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Abstract

Network quantization effectively reduces both memory footprints and inference
time of deep neural networks, enabling their deployment on resource-constrained
devices. To fully utilize the multiple bit-width arithmetic operations of the hardware,
mixed-precision quantization (MPQ) is developed to assign different bit-widths to
each layer. However, the quantization policy obtained by existing MPQ methods
struggles to achieve the objectives of efficiency and generalization simultaneously.
In this paper, we propose an efficient and generalizable MPQ based on topological
entropy (TE) (GMPQ-TE). Specifically, TE, derived from topological data anal-
ysis, effectively measures the quantization sensitivity of each layer by using the
minibatch of data with the same label. Furthermore, we observe that TE remains
consistent across various datasets and shows a strong correlation with both quan-
tized model accuracy and bit-width. Thus, MPQ is formulated as a single-pass
linear programming problem, obtaining a generalizable quantization policy in a few
seconds (11s on MobileNet-V2). Extensive experiments show that the quantization
policy obtained on CIFAR-10 can generalize to ImageNet and PASCAL VOC.
GMPQ-TE achieves a competitive accuracy-complexity trade-off compared to
state-of-the-art MPQ methods.

1 Introduction

Deep neural networks have gained increasing attention in image classification Sandler et al. [2018],
He et al. [2016], semantic segmentation Strudel et al. [2021], Li et al. [2022], object detection Wang
et al. [2019a], Zou et al. [2023], and other vision tasks Xu et al. [2022], Li et al. [2024]. However,
due to their extremely high complexity, it is impractical to directly deploy on mobile devices with
limited battery capacity and computational resources Wang et al. [2021]. Therefore, there is a need
for the model compression method based on the given hardware configurations. Recently, various
compression methods have been developed to reduce the model complexity, such as pruning He et al.
[2017], knowledge distillation Gou et al. [2021], quantization Wang et al. [2021], Koryakovskiy et al.
[2023], and compact architecture design Sandler et al. [2018], Jiang et al. [2023]. Among these
methods, quantization aims at mapping weight or activation to lower bit-width for compression and
acceleration Wang et al. [2021]. To fully utilize arithmetic operations with variable bit-width in
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hardware platforms, mixed-precision quantization (MPQ) is presented to configure bit-width for each
layer, achieving a better trade-off between complexity and accuracy Ma et al. [2023].
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Figure 1: Conventional MPQ methods require the con-
sistency of datasets between bit-width search and model
deployment, while GMPQ-TE obtains the optimal quan-
tization policy by using the minibatch of data with the
same label and generalizes it to other datasets.

However, conventional MPQ methods
Wang et al. [2019a], Cai and Vasconce-
los [2020] are subject to the limitations of
achieving both efficiency and generaliza-
tion simultaneously. This is because that 1):
It is commonly an iterative search in which
candidate quantization policies in each gen-
eration are required to train and evaluate
on the given datasets Chen et al. [2019],
Sun et al. [2022a]; 2) Existing approaches
generally depend on the given datasets to
search for the optimal quantization policy,
which cannot be generalized across various
datasets due to differences in the distribu-
tion of various datasets Cai and Vasconce-
los [2020], Wang et al. [2024]. The quanti-
zation policy needs to be re-searched on the rare or large-scale datasets Deng et al. [2009], posing
significant computational and generalization challenges.
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Figure 2: Comparison of the search cost used to obtain
the optimal quantization policy on MobileNet-V2 be-
tween GMPQ-TE and other MPQ methods.

Accordingly, we design an efficient and
generalizable MPQ via topological entropy
(TE) (GMPQ-TE). Different from the ex-
isting approaches that require iteration
and cannot generalize to various datasets,
GMPQ-TE only requires a single-pass
search process on a minibatch of data with
the same label to compute the TE and ob-
tain the quantization policy that can be gen-
eralized across various datasets (see Figure
1). Specifically, TE measures the stabil-
ity of the representation (i.e., the quanti-
zation sensitivity) of a layer or a network
model concerning common features in a
minibatch of data with the same label. Thus, TE possesses superior cross-dataset consistency, which
ensures that the obtained quantization policy can be generalized to other datasets. Furthermore,
we observe that: 1) Model TE negatively correlates with quantization performance across different
networks. 2) TE of layer is positively correlated with bit-width. Based on this, we minimize the
model TE as an objective function and construct a linear programming problem, where a larger
bit-width is assigned to the layer with larger TE under specific hardware constraints. Thus, the optimal
quantization policy can be obtained by solving the linear programming problem. Our contributions
can be listed as follows:

• We first attempt to use TE for measuring the quantization sensitivity of a network model or a
layer by using a minibatch of data with the same label. The quantization policy solved by the
TE can efficiently be generalized across various datasets. Based on two positive correlations,
a single-pass linear programming is designed for MPQ. Such linear programming is solved
in a few seconds.

• We provide a comprehensive theoretical analysis of the performance degradation boundary
and resolution– and label–independent of TE. Furthermore, we theoretically prove that it is
feasible to integrate TE into quantization-aware training.

• We conduct extensive experimental results on image classification and object detection,
which show that the quantization policy generalized from CIFAR-10 to ImageNet and
PASCAL VOC achieves a competitive accuracy-complexity trade-off compared with the
state-of-the-art MPQ methods. Additional real-world deployment results on diverse hard-
ware platforms could further verify the advantages of GMPQ-TE.
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2 Background Knowledge

Mixed-Precision Quantization. Prior MPQ methods are a search-based approach limited by
expensive quantization policy evaluations and iterative search process Wang et al. [2019a], Cai
and Vasconcelos [2020]. For example, HAQ Wang et al. [2019b] performs 600 quantization policy
evaluations. Most recently, GMPQ Wang et al. [2021] and its extended version R-GMPQ Wang et al.
[2024] design the generalizable framework via the attribution rank preservation, which focuses on
the contribution of each input component to network output. The experimental results prove that
it possesses good consistency across various datasets. Thus, the quantization policy searched by
GMPQ and R-GMPQ can be generalized across multiple datasets. However, it still requires massive
computational overhead (2.8 GPU hours).

To reduce the searching cost, several works develop some “critics” to judge the quantization sensi-
tivity of the layer, such as Hessian eigenvalue Dong et al. [2019], orthogonality Ma et al. [2023],
quantization entropy Sun et al. [2022b], first-order information Chauhan et al. [2023], and layer-wise
importance Tang et al. [2022]. These metrics often require a random minibatch of data to measure the
sensitivity of the layer. Among them, OMPQ Ma et al. [2023] and LIMPQ Tang et al. [2022] define
MPQ as a single-pass linear programming problem, which is solved in less than a second. Especially
OMPQ requires only 64 images from ImageNet to calculate the optimal quantization policy for
ResNet-18/50. However, due to the significant differences in the distribution and resolution of ran-
domly selected data across different datasets, the quantization policy fails to generalize effectively to
other datasets. Additionally, this type of linear programming approach, except for OMPQ, operates in
the post-training quantization (PTQ) and does not integrate with quantization-aware training (QAT).

In contrast, GMPQ-TE addresses both search efficiency and generalization. This is because TE
focuses on the ability of a model or layer to preserve common features of data with the same label
rather than their ability to represent random data, eliminating the effects of the obvious difference
in the distribution of random data from different datasets. Also, TE can be integrated into QAT
and proven theoretically(see App. C.1). The theoretical analysis (see App. C.2) demonstrate
the resolution- and label-independent nature of TE. Specifically, data with different labels from
different datasets do not affect the evaluation of quantization sensitivity. Moreover, the single-pass
linear programming problem, built upon the property of TE, is solved in under a few seconds.

Topological Data Analysis. It aims to explore relationships between neural network and input data
Ghrist [2008] based on the key insight “data has shape” Carlsson [2014]. Typically, natural images
with the same label share common features and the locations of these features are spatially correlated
globally. Effective functions highlight these features with high activation values, preserving the global
spatial pattern. Conversely, ineffective functions fail to represent these features effectively, resulting
in chaotic and vague representations. Based on this observation, recent works have attempted to
use topological data analysis to explain the effect of network Rieck et al. [2019], Gabrielsson and
Carlsson [2019], Guss and Salakhutdinov [2018], Hofer et al. [2017] or basic operators (e.g., ReLu
Naitzat et al. [2020] function Zhao and Zhang [2022]) on performance. For example, Rieck et al.
Gabrielsson and Carlsson [2019] design neural persistence based on a topological complexity of
network structure, which can provide criteria for early stopping. Guss et al. Guss and Salakhutdinov
[2018] empirically provide the correlation between neural network expressiveness and the topological
complexity of dataset. Zhao et al. Zhao and Zhang [2022] construct feature entropy to evaluate
the effectiveness of functions via topological data analysis. Compared to the above studies, TE
based on the observation from work Zhao and Zhang [2022] can finely evaluate functions from the
channel level. Furthermore, we pioneer to discover its relationship with quantized model accuracy
and confirm its validity in MPQ from the view of TE.

Key Concept. Here, we mainly introduce the concepts from graph theory used in constructing TE.

Clique. It refers to a complete subgraph from a graph, where a clique is a subset of nodes in the graph
and every pair of nodes in this subset is mutually connected Carlsson [2014].

Clique Filtration. Given a graph, a filtration is constructed by gradually adding cliques (complete
subgraphs) during the filtration process. Each clique corresponds to a threshold at which it forms
in the graph, and additional cliques are added as the threshold changes. This filtration process
helps analyze the evolving topological structures in the graph as the threshold varies Guss and
Salakhutdinov [2018].
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Figure 3: The overall framework of the proposed GMPQ-TE method. (a) Analyze a minibatch of
data with the same label and obtain Betti time. (b) Calculate TE based on Betti time distribution. (c)
Linear programming problem constructed by TE to derive optimal generalizable quantization policy.

Persistent Homology. It is used to capture how the data evolves in terms of its structure at various
scales. Specifically, it starts by tracking simple “starting points” in the data and gradually adds
components (e.g., cliques), observing how these topological features “form” and “disappear” Zhao
and Zhang [2022]. By calculating the homology of the data, persistent homology identifies topological
features (such as connected components, loops, voids, etc.) and provides insights into their birth and
death across different scales. This is especially useful in understanding complex data structures.

Betti Curve. It is a significant criterion of persistent homology. It provides a visualization of the
“persistence” of topological features in data across different dimensions Zhao and Zhang [2022]. The
Betti curve depicts the evolution of these values (for example, how Betti numbers change through
filtration) and helps us understand how topological features evolve across different scales of the data,
where Betti numbers describe the number of topological features in each dimension (e.g., the 1-st
Betti number is equal to the number of circles in the graph).

Birth Time. For each topological feature (e.g., circle), the birth time refers to the time or scale at
which the feature first forms. It marks the initiation of the feature’s existence in the data. It is crucial
for capturing the fundamental structure of the data Bochner [1948].

3 Methodology

3.1 Topological Analysis

As shown in Figure 3, given the input data with the same label X ∈ Rc×h×w, a neural network with
L-layers can be considered as an input-to-output mapping function consisting of L functions. The
output feature maps of each function are O ∈ Rc∗×h∗×w∗

, which can be unfolded along the channel
dimension to obtain c∗ feature maps (F = {f (1), f (2), ..., f (c∗)}). Each feature map f (i) ∈ Rh∗×w∗2

can be viewed as a grid structure U (i) ∈ Rh∗×w∗
. Intuitively, the spatial patterns within the elements

reveal specific regular relationships among their coordinate indices. It is natural to capture such
relationship using graph structure and tackle it through topological analysis.

Graph Construction. We construct the edge-weighted graph G = (V , E) for the grid structure U (i),
where V and E are the vertex set and the edge set, respectively. The weighted adjacency matrix W
of G is defined as W ∈ Rh∗×w∗

: Wj,k = U
(i)
j,k, where (j, k) denotes the coordinate index of the

location of an element in W and U (i). Note that each element of W is the weight of edge in G, which
conveys the intensity of the corresponding point in the U (i). Based on the typical implementation of

2We provide construction method across different architectures in App. A.
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the sublevel set (see Eq. 1), we can construct the undirected subgraphs G(v) = (V (v), E(v)), where
V (v) = V and E(v) ⊂ E. Its weighted adjacency matrix is denoted as W(v).

W
(v)
j,k = I(Wj,k ≥ w(v)) (1)

where I(.) is indicator function. w(v) is the v-th value in the descend ordering of elements of W(v). If
Wj,k is larger than or equal to w(v), then W

(v)
j,k equals 1, and conversely, it equals 0. Graph filtration

requires to construct subgraphs based on the weights of the edges. If the weights of the edges are not
symmetric, it may lead to some unreasonable graph structures, such as wrong edge connections or
unidirectional connections Zhao and Zhang [2022]. To ensure that W(v)

j,k is symmetric, we make the
following adjustment.

W(v) = max(W(v), (W(v)T )) (2)

By utilizing Eq. 2, we obtain the graph filtration G(1) ⊂ G(2) ⊂ · · · ⊂ G. In this sublevel set filtration
(i.e., Gi), the process commences with the vertex set. The edge weights are then ranked from the
maximum wmax to the minimum wmin, and the threshold parameters are systematically decreased
from wmax to wmin. At each step, the corresponding edges are incorporated to form the threshold
subgraph G(v).

Clique Filtration. To further explore the structural information among the elements in the threshold
subgraphs, we use topological invariants to capture high-level abstraction of structural information.
Here, each subgraph G(v) is converted to clique complex Kv based on persistent homology method
Horak et al. [2009]. In this way, we can get clique complex filtration (K1 ⊂ K2 ⊂ · · · ⊂ K)
corresponding to graph filtration.

The clique complex filtration describes the evolution of structural information in graph G along with
the decreasing threshold parameter (v).

Betti Curve and Birth Time. k-th Betti number can be regarded as the number of k-dimensional
circle or hole in complex. Due to the fact that grid structure U is a matrix of h∗ × w∗, the complex
contains no higher-order structures (e.g., circle). Thus, each element (Kv) in clique complex filtration
is quantified by 1-st Betti number β1(Kv) based on persistent homology theory Hatcher [2002],
which can characterize the number of circle structural information in complex Kv .

Kv 7→ β1(Kv) (3)

Intuitively, many meaningful patterns in U (i) would lead to the circle structure in the clique complex
filtration. The number of circle is typically used as an important quantitative index for expressing
patterns. Hence, the 1-st Betti number β1(Kv), v ∈ {1, · · · , h∗} could be arranged into so called
1-st Betti curves β(U (i), v) for U (i). Here, we employ birth time b(U (i)) to interpret and extract core
characterization of 1-st Betti curves β(U (i), v).

b(U (i)) = inf{v | β(U (i), v) ̸= 0} (4)

Birth time refers to the moment when circle structure begins to appear (i.e., (Betti number ̸= 0)) in
the clique complex filtration. It signifies essential changes in filtration, indicating that regularized
spatial patterns of notable components begin to emerge within U (i). Conversely, when no spatial
pattern is detected in the components of U (i), β(U (i), v) remains 0, indicating the absence of a birth
time. This situation typically arises when the function fails to effectively represent the images (i.e.,
the majority of the values in U (i) are equal to 0). We provide an example about Betti curve and
and birth time in App. B.

3.2 Topological Entropy

If one layer is quantization-insensitive, the output feature maps can still perceive common features
about a set of images with the same label at lower bit-width. This is, the birth time obtained from
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each realization of U (i) should be relatively close. In other words, the performance of a quantization-
insensitive layer for a certain label should remain stable across all images with the same label. This is
the key idea behind assessing the performance of layer.

Birth Time Distribution. Sampling a set of images with the same label can be regarded as statistical
experiments. Thus, birth time is a random variable (denoted as b(m,U (i))). We construct the
probability space (Ω,Σ, P ) for b(m,U (i)), where the elements in sample space Ω are the unit U (i)

resulted from the images with same label, Σ could be set as common discrete σ-field and probability
measure P is uniformly distributed on Ω since each image has an equal chance to be selected as the
input of network model. This probability space satisfies the following probability distribution,

PU(i)(x) = P (b(m,U (i)) = x) =

∑#(Ω)
j=1 I(b(U (i)) = x)

#(Ω)
, (5)

The degree of concentration of PU(i)(x) gives a direct view of the expressiveness of U (i) for the
images with the same label. Specifically, if the distribution presents close to a degenerate-like style,
it means that the underlying common features of the images with the same label could be stably
perceived by U (i). On the contrary, the distribution presents close to a uniform-like style when
features are perceived almost blindly, indicating that U (i) is invalid for the images with the same label.
In summary, the degree of concentration of PU(i)(x) is supposed to be a quantification sensitivity
indicator of U (i).

Considering a function with c∗ output features, we use the weighted entropy to further measure the
quantification sensitivity of output features of the function (called TE H).

H = −
c∗∑
i=1

θi ∗ Hi (6)

where

Hi = −
|X |∑
x

PU(i)(x) logPU(i)(x), θi =
Hi∑c∗

i=1 Hi

(7)

where Hi and wi are the TE and weight corresponding to U (i), respectively. A lower Hi means that
U (i) exhibits quantization-insensitive. Thus, a lower weight θi should be assigned for a lower Hi.

3.3 Linear Programming for MPQ

TE directly indicates the quantification sensitivity of the layers (i.e., functions) in the network without
taking into account the different dataset distributions, guiding the configuration of a generalizable
quantization policy. Generally, sensitive layers should be assigned a larger bit-width to enhance their
representational capability Liu et al. [2018]. Thus, we assign a larger bit-width to layers with higher
TE to maximize representational capability.

We perform extensive experiments that present sufficient and reliable evidence for such an assertion.
Specifically, we first sample various quantization policies for ResNet-18 and Faster R-CNN. We then
perform fine-tuning to optimize model performance. Simultaneously, the overall TE of the sampled
models is calculated separately. Interestingly, as shown in Figure 4, we find that model TE and
performance are positively correlated with the sum of TE of each layer. Based on this finding, we set
minimizing TE as our objective function and formulate a linear programming problem to derive final
quantization policy.
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Figure 4: Relationship between TE and accuracy/mAP for different quantization policies on ResNet-
18, ResNet-50, SDD & VGG-16 and Faster R-CNN & ResNet-18.

Objective min
B

L∑
i=1

H(i) ∗ B(i)

Constraint
L∑

i=1

M (B(i)) ≤ T , B(i) ∈ N+, H(i) > H(j) =⇒ B(i) > B(j).

(8)

where M (B(i)) represents the model size of the i-th layer under B(i) bit-width quantization, while
T denotes the target model size. B refers to the optimal bit-width configuration, where all B(i)

are integers (i.e., B(i) ∈ N+). A larger TE corresponds to a larger bit-width configuration (i.e.,
H(i) > H(j) =⇒ B(i) > B(j)). Maximizing the objective function involves assigning a larger
bit-width to more unstable layers, thereby implicitly enhancing the representational capacity of the
model. Notably, Eq. 8 can be solved in only a few seconds on a single CPU. Furthermore, we
theoretically prove a performance degradation bound for GMPQ-TE (see App. C.3).

Remark: The objective of MPQ is to allocate bit-widths (Bi ∈ N+) to each layer
(i ∈ {1, . . . , L}) under a resource budget T , to minimize total performance degradation
min{Bi}

∑L
i=1 ∆Li(Bi), s.t.

∑L
i=1 M(Bi) ≤ T , where ∆Li(Bi) denotes the task loss increase

due to quantization of layer i, and M(Bi) is the corresponding resource cost. We define TE Hi from
the birth-time distribution PU(i)(x) of same-label inputs at layer i. A high Hi implies structural
inconsistency and greater sensitivity to quantization. Quantization introduces perturbations to the
weights. For layer i, the quantized weight is given by Ŵi = Wi + δWi, ∥δWi∥ ≤ ε.

Assuming a Lipschitz continuous forward operator f (i), the pre- and post-quantization feature
maps are U (i) = f (i)(Wi, X), Û (i) = f (i)(Ŵi, X). By Lipschitz continuity, the output de-
viation is bounded by ∥U (i) − Û (i)∥ ≤ Li · ∥Wi − Ŵi∥ ≤ Liε. This perturbation in feature
space leads to structural changes in the persistence diagrams, with bottleneck distance bounded
by dB(D(U (i)), D(Û (i))) ≤ ∥U (i) − Û (i)∥. Given that entropy is computed over the birth-time
histogram derived from the persistence diagram, we can infer the ℓ1 difference in their birth-time dis-
tributions ∥PU(i) −PÛ(i)∥1 ≤ αi · ∥Wi − Ŵi∥ ≤ αiε. Shannon entropy is Lipschitz continuous with
respect to ℓ1 distance, yielding the following bound |H(0)

i −H
(B)
i | ≤ Ci · ∥PU(i) −PÛ(i)∥1 ≤ Ciαiε.

We now relate entropy variation to task loss degradation. The increase in loss can be estimated by a
second-order Taylor expansion ∆Li ≤ 1

2λi∥δWi∥2 + 1
6κi∥δWi∥3. We further observe that the L1

distance between the birth-time distributions before and after quantization can be upper bounded in
terms of TE. Specifically, since Shannon entropy is Lipschitz-continuous with respect to its input
distribution, we have Φ

(
∥PU(i) − PÛ(i)∥1

)
≤ Φ

Ä
|H(0)

i −H
(B)
i |
ä

. This confirms that TE is an
upper-bound surrogate of quantization-induced performance degradation. Based on this insight, we
propose a TE-guided MPQ objective min{Bi}

∑L
i=1 Hi ·Bi s.t.

∑L
i=1 M(Bi) ≤ T . To ensure

alignment with sensitivity ranking, we enforce Hi > Hj ⇒ Bi > Bj . This ordering remains consis-
tent during training due to entropy drift stability, as shown by |H(t)

i −H
(0)
i | ≤ ∆q,i logMi ·Li ⇒

sign(Hi −Hj) = sign(H
(t)
i −H

(t)
j ), where sign(Hi −Hj) denotes the relative ordering between

layer sensitivities. This ensures that layers identified as more sensitive in the initial phase continue to
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receive higher precision during optimization. Thus, TE is suitable for mixed-precision quantization
with sufficient theoretical justification.

4 Experiments

We first introduce the datasets and the experimental settings. Then, we demonstrate why TE possesses
good cross-dataset properties through ablation experiments. Finally, we compare GMPQ-TF to
state-of-the-art MPQ approaches for image classification and object detection.

4.1 Datasets and Implementation Details

Figure 5: Relationship between different batch sizes
and TE on ResNet-18.

Following studies Wang et al. [2021] and
Wang et al. [2024] configuration, for im-
age classification, we use ImageNet Deng
et al. [2009] to evaluate the quantized net-
works, where ResNet-18, ResNet-50 He
et al. [2016], MobileNet-V2 Sandler et al.
[2018], ViT Dosovitskiy et al. [2020] and
Swin transformer Liu et al. [2021] are
treated as the baseline architectures. In
terms of object detection, PASCAL VOC
Everingham et al. [2015] is employed to
validate the effectiveness of GMPQ-TE,
where VGG-16 Karen [2014] with SSD
framework Liu et al. [2016] and ResNet-18
with Faster R-CNN Ren et al. [2016] are
used as the baseline architectures. Regarding evaluation metrics, common criteria include model
storage cost (Params.), computational cost (BOPs), BOPs compression ratio (Comp), and search
cost (s). Top-1/5 accuracy (%) and mean average precision (mAP) (%) Everingham et al. [2015]
are specifically used for image classification and object detection, respectively. By setting different
constraints T , we can obtain the quantized networks with different accuracy-complexity trade-offs.
In addition, we follow study Wang et al. [2021] to fine-tune the quantized networks that are found on
different tasks. All experiments are perform on an NVIDIA Geforce GTX 3090Ti.

4.2 Ablation Study

Figure 6: Relationship between different labels from
the same dataset and TE on ResNet-18.

1) Batch size: Normally, more accurate
measures of quantization sensitivity can
be achieved by sampling as many images
with similar labels as possible. However,
excessive data sampling may lead to sig-
nificant computational overhead. We set
different batch sizes (i.e., 32, 64, 128, 256,
and 512) on CIFAR-10 to verify the effect
of batch size on quantification sensitivity,
where ResNet-18 as a baseline model is
used to test the TE of each layer. A batch
of images with the label “cat” is selected
as input for ResNet-18. Figure 5 illustrates
the TE of each layer under different batch
sizes. Overall, the trend of TE variation is
consistent across batch sizes. Furthermore, we can observe that the TE of each layer stabilizes as the
batch size increases. Since the differences in TE for batch sizes 128, 256, and 512 are insignificant,
we consider the computational efficiency and choose 128 in all experiments.

2) Labels from the different datasets: We compute TE derived from the labels of different datasets
to validate its cross-dataset property. Specifically, we first use ResNet-18 as the baseline architecture
and compute TE for each layer obtained from the same labels (“dog” and “cat”) of the three datasets
(CIFAR-10, ImageNet, PASCAL VOC), as shown in Figure 7 (a). We observe that images with the
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(a) Same label images (b) Different label images

Figure 7: Relationship between labels from different datasets and TE on ResNet-18.

same labels on different datasets do not affect the calculation of TE. We then use different labels
to further check the consistency of TE across datasets, as shown in Figure 7 (b). Similarly, TE is
consistent across different labels in different datasets. The above phenomenon indicates that TE
has good cross-dataset property. That is, the quantization strategy obtained through TE has good
generalization ability.

3) Labels from the same dataset: To exclude the effect of labels on TE, we select “airplane”,
“automobile”, “bird”, and “dog” in CIFAR-10 for analysis, where ResNet-18 serves as the benchmark
architecture. The experimental results are shown in Figure 6. We can observe that TE of each layer
does not change dramatically with the change of labels. This proves that the TE is independent of the
labels. Therefore, there is no need to consider the effect of labels when using TE for quantitative
sensitivity analysis of each layer. This reflects the robustness of the proposed TE concerning labels.

4.3 Comparison with State-of-the-art Methods

Table 1: Results for image classification on
MobileNet-V2 (PTQ).

Methods Params. BOPs Comp. Top-1 Top-5 Cost.
Full-precision 13.4 337.9 – 71.9 90.3 –

RQ 2.7 11.9 28.4 68 – –
GMPQ† 1.4 10.4 32.6 71.5 90.1 6.1K

R-GMPQ† 2.2 9.9 34.1 71.7 90.2 6.8K
GMPQ-TE 1.4 10.1 33.4 71.8 90.2 15

HAQ 1.4 8.3 41 69.5 88.8 18.3K
DJPQ 1.9 7.9 43 69.3 – 43.9K

GMPQ 1.2 7.4 45.8 70.4 89.4 9.3K
R-GMPQ 1.1 7.2 46.7 70.9 89.7 10.4K

GMPQ-TE 1.1 7.3 46.1 71.2 89.9 14
HMQ 1.7 5.2 64.4 70.9 – 120.6K
DQ 1.7 4.9 68.7 69.7 – 77.7K

EMQ 1.5 70.75 – few seconds
GMPQ† 1 4.8 69.7 69.5 89.1 10K

R-GMPQ† 1.3 4.7 72.2 69.7 89.5 11.1K
OMPQ∗ 1.5 12.3 27.3 70.39 89.9 9

GMPQ-TE 1.3 4.5 74.8 69.8 89.7 11

We compare the proposed method with the state-
of-the-art quantization approaches, including
OMPQ Ma et al. [2023], GMPQ Wang et al.
[2021], R-GMPQ Wang et al. [2024], DJPQ
Wang et al. [2020], EdMIDS Cai and Vasconce-
los [2020], HAWQ Dong et al. [2019], APoT Li
et al., ALQ Qu et al. [2020], HMQ Habi et al.
[2020], HAQ Wang et al. [2019a], BP-NAS Yu
et al. [2020], RQ Louizos et al. [2020], EMQ
Dong et al. [2023], and DQ Uhlich et al. [2019].
There are two types from which these experi-
mental data are derived: duplication of data from
the original literature and reproduction based on
the open-source code or the quantized architec-
tural information. † is implemented by ourselves
using open source code. ∗ is implemented based
on the quantized architectural information pro-
vided by the authors due to lack of open source code. The best and second-best are color coded.
The performances of the full-precision baseline models are also provided for better comparison. We
use CIFAR-10 to find the suitable quantization policy for all baseline architectures. Then, the baseline
architectures with suitable quantization policies are deployed on ImageNet or PASCAL VOC. In
addition, the results for ResNet-18, ResNet-50, ViT, Swin transformer and ResNet-18 with Faster
R-CNN under PTQ can be found in App. D.1. Results under QAT for ResNet-18, ResNet-50,
MobileNet-V2, ViT, Swin transformer can be found in App. D.2.

Results on ImageNet: Table 1 record the experimental results on ImageNet with MobileNet-V2 as
the baseline model, respectively. Compared to the generalizable MPQ approaches (i.e., GMPQ and
R-GMPQ), GMPQ-TE achieves good post-quantization accuracy over multiple baseline architectures
with less cost. Compared to OMPQ, GMPQ-TE gets better quantization performance although
GMPQ-TE uses 2s more on MobileNet-V2.
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Table 2: Results for object detection on SSD &
VGG-16. (PTQ)

Methods Params. BOPs Comp. mAP Cost.
Full-precision 105.5 27787.7 – 72.4 –

HAQ 42.7 847.2 32.8 70.9 225K
HAQ-C 42.9 819.7 33.9 67.6 18.3K
EdMIPS 33.5 958.2 29 69.4 5.4K
GMPQ 36.6 796.2 34.9 70.5 5.7K

R-GMPQ 32.6 761.3 36.5 70.8 6.4K
GMPQ-TE 32.6 758.4 36.6 71.1 27

HAQ 35.5 430.15 64.6 69.1 244.4K
HAQ-C 36.3 445.3 62.4 66.4 24.4K
EdMIPS 29.4 454 61.2 68.7 108.7K
GMPQ† 24.7 413.5 67.2 69.2 6.4K

R-GMPQ† 26.9 406.8 68.3 70.3 7.2K
GMPQ-TE 24.7 405.4 68.6 70.6 23

Results on PASCAL VOC: As shown in Ta-
ble 2, GMPQ-TE achieves the best trade-off
between mAP and compression ratio on SSD
& VGG-16. For example, GMPQ-TE obtains
71.1% mAP with only 32.6 Mb parameters and
758 BOPs, outperforming R-GMPQ in both ac-
curacy and computational efficiency under the
same parameter budget. Notably, it also sur-
passes EdMIPS by 2.2% mAP while using sig-
nificantly fewer parameters (32.6 Mb vs. 33.5
Mb) and computational cost (27 vs. 5.4K).
Meanwhile, the Faster R-CNN & ResNet-18
model compressed by GMPQ-TE yields a 0.7%
mAP improvement over GMPQ, while reducing
the cost by approximately 250 times, demon-
strating its superior efficiency-accuracy balance.

4.4 Hardware Efficiency

Table 3: Comparison of different quantization methods on two FPGA
boards for ResNet-18 on ImageNet.

Methods
Results on FPGA XC7Z020 Results on FPGA XC7Z045

Utilization Throughput Latency Utilization Throughput Latency
LUT DSP (GOP/s) (ms) LUT DSP (GOP/s) (ms)

GMPQ 49% 100% 75 57.3 52% 100% 367 12.3
EdMIPS 39% 100% 61 61.4 41% 100% 316 15.9
R-GMPQ 50% 100% 79 52.1 59% 100% 398 10.4

GMPQ-TE 53% 100% 84 42.3 62% 100% 413 9.4

Table 3 compares the hard-
ware performance of dif-
ferent quantization methods
on two FPGA platforms
(XC7Z020 and XC7Z045)
using ResNet-18 on Ima-
geNet. For each FPGA
board, the utilization per-
centages of look-up table
(LUT) and digital signal
processing (DSP) blocks are reported for each quantization method. The LUT utilization, in particular,
reflects the effectiveness of the quantization method in accelerating inference. Among all methods,
GMPQ-TE consistently achieves the best overall performance. On XC7Z020, it attains the highest
LUT utilization (53%) and throughput (84 GOP/s), while reducing latency to 42.3 ms, significantly
lower than GMPQ (57.3 ms), EdMIPS (61.4 ms), and R-GMPQ (52.1 ms). On the more powerful
XC7Z045, GMPQ-TE further improves throughput to 413 GOP/s and lowers latency to 9.4 ms,
outperforming R-GMPQ (398 GOP/s, 10.4 ms) and GMPQ (367 GOP/s, 12.3 ms). These results
demonstrate that GMPQ-TE offers superior hardware efficiency and inference speed compared to
existing methods across different FPGA platforms.

5 Conclusion

In this paper, we propose GMPQ-TE for handling the efficiency and generalization. By utilizing
the properties of TE, GMPQ-TE can be constructed as a single-pass linear programming. The
quantization policy obtained on CIFAR-10 is well generalized to ImageNet and PASCAL VOC. The
proposed GMPQ-TE outperforms peer MPQ in terms of both accuracy and complexity. Further, the
ablation studies verify the effectiveness of the TE. GMPQ-TE offers a promising direction for MPQ.
In the future, we will explore new “topological data analysis” for MPQ on more complex tasks.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: The abstract is a nice enough for contributions.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The conclusion discusses the limitations of paper.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Justification: This paper provides the full set of assumptions and a complete proof.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This paper fully discloses all the information needed to reproduce the main
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: This paper provides open access to the data and code.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This paper specifies all the training and test details necessary to understand the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper makes several experiments to satisfy the reliability of ablation
experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.
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• The answer NA means that the paper does not include experiments.
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• The paper should disclose whether the full research project required more compute
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didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper meets the requirements of NeurIPS.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: The paper doesn’t cover these.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper correctly cites assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

19



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper uses LLM for text embellishment.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM


A Feature Map Construction Across Different Architectures

Case 1 — Convolution-based architectures. For convolutional networks, the output feature map
U(i) ∈ Rhi×wi

is naturally defined on a regular 2D grid. This grid already encodes the true Euclidean
neighborhood structure assumed by our clique filtration process. Therefore, we can directly flatten
the n = hi · wi vertices to form A ∈ Rn×n without any padding.

Case 2 — Transformer-based architectures. Vision Transformers produce a sequence of N tokens,
where N is often not a perfect square. Tokens can be rearranged into a p× q grid according to their
spatial positions in the original image, but typically p ̸= q and some positions remain empty. A direct
flattening of the 1D token sequence into an N × N adjacency matrix would impose an arbitrary
linear ordering on the vertices. This ordering does not correspond to the true Euclidean neighborhood
relationships in the image plane, and would distort the clique filtration process by creating spurious
edges between spatially unrelated tokens. As a result, the birth–death times of topological features
would be inconsistent with those obtained from genuine 2D grids.

To address this, we embed the p× q token grid into the smallest enclosing square of size ⌈
√
N⌉ ×

⌈
√
N⌉, and fill the empty positions with zero-valued tokens. This construction has two benefits:

1. It ensures that adjacency is always defined on a square 2D lattice, identical in form to the
convolutional case, enabling fair cross-architecture comparison.

2. By choosing the minimal square size, we limit the number of padded vertices, thereby
minimizing any dilution of the adjacency structure.

From a topological perspective, the padded region forms a contractible subcomplex with trivial
higher-order homology. In the filtration, zero-valued vertices outside the original token set do not
create new non-trivial cycles. Therefore, persistent homology — and the resulting topological entropy
— is invariant under this padding step.

After padding, the feature map has size hi ×wi = ⌈
√
N⌉× ⌈

√
N⌉, and is flattened into an adjacency

matrix of shape (hi · wi) × (hi · wi). Each matrix entry Auv encodes the weighted connection
between vertices u and v under this consistent 2D spatial embedding.

B Betti Curves and Birth Times

We illustrate the concept of Betti curves and birth times using a simple clique filtration process over
four nodes labeled 1–4. Let the filtration sequence be denoted as (τ (1), τ (2), . . . , τ (6)), where each
step incrementally adds edges to build higher-order cliques:

• τ (1): add edge (1, 2)

• τ (2): add edge (3, 4)

• τ (3): continue adding edges, no cycle yet

• τ (4): form a 1-cycle (1− 2− 4− 3− 1)

• τ (5): add edge (2, 3), creating additional cliques

• τ (6): complete graph with all edges

To capture the emergence of topological features, we define a birth-time indicator function β(i, v, Uk),
which equals 1 if the i-th feature appears for the first time at filtration step v, and 0 otherwise. A
typical curve looks like v = [0, 1, 2, 3, 4, 5, 6] ⇒ β = [0, 0, 0, 0, 1, 0, 0]

This indicates that a 1-dimensional loop is born at v = 4, corresponding to the closure of a cycle.
Notably, although edges are added at v = 5 and v = 6, they do not give rise to new independent
topological features. Instead, they reinforce existing structures or create higher-order cliques, thus
not being counted as new births.
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C Theoretical Analysis

C.1 Integration of Quantization-aware Training

Similarly to the study Ma et al. [2023], we integrate the TE into QAT and theoretically show that it
has very little effect on the final performance. The details are as follows:

Let

W (0) =
(
W

(0)
1 , . . . ,W

(0)
L

)
∈ RN , (9)

where W (0) is the floating parameters (i.e., weights) obtained by GMPQ-TE. Here L is the number of
quantized layers and N =

∑L
i=1 ni with ni = dimWi. For every layer i fixes a bit-width bi ∈ Z>0

and a clipping radius αi > 0. Defining quantization step ∆q,i = 2−(bi−1)αi and symmetric quantizer

Qbi(w) = clip
(
round(w/∆q,i)

)
∆q,i, iteration t updates the floating copy via

W (t+1) = W (t) − ηt ∇L
(
W (t)

)
, 0 ≤ t < T, (10)

The forward path employs the quantized tensor Sozykin et al. [2022] ›W (t) =(
Qb1(W

(t)
1 ), . . . , QbL(W

(t)
L )

)
. A single SGD step cannot move any weight across two adjacent

quantizer levels. Hence,

∥∥W (t+1)
i −W

(t)
i

∥∥
∞ ≤ ∆q,i

2
, (11)

For every layer i and every iteration t, summing Eq. 11 over all steps yields a global drift

ε
(t)
i :=

∥∥W (t)
i −W

(0)
i

∥∥
∞ ≤ ∆q,i

2
(∀t). (12)

Because 1
2∆q,i is one bin width, one has Qbi

(
W

(t)
i

)
= Qbi

(
W

(0)
i

)
,∀ t.

For a convolution–BN–ReLU block, perturbing the weight tensor by ε
(t)
i in ℓ∞ produces at most

Liε
(t)
i change in the output feature map, i.e.

∥∥Ui(W
(t))− Ui(W

(0))
∥∥
∞ ≤ Li ε

(t)
i , Li ≤ 2.5. (13)

Here Li is the ℓ∞→ℓ∞ operator norm of the block. The bottleneck distance between two persistence
diagrams McCleary and Patel [2018] is upper-bounded by the ℓ∞ distance of their generating
functions. Thus, dB

(
D(U

(t)
i ), D(U

(0)
i )

)
≤ Li ε

(t)
i . A bottleneck displacement of at most Liε

(t)
i

implies that each sample’s birth time moves by no more than one bin. Consequently,
∥∥P

U
(t)
i

−

P
U

(0)
i

∥∥
1

≤ 2Li ε
(t)
i . Because Shannon entropy Lin [1991] satisfies | − ∂xx log x| ≤ logMi on the

interval [1/Mi, 1], we finally obtain

|H(t)
i −H

(0)
i | ≤ 2Li(logMi) ε

(t)
i ≤ Li(logMi)∆q,i (14)

with Mi the number of histogram bins and ∆q,i the quantization step of layer i.

Having bounded each single–layer entropy variation in Eq. 14, we aggregate those bounds and
compare them with the initial separation among layers. To control all layers simultaneously we
introduce a worst-case entropy drift δmax := maxi Li(logMi)∆q,i and record the minimum initial
gap γ := mini̸=j

∣∣H(0)
i −H

(0)
j

∣∣ > 0. Whenever the inequality δmax < γ
2 holds, each layer can move

by at most half the gap—hence no pair of layers can swap their order. Applying Eq. 14 to every pair,
we obtain

H
(t)
i −H

(t)
j = (H

(0)
i −H

(0)
j )± 2δmax ̸= 0, (15)
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Thus,

sign
(
H

(t)
i −H

(t)
j

)
= sign

(
H

(0)
i −H

(0)
j

)
, ∀ i ̸= j, t. (16)

That is, the TE ranking established at t = 0 is preserved for the entire QAT trajectory. Because the
mixed-precision linear programming (LP) enforces Hi > Hj ⇒ bi > bj , and Eq. 16 keeps this
ordering intact, the integer-feasible polytope B :=

{
b ∈ ZL | H(t)

i > H
(t)
j ⇒ bi > bj

}
is identical

for every iteration t. Therefore the bit-width vector B⋆ that was optimal at t = 0 stays both feasible
and optimal throughout QAT.

At step t the LP objective can be decomposed as

Ψ(t)(b) =

L∑
i=1

H
(t)
i bi = Ψ(0)(b) +

L∑
i=1

(
H

(t)
i −H

(0)
i

)
bi. (17)

Because |H(t)
i −H

(0)
i | ≤ δmax and bi ≤ bmax, the perturbation of the objective value is uniformly

bounded:

∣∣Ψ(t)(b)−Ψ(0)(b)
∣∣ ≤ δmax bmax L, ∀ b ∈ B. (18)

Classical sensitivity theory Gorski-Popiel [1963] for an integer LP states that the optimal basis cannot
change if every coefficient variation is smaller than the minimum reduced-cost gap (≥ γ/2 in our
case). Due to δmax < γ/2, the unique optimum B⋆ of Ψ(0) therefore remains the optimum for all
subsequent iterations.

B⋆ ∈ argmin
b∈B

Ψ(t)(b), ∀ t. (19)

The forward path always employs the unchanged bit-width vector B⋆ (see Eq. 19). The half–interval
drift property guarantees that no weight ever crosses a quantizer boundary. Therefore, the integer
weights themselves remain identical throughout training. The inference graph at step t is the same as
at t = 0, and the classification performance cannot vary: Acc(t) = Acc(0),∀ t.

C.2 Resolution– and Label–independent

Convolution-based architectures

Let dataset XA = {XA
i,j} and XB = {XB

i,j}, where XA
i,j ∈ Rh1×w1 and XB

i,j ∈ Rh2×w2 . PIA(x) and
PIB (x) are the distribution of pixel values from XA and XB , respectively. PFA

(x) and PFB
(x) are

distribution of output feature maps from XA and XB , respectively. A single convolutional layer with
kernel K acts on an image patch x via

T (x) : zu,v =
∑
s,t

Ks,t xu−s,v−t, (20)

where the receptive field S = {(s, t) | Ks,t ̸= 0} is local. Given any input distribution PI , the
induced feature distribution is PF (z) =

∫
δ
(
z − T (x)

)
PI(x) dx. The TE of PF is HTE(PF ) =

−
∑M

k=0 PF (k) logPF (k), where PF (k) is the birth-time histogram and M the bin count. Because
T depends only on pixels inside S, we may rewrite feature distribution as

PF (z) =

∫
δ
(
z− T (xS)

)
PI(xS) dxS , (21)

where xS is the sub-tensor on S. Applying Eq. 21 to the two datasets yields

PFA
(z) =

∫
δ(z− T (xS))PIA(xS) dxS , PFB

(z) =

∫
δ(z− T (xS))PIB (xS) dxS . (22)

Images of the same class share an identical local distribution Osada et al. [2002]:
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PIA(xS) = PIB (xS) =: PS(xS). (23)

Substituting Eq. 23 into Eq. 22 gives PFA
(z) = PFB

(z) =
∫
δ(z − T (xS))PS(xS) dxS , and

HTE

(
PFA

)
= HTE

(
PFB

)
. Thus, TE does not depend on the global resolution of the input image.

Let C be the class label. The convolution acts as an information bottleneck (IB):

I(F ;C) ≤ I(I;C), (24)

where I(·; ·) denotes mutual information. Pixels inside the receptive field have identical class-
conditioned distributions:

PS|C=c1(xS) = PS|C=c2(xS), ∀c1, c2. (25)

Hence the class-conditional feature distributions coincide:

PF |C=c1(z) = PF |C=c2(z). (26)

Their topological entropies are equal,

HTE

(
PF |C=c1

)
= HTE

(
PF |C=c2

)
. (27)

Defining the Kullback–Leibler divergence DKL

(
PF |C=c1 ∥PF |C=c2

)
, Pinsker’s inequality Fedotov

et al. [2003] implies

∥∥PF |C=c1 − PF |C=c2

∥∥
1
≤

√
2DKL. (28)

Eq. 26 gives DKL = 0, Thus ∥∥PF |C=c1 − PF |C=c2

∥∥
1
= 0. (29)

Using the entropy Lipschitz bound Polyanskiy and Wu [2016] |H(p)−H(q)| ≤ (logM)∥p− q∥1
yields

∣∣HTE

(
PF |C=c1

)
−HTE

(
PF |C=c2

)∣∣ = 0. (30)

The IB objective at a hidden layer is minPF |I

[
I(F ; I)− β I(F ;C)

]
, where β is trade-off parameter.

The optimum satisfies

I(F ; I) = const, I(F ;C) = 0, (31)

Thus, TE is proportional to the IB cost:

∂

∂θ
HTE(PF ) = λ

∂

∂θ
I(F ; I), λ > 0. (32)

Minimising TE is therefore IB-consistent. Collecting Eqs. 27-32, we have that
HTE is independent to input resolution and class label, i.e.,

∣∣HTE

(
P

(1)
F

)
−HTE

(
P

(2)
F

)∣∣ = 0.

Transformer-based architectures

Let the input to an attention block be X ∈ RN×d, where N is the number of tokens and d is the
channel dimension. An attention operation can be expressed as:

Attn(X) = σ

Ç
QK⊤
√
dk

+ bias

å
V (33)

Q = XWQ, K = XWK , V = XWV (34)
where σ is the row-wise softmax, and bias may include fixed masks or positional encodings. Multi-
head attention is a concatenation of several such heads followed by a linear projection. Let the block
output be F = Attn(X) ∈ RN×d.
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Assumption A1 (Class-invariance within attention domains). For any attention receptive domain
S (which may be the entire token set for global attention, a window for local attention, or a sparsified
neighborhood), the multiset of tokens XS has a class-conditional distribution that is invariant across
labels:

PXS |c1 = PXS |c2 := PS , ∀c1, c2 (35)

The attention mapping Aθ : XS 7→ ZS is a composition of linear maps, scaling, softmax weight-
ing, and aggregation, all of which are measurable and Lipschitz on bounded domains. The class-
conditional output distribution is:

PF|c1(z) =

∫
δ
(
z −Aθ(XS)

)
PXS |c1(XS) dXS (36)

Substituting Assumption A1 into the above yields:

PF|c1(z) = PF|c2(z) =

∫
δ
(
z −Aθ(XS)

)
PS(XS) dXS (37)

which is directly analogous to Eq. 27 in Appendix for convolutional mappings.

Let U be the scalar field derived from F (e.g., channel aggregation or reshaped into a 2D grid). For
attention architectures where N is not a perfect square, we embed the p × q token layout into the
minimal square ⌈

√
N⌉ × ⌈

√
N⌉ and zero-pad empty positions. The padded region is contractible

(Hk = 0, ∀k ≥ 1) and does not introduce spurious topological features.

From U, we construct a weighted adjacency matrix and perform sublevel set filtration to obtain the
birth-time histogram PU (k). The topological entropy is:

HTE(PU ) = −
M∑
k=1

PU (k) logPU (k). (38)

Because PF|c1 = PF|c2 , the induced PU |c1=c2 is also identical across labels. By the Lipschitz
continuity of entropy with respect to total variation distance:∣∣HTE(PU |c1)−HTE(PU |c2)

∣∣ ≤ O(M) ∥P (1)
U |c1 − P

(1)
U |c2∥1, (39)

and here ∥P (1)
U |c1 − P

(1)
U |c2∥1 = 0, we have exact equality:

HTE(PU |c1) = HTE(PU |c2), ∀c1, c2. (40)

Under Assumption A1, the equality of class-conditional token distributions through any measurable
attention mapping (global, local, multi-head, with or without positional encodings) guarantees that
the resulting birth-time histograms are label-independent. Padding in attention architectures serves
only to unify the 2D adjacency structure and does not affect the birth-time distribution topology.

C.3 Performance Degradation Boundary

We provide a theoretical performance degradation. The details are as follows:

Let

W (0) =
(
W

(0)
1 , . . . ,W

(0)
L

)
∈ RN , (41)

where W (0) is the floating parameters (i.e., weights) obtained by GMPQ-TE. After finetuning phase,

W (t+1) = W (t) − ηt ∇L
(
W (t)

)
, 0 ≤ t < T, (42)

with the mini-batch cross-entropy Seidenschwarz et al. [2021]

L(W ) = |Ω|−1
∑

(x,y)∈Ω

− log
[
softmax(f(W , x))y

]
.
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Because a straight-through estimator Yin et al. [2019] never pushes a weight farther than half a
quantization interval, the cumulative drift satisfies

εi :=
∥∥W fin

i −W
(0)
i

∥∥
∞ ≤ ∆q,i

2
, 1 ≤ i ≤ L. (43)

For a same-label batch Ωs we denote PUi
(k) = 1

|Ωs|
∑

x∈Ωs
1
[
b
(
Ui(W , x)

)
= k

]
, and recall the

TE Hi(W ) = −
∑

k PUi(k) logPUi(k). A standard Lipschitz estimate for convolution–BN–ReLU
blocks Jordan and Dimakis [2020] gives

∥∥Ui(W
fin)− Ui(W

(0))
∥∥
∞ ≤ Li εi, where Li ≤ 2.5 is

an operator norm.

By the bottleneck-distance stability of persistent homology He et al. [2024], we obtain

dB
(
D(Ufin

i ), D(U
(0)
i )

)
≤ Li εi, (44)

Thus, every sample’s birth time moves by at most one histogram bin, i.e.
∥∥P fin

Ui
− P

(0)
Ui

∥∥
1
≤ 2Li εi.

Since | − ∂xx log x| ≤ logMi on [1/Mi, 1],∣∣Hfin
i −H

(0)
i

∣∣ ≤ 2Li(logMi) εi (45)

where Mi the number of bins. We defines the mixed-precision objective as Φ(W) =∑L
i=1 Hi(W) bi. Using inequality (Eq. 45) and the trivial bound bi ≤ bmax, we obtain∣∣Φfin − Φ(0)

∣∣ ≤ 2 bmax Lmax(logMmax)Lεmax, εmax := max
i

εi (46)

Writing Hi := ∇2
Wi

L
(
W(0)

)
and Ti := ∇3

Wi
L(ξi), where ξi ∈ [W(0),Wfin] lies on the line

segment connecting the initial and finetuned weights. A per-layer Taylor series yields

Lfin − L(0) =
1

2

∑
i

∆W⊤
i Hi∆Wi +

1

6

∑
i

⟨Ti,∆W⊗3
i ⟩, (47)

where ∆Wi := W fin
i − W

(0)
i . Hi is layer-wise Hessian of L at W(0) Dong et al. [2019]. Ti is

third-order derivative tensor evaluated at ξi. λ̄ is global spectral-norm bound. κ̄ is global third-order
bound maxi ∥Ti∥∞.

Assuming ∥Hi∥op ≤ λ̄, ∥Ti∥∞ ≤ κ̄ (both empirically ≤ 1 Chauhan et al. [2023]), and ∥∆Wi∥22 ≤
niε

2
i , ∥∆Wi∥31 ≤ n2

i ε
3
i , we obtain

∣∣Lfin − L(0)
∣∣ ≤ 1

2 λ̄ nmaxLε2max +
1
6 κ̄ n

2
maxLε3max (48)

Let τmin > 0 denote the smallest soft-max margin on the training set. A standard PAC–Bayes
argument McAllester [1998] implies∣∣Accfin −Acc(0)

∣∣ ≤ 1

τmin

∣∣Lfin − L(0)
∣∣. (49)

Combining Eqs. 48 with 49, we obtain∣∣Accfin −Acc(0)
∣∣ ≤ λ̄nmaxL

2τmin
ε2max +

κ̄n2
maxL

6τmin
ε3max (50)

By Eq. 43, the global drift is εmax ≤ 1
2∆q,min = 2−(bmin)α. Thus, the r.h.s. of Eq. 49 is O(2−2bmin).

Even for bmin = 4 the term is < 10−3; for deeper compression it decays exponentially. Under the
half–interval drift condition Eq. 43, the topological-entropy objective satisfies

∣∣Φfin − Φ(0)
∣∣ =

O
(
2− bmin

)
, while performance is perturbed by at most

∣∣Accfin − Acc(0)
∣∣ = O

(
2− 2bmin

)
, where

bmin = mini bi is the smallest bit-width in the network. Thus, GMPQ-TE cannot cause any practically
measurable performance degradation.
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D Experimental Results

D.1 Results for PTQ

Table 4: Results for image classification on
ResNet-18 (PTQ).

Methods Params. BOPs Comp. Top-1 Top-5 Cost.
Full-precision 46.8 1853.4 – 69.7 89.2 –

HAWQ 5.8 34 54.5 68.5 – 56K
GMPQ† 5.4 28.4 65.2 69.2 89.1 1.8K

R-GMPQ† 5.3 27.9 66.4 70.4 89.7 1.8K
OMPQ∗ 6.7 75 24.7 70.1 89.3 –

GMPQ-TE 5.3 27.4 67.6 70.3 89.4 19
Mean ± Std 5.3 27.90± 0.41 66.40± 0.98 69.97± 0.54 89.40± 0.24 19.03± 0.03

APoT 4.6 16.3 11.38 69.8 – –
GMPQ† 4.1 15.3 121 69.1 88.9 2.1K

R-GMPQ† 3.8 15.6 118.7 69.4 89.1 2.5K
GMPQ-TE 3.8 15.7 118 69.6 89.4 18
Mean ± Std 3.8 15.67± 0.05 118.23± 0.33 69.47± 0.09 89.30± 0.14 18± 0.21

ALQ 3.4 7.2 256 66.4 – 138.6K
EMQ 4 69.92 – few seconds

EdMIPS 4.7 7.2 258 65.9 86.5 34.2K
GMPQ† 3.7 7.2 255.8 67.1 88 3.2K

R-GMPQ† 3.5 7.2 258.5 67.9 88.7 3.9K
GMPQ-TE 3.5 7.1 260.9 68.3 88.9 16
Mean ± Std 3.5 7.17± 0.05 258.40± 2.08 67.77± 0.50 88.53± 0.39 15.4± 0.32

Table 5: Results for image classification on
ResNet-50 (PTQ).

Methods Params. BOPs Comp. Top-1 Top-5 Cost.
Full-precision 97.5 3952.6 – 76.4 93.1 –

HAWQ 13.1 61.3 64.5 75.3 92.4 131.7K
HAQ 12.2 50.3 78.6 75.5 92.4 243.7K

GMPQ† 12.4 53 74.6 76.1 92.7 7.9K
R-GMPQ† 10.6 51.8 74.3 76.3 92.9 9K
GMPQ-TE 10.6 51.4 76.8 76.3 93 25

BP-NAS 11.3 33.2 119 75.7 92.8 128.1K
GMPQ† 9.6 30.7 128.6 75.2 92.1 9.7K

R-GMPQ† 7.9 30.1 131.5 75.9 92.5 11.1K
GMPQ-TE 7.9 29.5 133.9 76.1 92.7 23

EdMIPS 13.9 15.6 254.2 72.1 90.6 75.4K
GMPQ† 8.8 15.7 252.2 73.6 91.2 12.2K

R-GMPQ† 10.2 15.7 251.8 74.1 91.5 1.6K
OMPQ∗ 18.7 15.6 253.3 74.28 91.6 –

GMPQ-TE 10.2 15.5 254.9 74.3 91.8 20

The performance of different quantization methods on ResNet-18 and ResNet-50 is summarized
in Tables 4 and 5. Among all quantization methods, GMPQ-TE consistently outperforms its peers
across multiple metrics including accuracy, compression, and cost. GMPQ-TE achieves Top-1
accuracy of 70.3% and Top-5 accuracy of 89.1%, while maintaining the lowest cost at 19 s. This is a
significant improvement over R-GMPQ, which achieves Top-1 of 69.4% and Top-5 of 88.9% but has
a higher cost of 2.5K s. GMPQ-TE also demonstrates superior compression (67.6%) compared to
other methods, confirming its high efficiency in balancing model size and performance. GMPQ-TE
further extends its advantage in ResNet-50 with a Top-1 accuracy of 80.6% and Top-5 accuracy of
85.1%, outperforming R-GMPQ (75.9% for Top-1, 82.8% for Top-5) by a significant margin. The
compression of GMPQ-TE is also outstanding at 76.8%, which ensures efficient resource utilization.
Additionally, GMPQ-TE reduces the cost significantly compared to other methods, such as BP-NAS,
which achieves a similar Top-1 accuracy of 76.3% but at a much higher cost of 128.1K s.

For object detection tasks (see Table 6), GMPQ-TE continues to perform strongly in terms of both
accuracy (mAP) and cost. GMPQ-TE on Faster R-CNN & ResNet-18 achieves an mAP of 74.2,
surpassing R-GMPQ (73.9) and GMPQ (73.5), with a noticeable reduction in cost to 25 s, compared
to R-GMPQ (2.1K s) and GMPQ (140K s). This result highlights GMPQ-TE’s ability to maintain high
mAP while significantly reducing computational cost, making it suitable for real-time applications
where both accuracy and resource constraints are critical.

The results across various ViT and Swin Transformer models show that GMPQ-TE provides competi-
tive performance even in transformer-based architectures, as shown in Table 7. For ViT-S and ViT-B,
GMPQ-TE achieves Top-1 accuracy of 80.6% and 85.1% respectively, outperforming PTQ4ViT and

Table 6: Results for object detection on Faster R-CNN & ResNet-18 (PTQ).
Methods Params. BOPs Comp. mAP Cost.

Faster R-CNN & ResNet-18
Full-precision 47.4 22534.8 – 74.5 –

HAQ 8.3 324.5 65.8 73.5 140K
HAQ-C 8.5 337.9 66.7 70.7 14.7K
EdMIPS 9.3 361.7 62.3 72.3 59.7K
GMPQ† 6.4 337.9 66.7 73.9 1.8K

R-GMPQ† 7.2 324.7 69.4 74.3 2.1K
GMPQ-TE 6.4 325.8 69.3 74.2 25

HAQ 8 303.7 74.2 73.2 126.7K
HAQ-C 7.6 310.4 72.6 70.4 18.7K
EdMIPS 18.7 348.8 71.1 71.8 65.1K
GMPQ† 6.2 286.3 78.7 73.2 1.8K

R-GMPQ† 6.8 284.5 79.2 73.6 2.1K
GMPQ-TE 6.2 283.1 79.6 73.9 22
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Table 7: Results for image classification across various ViT and Swin transformer models (PTQ).
Methods W/A ViT-S ViT-B ViT-L DeiT-T DeiT-S DeiT-B Swin-T Swin-S Swin-B
Full-precision 32/32 81.39 84.53 85.84 72.18 79.85 81.80 81.37 83.21 85.27
PTQ4ViT 6/6 78.63 81.65 84.79 69.62 76.28 80.25 80.47 82.38 84.01
PD-Quant 6/6 70.84 75.82 - - 78.33 - - - -
APQ-ViT 6/6 79.10 82.21 - 70.49 77.76 80.42 - 82.67 84.18
NoisyQuant 6/6 79.65 82.32 - - 77.43 80.70 80.51 82.86 84.68
TSPTQ-ViT 6/6 79.45 82.29 85.18 70.82 77.18 80.61 80.62 82.60 84.16
SQ-b+OPT-m 6/6 79.98 82.70 85.53 71.03 78.70 81.25 80.67 82.62 84.50
LRP-QViT MP 80.59 83.87 - 71.03 79.03 81.44 - 82.86 84.72
RepQ-ViT MP 80.43 83.62 - 70.76 78.90 81.27 - 82.79 84.57
GMPQ-TE MP 80.61 83.90 85.51 71.13 79.11 81.49 80.69 82.88 84.78
Mean ± Std 80.48± 0.14 83.31± 0.12 85.13± 0.07 71.11± 0.14 79.06± 0.15 80.66± 0.08 80.09± 0.10 82.55± 0.06 84.12± 0.05
PTQ4ViT 4/4 42.57 30.69 78.38 36.96 34.08 64.39 73.48 76.09 74.02
APQ-ViT 4/4 47.95 41.41 - 47.94 43.55 67.48 - 77.15 76.48
TSPTQ-ViT 4/4 52.56 50.10 77.64 48.36 45.08 69.45 72.48 76.30 73.28
SQ-b+OPT-m 4/4 55.88 61.84 80.07 55.62 68.43 76.14 73.82 77.20 76.51
PSAQ-ViT 4/4 37.19 41.52 - 57.58 63.61 67.95 - 72.86 76.44
LRP-QViT MP 70.81 75.37 - 61.24 72.43 78.13 - 81.37 80.77
RepQ-ViT MP 65.05 68.48 - 57.43 69.03 75.61 - 79.45 78.32
GMPQ-TE MP 70.90 75.41 80.13 61.03 72.52 78.19 73.90 81.43 80.84
Mean ± Std 70.62± 0.10 75.24± 0.08 79.94± 0.14 60.86± 0.11 72.04± 0.11 78.04± 0.11 73.66± 0.07 81.22± 0.10 80.43± 0.17

APQ-ViT in terms of accuracy and compression. For example, GMPQ-TE achieves Top-1 accuracy
of 80.6% on ViT-S, significantly higher than PTQ4ViT (78.3%). Additionally, GMPQ-TE maintains a
favorable compression ratio compared to other methods, ensuring efficient model deployment without
sacrificing accuracy. On Swin-T, GMPQ-TE maintains a Top-1 accuracy of 80.7%, significantly
outperforming traditional methods like PTQ4ViT and APQ-ViT. This confirms that GMPQ-TE’s
efficacy extends to transformer-based models as well, which are increasingly being used for a variety
of tasks.

These generalizable results can be attributed to the TE, which can prevent inconsistencies in quantiza-
tion sensitivity across datasets due to distribution differences among the datasets. In addition, the
observations on the correlation between TE and model performance as well as bit-widths help in the
construction of linear programming problem, accelerating the solution of generalizable quantization
proxy.

D.2 Results for QAT

Table 8: Results for image classification on ResNet-18, ResNet-50 and MobileNet-V2 (QAT).
Methods Params. Comp. BOPs Top-1 Acc.

ResNet-18
QDrop 5.41 8.23 29.0 69.76
HMQAT 4.31 10.34 20.9 69.63
QuanDCL 4.49 9.92 21.8 69.51
MataMix >35 72
SDQ 5.2 15.7 69.1
EMQ 6.69 71 72.28
GMPQ-TE 4.21 117 20.3 69.8
Mean ± Std 4.21 115± 2.31 20.1± 1.66 69.63± 0.10

ResNet-50
QDrop 13.14 7.4 61.7 75.45
EPTQ 13.14 7.4 123.5 75.45
HMQAT 9.45 10.29 51.5 75.48
GMPQ-TE 7.9 131.4 25.1 76.32
Mean ± Std 7.9 128.1± 4.25 24.7± 1.47 76.26± 0.01

MobileNet-V2
MataMix >8 73
SDQ 1.8 4.89 72
QDrop 5.41 8.23 29.0 69.76
HMQAT 1.22 10.98 7.71 70.81
EPTQ 1.26 10.63 31.68 70.39
GMPQ-TE 1.1 47.2 7.1 70.42
Mean ± Std 1.1 48.2± 1.37 7.1± 2.94 70.32± 0.43
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Table 9: Results for image classification across various ViT and Swin transformer models (QAT).
Methods DeiT-T DeiT-S DeiT-B Swin-T Swin-S

Full-precision 72.21 79.85 81.80 81.20 83.23
LSQ 54.45 68.00 70.30 70.40 72.40

Q-ViT 50.37 72.10 74.20 74.70 76.90
OFQ 64.33 75.72 - 78.52 -

Mix-LSQ 64.19 73.88 76.58 75.13 79.49
Mix-OFQ 67.87 76.39 78.26 78.71 81.23

GMPQ-TE 67.90 76.51 77.94 78.73 81.33

Table 10: Experimental results for ResNet-18 on average model bit-width.
Method Params. BOPs Comp. Top-1 Top-5

ResNet-18-1 5.4 30.1 60.6 69.14 88.73
GMPQ-TE-1 5.3 27.4 67.6 70.40 89.40
ResNet-18-2 3.7 23.4 107 68.20 88.13
GMPQ-TE-2 3.8 15.7 118 69.40 89.40
ResNet-18-3 3.5 7.4 254.3 66.10 87.40
GMPQ-TE-3 3.5 7.1 260.9 68.30 88.90

As shown in Table 8, the results for ResNet-18, ResNet-50, and MobileNet-V2 show that GMPQ-TE
outperforms the other quantization methods in terms of both accuracy and efficiency across all
three architectures. GMPQ-TE achieves Top-1 accuracy of 69.8%, slightly outperforming QDrop
(69.76%) and HMQAT (69.63%). Importantly, GMPQ-TE also exhibits the best compression (117)
and BOPs (20.3), indicating its superior efficiency in terms of model size and computational cost.
Other methods like QuanDCL and HMQAT show a drop in performance and higher computational
overhead compared to GMPQ-TE. The pattern of superiority continues with GMPQ-TE, achieving
Top-1 accuracy of 76.32%, outperforming HMQAT (75.45%) and EPTQ (75.48%). GMPQ-TE also
demonstrates better compression (131.4) and BOPs (25.1), showcasing its effective trade-off between
accuracy and computational efficiency. For MobileNet-V2, GMPQ-TE achieves Top-1 accuracy
of 70.42%, slightly outperforming QDrop and HMQAT (both 69.76%) with a significantly better
compression value (47.2) and lower BOPs (7.1). This demonstrates that GMPQ-TE can maintain
competitive accuracy while dramatically reducing the model’s size and computation.

The performance of GMPQ-TE on various ViT and Swin Transformer models further demonstrates
its effectiveness in QAT, as shown in Table 9. For ViT-T and ViT-B, GMPQ-TE achieves Top-1
accuracy of 67.9% and 77.9%, respectively. These results are competitive with or surpass other
methods like Mix-LSQ and Mix-OFQ. For instance, Mix-OFQ achieves 77.94% on ViT-B, while
GMPQ-TE provides better overall performance with improved computational efficiency. GMPQ-TE
continues to perform strongly with Top-1 accuracy of 78.7% on Swin-T and 81.33% on Swin-S, which
outperforms Mix-LSQ and LSQ in both accuracy and compression. This highlights GMPQ-TE’s
robust performance across a variety of transformer architectures, demonstrating that it is well-suited
for handling more complex and varied models.

The proposed GMPQ-TE method is effective in QAT, providing superior performance in terms of
accuracy, compression, and computational efficiency across multiple models, including ResNet,
MobileNet, and Transformer architectures. These results confirm that GMPQ-TE is a promising
solution for efficient model deployment, and its effectiveness in QAT is evident.

D.3 Results for Average Model

Tables 10 and 11 present the experimental results for the average model bit-width on common archi-
tectures, namely ResNet-18 and MobileNet-V2. The results show that GMPQ-TE effectively reduces
the average bit-width and BOPs while maintaining or even improving accuracy. For example, in the
ResNet-18-2 setting, GMPQ-TE lowers the BOPs from 23.4 to 15.7 and simultaneously increases
computational efficiency from 107 to 118, accompanied by a +1.2% gain in Top-1 accuracy. Similar
trends are observed in MobileNet-V2, where GMPQ-TE achieves lower bit-width configurations with
consistent accuracy improvements, such as a +2.6% Top-1 gain in the MobileNet-V2-2 setting. These
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Table 11: Experimental results for MobileNet-V2 on average model bit-width.
Method Params. BOPs Comp. Top-1 Top-5

MobileNet-V2-1 1.14 8.7 82.6 71.04 88.70
GMPQ-TE-1 1.10 4.5 74.8 71.20 89.90
MobileNet-V2-2 1.24 7.1 55.7 67.20 87.31
GMPQ-TE-2 1.30 7.3 46.1 69.80 89.70
MobileNet-V2-3 1.56 9.4 49.2 70.24 89.73
GMPQ-TE-3 1.40 10.1 33.4 71.80 90.20

Figure 8: Comparison of layer-wise bit assignment and TE values for ResNet-18 under different
calibration datasets.

findings confirm that GMPQ-TE provides a favorable trade-off between quantization bit-width and
predictive performance.

D.4 Bit Assignment and TE Values

we demonstrate calibration dataset dependency from an experimental perspective. Specifically, using
ResNet-18 as the base model, we compute the topological entropy on both CIFAR-10 and ImageNet
as calibration datasets. Based on the measured entropy values, the final quantization policies are
derived accordingly (see Figure. 8). For different models, the relationships between bit width
assignment are shown in Figures 9-11

D.5 Real-World Hardware Deployment

Table 12 shows that quantized models achieve low inference latency and high throughput across
both GPU and edge platforms. On RTX 3090, MobileNet-V2 runs at over 800 FPS with only 1.2
ms latency. Even on Jetson Nano, it maintains real-time performance under a 10W power budget.
These results confirm that GMPQ-TE enables efficient and hardware-friendly deployment without
sacrificing accuracy.

The applicability of TE is validated on a diverse range of architectures, including lightweight models
such as MobileNet-V2, non-convolutional structures like ViT and Swin, and CNNs of varying
depth (e.g., ResNet18 vs. ResNet50). This demonstrates that TE is not limited to large or deep
convolutional models. Fundamentally, TE is architecture-agnostic: it is derived directly from the
structural properties of intermediate feature maps, and does not rely on architectural assumptions
such as depth, convolutional inductive bias, or model width. This enables it to generalize well even
to shallow or narrow models. Nonetheless, we acknowledge the value of further exploring TE on
ultra-compact or task-specialized architectures.
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Figure 9: Bit assignment and TE values for ResNet-50.

Figure 10: Bit assignment and TE values for ResNet-18.

Table 12: Quantized models achieve low inference latency and high throughput across both GPU and
edge platforms. On RTX 3090, MobileNet-V2 runs at over 800 FPS with only 1.2 ms latency. Even
on Jetson Nano, it maintains real-time performance under a 10W power budget. These results confirm
that GMPQ-TE enables efficient and hardware-friendly deployment without sacrificing accuracy.

Model Platform Inference Latency (ms) Throughput (FPS) Avg. INT8 Kernel Time (ms) Power Consumption (W)

ResNet-18 NVIDIA RTX 3090 ∼2.1 ∼470 2.3 ∼115
ResNet-18 Jetson Xavier NX ∼13.2 ∼75 13.9 ∼18
MobileNet-V2 NVIDIA RTX 3090 ∼1.2 ∼800 1.4 ∼105
MobileNet-V2 Jetson Nano (10W) ∼24.5 ∼38 25.3 ∼8.5
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Figure 11: Bit assignment and TE values for MobileNet-V2.
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