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Abstract

Training large language models (LLMs) for001
different inference constraints is computation-002
ally expensive, limiting control over efficiency-003
accuracy trade-offs. Moreover, once trained,004
these models typically process tokens uni-005
formly, regardless of their complexity, lead-006
ing to static and inflexible behavior. In this007
paper, we introduce a post-training optimiza-008
tion framework, DynaMoE, that adapts a pre-009
trained dense LLM to a token-difficulty-driven010
Mixture-of-Experts model with minimal fine-011
tuning cost. This adaptation makes the model012
dynamic, with sensitivity control to customize013
the balance between efficiency and accuracy.014
DynaMoE features a token-difficulty-aware015
router that predicts the difficulty of tokens and016
directs them to the appropriate sub-networks017
or experts, enabling larger experts to handle018
more complex tokens and smaller experts to019
process simpler ones. Our experiments demon-020
strate that DynaMoE can generate a range of021
adaptive model variants of the existing trained022
LLM with a single fine-tuning step, utilizing023
only 10B tokens, a minimal cost compared to024
the base model’s training. Each variant offers025
distinct trade-offs between accuracy and perfor-026
mance. Compared to the baseline post-training027
optimization framework, Flextron, our method028
achieves similar aggregated accuracy across029
downstream tasks, despite using only 1

9 th of030
their fine-tuning cost.031

1 Introduction032

Large language models (LLMs) have significantly033

advanced the field of natural language process-034

ing, showcasing strong capabilities in addressing035

complex tasks (Brown et al., 2020; Touvron et al.,036

2023a; Wei et al., 2022). However, their large size037

presents challenges, particularly in terms of high038

memory and computational demands, which can039

limit their deployment in resource-constrained set-040

tings. To address this, LLMs must be optimized041

for specific memory and computational constraints042

(Touvron et al., 2023b). However, designing multi- 043

billion-parameter models for every use case is not 044

cost-effective, as it demands substantial training 045

time, data, and resources. 046

Some prior works have focused on adapting 047

large LLMs for resource-constrained use cases 048

by distilling knowledge from larger models into 049

smaller ones (Hsieh et al., 2023) or pruning model 050

parameters to reduce computational demands (Sun 051

et al., 2024). While these methods effectively 052

enable the use of large LLMs in low-resource 053

scenarios, they often lead to performance degra- 054

dation and require careful balancing between ef- 055

ficiency and accuracy. Alternatively, other ap- 056

proaches have investigated many-in-one LLM de- 057

signs, MatFormer (Devvrit et al., 2023) and Sorted- 058

Net (Valipour et al., 2024), to employ multiple sub- 059

networks within a single model to accommodate 060

different computational budgets. These architec- 061

tures use nested structures integrated into the stan- 062

dard LLM framework. However, they require non- 063

standard methodologies and significantly longer, 064

more resource-intensive training processes, which 065

can offset the intended efficiency benefits. 066

Mixture-of-Experts (MoE) models (Shazeer 067

et al., 2017; Du et al., 2021; Fedus et al., 2022; 068

Zoph et al., 2022; He, 2024) have emerged as a 069

promising alternative to dense models, offering 070

improved efficiency by sparsely activating select 071

sub-modules or experts. This selective activation 072

enables MoEs to achieve high performance while 073

using fewer computational resources during infer- 074

ence. However, training MoEs from scratch re- 075

mains resource-intensive and each expert becomes 076

static, often requiring fixed compute budget irre- 077

spective of the input complexity. 078

Flextron (Cai et al., 2024) explored a post- 079

training methodology by integrating the MoE con- 080

cept into a nested elastic structure within the MLP 081

layers, creating heterogeneous experts of differ- 082

ent sizes, selected by a router conditioned on the 083
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Figure 1: Overview of our proposed post-training optimization framework, DynaMoE. The left part represents the
base pre-trained LLM, while the right part shows the adapted DynaMoE model.

input data. However, the lack of supervision in084

the router training leads to sub-optimal input com-085

plexity adaptation. Furthermore, the router lacks086

a parameter to customize its sensitivity to token087

complexity, limiting its flexibility and performance088

in handling diverse use-cases. Salehi et al. (2023)089

proposed an input-adaptive approach that predicts090

the difficulty of input data and dynamically adjusts091

the network’s width accordingly. In the absence of092

ground-truth difficulty labels, they relied on heuris-093

tic methods for label generation, which may limit094

precision and consistency in difficulty estimation.095

To address their shortcomings, we introduce096

DynaMoE, a post-training optimization frame-097

work designed to transform a dense LLM into a098

token-difficulty-driven MoE model. DynaMoE099

leverages the insight that not all tokens require the100

full capacity of a model’s weights. For example, in101

the sentence “Geoffrey did his PhD at the university102

of Edinburgh”, simpler tokens like “at the univer-103

sity of” are predictable using prior context, while104

more complex tokens like "Edinburgh" demand105

broader contextual understanding. To maximize106

efficiency, DynaMoE selectively activates nested107

sub-components of the MLP, referred as experts,108

based on the predicted difficulty of each token. To109

this end, we make the following contributions:110

• The framework includes a novel token-111

difficulty-aware router, trained to predict to-112

ken hardness and assign it to the appropriate113

expert dynamically.114

• Due to the lack of ground truth notion of hard-115

ness, we introduce a method to derive token116

difficulty labels which serve as supervision117

signals for training the router. This approach118

allows a token to have varying difficulty labels 119

across different layers. 120

• A simplified post-training optimization frame- 121

work that efficiently adapts a pre-trained 122

dense LLM into a token-difficulty-driven 123

MoE model, featuring a sensitivity parame- 124

ter to customize the efficiency vs accuracy 125

trade-off. 126

2 Method 127

In this section, we describe our proposed post- 128

training optimization framework, DynaMoE, 129

which transforms a dense LLM into an MoE model 130

for adaptive inference based on token difficulty. 131

The process involves three key steps: (1) defining 132

heterogeneous experts by splitting the MLP layers 133

of the dense LLM; (2) generating token labels dur- 134

ing training to represent token difficulty; and (3) 135

training a router to predict token difficulty while 136

fine-tuning the model. We detail these steps in the 137

below sub-sections. 138

2.1 Defining Heterogeneous Experts 139

In this work, we focus on defining experts into 140

the MLP layers of the LLM (Devvrit et al., 2023), 141

as these layers account for the majority of the 142

compute and operate on a token-by-token basis. 143

The overview of DynaMoE is depicted in Fig. 1. 144

The left part of the figure denotes the base pre- 145

trained model which consists of the normaliza- 146

tion layers, attention layers and the MLP layers 147

in each transformer block. The right part shows the 148

adapted DynaMoE model, where the original sin- 149

gle MLP layer is transformed into multiple nested 150

FFN blocks or experts. Such expert formation intro- 151
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duces no additional parameters to the base model,152

aside from the router. This design draws inspira-153

tion from adaptive width reduction in transformer154

(Salehi et al., 2023) and recent works like Mat-155

former (Devvrit et al., 2023) and Flextron (Cai156

et al., 2024). The attention layers remain frozen,157

and the MLP layers adapted to nested experts are158

fine-tuned in DynaMoE.159

Let D and H denote the embedding and the hid-160

den dimensions of the MLP layer respectively. The161

input to the MLP layer is X ∈ RB×D and the out-162

put is Y ∈ RB×D, where B is the batch dimension.163

The MLP layer with two fully connected layers is164

represented by weight matrices W (IN) ∈ RH×D165

and W (OUT ) ∈ RD×H . In order to get best re-166

sults, we first rearrange these fully-connected lay-167

ers, W (IN) and W (OUT ), to have the most impor-168

tant rows/columns in the beginning of the matrix so169

that they can be included in all of the experts (Sam-170

ragh et al., 2023). There are a total of E experts171

indexed using e ∈ {0, 1, . . . , E − 1}. Each expert172

gets a portion He of the weight matrices W (IN)173

and W (OUT ), sliced over the hidden dimension H .174

The value He is obtained as a fraction of H as,175

He =

⌊(
e+ 1

E

)
·H

⌋
, (1)176

consequently, H0 < H1 < · · · < HE−1 and177

HE−1 = H . Note that the expert with index E − 1178

utilizes the full MLP layer. The restriction of the179

matrices W (IN) and W (OUT ) to the expert width180

He is obtained using the slicing operator that se-181

lects the first He rows and columns respectively182

as183

W (IN)
e = W (IN)[0 : He, :], (2)184

W (OUT )
e = W (OUT )[:, 0 : He]. (3)185

With σ as the activation function, the output Ye186

of the MLP layer corresponding to the expert e can187

thus be obtained as,188

Ye = σ

(
X ·

(
W (IN)

e

)T
)
·
(
W (OUT )

e

)T
. (4)189

2.2 Generating Token Difficulty Label190

We aim to train a token-difficulty-aware router to191

dynamically assign tokens to an appropriate expert.192

But there is no ground-truth label denoting token193

difficulty to train such a router. To this end, we194

propose a method to estimate the token difficulty195

and generate a derived-ground-truth difficulty label196

during training. This is shown as “Token Difficulty 197

Label Generator” in Fig. 1. 198

First, we pass the input to all experts and gen- 199

erate the output Ye for each e ∈ [E]. Then, for 200

each token b ∈ [B] and each expert e ∈ [E], we 201

compute a similarity score Sb,e that measures how 202

similar is the output of the expert e compared to 203

the output of the full MLP layer e = E − 1 for that 204

token. We calculate this similarity as, 205

Sb,e =
⟨Ye[b, :],YE−1[b, :]⟩

⟨YE−1[b, :],YE−1[b, :]⟩
. (5) 206

Here, ⟨·, ·⟩ denotes the dot-product between two 207

vectors. We use dot-product in this calculation as it 208

accounts for both the magnitude and the direction 209

of the tensors being compared. 210

Finally, we generate a derived ground-truth hard- 211

ness label lb, representing the target expert index 212

for token b. Given a threshold θ, we assign lb as 213

the smallest expert index e satisfying Sb,e > θ, that 214

is, lb = min{e ∈ [E] | Sb,e > θ}. We say that a 215

token is easier if it has a smaller label lb, that is 216

the similarity score for a smaller expert is higher 217

than threshold θ. In such cases, processing the to- 218

ken with the smaller expert incurs less compute 219

without much compromise in the accuracy. During 220

the forward pass of fine-tuning of DynaMoE, we 221

generate the token difficulty labels. These labels 222

are then used in the backward pass to compute the 223

router loss, which trains the router. 224

2.3 Training a Token-Difficulty-Aware Router 225

The output of a router is in RB×E , denoting logits 226

over the E experts. Each router is parameterized by 227

two linear layers, projecting the token embedding 228

from dimension D to U and subsequently to E. 229

In our experiments, we use U = 256, resulting 230

in total parameters added by the routers across all 231

layers to 33.6M , which is only 0.51% of the base 232

model size. 233

We train the router using the derived labels from 234

Section 2.2. The objective is to learn the expert 235

prediction using the derived-ground-truth labels to 236

mimic token assignment based on their complexity 237

and need. Hence, we impose the cross-entropy loss 238

on the router to guide to this behavior and call it as 239

the router loss. The overall objective function of 240

DynaMoE is given as, 241

L = λLLM · LLLM + λRouter · LRouter. (6) 242

Here, LLLM is the main LLM Cross-entropy loss 243

and LRouter is the router loss. λLLM and λRouter 244
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Cost (#Tokens) Params ARC-e LAMBADA PIQA WinoGrande Avg4 SciQ HellaSwag ARC-c Avg7

Base Mistral 7B - 7B 80.2 75.1 80.8 75.5 77.8 96.4 61.4 50.5 74.2

DynaMoE θ = 0.9 10B 6B 75.0 71.0 78.3 71.8 74.0 95.2 57.9 41.5 70.1

DynaMoE θ = 0.8 10B 5.1B 69.9 68.0 78.0 66.0 70.5 94.2 54.5 35.2 66.5

DynaMoE θ = 0.7 10B 4.6B 66.0 65.9 75.4 63.4 67.7 93.6 52.1 31.7 64.0

Base Llama2-7B † - 6.5B 75.1 71.5 77.5 69.1 73.3

Flextron † 93.57B 4.1B 68.6 65.1 76.1 63.7 68.3

Table 1: Evaluation of DynaMoE models with different sensitivity factor θ on downstream tasks, using 0-shot
non-normalized accuracy metric. Our base model is Mistral 7B (Jiang et al., 2023). (†): results from Flextron (Cai
et al., 2024) used as our baseline. Params denotes the average number of total activated parameters, aggregated over
the downstream tasks. Avg4 averages over ARC-e, LAMBDA, PIQA, WinoGrande, while Avg7 averages over all
tasks.

are hyper-parameters, denoting the weights of the245

respective losses.246

3 Experimental Set up247

3.1 Model and Dataset248

Model: DynaMoE provides a simplified post-249

training approach to convert any dense LLM to250

an MoE model with a tunable sensitivity factor θ,251

the similarity threshold, to achieve desired latency252

reduction and the tolerance for drop in accuracy.253

DynaMoE integrates seamlessly with any trans-254

former model, regardless of the architecture. To255

showcase the effectiveness of the method, we use256

Mistral 7B model (Jiang et al., 2023), a widely-257

used open-source pre-trained language model, as258

the base model.259

Dataset: For DynaMoE fine-tuning, we use a260

small subset (10B tokens) of the Falcon Refined-261

Web dataset (Penedo et al., 2023). Falcon Refined-262

Web is an open-source dataset which contains high-263

quality web data. This minimal fine-tuning over-264

head enables a cost-effective conversion of any265

pre-trained LLM into an MoE variant for faster266

inference.267

3.2 Training Details268

We first reorder the pre-trained weight matrices269

(Samragh et al., 2023) in the MLP blocks before270

fine-tuning DynaMoE so that the most important271

weights can be included in all the experts. We run272

the dense LLM on a subset of the data and col-273

lect the absolute activations from the MLP layer,274

Y ∈ RB,H . This subset can be a very small portion275

of the training data, 0.004% tokens of the Falcon276

RefinedWeb in our case. Subsequently, we aggre-277

gate the activations along the batch dimension and278

across all the subset samples to obtain an impor- 279

tance score for each neuron in the hidden dimen- 280

sion. Using this importance score, we sort the MLP 281

matrices. 282

Next, we fine-tune the DynaMoE model us- 283

ing only 10B tokens with AdamW optimizer 284

(Loshchilov and Hutter, 2017) and a fixed learn- 285

ing rate of 10−5. We keep the attention layers 286

frozen. We set λLLM to 0.2 and λRouter to 1 in 287

Equation (6), the objective function for fine-tuning. 288

We experiment with different values of threshold 289

θ ∈ {0.7, 0.8, 0.9} to build a family of DynaMoE 290

models with varying sensitivity parameter. A low 291

sensitivity parameter, that is a smaller value of θ, 292

makes the system less reactive, favoring smaller 293

experts for most tokens and only escalating to big- 294

ger experts for significantly complex tokens. And a 295

high sensitivity parameter makes the system more 296

reactive, escalating to bigger experts even for mod- 297

erately complex tokens. We use 4 experts (E = 4) 298

with sizes 0.25H , 0.5H , 0.75H , and H respec- 299

tively. We denote the size of expert with index e as 300

He. 301

4 Results 302

4.1 Evaluation 303

We evaluate the DynaMoE models on 7 down- 304

stream tasks using LM Evaluation Harness (Gao 305

et al., 2024) and report the 0-shot non-normalized 306

accuracy metric in Table 1. The selected evaluation 307

tasks include ARC (Easy and Challenge) (Clark 308

et al., 2018), HellaSwag (Zellers et al., 2019), PIQA 309

(Bisk et al., 2019), SciQ (Welbl et al., 2017), Wino- 310

Grande (Sakaguchi et al., 2019), and LAMBADA 311

(Paperno et al., 2016). 312

DynaMoE is compared to two baselines, the 313
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(a) (b) (c)

Figure 2: Confusion matrix for the router’s classification task in DynaMoE. The strong diagonal pattern in the
matrices reflects high classification accuracy. The misclassified tokens often occurred in neighboring expert classes.

(a) (b)

(c) (d)

Figure 3: Layer-wise expert usage pattern of DynaMoE models with varying θ, aggregated across 7 downstream
tasks. Each layer uses experts of varying sizes depending on the inputs. The sensitivity parameter θ regulates how
readily tokens are routed to larger experts based on their difficulty: a lower θ favors smaller experts, while a higher
θ prioritizes larger experts. 3d shows the case when DynaMoE is trained without the router loss λRouter. In this
case, the model tends to assign a specific expert per layer instead of dynamically selecting experts based on token
difficulty.

base Mistral 7B model and the Flextron model314

(Cai et al., 2024) using Avg4 and Avg7 in Table 1.315

Compared to Mistral 7B, DynaMoE with θ = 0.8316

improves efficiency by activating only 5.1B of 7B317

parameters on average, with an 7.3 point accuracy318

drop after fine-tuning on only 10B tokens on the319

downstream tasks. The number of activated pa-320

rameters adapts dynamically to token difficulty. 321

For reference, Flextron fine-tunes on 93.57B to- 322

kens, activating 4.1B of 6.5B parameters, with a 5 323

point accuracy drop from its base model, Llama2- 324

7B (Touvron et al., 2023a). We emphasize that 325

with only 1
9 th of the Flextron’s fine-tuning cost, 326

our results for DynaMoE with θ = 0.7 are com- 327
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parable to Flextron. Accuracy improves with in-328

crease in fine-tuning cost, but to keep the adaption329

lightweight, we opt for a smaller cost.330

4.2 Analysis of Token-Difficulty-Aware331

Router332

We assess the performance of the Token-Difficulty-333

Aware router by gathering its predictions from all334

layers across the 7 downstream tasks outlined in335

Section 4.1. These predictions are then compared336

to the ground truth labels derived in Section 2.2.337

Using both sets of labels, we compute the router’s338

overall classification accuracy.339

We present the confusion matrices for the340

router’s classification tasks across all DynaMoE341

models in Fig. 2. Notably, the matrices exhibit342

a strong diagonal pattern, indicating high classi-343

fication accuracy. Furthermore, when the router344

misclassifies tokens, the errors predominantly oc-345

curred in neighboring expert classes, underscoring346

the router’s effectiveness in distinguishing token347

difficulty levels.348

4.3 Experts usage analysis349

We visualize the expert usage patterns across all350

layers in Fig. 3. For each model, the Y-axis rep-351

resents the percentage of tokens routed to a spe-352

cific expert, while the X-axis indicates the layer353

index. Notably, a token’s perceived difficulty may354

vary across layers, hence it can be routed to dif-355

ferent experts as the token progresses through the356

model. The visualization shows that all experts357

are utilized in varying proportions across layers,358

reflecting an aggregated behavior over the 7 tasks.359

However, during inference, the model adapts to the360

data, with simpler queries predominantly engaging361

lower-compute experts to maximize efficiency.362

The parameter θ affects expert usage in363

DynaMoE models by controlling how quickly to-364

kens are routed to larger experts based on diffi-365

culty. At lower θ values (e.g., θ = 0.7), smaller366

experts (e = 2) dominate across layers, optimiz-367

ing for efficiency. In contrast, at higher θ values368

(e.g., θ = 0.9), larger experts (e = 3) are uti-369

lized more frequently, prioritizing accuracy over370

efficiency. This shift demonstrates θ’s role in bal-371

ancing computational resource allocation and pre-372

diction accuracy.373

Ablating the Router Loss: To examine the374

router loss’s role in expert allocation, we train a375

DynaMoE model without it, relying solely on the376

LLM loss to train the router. Tokens are routed377

using the router’s predicted expert indices without 378

explicit difficulty supervision. The resulting expert 379

usage pattern, shown in Fig. 3d, reveals that the 380

model converges to using specific experts per layer 381

instead of dynamically allocating experts based on 382

token difficulty. In contrast, when router loss is 383

applied, expert usage adapts dynamically to token 384

difficulty across layers. 385

5 Conclusion 386

We present DynaMoE, a post-training optimiza- 387

tion framework that converts a standard pre-trained 388

dense LLM into a token-difficulty-driven MoE 389

model. DynaMoE incorporates a lightweight 390

router to predict the token difficulty and routes 391

them to an appropriate expert. To train this router, 392

we propose a novel method to derive the token 393

difficulty labels, which act as supervision signals. 394

DynaMoE generates adaptive model variants with 395

sensitivity control, allowing customization of the 396

trade-off between efficiency and accuracy. 397

Limitations 398

While the proposed post-training optimization 399

framework, DynaMoE, and the token-difficulty- 400

aware router provide a general-purpose approach 401

for token-difficulty adaptive processing, this work 402

does not explore their application to pre-trained 403

heterogeneous mixture of expert (HMoE) models 404

(Wang et al., 2024). Such models, with their built- 405

in experts of varying capabilities, could benefit 406

from the integration of DynaMoE, which provides 407

a direct mechanism for routing tokens to appro- 408

priate experts based on token difficulty. Incor- 409

porating DynaMoE with HMoE models offers a 410

promising direction for future exploration. Addi- 411

tionally, while DynaMoE makes the base model 412

input-adaptive, offering inference efficiency, this 413

work evaluates efficiency only in terms of the num- 414

ber of active parameters and does not include the 415

efficiency measured in a real deployment scenario. 416
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