥

kmax∑
k=n+1

Ck|n+1

Ak
(3)

At this point, both Ck|n and Ck|n+1 are unknown on an implicit graph, and the
∑

terms do not
necessarily equal when the paths start with different moves. However, the only potential difference
is the first move in two paths of different optimalities, and just taking a sub-optimal b move should
not largely increase the total number of same-distance paths. Therefore, we assume that this holds
true to varying degrees depending on the problem being addressed.

Assumption 2. The maximum number of moves required to solve any state—so-called God’s
Number—or at least its upper bound should be known for a target problem.

In the proposed method, let NG be God’s number of a given problem, the DNN receives problem
states shuffled for 1 ∼ NG moves. If you estimate the number smaller than it actually is, then
the DNN would not well adapt to problem states of higher complexities during inference. On the
contrary, if you overestimate NG, you may unnecessarily apply additional moves to states of the
highest complexity, resulting in more non-optimal moves in training scrambles. One way to address
this limitation would be to keep increasing the maximum number of shuffles, as long as the DNN
can make predictions beyond chance for the maximum complexity.

If Condition 1 and Assumption 1 are met, random moves should have expected probability distribu-
tions peaking around optimal moves. It is also notable that the degree to which a problem satisfies
Assumption 1 affects the optimality of the trained DNN: the more possible paths violating Assump-
tion 1, the less optimal the DNN will be. Although the example in Figure 1 has a very restricted
setting for explanatory simplicity, this observation could apply to similar problems of higher dimen-
sions and complexities under these constraints. Accordingly, we hypothesize DNNs to learn to solve
goal-predefined combinatorial problems near-optimally.
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Figure 2: An illustrated scheme of the proposed self-supervised learning on Rubik’s Cube. Applying
a sequence of random moves [F’ U R R D’ B F L] to Rubik’s Cube, the DNN receives the
one-hot representation of the scrambled state as input and predicts the last move in the scramble.

3 EXPERIMENT

3.1 RUBIK’S CUBE

Rubik’s Cube is a cubic puzzle with 6 faces each having 9 color stickers. The goal of the puzzle is
to move the stickers by rotating pieces on 6 faces, so that each face has stickers of only one color.
Including the goal state, the puzzle can have approximately 4.3× 1019 different states.

In our experiment, the puzzle is represented by its sticker locations and their colors. By assigning
indices to all sticker locations and colors, one-hot encoding can represent the puzzle in 324 dimen-
sions (54 sticker locations×6 colors). For rotating Rubik’s Cube, we employ the quarter-turn metric
(a 90° turn of a face counts as one move whereas a 180° turn counts as two), meaning 12 possible
moves for every given state. In this configuration, solving Rubik’s Cube can be described as an
implicit graph search problem in the 12-D action space.

3.2 LEARNING OBJECTIVE

Given the state of a Rubik’s Cube scrambled for random 1 ∼ 26 moves1, a DNN predicts the last
move of a scramble (see Figure 2). Here, we set the maximum scramble length to 26 because the
number is known as sufficient for optimally solving any state of Rubik’s Cube (Kunkle & Coop-
erman, 2007). Since the inverse of the last scramble move is expectedly close to optimal under
Assumption 1, we hypothesize that the DNN can learn to solve the puzzle near-optimally through
this learning objective.

3.3 MODEL

We employ the same architecture as DeepCube and DeepCubeA (McAleer et al., 2018; Agostinelli
et al., 2019). The model first has two fully-connected (FC) layers, followed by four residual
blocks (He et al., 2016) each containing two FC layers. Finally, for the prediction output, the model
has a 12-D FC layer with softmax activation.

The DNN is trained for 1, 000, 000 steps with a fixed batch size of 5, 200 (200 states per scramble
length × 26 scramble moves). We use Adam optimizer (Kingma & Ba, 2014) with the initial learning
rate of 10−4 for updating model weights.

1We exclude obviously redundant moves like R (90° clockwise turn on the right face) following R’ (coun-
terclockwise).
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3.4 INFERENCE

For solving Rubik’s Cube with the trained model, we adopt a simple beam search. Starting from
depth 1 with a scrambled state, at every depth i, the DNN predicts the next moves for every candidate
state. Let k be the width of the beam search, we pass at most k candidate paths and corresponding
states to the next depth i+ 1, sorted by their expected probabilities. Also, for every potential move,
if a move a is predicted to be worse than chance (i.e., p(Xi = a) < 1/12), we exclude the path from
the set of candidates before sorting. The search continues until any of the candidate states is solved,
at which point the search depth matches the solution length.

4 RESULTS

To test our method on Rubik’s Cube, we use the same dataset as DeepCubeA (Agostinelli et al.,
2019), which contains 1, 000 Rubik’s Cubes randomly scrambled for 1, 000 ∼ 10, 000 moves2. We
evaluate checkpoint models trained for 0.25, 0.5, and 1.0 million steps (0.25M, 0.5M, and 1.0M
models) by solving the test cases with beam widths scaling in factorials of 2 from 28 to 215, and
compare the results to those of DeepCubeA and an optimal solver (Agostinelli et al., 2019).
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Figure 3: Solution length versus number of nodes by three methods: Optimal solver, DeepCubeA,
and ours. Each dot represents the number of moves in a solution and the number of nodes expanded
during a search. For a clear comparison, we scatter plot the result of solutions by 1.0M model
with the beam width of 215 only. Frequency plots are separately shown for both dimensions, and
The pink dashed line shows the trajectory of mean coordinates (cross markers) scaling up along the
beam widths for each model. Some crosses are annotated by their corresponding beam widths.

2Code Ocean Capsule by Agostinelli et al. (2019) (doi.org/10.24433/CO.4958495.v1)
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With the beam widths of 28 ∼ 215, all checkpoint models successfully solved all test cases. Figure 3
shows how our result compares to the results of DeepCubeA and the optimal solver3 in terms of
solution length and number of nodes expanded during solution search.

Similarly, Figure 4 plots the amount of time taken and the solution length to solve for every test
case. Because the calculation time strongly depends on environmental configurations (e.g., num-
ber of GPUs, distributed processing, etc.), we normalized our results so that the average per-node
computation time matches that of DeepCubeA. By doing so, we virtually simulate the temporal
performance of our model in a DeepCubeA-equivalent environment. As Figure 5 shows, there are
strong correlations between number of nodes and calculation time.
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Figure 4: Calculation time versus solution length by three methods. The scatterplot on the left shows
the actual time taken, and the right one shows the time normalized by per-node computation time.
Similar to Figure 3, the mean coordinates are marked by a cross for all results.
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Figure 5: Associations between the number of nodes and calculation time for three different meth-
ods. Left: Strong correlations between the two metrics in log scales. Right: Distributions of
computation time per node for the optimal solver, DeepCubeA, and ours (1.0M model).

3Solutions provided on GitHub repository (github.com/forestagostinelli/DeepCubeA/)
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Table 1: Different methods’ performance on solving Rubik’s Cube. Mean values are reported for
solution length, number of nodes, and time taken to solve per test scramble. Optimal (%) indicates
the percentage of optimal solutions. The last row shows the calculation time normalized in compar-
ison to DeepCubeA as in Figure 4.

Method Solution length No. of nodes Time taken (s) Optimal (%)

Optimal solver 20.64 2.05× 106 2.20 100.0
DeepCubeA (paper) 21.50 6.62× 106 24.22 60.3
DeepCubeA (GitHub) 21.35 8.19× 106 75.61 65.0
Ours 23.09 0.52× 106 35.60 12.6
Ours (Normalized) 4.72

Table 1 summarizes the statistics of different methods, including the paper result of Deep-
CubeA (Agostinelli et al., 2019). For our method, we report the result for solutions by 1.0M model
with the beam width of 215.

5 DISCUSSION

We proposed an intuitive and easy-to-implement method to solve goal-predefined combinatorial
problems. Self-supervised on random moves and corresponding problem states, our DNN success-
fully learned to solve Rubik’s Cube. Still, this success does not indicate the degree to which Rubik’s
Cube satisfies Assumption 1 as an implicit graph search problem.

Although our method did not outperform DeepCubeA in terms of solution optimality, it appears to
be scalable and still has the prospect of reaching the baseline. As Table 1 shows, while DeepCubeA
generated 650 optimal solutions for 1, 000 test cases, our model did so for only 126 cases in the
experiment. Also, when optimal solutions average 20.64 moves, our model generated solutions
with an average length of 23.09, whereas DeepCubeA solutions are 21.35 moves long on average.
However, we believe that this difference is largely attributed to the amount of computation. Whereas
DeepCubeA was trained on 10 billion examples (Agostinelli et al., 2019), our model was trained
only on the equivalent of 0.2 billion examples (1 million steps ×200 per scramble length). Also,
while searching for solutions, DeepCubeA expanded an average of 8.19 × 106 nodes, while ours
did only 0.52 × 106 nodes per case. In addition to this, as Figure 3 shows, our method is scalable;
the inference performance scales up with the number of training samples and the beam widths.
Therefore, our method might still reach the DeepCubeA baseline, and possibly the optimal solver as
well, with more training and inference computation.

Also, because of the strong correlations between number of nodes and calculation time (Figure 5),
our method has a trade-off between calculation time and solution optimality, as Figure 4 shows. For
a practical application, one might control the beam width so that the DNN can find good enough
solutions in a reasonable time, depending on the execution environment. Like language models (Ka-
plan et al., 2020), enlarging the model might also contribute to the solution performance. Future
research could study the scaling laws for higher efficiencies and performance, making the best use
of limited time and computational resources.

As the most important limitation, when applying the proposed method, the target problem must
have a predefined goal (Condition 1). Therefore, our method cannot apply to multiplayer games
like chess, in which no goal state is available in advance, whereas reinforcement learning is an
appropriate and effective approach (Silver et al., 2018). Likewise, problems like Traveling Salesman
Problem, whose objective is to find the goal combinatorial state itself, will not be best solved by our
method.

Nonetheless, the proposed method has potential applications to other problems. Our method would
also be suitable for other goal-predefined puzzles like 15 puzzle, Light Out, Sokoban, etc., which are
also solved by DeepCubeA (Agostinelli et al., 2019). We show an application of our method on 15
puzzle in Appendix A. If Assumption 1 is met, applications might extend to real-world problems like
route planning with variable-distance moves, for example, by weighting probability distributions of
random training moves inversely by move distances. Another potential application, which we did
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not examine in this work, is to problems where the action space is continuous. For instance, if a robot
has the task of pressing a button with its finger, starting with the finger touching the button (goal
state), we could apply the inverse of a random move based on continuous probability distributions
of motors for training. To the best of our knowledge, such a training method has not been reported.

Our method could also be used as pre-training for further optimization with reinforcement learning.
The policy a DNN learns in our method is blurred due to the randomness of training moves, which
reinforcement learning could potentially rectify. This pretraining would provide stable guidance for
an agent learning the optimal policy.

In the specific domain of Rubik’s Cube, it may well adapt to any algorithmic demands and con-
straints. For example, if you want to develop a robotic Rubik’s Cube solver with only five motors,
you only need to train/finetune a model without rotating a specific face in random scrambles. For
another, you may tune the method for ergonomic optimality. Controlling the probability distribution
of random moves in training scrambles may result in easy-to-execute solutions at inference.

6 CONCLUSION

In this work, we introduced a simple and scalable method to solve goal-predefined combinatorial
problems through self-supervision. Our method trains a DNN to predict the last move of a random
scramble given a problem state, with an assumption that mere random moves can form probability
distributions biased towards optimalities associated with problem states. Tested on Rubik’s Cube,
the trained DNN successfully solved all the 1, 000 test cases near-optimally. Though with some
constraints, the proposed method is potentially applicable to similar combinatorial problems as well,
possibly with fewer constraints. It may also provide new ideas for self-supervised learning and
reinforcement learning.

REPRODUCIBILITY STATEMENT

We provide a jupyter notebook for reproducibility testing:

colab.research.google.com/drive/1EOFrB-LxgW0AeRzrFNTpTupqyDbxUjEp
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A 15 PUZZLE

We present one application of the proposed method other than Rubik’s Cube: 15 puzzle. 15 puzzle
is a sliding puzzle consisting of 15 numbered tiles and 1 empty slot on a 4×4 board. The goal is to
align the tiles in order of their numbers, by repeatedly swapping the empty slot with neighboring
tiles. Including the goal, the puzzle can take approximately 1.0× 1013 states, and it is known to be
solved in 80 moves or fewer (Brüngger et al., 1999; Korf, 2008).

Like for Rubik’s Cube, we trained a single model on 8, 000, 000 samples (100, 000 steps ×10 sam-
ples per shuffle length) and tested on the same DeepCubeA dataset (Agostinelli et al., 2019) contain-
ing 500 test cases for this puzzle. Using the beam search, the trained model successfully solved all
the cases with beam widths of 27 ∼ 212. Like for Rubik’s Cube, the mean solution length decreases
with wider beam widths (see Figure 6). Table 2 summarizes the different results. For this puzzle,
we do not control for per-node computation times.
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Figure 6: Solution length versus number of nodes generated during solution search.

Table 2: Different methods’ performance on solving 15 puzzle. Mean values are reported for solu-
tion length, number of nodes, and time taken to solve per test scramble. Optimal (%) indicates the
percentage of optimal solutions.

Method Solution length No. of nodes Time taken (s) Optimal (%)

Optimal solver 52.02 3.22× 104 0.0019 100.0
DeepCubeA (Paper) 52.03 3.85× 106 10.28 99.4
DeepCubeA (GitHub) 52.02 3.28× 106 8.82 100.0
Ours 53.86 0.17× 106 54.44 39.4
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