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ABSTRACT

Today’s LLM ecosystem comprises a wide spectrum of models that differ in
size, capability, and cost. No single model is optimal for all scenarios; hence,
LLM routers have become essential for selecting the most appropriate model
under varying circumstances. However, the rapid emergence of various routers
makes choosing the right one increasingly challenging. To address this prob-
lem, we need comprehensive router comparison and a standardized leaderboard,
similar to those available for models. In this work, we introduce ROUTER-
ARENA, the first open platform enabling comprehensive comparison of LLM
routers. ROUTERARENA has (1) a principally constructed dataset with broad
knowledge domain coverage, (2) distinguishable difficulty levels for each domain,
(3) an extensive list of evaluation metrics, and (4) an automated framework for
leaderboard updates. Leveraging our framework, we have produced the initial
leaderboard with detailed metrics comparison as shown in Figure [I We will
make our platform open to the public; the current code base is available here:
https://anonymous.4open.science/r/RouterArenal
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Figure 1: A quick view of ROUTERARENA leaderboard and performance-cost trade-off.

1 INTRODUCTION

Large Language Models (LLMs) are rapidly diversifying, offering an ever-wider spectrum of capa-
bilities and inference costs. This diversity increasingly challenges the prevailing LLM usage pattern
in which users manually choose models for their queries. The difficulty stems from the fact that no
single model is universally optimal: powerful models excel at complex tasks but are costly, while
smaller models are more efficient yet may struggle on difficult queries. As a result, LLM routers
that automatically select models based on input queries are increasingly recognized as a core system
primitive in practical deployments.

Given its importance and promise, many LLM routers have recently emerged in both industry and
academia (Figure @ A notable example is GPT-5 (OpenAl, [2025)), which incorporates routing as
a key feature by directing user queries to the most suitable model within the OpenAl family. As
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routers proliferate, the challenge shifts from selecting the right model to selecting the right router.
Unfortunately, router evaluation has not kept pace: there is currently no open evaluation plat-
form, akin to LMArena (Chiang et al.|,[2024), that systematically compares open-source routers (Hu
et al.| 2024} Zhuang et al.,2024a)) and commercial routing services (NotDiamond), 2025} Microsoft,
20235)) under a unified protocol.

It is urgent to fill this gap by building a Router Arena that can comprehensively evaluate and rank
routers, enabling users to understand the status quo and make informed choices. However, unlike
model arenas, designing a router arena is considerably more challenging due to the requirements
from three key aspects. (1) Dataset. To evaluate whether a router can recognize problem domains
and dispatch queries to appropriate models at minimal cost, the arena dataset must cover a broad
range of domains and subjects, as well as varying difficulty levels. (2) Metrics. Router performance
is inherently multi-dimensional, and so should be the arena ranking. While accuracy and cost are
the primary metrics, it is also important to capture other dimensions such as routing optimality and
robustness. (3) Framework. To enable live leaderboard updates, the arena must have a user-friendly
framework that can automatically evaluate new open-source and commercial routers. Although ex-
isting studies explore some of these directions, as summarized in Table[T|and discussed in Section[2}
they fail to address each challenge in a comprehensive way.

In this work, we present ROUTERARENA, the first open platform for comprehensive evaluation and
comparison of LLM routers. It addresses the above key challenges with the following designs:

* A Principled Diverse Dataset. To ensure broad coverage, we construct the dataset using the
Dewey Decimal Classification system adopted in libraries, covering all domains except religion.
For each subject, we apply Bloom’s taxonomy to design queries at three difficulty levels, produc-
ing a diverse dataset of ~8,000 queries spanning 9 domains and 44 categories for router evaluation.

» Extensive Metrics for Arena Ranking. We construct router leaderboards by considering an ex-
tensive list of deployment-relevant metrics including query-answer accuracy, query-answer cost,
routing optimality (cheapest correct selection), robustness to query perturbations (consistency),
and router overhead (latency). This enables router comparison from multiple perspectives.

* An Automated Framework for Leaderboard Updates. We design a framework that automat-
ically evaluates new routers, collects metrics, and updates the leaderboard. The framework sup-
ports both open-source and commercial routers, and employs prefix caching to improve efficiency.

Figure [T| provides a quick view of our accuracy—cost leaderboard along with other details. We have
found that although GPT-5 achieves higher accuracy, its cost is significantly higher than that of other
routers due to its model pool being restricted to the OpenAl family. Consequently, it does not rank
as the best router on our accuracy—cost leaderboard.

Our vision is for ROUTERARENA to serve as an open community venue for evaluating routers as
the ecosystem evolves, providing a standardized basis for fair comparison and progress tracking. By
lowering the barrier to evaluation and enabling transparent, reproducible results, ROUTER ARENA
will help researchers and practitioners design, improve, and adopt better routers.

2  MOTIVATION

The Rapid Emergence of LLM Routers. As shown in Figure[2] the landscape of LLM routers
is rapidly expanding, evolving from academic exploration to commercial deployment. From a few
scattered academia routers (Zhang et al., 2023} |Chen et al., 2023 Hari and Thomson, 2023)) in
mid-2023, the number of publications expanded to more than a dozen by 2024 (Liu et al., 2024;
Zhuang et al.,[2024b; |Chen et al.|, [2024a}; Zhao et al.,|2024)). By 2025, not only did academia routers
continue to grow (Wang et al.| 2025} Huang et al.| |2025a; Ding et al.l [2025; Zhang et al., 2025b),
but commercial products also emerged (NotDiamond, [2025; [Microsoft, [2025)), most notably GPT-
5 (OpenAlL [2025) with a built-in router.

New Problem: How to Choose the Right Router? Answering this question requires compre-
hensive router comparisons to understand the current landscape. Such comprehensiveness entails
dataset categories, difficulty levels, evaluation metrics, and router inclusion. However, our review
of existing work reveals that no such comprehensive comparisons are available today. As shown
in Table |1} the existing work falls short in the following aspects.
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Figure 2: Timeline of example router-related works and products.

Table 1: Comparison of existing works (Hu et al.| [2024; [Huang et al., 2025b; [Feng et al., [2025b;
Zhuang et al 2024a) and ROUTERARENA. ROUTERARENA enables comprehensive router com-
parison with extensive query categories, difficulty levels, evaluation metrics, and router inclusion.

Benchmark Query categories Difficulty levels Evaluation Metrics Commercial Routers Router Ranking
RouterBench 24 Categories X No analysis X Deferral curve only X X
RouterEval 27 Categories X No analysis X Accuracy metric only X X
FusionBench 26 Categories LLM-judge analysis X Deferral curve only X X
EmbedLLM 26 Categories X No analysis X Accuracy metric only X X

44 Categories v 5 Bloom Level v 5 Evaluation v Multi-metric
ROUTERARENA based on DDC Classification perspectives v 3 Included leaderboard

* Narrow Query Category Coverage. They lack full coverage of query categories, making them
impossible to evaluate router performance on queries from excluded categories.

* Indistinguishable Difficulty Levels. They do not differentiate queries by difficulty, limiting their
ability to test accuracy—cost tradeoffs.

* Incomplete Evaluation Metrics. They only consider a subset of relevant metrics, overlooking
important dimensions such as optimality, robustness, and latency.

* No Support of Commercial Routers. Current frameworks evaluate only open-source routers and
do not extend to closed-source or commercial routers.

* No Router Leaderboard. There is no leaderboard that allows people to compare all routers under
a unified evaluation protocol.

This Work: ROUTERARENA. This gap motivates us to design ROUTERARENA, an open plat-
form for comprehensive router comparisons. In the remainder of this paper, we first introduce the
key components of ROUTERARENA: principled dataset construction, comprehensive metric formu-
lation, and an automated evaluation framework with live leaderboard. We then present our evaluation
results and discuss the key findings.

3 ROUTERARENA EVALUATION DATASET

To enable meaningful and unbiased router comparisons, a high-quality evaluation dataset is es-
sential. In this work, we construct such a dataset by adhering to two guiding principles for data
collection.

Principle 1: DDC-Inspired Diverse Domain Coverage. To evaluate a router’s ability to rec-
ognize problem domains and route queries to the appropriate specialist models, the dataset must
provide broad domain coverage. To achieve this, we draw inspiration from the Dewey Decimal Clas-
sification (DDC) system (Dewey, |1876)), a book classification framework widely used in libraries.
The DDC is renowned for its comprehensive and logical structure, providing a proven methodology
for organizing the entire world of knowledge into distinct, hierarchical categories (Satija, 2013)).

Principle 2: Bloom-Based Distinguishable Difficulty Levels. To evaluate whether a router can
determine query difficulty and make accuracy-cost tradeoffs—choosing between powerful but ex-
pensive models and weaker but cheaper ones—the dataset must include clearly distinguishable diffi-
culty levels. To structure these difficulty levels, we adopt Bloom’s taxonomy (Bloom et al.|[1956), a
widely used framework in quantifying question complexity (Ullrich and Geierhos, 2021} |Herrmann-
Werner et al.l 2024} [Paddl [2017). It works by classifying cognitive tasks into six ascending cate-
gories: remembering, understanding, applying, analyzing, evaluating, and creating. In this work, we
further group these six levels into easy-medium-difficult three levels.
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Dataset Construction Process. Following these two principles, we curate our evaluation dataset
as follows. To ensure coverage across all DDC categories (excluding religion), we first collect all
the queries from two existing LLM benchmark datasets and then supplement underrepresented cate-
gories with data from 21 open-source, domain-specific datasets. To determine the difficulty level of
each query based on Bloom’s taxonomy, we employ an LLM-as-Judge approach with DEEPSEEK-
V3.1 (DeepSeek-AlL 2025) (prompt specified in Appendix D)), enabling automatic difficulty anno-
tation. We exclude the create-type questions because they are open-ended and cannot be reliably
evaluated. We then categorize remembering and understanding questions as easy, applying ques-
tions as medium, and analyzing and evaluating questions as difficult.

Next, to fairly distribute questions across categories and difficulty levels, we propose a recursive
deficit redistribution algorithm. We begin by setting the ratio of science to humanities at 2:1. Within
each top-level category, if a sub-category falls short of its proportional quota, the resulting surplus
is recursively and uniformly redistributed to those sub-categories that exceed their initial allocation.
We apply the same procedure within each sub-category to allocate data across different difficulty
levels, ensuring balanced coverage throughout the dataset.

The above steps yield approximately 62,000 queries in total. However, this raw dataset con-
tains many highly similar or even duplicate questions inherited from the various sampled sources.
Such redundancy does not benefit router evaluation and may even introduce noise into the re-
sults. To address this, we perform cosine-similarity—based de-duplication using SENTENCE-
TRANSFORMERS/ALL-MINILM-L6-v2. By strictly following the allocation strategy and select-
ing the least similar samples, we ensure that the resulting ROUTERARENA dataset maintains broad
coverage with minimal redundancy.

The Resulting Dataset. Our final evaluation dataset consists of 8,400 queries sampled from 23
source datasets. It spans nine top-level domains and 44 categories, with each category containing
queries across three difficulty levels. Figure [3illustrates the detailed composition of the dataset.
Note that the distribution of difficulty levels is skewed, but it reflects real-world query patterns—
easy and medium questions occurring more frequently than hard ones. We include more details
about the dataset in Appendix [C] including dataset schema and concrete query examples.
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Figure 3: Dataset composition. For ease of demonstration, we merged some categories.
4 ROUTERARENA EVALUATION METRICS
ROUTERARENA supports comprehensive router evaluation along five dimensions.
(1) Query-answer Accuracy. This metric captures a router’s ability to direct queries to the appro-
priate models such that they are correctly answered. We calculate accuracy as the average correct-

ness across all our dataset queries.

(2) Query-answer Cost. This measures the cost incurred by a router’s routing decisions. To ad-
dress important factors such as the variable cost introduced by input length and generation length
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(e.g., in chain-of-thought reasoning) as well as the distinct computational characteristics of Mixture-
of-Experts (MoE) models, we use the actual inference cost measured by:

cost = Cin * Nin + Cout ¥ Nout

Where c is the cost per token and NV is the number of tokens. We obtain the cost ¢ for the specific
models a router chooses using the official API pricing published by the corresponding providers
(e.g., OpenAl, Claude, Fireworks Al, etc.). For unpopular models that are not served by commercial
providers, we deploy them ourselves for experiments (only a few). In such cases, we approximate
their costs using the pricing tiers published by commercial hosting platforms (e.g., Together.ai),
which estimate serving costs based on model size (parameter count) and architecture type (e.g.,
MoE). Table [5] summarizes the pricing tiers we use for our self-hosted model.

(3) Routing Optimality. This captures a router’s ability to perform optimal routing—that is, se-
lecting the cheapest model that still produces a correct response. It consists of three sub-metrics: (a)
Optimal Selection Ratio—the proportion of queries for which the router answers correctly by select-
ing the cheapest model; (b) Optimal Accuracy Ratio—the ratio between a router’s achieved accuracy
and the upper-bound accuracy obtainable when always selecting the best model from its model pool;
(c) Optimal Cost Ratio—the ratio between the cost incurred by the router’s selections and the cost
of always choosing the optimal model. This metric will penalize routers that rely on unnecessarily
expensive models when cheaper, correct alternatives are available. This metric will penalize routers
that use unnecessarily expensive models when cheaper, correct alternatives are available.

(4) Routing Robustness. This metric evaluates the router’s robustness against noisy inputs. We
calculate it as the proportion of queries for which the router makes consistent routing decisions under
perturbed input. Specifically, we generate noisy variants of queries—through paraphrasing, gram-
matical changes, synonym substitutions, and typos—and measure the percentage of cases where the
router selects the same model as it does for the original, noise-free query. This captures the router’s
capability for handling realistic, imperfect user queries.

(5) Routing Latency. Since the router operates in the critical path of systems in production, it must
handle millions of queries per second with minimal overhead. This metric measures the additional
latency introduced by routing. It reflects the latency increase in both time-to-first-token (TTFT) and
end-to-end response latency when a given router is employed.

5 ROUTERARENA EVALUATION FRAMEWORK

5.1 ARENA RANKING

ROUTERARENA provides a series of router leaderboards that enables users to compare the capa-
bilities of different routers and select the one best suited to their scenarios. It includes six ranking
scores based on the evaluation metrics described in Section ] including Arena, Optimal-selection-
ratio, Optimal-acc-ratio, Optimal-cost-ratio, Robustness, and Latency. Among these, the Arena
score captures the trade-off between accuracy and cost by combining them into a single composite
measure using the Weighted Harmonic Mean (Ferger, [1931). Specifically, to better distinguish be-
tween routers with low costs, we apply a base-2 logarithmic (log2) transformation to the cost values.
Under this scaling, each doubling of price reduces the cost score by one unit. For router ¢ with cost
¢;, we define its normalized cost as

loga(Cmaz) — logac;
Ci =
logQ(Cmaac) - 1092(C7nin)

where cpax and ¢, denote the maximum and minimum costs of routing 1k queries. Specifically,
we choose ¢in, = 0.0044, corresponding to the cost of the cheapest model in the leaderboard’s
model pool. This reflects the cost of a router that always selects the cheapest model. We choose
Cmaz = 200 representing the most expansive model, OpenAI’s 01-PRO. This normalization maps
the cost into range [0, 1], with larger values of C; corresponding to more economical routers. Next,
we combine the normalized cost C; and accuracy A; using a weighted harmonic mean:

A+ B)AG
we BA; +C;
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Figure 4: RouterArena Live Leaderboard.

where the parameter 8 > 0 controls the relative importance of accuracy versus cost. Setting 5 > 1
places greater weight on cost. By default, we use S = 0.1, emphasizing routing accuracy, because
highly accurate routers are generally more valuable even if they incur slightly higher costs.

5.2 AUTOMATED EVALUATION FRAMEWORK

Although we demonstrate ROUTERARENA with a specific set of routers in this paper, it is very
easy to update the leaderboard with new routers. To facilitate this process, we have designed an
automated evaluation framework that will be released publicly alongside the leaderboard. Figure [4]
shows the overall system workflow. To evaluate a new router, the user can simply start by providing
our framework with an access point (e.g., an API) to the router. The framework sends evaluation
queries to the router, which performs routing inference on its end and returns its model selections.
To ensure fairness, we run the inference ourselves and use cached results when possible, since many
routers share overlapping model pools. During this process, the router’s response time is monitored
to measure routing latency. Finally, the framework computes the evaluation metrics and aggregates
the results, which are reflected in the leaderboard. Note that some commercial routers may not
expose their model selections and instead return query answers directly. Such routers can still be
evaluated with our framework, although certain metrics cannot be measured in this setting.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTINGS

Router Selection For commercial routers, we evaluated the router from Not Diamond (NotDia-
mond), 2025)), which provides access to over 60 models, and the Azure Model Router (Microsoft,
2025)), which currently only supports OpenAl models. We also included GPT-5 (OpenAll [2025),
whose model family incorporates an internal router. For NotDiamond, we selected 26 representa-
tive models spanning different parameter scales, architectures, and reasoning abilities. For Azure-
Router, we evaluated the entire model pool, including GPT-5 model families. Appendix [B] provides
full details of the model pools used for each router.

For open-source routers, we evaluated nine representative systems covering a diverse routing ap-
proaches. Specifically, we chose both the KNN- and MLP-based methods trained on Router-
Bench (Hu et al.} [2024)) as baselines. We further included GraphRouter (Feng et al., 2025a)), which
leverages graph neural networks (GNNs) for routing, and the Universal Router (Jitkrittum et al.,
2025)), which uses K-means clustering. To capture cost—accuracy tradeoffs, we evaluated CARROT
Router (Somerstep et al., [2025), while RouterDC (Chen et al., 2024b) was incorporated as a dual
contrastive learning—based approach. Additionally, we considered IRT-Router (Song et al., |2025),
which applies item response theory to explicitly model the interaction between query attributes and
model capabilities, and RouteLLM (Ong et al., 2025), which performs binary selection between a
stronger and a weaker model. Moreover, we also take the latest vLLM Semantic Router (vLLM,
2025) into consideration, which leverages a ModernBERT (Hugging Face, 2025)) to categorize the
incoming requests into pre-defined categories, and selects the model that has the highest score.

Router Training and Evaluation For commercial routers, no additional training is required; we
simply accessed their provided APIs for evaluation. In contrast, for academia routers, we followed
the training procedures and datasets specified in their open-source implementations. Specifically, we
did not modify the training datasets or the task categorizations (if applicable). The model pools were
configured in accordance with the original papers. In particular, for the vLLM-SR, we constructed
the pool using both open-source models of varying parameter scales and proprietary models, with



Under review as a conference paper at ICLR 2026

detailed configurations summarized in Table [3] After training each router, we evaluated them by
feeding our benchmark dataset, recording the model selected, the latency incurred by the selection,
and the confidence scores assigned to all candidate models in the pool.

6.2 RESULTS

Normalized Router Performance
Deferral Curves: Accuracy vs Inference Cost vs Best Available Model
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Figure 5: Deferral Curve: accuracy versus cost Figure 6: Normalized Deferral Curve

Deferral Curve. Figure [5 presents the trade-off between accuracy and inference cost. As we
increase inference budget, we unlock more powerful models, driving the accuracy up. For open-
source routers, we leveraged their confidence scores to apply budget-based masking, which produces
multiple points along each curve. With only cheap models available, accuracy remains low, but as
larger models enter the pool, routing accuracy increases. In contrast, commercial routers typically
appear as single points because their model pools already include the best-performing models.

Two insights emerge. First, the orange dashed line shows the oracle accuracy, highlighting that all
routers fall short of the best achievable performance. Second, the trade-off frontier differs by setting:
commercial routers can achieve higher accuracy, but usually at significantly higher costs; open-
source routers, on the other hand, achieve competitive performance at much lower budgets, though
they plateau earlier. Notably, routers like CARROT and GraphRouter illustrate cost-efficient routing,
while systems such as GPT-5 and NotDiamond lean heavily on expensive models for accuracy. This
suggests that while commercial routers prioritize maximizing accuracy, academic approaches often
explore the efficiency side of the frontier.

Normalized Deferral Curve. Figure [6] reports router accuracy and cost normalized to each
router’s best-performing model, point (100%, 100%) on the plot. The upper-left quadrant repre-
sents the ideal case—higher accuracy with lower cost by leveraging smaller models. In practice,
most routers cluster near the baseline (100% cost, 100% accuracy), suggesting they over-rely on
the strongest model and miss opportunities to defer to cheaper alternatives. Notably, NIRT-BERT
illustrates inefficiency, reaching only baseline-level accuracy while incurring 378% of the cost.

By contrast, routers such as VLLM-SR and CARROT achieve meaningful savings: roughly 35%
lower cost with under 2% accuracy degradation. These cases show routing can indeed improve
efficiency when smaller models are effectively utilized. Overall, the figure highlights a clear trade-
off—higher accuracy often comes with higher cost—while also pointing to promising directions for
designing routers that move closer to the ideal frontier.

Optimality Score. Figure [/ highlights the inherent trade-off between routing accuracy and cost.
In practice, routers that achieve higher accuracy typically do so at the expense of a higher cost ratio,
since they defer more often to large, expensive models. This behavior lowers their optimal selection
ratio, i.e., the frequency with which they choose the most efficient model for each query. This pattern
is most apparent in the binary routers such as RouteLLM. By design, these routers face a sharp trade-
off: they achieve higher accuracy by routing more queries to the stronger model, which drives up
cost. In contrast, multi-model routers have a more flexible pool, and while the general trend still
holds, we see greater variability depending on pool composition and routing strategy. Among non-
binary routers, RouterDC stands out with the lowest cost ratio and highest optimal selection ratio, but
this comes at the cost of poor overall accuracy. At the other extreme, MIRT-BERT achieves strong
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Figure 7: Actual and optimal accuracy, along with optimal selection ratio and cost ratio

accuracy (close to 77% of its optimal accuracy) but requires nearly five times the optimal cost,
placing it closer to the “high-cost high-accuracy” region of the trade-off frontier. In other words,
while some routers are closer to the efficiency frontier than others, none simultaneously combine
low cost and high accuracy. Overall, our findings indicate that current routing methods have learned
to leverage large models to boost performance, but remain inefficient at recognizing when smaller
models are sufficient. This creates a clear opportunity for future work: developing routers that can
balance accuracy and efficiency by selectively deferring to large models only when necessary.

Router Robustness Router Latency
VLLM-SR
RouteLLM

KNN
CARROT

GraphRouter
NIRT-Bert
RouterDC
MIRT-Bert
Kmeans

MLP

1.25 1.00 0.75 0.50 0.25 0.00 0 200 400 600
Robustness (1) Latency (ms)

Figure 8: Router robustness and latency comparison.

Robustness and Latency. Given that user prompts are often noisy, we further assess router sen-
sitivity and robustness. Specifically, we prepend an irrelevant keyword to the input and observe
whether the router alters its original model selection. We define robustness as 1 — the proportion
of changed selections. As shown in Figure 8] routers leveraging latent representations of prompts
demonstrate stronger stability against noise, whereas methods relying on explicit representations,
such as KNN and NIRT-BERT, are considerably more sensitive. These findings highlight the impor-
tance of applying prompt engineering techniques to mitigate noisy queries in the future.

Furthermore, Figure [§] reports the end-to-end latency of routers on a single A100 GPU, measured
from the time a request is received to the output of the model selection result. Among all methods,
vLLM-SR and RouteLLM exhibit significantly higher latency because they rely on the OpenAl
embedding API, which introduces additional network delays. In contrast, other routers consistently
maintain sub-100ms latencies. Since the LLM router lies on the critical path of the end-to-end
systems, our results provide new insights for industrial deployment: while LLM routers can optimize
accuracy and cost, they also introduce non-negligible overhead that may even compromise service-
level objectives (SLOs).

6.3 INSIGHTS FROM THE FINAL ROUTERARENA LEADERBOARD.

Our evaluation produces the router leaderboard shown in Table The leaderboard consists of
six ranking scores, and the overall ranking is determined by averaging across them. We highlight
two key findings: (1) Commercial routers do not necessarily outperform open-source routers. For
example, GPT-5 ranks #7 due to its restricted model pool, and NotDiamond ranks #12 because it
frequently selects expensive models. (2) No router ranks at the top across all metrics, reflecting the
inherent trade-offs in router design.
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Table 2: Ranking of routers across multiple metrics. Lower values indicate better performance.

# Router Arena Rank Optimal-cost- | Optimal-acc- = Robustness | Latency Rank Average
ratio Rank ratio Rank Rank
2 - - -

1 Azure-Router - - 2
2 RouteLLM 9 2 2 1 2 8 4
3 MLP 10 3 4 2 5 1 4.17
4 MIRT-BERT 1 7 6 4 6 2 433
5 vLLM-SR 4 1 9 4.67
6 RouterDC 12 1 1 8 3 3 4.67
7 GPT-5 5 - - 5
8 GraphRouter 7 6 3 6 4 5 5.17
9 CARROT 3 8 8 3 7 6 5.83
10 NIRT-BERT 6 5 7 7 9 4 6.33
11 KNN 11 4 5 5 8 7 6.67
12 NotDiamond 8 - - - - - 8

For developers and researchers, the findings highlight key deficiencies in current routing methods
and point toward clear directions for designing the next generation of routers. The results show
that all existing routers fall short of the oracle’s achievable performance, primarily because they
are inefficient at recognizing when smaller, cheaper models are sufficient for a given query. Future
work should focus on closing this performance gap. Moreover, the high latency and poor robustness
of certain routers open new avenues of research beyond the traditional cost-versus-accuracy trade-
off. Developers can use the platform’s automated framework to submit and benchmark new routers
against established leaders, fostering innovation and transparently tracking progress in the field.

7 RELATED WORK

LLM Router. With the increasing availability of specialized models that can surpass even the
most capable general-purpose LLMs in specific domains, both academia and industry have been
actively exploring how to build LLM routers. In industry, several systems have emerged. Martian
Router (WithMartian}, 2025)) proposed the idea of model mapping, while Storytell
categorizes user queries and routes them to the best-performing models. Other companies also
seek to find the optimal model for user’s tasks by balancing performance and cost
2025}, RequestyAl 2025 [OpenAl, [2025). Recent academic efforts have also begun to emerge.
GraphRouter (Feng et al., 2025al) leverages graph neural networks, and Router-R1
[2025a)) employs reinforcement learning. The growth of open-source solutions underscores the need
for effective router evaluation (Somerstep et all, 2025}, [Song et al} 2025} [Feng et al., 2025b).

LLM Router Benchmark. RouterBench introduces a large-scale dataset con-
sisting of over 405k inference outcomes from representative LLMs. RouterEval
collects performance results from 8,500 LLMs across 12 widely used benchmarks. Fu-
sionBench (Feng et all 2025b) covers 14 tasks across five domains and leverages 20 open-source
LLMs. Other benchmarks have also contributed to this line of work by using different data collec-
tion methods (Kassem et all, [2025; [Mei et all, [2025)). However, these benchmarks fail to provide
broad coverage across disciplinary domains or cover all kinds of routers. In contrast, our benchmark
is systematically constructed based on an authoritative knowledge classification framework, making
it the first comprehensive and actionable benchmark for LLM routing.

8 CONCLUSION

We introduce ROUTERARENA, the first open platform for comprehensive router comparison. Our
platform features a principled dataset with broad domain coverage and varying difficulty levels, an
extensive set of evaluation metrics, and an automated framework to maintain a live leaderboard.
Initial evaluations of 12 routers reveal a significant trade-off between accuracy and cost, showing
that no single router is universally optimal. Commercial routers tend to achieve higher accuracy
at a much greater expense, while open-source routers often present more cost-efficient solutions.
Overall, our findings indicate that current routers are inefficient at leveraging cheaper models when
appropriate, highlighting a clear opportunity for future work.
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ETHICS STATEMENT

All authors have read and will adhere to the ICLR Code of Ethics (https://iclr.cc/
public/CodeOfEthics)). Our evaluation dataset was constructed by aggregating and sampling
from publicly available and open-source datasets. To ensure broad topic coverage while avoiding
potentially sensitive subjects, we based our domain selection on the Dewey Decimal Classification
system, explicitly excluding the category of religion. The difficulty level of each query was anno-
tated using an "LLM-as-Judge” approach. We acknowledge that this process, along with the use
of existing datasets, may introduce or perpetuate biases inherent in the source data and the anno-
tator model. We have made the dataset and our collection methodology public to allow for further
inspection and bias analysis by the community.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our work. All components of the ROUTER-
ARENA platform, including the dataset, evaluation framework, and code, will be made publicly
available.

(1) Dataset: The principles and detailed process for our dataset construction are described in Section
3. This includes domain coverage strategy, difficulty level annotation, and our deduplication process.
Further details on the dataset schema, composition, and examples are provided in Appendix C. (2)
Evaluation: Our five evaluation metrics are precisely defined in Section 4, and the formula for the
composite leaderboard score is detailed in Section 5.1. The automated evaluation framework is
described in Section 5.2. (3) Experiments: The specific academic and commercial routers evaluated
are listed in Section 6.1.1. The exact model pools used for each router are provided in Appendix B.
For all academic routers, we followed the training procedures and configurations specified in their
original open-source implementations.

The public release of our complete framework will enable researchers to replicate our results and
evaluate new routers on the leaderboard.
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A THE USE OF LLMS

In this work, Large Language Models (LLMs) were used in two distinct capacities: as a core com-
ponent of our research methodology and as a general-purpose writing aid.

LLM-as-Judge for Data Annotation: A significant use of an LLM was in the construction of our
evaluation dataset. As detailed in Section 3, we employed DeepSeek-V3.1 as an “LLM-as-Judge” to
automatically annotate the difficulty of each query according to Bloom’s taxonomy. This automated
approach allowed us to systematically label a large and diverse set of questions. The specific prompt
used for this annotation process is provided in Appendix D.

Writing Assistance: An LLM was also utilized as a general-purpose tool to assist in the writing
process. Its role was limited to proofreading the manuscript for grammatical errors, improving
clarity, and ensuring stylistic consistency. The LLM was not used for research ideation, conducting
experiments, or writing the core scientific contributions of the paper.

B MODEL POOLS BY ROUTER

Table 3: Model pools used by different routers.

Router

Model Pool

RouterBench

GraphRouter

Universal

CarrotRouter

RouterDC

IRT-Router

RouteLLM

WizardLM/WizardLM-13B-V1.2;  claude-instant-v1l; claude-vl; claude-v2; gpt-3.5-
turbo-1106;  gpt-4-1106-preview; meta/codellama-34b-instruct; meta/llama-2-70b-chat;
mistralai/mistral-7b-chat; mistralai/mixtral-8x7b-chat; zero-one-ai/Yi-34B-Chat

meta-llama/llama-3-8b-instruct;  mistralai/mixtral-8x7b-chat; nousresearch/nous-34b-chat;
meta/llama-2-7b-chat; mistralai/mistral-7b-chat; meta/llama-3-70b-chat; meta/llama-3-turbo-
8b-chat; meta/llama-3-turbo-70b-chat; meta/llama-3.1-turbo-70b-chat; qwen/qwen-1.5-72b-
chat

WizardLM/WizardLM-13B-V1.2;  claude-instant-v1l; claude-vl; claude-v2; gpt-3.5-
turbo-1106;  gpt-4-1106-preview; meta/codellama-34b-instruct;  meta/llama-2-70b-chat;
mistralai/mistral-7b-chat; mistralai/mixtral-8x7b-chat; zero-one-ai/Yi-34B-Chat
aws-claude-3-5-sonnet-v1; aws-titan-text-premier-vl; openai-gpt-40; openai-gpt-4o-mini;
wxai-granite-3-2b-instruct-8k-max-tokens; wxai-granite-3-8b-instruct-8k-max-tokens; wxai-
Ilama-3-1-70b-instruct; wxai-llama-3-1-8b-instruct; wxai-llama-3-2-1b-instruct; wxai-llama-
3-2-3b-instruct; wxai-llama-3-3-70b-instruct; wxai-mixtral-8x7b-instruct-v01l; wxai-llama-3-
405b-instruct

mistralai/Mistral-7B-v0.1; meta-math/MetaMath-Mistral-7B; itpossible/Chinese-Mistral-7B-
v0.1; HuggingFaceH4/zephyr-7b-beta; cognitivecomputations/dolphin-2.6-mistral-7b; meta-
Ilama/llama-3-8b-instruct; cognitivecomputations/dolphin-2.9-1lama3-8b

glm_4 _air; glm_4 flash; glm_4_plus; gpt_4o0; gpt4o_mini; gpt_4o_mini_cot; deepseek_coder;

deepseek_chat; qwen25_32b_int4; qwen25_7b_instruct; qwen25_72b_instruct;
qwq-32b_preview; qwen25_math_7b_instruct; llama31_8b_instruct; llama31_70b_instruct;
llama31_405b_instruct; mixtral_8x7b_instruct; mistral_7b_instruct_v02; minis-

tral_8b_instruct_2410; geminil5_flash; claude35_haiku20241022

openai-gpt-40; mixtral_8x7b_instruct

We provide the model pool used by each router here.

C DATASETS DETAILS

Figure [9]illustrates the domain coverage of our dataset across the nine Dewey Decimal categories.
Each horizontal bar represents the relative contribution of different source datasets within a cate-
gory. This distribution highlights the systematic integration of multiple datasets to achieve a more
balanced representation of both general-purpose and highly specialized domains.

Table [] shows the detailed dataset columns.
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0 Computer science, information, and general works - REEEGEG— I E—
1 Philosophy and psychology ——
3 Social Science
> 4 Language
g 5 Science il -
© 6 Technology {17 I - 23.4%
7 Arts & recreation ——
8 Literature — 47.5%
9 History
20 20 0 I 29.1%
Percentage within Category (%)
Source Dataset
- AME GsMmaK - MLUPro PubMedoA
. ArcMMLU N GeoBench MathQA QANTA
AsDiv W GeoGraphyData MedMCQA SocialiQA
Chesslnstruct LiveCodeBench MusicTheoryBench ~ Wl SuperGLUE
Ethics - MATH NarrativeQA WMT19
N FinQA MMLU . OpenTDB eaSy medium hard

(a) Dataset source.

(b) Difficulty distribution.

Figure 9: Overview of dataset composition: (a) data sources and (b) difficulty distribution.

Table 4: Overview of dataset columns

Column Description Example

Category Bloom’s taxonomy high-level class 9 History

Sub Category  Bloom’s taxonomy sub-class 02 Library and information sciences

Dataset Name  Source dataset ArcMMLU

Global Index  Unique instance ID ArcMMLU _114

Context Supporting passage (if any) Sasha decided to watch TV and get some food
Question Input question What is the capital of France?

Options Multiple-choice options [“107, <207, “307, “40”]

Answer Ground-truth answer Paris

Bloom Level = Bloom’s taxonomy difficulty level =~ Understanding

C.1 DATASET EXAMPLES

Domain: 0 Computer science, information, and general works
Category: 02 Library and information sciences
Dataset name: ArcMMLU
Global Index: ArcMMLU_170
Context: “”
Question: “In Which five year plan the INFLIBNET' was established ().”
Options: [ "Fourth five year plan", "Fifth five year plan", "Sixth five year plan", "Seventh five year plan" ]
Answer: D
Bloom_level: remeber

Domain: 4 Language
Category: 40 Language
Dataset name: SuperGLUE-CausalReasoning
Global Index: SuperGLUE-CausalReasoning 4513
Context: “Political violence broke out in the nation.”
Question: “what's the effect of this?”
d to the capitol.’, "Many citi took refuge in other territories." ]
Answer: 1.0
Bloom_level: analyze

Opti [ "Many citi L

Figure 10: Dataset examples.
Figure [I0]shows some dataset examples.

D LLM PROMPTS

D.1 BLOOM TAXONOMY PROMPT

We used the following prompt for classifying each question into different Bloom Levels:
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Instruction: You are an evaluator tasked with classifying questions by cognitive difficulty
using Bloom’s Taxonomy (Revised 2001). Bloom’s Taxonomy defines six levels of cognitive
processes:

1. Remember — Recall or recognize facts, terms, or concepts. 2. Understand — Explain,
summarize, interpret, or demonstrate comprehension. 3. Apply — Use learned knowledge to
solve problems in new or routine situations. 4. Analyze — Break down information, examine
parts, relationships, or underlying causes. 5. Evaluate — Make judgments or decisions based
on evidence, criteria, or standards. 6. Create — Put elements together to form a new structure,
idea, or product.

Your Task: Given the details of a question, determine which Bloom’s level best represents the
cognitive process required to answer it.

- Output the result in a structured JSON block with no additional text. - If multiple levels
might apply, choose the highest level required.

Output Format:

{
"bloom_level": "<Remember | Understand | Apply | Analyze |
Evaluate | Create>"

}

Input Fields:

— Dataset name: {dataset_name}

— Dataset classification (DDC category): {dataset_category}
— Question: {question}

— Question Index: {gquestion_index}

- Context (if any): {context}

- Options (if MCQ): {options}

— Answer: {answer}

D.2 EVALUATION PROMPT

The following is an example of an evaluation prompt we use:

Please read the following multiple-choice questions and
consider which option best follows deontological ethics.\n\n
Context: {Context}\n\n

Question: {Question}\n\n

Options: \n{Options}\n\n

Provide the correct letter choice in \\boxed{{X}}, where X is
the correct letter choice.

Keep the explanation or feedback within 3 sentences.

E LEADERBOARD

Figure[I|presents the spider plot of RouterArena, which compares six routing methods (CARROT,

RouterDC, GraphRouter, MIRT-BERT, NIRT-BERT, and RouteLLM) across five evaluation dimen-

sions: Arena Score, Cost-ratio Score, Optimal-acc Score, Latency Score, and Robustness Score.

Each axis indicates higher performance in the outward direction, allowing a direct visualization of
trade-offs. For example, CARROT achieves strong performance in Arena and Latency Scores, while

RouterDC excels in Cost-ratio Score.
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Router Radar (T —— CARROT
Arena RouterDC
Score —— GraphRouter
—— MIRT-BERT
—— NIRT-BERT
RoutelLLM

Robustness
Score (1)

Cost-ratio
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6 1.0

Latency Optimal-acc
Score (1) Score

Figure 11: The spider plot of ROUTERARENA

Table 5: Dense and MoE large language model size and price per million tokens.

Dense Models Mixture-of-Experts Models
Model Size Price Model Size Price
Up to 4B $0.10 Upto 56B $0.60
4.1B -8B $0.20 56.1B - 176B $1.20
8.1B-21B $0.30 176.1B — 480B $2.40

21.1B -41B $0.80
41.1B - 80B $0.90
80.1B-110B  $1.80

16



	Introduction
	Motivation
	RouterArena Evaluation Dataset
	RouterArena Evaluation Metrics
	RouterArena Evaluation Framework
	Arena Ranking
	Automated Evaluation Framework

	Experiments
	Experimental Settings
	Results
	Insights from the Final RouterArena Leaderboard.

	Related Work
	Conclusion
	The use of LLMs
	Model Pools by Router
	Datasets Details
	Dataset Examples

	LLM Prompts
	Bloom Taxonomy Prompt
	Evaluation Prompt

	Leaderboard

