
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

3D-PROPERTIES: IDENTIFYING CHALLENGES IN DPO
AND CHARTING A PATH FORWARD

Anonymous authors
Paper under double-blind review

ABSTRACT

Aligning large language models (LLMs) with human preferences has recently
garnered significant attention, with Proximal Policy Optimization (PPO) being
a canonical yet computationally expensive method, and Direct Preference Opti-
mization (DPO) offering a simpler and more efficient alternative. While prior
studies have explored the trade-offs between PPO and DPO, DPO remains un-
derutilized in state-of-the-art production-level LLMs, suggesting potential limita-
tions. In this work, we revisit DPO with a comprehensive analysis of its theoretical
foundations and empirical performance, aiming to chart a path forward and bridge
this gap. We identify three critical properties—termed the 3D-properties—that
arise from DPO’s learning process: Drastic drop in the likelihood of rejected re-
sponses, Degradation into response suppression, and Dispersion effect on unseen
responses. We show that these phenomena stem from the inherent features of
DPO’s optimization objective, where the interaction between the gradients of cho-
sen and rejected responses causes instability. These findings are supported by ex-
periments on both a carefully constructed toy model and practical LLM tasks, in-
cluding mathematical problem-solving and instruction following. Our work offers
new insights, connecting these observations to related research while providing a
theoretical explanation for the underlying mechanisms. To address the challenges
posed by the 3D-properties, we propose straightforward regularization techniques
that enhance training stability and final performance. Additionally, we investigate
how the distribution of paired preference data affects DPO’s efficacy, contributing
to a broader understanding of how alignment models handle out-of-domain (OOD)
data. We believe our findings will help guide future research toward closing the
gap between reward-model-free preference learning and reward-model-based ap-
proaches.

1 INTRODUCTION

Large language models (LLMs) have demonstrated exceptional performance across a wide range of
tasks and domains (Touvron et al., 2023; Chowdhery et al., 2023; Jiang et al., 2023; Zhang et al.,
2022). Several techniques have been developed for fine-tuning LLMs, most notably Supervised
Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF) (Achiam et al.,
2023; Touvron et al., 2023). SFT involves directly training LLMs on labeled data to tailor their
responses for specific tasks, whereas RLHF refines LLMs by incorporating feedback that aligns
their outputs with human preferences. RLHF, in particular, has been instrumental in expanding the
application of both closed-source (OpenAI, 2022; Anthropic, 2024; Team et al., 2023) and open-
source LLMs (Touvron et al., 2023; Yang et al., 2023), driven by the need to align foundational
models with human values and preferences (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang
et al., 2022).

Existing RLHF methods can be majorly categorized into two classes based on whether the re-
ward signal is explicitly modeled. Reward-model-based (RM-based) alignment pioneered by Ope-
nAI (Ouyang et al., 2022; Achiam et al., 2023; Touvron et al., 2023) first trains a Reward Model
(RM) from user preferences, typically through Maximum Likelihood Estimation (MLE), and then
leverages actor-critic algorithms such as Proximal Policy Optimization (PPO) (Schulman et al.,
2017) to tune the SFT model to realize alignment. This approach often requires substantial compu-
tational resources and suffers from sample inefficiency (Choshen et al., 2019). Conversely, another
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class of methods, known as reward-model-free (RM-free) alignment, such as Direct Preference Op-
timization (DPO) (Rafailov et al., 2024), Identity Preference Optimization (IPO) (Azar et al., 2024),
Sequence Likelihood Calibration (SLiC) (Zhao et al., 2023), DPO-positive (Pal et al., 2024) and
Simple Preference Optimization (SimPO) (Meng et al., 2024), do not rely on an extra RM. These
approaches offer a more resource-efficient alternative by optimizing the policy directly from pref-
erences, therefore attracting much attention from the academic community, where computational
resources are often limited.

In this work, we begin our analysis by using the vanilla DPO as a case study, subsequently extending
our findings to encompass broader RM-free alignment strategies. Despite its simplicity and promise,
DPO has exhibited several perplexing phenomena that remain unclear or underexplained in practice.
One notable counter-intuitive observation is that the likelihood of both preferred and rejected re-
sponses tends to decrease over the course of DPO training (Yuan et al., 2024; Mitchell, 2023), while
the likelihood of certain tokens diverging from the training data increases (Xu et al., 2024a). Addi-
tional observations are summarized in Section 2.1. Without a deeper theoretical exploration of these
phenomena, purely empirical efforts to apply or improve DPO are likely to face inefficiencies.

Our work identifies the issues surrounding vanilla DPO and its variants from both theoretical
and practical perspectives. The analysis reveals inherent instability in the DPO training process,
which we encapsulate as the 3D-properties: Drastic drop in the likelihood of rejected responses,
Degradation into response suppression, and Dispersion effect on unseen responses. Through our
analytical framework, we show that these phenomena stem from the inherent features of DPO’s op-
timization objective, where the interaction between the gradients of chosen and rejected responses
leads to instability and hinders overall performance. Furthermore, our findings confirm that the
distribution of preference data critically influences DPO’s effectiveness, with on-policy DPO per-
forming better than off-policy DPO, which is consistent with concurrent empirical studies (Tang
et al., 2024; Guo et al., 2024).

To enhance DPO’s stability and performance, we propose several regularization methods, including
the adaptive adjustment of weights on the gradients of chosen and rejected responses, as well as
incorporating an SFT loss into the objective. Our results suggest a fundamental trade-off within the
DPO algorithm: balancing the mitigation of the 3D-properties while preventing LLMs from straying
too far from the preference learning paradigm. Additionally, we compare DPO with the state-of-the-
art RM-based method, RLHF-PPO, revealing that its superiority stem largely from avoiding the
3D-properties. Our experimental approach begins with the design of a toy model to quickly validate
our hypotheses, followed by a rigorous test of the actual performance of real LLMs on tasks such as
mathematical problem solving and instruction following.

As this topic has garnered significant attention recently, an increasing number of works are con-
tributing to the discussion. To highlight the contributions of our approach, we compare our findings
with several of the most relevant concurrent studies in Section 2.2. A comprehensive review of
related works is provided in Appendix A.

2 PRELIMINARIES

Large Language Model (LLM). An LLM defines a θ-parameterized conditional distribution
πθ(a|x), which takes a prompt x as input and produces a response a. More specifically, the sampling
from LLMs is performed in an auto-regressive manner, πθ(a|x) =

∏
t πθ(at|x, a1:t−1), where at is

the t-th token in the response a and a1:t−1 are tokens in the response before at.

RM-based RLHF. Training LLMs typically involves three stages: Pretraining, SFT, and RLHF.
We outline the standard PPO paradigm here, which is a typical RM-based RLHF algorithm. Be-
ginning with a well-trained SFT model, denoted as π0, we proceed by sampling two responses
from π0 for each instance in a given prompt set. Subsequently, we compile a preferece dataset
D = {(x, a+, a−)}, where a+ and a− denote human-preferred and human-dispreferred comple-
tions, respectively. The distribution of the preference dataset is assumed to follow the Bradley-Terry
model (Bradley & Terry, 1952), i.e., the probability of response a+ is better than a− is given by:

pr(a
+ ≻ a−|x) = exp(r(x, a+))

exp(r(x, a+)) + exp(r(x, a−))
= σ(r(x, a+)− r(x, a−)), (1)
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where ≻ represents the preference relation, and σ(x) = 1
1+e−x is the sigmoid function. To train a

RM r(·, ·), we maximize the log-likelihood of the observed preferences by minimizing the following
loss function:

ℓR(r) = −
∑

(x,a+,a−)

log pr(a
+ ≻ a−|x) = −

∑
(x,a+,a−)

log σ(r(x, a+)− r(x, a−)). (2)

During the reinforcement learning phase, we update the LLM to maximize the return from the
learned RM using the following objective function:

max
θ

Jr(θ) = max
θ

∑
x

Ea∼πθ(·|x)

[
r(x, a)− β log

πθ(a|x)
π0(a|x)

]
, (3)

where πθ is initialized as π0 and β controls the deviation from the original model. PPO (Schulman
et al., 2017) is typically used to solve the problem in practice. Algorithms that optimize the policy
using a separate RM are referred to as RM-based alignment.

DPO. Instead of learning a separate RM, DPO (Rafailov et al., 2024) directly optimizes the policy
πθ over preference data. DPO implicitly leverages a particular choice of RM parameterization that
enables the extraction of its optimal policy in closed form, without a reinforcement learning training
loop:

ℓDPO(θ) = −
∑

(x,a+,a−)

log σ

[
β log

πθ(a
+|x)

π0(a+|x)
− β log

πθ(a
−|x)

π0(a−|x)

]
. (4)

As shown, DPO leverages logistic regression loss to directly fine-tune the LLM on preference data.
This approach, along with its various variants (Zhao et al., 2023; Amini et al., 2024; Azar et al.,
2024), is referred to as RM-free alignment due to the elimination of an explicit RM.

2.1 UNDEREXPLORED OBSERVATIONS ABOUT DPO

Though the absence of the need for additional RM training makes DPO particularly attractive, sev-
eral observations remain underexplored. The most concerning issue is, to the best of our knowledge,
few models using DPO (or other RM-free algorithm) have achieved performance comparable to the
state-of-the-art closed-source LLMs such as OpenAI’s GPT-4o or Anthropic’s Claude, which report-
edly use PPO methods during training. Besides, many other phenomena have been reported but lack
comprehensive theoretical explanations. Here we make a summary for clarity.
Observation 1. During the vanilla DPO training, the likelihood of both the chosen and rejected
responses in the preference datasets tends to decrease, whereas the likelihood of unseen tokens not
appearing in the preference pairs tends to increase (Mitchell, 2023).
Observation 2. Compared with RM-based alignment, the performance of DPO is relatively unsta-
ble and sub-optimal (Wang et al., 2024).
Observation 3. The performance of DPO is significantly affected by the distribution shift between
the model outputs and the preference dataset. In general, on-policy DPO, where both the chosen
responses and the rejected responses are sampled from the policy model πθ, outperforms other
scenarios (Tang et al., 2024).

2.2 COMPARISON WITH RELATED CONTEMPORARY STUDIES

Several concurrent studies attempt to explain these observations, and we highlight our differences
to underscore our contributions. For Observation 1, Feng et al. (2024) shares similar points of view
regarding the degradation on gradients but offers limited analysis and lacks experimental validation
on real LLMs. In contrast, our work offers a more rigorous and comprehensive analysis supported by
theoretical insights and validation across toy models and large-scale real-world LLM experiments.
For Observation 2, Xu et al. (2024a) point out that the policy minimizing the PPO loss is a subset of
that minimizing the DPO loss, which offers a partial explanation. However, their analysis focuses
solely on the endpoint of the optimization and does not examine the dynamic process by which the
policy evolves. It leaves unaddressed how unexpected policies emerge during training. In contrast,
our gradient analysis offers a comprehensive understanding of the entire optimization trajectory,

3
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shedding light on how and why sub-optimal policies arise throughout the DPO training process. For
Observation 3, Tang et al. (2024) investigate the performance gap between on-policy and off-policy
alignment algorithms from an empirical perspective, while our insights are rooted in theoretical
findings.

Our work advances the understanding of these observations, providing critical insights into the un-
derlying mechanisms and reinforcing the findings of these concurrent studies. In the following
section, we will present our theoretical explanations for these observations.

3 FUNDAMENTAL LIMITATIONS OF VANILLA DPO: 3D-PROPERTIES

We first identify a critical flaw inherent in vanilla DPO. At first glance, the loss function of vanilla
DPO, as defined in Eq. (4), appears to be composed of two parts: the term log πθ(a

+|x)
π0(a+|x) aims to

increase the likelihood of chosen responses, while the term log πθ(a
−|x)

π0(a−|x) seeks to decrease the like-
lihood of rejected responses. However, this seemingly straightforward interpretation overlooks sig-
nificant underlying issues, which we characterize through the 3D-properties of vanilla DPO.
Property 1 (Drastic drop in rejected response likelihood). The likelihood of a rejected response
tends to shift much more rapidly than that of a chosen response.
Property 2 (Degradation into response suppression). As optimization progresses, DPO gradually
loses its ability to steer the direction of optimizing chosen responses and instead devolves into merely
suppressing the rejected responses.
Property 3 (Dispersion effect on unseen responses). As DPO training progresses, the likelihood of
both chosen and rejected responses gradually decreases, while the likelihood of generating out-of-
distribution (OOD) responses increases.

These properties are non-trivial, as they reveal inherent challenges in DPO’s optimization process
that are not immediately apparent from the loss function alone. These phenomena closely align
with the empirical observations we discussed earlier, pointing to the structural limitations of DPO.
In the following section, we delve into a theoretical analysis to further explain the origins of these
3D-properties and provide insights into their impact on the optimization trajectory.

3.1 THEORETICAL FOUNDATIONS

In this sections, we provide the theoretical foundations for the 3D-properties, followed by detailed
explanations of the observations discussed in Section 2.1. The loss function for DPO as shown in
Eq. (4) can be re-written by:

ℓDPO(θ) =
∑

(x,a+,a−)

log

(
1 +

(
π0(a

+|x)
π0(a−|x)

· πθ(a
−|x)

πθ(a+|x)

)β
)
. (5)

For a given triple (x, a+, a−), let

α :=

(
π0(a

+|x)
π0(a−|x)

)β

, π+ := πθ(a
+|x), π− := πθ(a

−|x), z :=
πθ(a

−|x)
πθ(a+|x)

=
π−

π+
.

Then we have
∂ℓDPO

∂π+
=

∂ log(1 + αzβ)

∂z

∂z

∂π+
=

αβ

1 + αzβ
zβ−1 ∂z

∂π+
=

αβ

1 + αzβ
zβ−1

[
− π−

(π+)2

]
,

∂ℓDPO

∂π− =
∂ log(1 + αzβ)

∂z

∂z

∂π− =
αβ

1 + αzβ
zβ−1 ∂z

∂π− =
αβ

1 + αzβ
zβ−1

(
1

π+

)
,

with these simplified forms, we can obtain the following corollaries to explain the properties above:
Corollary 1 (Explanation for Property 1). The ratio of the gradient with respect to the rejected
response likelihood π− to the gradient with respect to the chosen response likelihood π+ is equal to
the ratio of π+ to π−:

∂ℓDPO

∂π− /
∂ℓDPO

∂π+
=

∂z

∂π− /
∂z

∂π+
= −π+

π− ,

4
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Figure 1: Toy model setup. Top left: the optimal policy where the highlighted blocks represent
optimal responses. Top right: preference dataset construction. Lower left: the initialization of the
SFT model. Lower right: policy output after DPO training.

which indicates that as π+ increases and π− decreases, the gradient with respect to π− grows faster,
leading to a more rapid decline in the likelihood of the rejected response.

Corollary 2 (Explanation for Property 2). As π− → 0, we have z → 0 and αβ
1+αzβ → αβ. Thus,

∂ℓDPO

∂π+
→ −αβ(π+)−β−1(π−)β → 0,

∂ℓDPO

∂π− → αβ(π+)−β(π−)β−1 → ∞,

given that β < 1 and π− → 0. This creates a dynamic where the gradient for the rejected response
grows exceedingly large, while the gradient for the chosen response diminishes significantly. As a
result, DPO progressively shifts its focus to suppressing the rejected responses and loses the ability
to steer the direction of optimizing chosen responses.
Corollary 3 (Explanation for Property 3). When π− drastically drops to 0, the gradient on π+ fails
and the likelihood of the chosen response is likely to decrease along with the rejected response as
they often share many similar tokens and patterns. The constancy of the sum of probabilities implies
that as both π+ and π− decrease, the likelihood will randomly disperse into other unseen responses
out of the preference dataset.

Based on these theoretical insights, we can further explore and explain the observations discussed
in Section 2.1. Observation 1 is directly explained by Corollary 3. For Observation 2, we will
show that 3D-properties do not manifest during the RM training process in the RM-based alignment
pipeline. Regarding Observation 3, we will demonstrate that the distribution gap between the LLM’s
original outputs and the preference dataset plays a crucial role in determining the influence of the
3D-properties. The impact of these properties is notably less pronounced in on-policy DPO, where
the preference dataset is sampled directly from the policy model’s outputs. In the following sections,
we will delve deeper into each of these statements and provide empirical validation.

3.2 SYNTHETIC VALIDATION WITH A TOY MODEL

In this section, we introduce a simplified toy model specifically designed to facilitate synthetic
experiments, thereby enhancing the persuasiveness of our arguments from Corollary 1 to 3. Then
we conduct experiments on real LLMs.

3.2.1 TOY MODEL SETUP

The diagram for the toy model is illustrated in Figure 1. We construct a discrete space consisting of 4
prompts and 10 responses. The policy πθ, which simulates a simplified version of an LLM, is imple-
mented as a three-layer MLP that processes a one-hot vector and outputs a categorical distribution

5
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Figure 2: Dynamic optimization process with vanilla DPO using the toy model. Left: likelihood
dynamics over training epochs. The blue curve represents the average likelihood of chosen re-
sponses, yellow shows the minimum for chosen responses, green represents the average for rejected
responses, red shows the maximum for rejected responses, and purple represents the average for
unseen responses. Middle: dynamics of averaged ∂ℓDPO

∂π+ and ∂ℓDPO

∂π− over training epochs. Right:
likelihood dynamics over training epochs on a log scale, highlighting the drastic drop in the likeli-
hood of rejected responses.

over the responses. The response space is organized such that the first 4 dimensions correspond to
chosen responses, dimensions 5 through 8 represent rejected responses, and the final 2 dimensions
correspond to unseen responses not present in the preference dataset.

In this setup, each prompt has an optimal response (e.g., response 1 is optimal for prompt 1, as
shown in the upper left figure). When constructing the preference dataset for DPO training, we adopt
a mini-batch sampling strategy to mimic real-world annotation processes. Specifically, assuming an
ideal annotator, each input prompt is perfectly matched with its optimal response—corresponding
to the diagonal elements of the matrix, as illustrated in the upper right figure in Figure 1. For each
mini-batch, we then randomly select one other response within the batch to create preference data
pairs. This approach ensures that gradient updates are computed from diverse mini-batch samples.

To simulate the Pretraining and SFT process, we manually assign output probabilities and use them
as labels to train πθ. Initially, as shown in the lower left figure, we set the likelihood of both chosen
and rejected responses at 0.12, treating both as on-policy. The constructed preference dataset is
then used for DPO training, with the output after 500 epochs shown in the lower right. The code is
provided in the supplementary material.

3.2.2 RESULTS

Figure 2 illustrates the dynamic optimization process during DPO training. In the first figure, the
likelihood of chosen responses (blue and yellow curves) increases, while the likelihood of rejected
responses (green and red curves) decreases in the early phases of training. However, as training
progresses, the likelihood of chosen responses begins to decline in the longer run. During this
degradation phase, as both chosen and rejected response likelihoods decrease, the probability is
redistributed to unseen responses (purple curve).

The second and third figures reveal the underlying causes of this shift: as πθ(a
−|x) approaches zero,

the absolute value of ∂ℓDPO/∂π− increases sharply compared to ∂ℓDPO/∂π+. The absolute value of
∂ℓDPO/∂π+ becomes progressively smaller, weakening its influence on the optimization direction.
These results align with the earlier theoretical analysis.

Moreover, this insight provides an explanation for the observed superiority of on-policy DPO (Ob-
servation 3). In contrast to off-policy DPO, on-policy DPO begins with a higher likelihood for
rejected responses, thereby extending the duration before their likelihood significantly diminishes.
To further validate the differing impacts of on-policy and off-policy DPO, we configure four scenar-
ios by adjusting the initial distribution of outputs to simulate these conditions. A higher initialized
likelihood (0.12) simulates responses sampled in an on-policy manner, while a lower one (0.02) sim-
ulates responses sampled off-policy. The initial state and the subsequent changes in the likelihood
of each response are illustrated in Figure 3. Notably, in Scenario 1, where both chosen and rejected
responses are on-policy, the 3D-properties are relatively mild, as shown by the high peak probability
of the optimal response (approximately 0.6) and the minimal dispersion effect on unseen responses.
Additional detailed results and analyses for all four scenarios can be found in Appendix D.
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Figure 3: From left to right, the figures show the initial state and the likelihood dynamics for cho-
sen/rejected/unseen responses in Scenarios 1 to 4, similar to the left diagram in Figure 2: (1) both
chosen and rejected responses are on-policy, (2) chosen off-policy and rejected on-policy, (3) chosen
on-policy and rejected off-policy, and (4) both off-policy.

The intention of the toy model and its connection to real LLMs. The toy model serves as an
abstract simulation that amplifies the effect of 3D-properties, which are less pronounced and harder
to visualize in real-world experiments. While the toy model differs from real LLM training in several
ways—such as sampling frequency—its design offers useful insights. In real-world settings, DPO
is typically trained over one epoch, with each data point used only a few times. In contrast, in the
toy model, the same data points are sampled repeatedly. Conceptually, this is similar to treating
each input/output as a token rather than a complete prompt/response, where each token may be
sampled multiple times during real-world training. Since both the chosen and rejected responses
are generated from the same prompt, they often share common tokens. As a result, the decrease
in the likelihood of rejected responses can impact the likelihood of chosen responses, leading to a
corresponding decline in their likelihood.

3.3 REGULARIZATION TECHNIQUES

It becomes evident that the rate at which πθ(a
−|x) declines is crucial in determining the severity of

the 3D-properties’ impact. This observation leads to the following proposition:
Proposition 1. To lessen the severity of the 3D-properties, it is advantageous to moderate the rate
at which the likelihood of rejected responses declines.

Inspired by Proposition 1, we introduce two straightforward regularization techniques. The first
technique employs adaptive values of β to control the rate at which the likelihood of rejected re-
sponses declines, referred as Flex-DPO. The second technique involves augmenting the DPO loss
with an SFT loss, a strategy that has been shown to significantly enhance the stability of DPO in
previous studies (Hou et al., 2024; Xu et al., 2024b). These regularization methods have shown
promising results with our toy model and will be further validated in real LLMs in the following
section. The theoretical analysis is similar to that of vanilla DPO thus deferred to Appendix B.2.

3.4 INHERENT ABSENCE OF 3D-PROPERTIES IN RM-BASED ALIGNMENT

In this section, we show that 3D-properties do not manifest in RM-based alignment methods, which
may account for why DPO methods only achieve sub-optimal performance. Since DPO is closely
related to RM training, and the Best-of-N performance of the RM can partially reflect the ultimate
performance of the policy model (Gui et al., 2024), we focus on analyzing the RM’s objective. For
a given (x, a+, a−), let r+ := r(a+|x) and r− := r(a−|x), the gradients with respect to r+ and r−

are:
∂ℓRM

∂r+
=

∂ log(1 + e(r
−−r+))

∂r+
= − e(r

−−r+)

1 + e(r−−r+)
= − 1

1 + e(r+−r−)
,

∂ℓRM

∂r−
=

∂ log(1 + e(r
−−r+))

∂r−
=

e(r
−−r+)

1 + e(r−−r+)
=

1

1 + e(r+−r−)
.

This indicates that the gradients for the chosen and rejected responses are balanced and do not exhibit
3D-properties. In Section 4.5, we will further discuss the relationship between DPO and RM-based
alignment in real LLMs.
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4 EXPERIMENTS

In this section, we transition from theoretical analyses and toy model simulations to real-world
experiments with LLMs to further validate our theoretical insights. We verify the existence of 3D-
properties, the superiority of on-policy DPO over off-policy DPO, the superiority of RM over DPO,
and the effectiveness of the proposed regularization technique.

4.1 EXPERIMENTAL SETUP

Datasets. We chose mathematical reasoning and instruction following as our primary benchmarks
because these tasks are easily quantifiable, providing clear metrics for evaluating model perfor-
mance. For mathematical reasoning, we used MATH (Hendrycks et al., 2021) as the main dataset
for both training and testing1. To assess the model’s out-of-distribution (OOD) generalization capa-
bilities, we selected SuperCLUE-Math (Xu et al., 2020), another dataset which was used exclusively
for testing. Additionally, we included two in-house datasets focused on poem and slogan generation
to evaluate the model’s ability to handle creative tasks with strict structural and linguistic constraints.
The poem dataset, for instance, which has rigid format and rhyme requirements, making it a good
test for evaluating the model’s ability to follow complex instructions. Further details and descrip-
tions of the datasets used are provided in Appendix C.

It is widely accepted in industry that preference datasets for model alignment should cover a broad
range of domains. Following this consensus, we further utilized a general dataset consisting of
approximately 400,000 preference samples across diverse domains. These prompts were sourced
from HH-rlhf (Bai et al., 2022) and UltraFeedBack (Cui et al., 2024). A detailed breakdown of the
dataset sizes is provided in Table 6 in Appendix C.

The LLMs of concern. We focus on Baichuan2-13B and Baichuan2-33B, an advanced bilingual
(Chinese and English) LLM series. The 13B model is openly available (Yang et al., 2023), and the
33B model extends the 13B architecture with increased parameters.

4.2 EFFECT OF TRAINING DATA DISTRIBUTION: ON-POLICY VS. OFF-POLICY

Building on the theoretical insights in Section 3, we hypothesize that the performance of vanilla
DPO is significantly influenced by the distribution gap between the training dataset and outputs of
the policy model, specifically whether the algorithm is on-policy or off-policy. Off-policy DPO uses
an external preference dataset, while on-policy DPO samples preferences directly from the policy
model. On-policy DPO enjoys a smaller distribution gap compared with off-poliy DPO.

To conduct on-policy DPO, we used the policy model to produce 8 candidates for each prompt in
the train set of MATH. The best and worst responses were selected by GPT-4 (Achiam et al., 2023)
to form a preference pair, with the standard solutions given as the reference context. After filtering
out uniformly good or bad responses, we compiled the MATH∗ dataset, which contains 5,826 pairs
{x, a+, a−}. We randomly selected 2,000 samples from the original test set to serve as the test
set for MATH∗. For off-policy DPO, we used the original solutions from the dataset as the chosen
responses, and generated the rejected responses using Qwen1.5-7B (Bai et al., 2023), a relatively
earlier model with limited capabilities.

To validate the hypothesis that the presence of off-policy data weakens performance, we imple-
mented the four scenarios consistent with the toy model (Figure 3). We evaluated the policy model
using GPT-4, which assigned scores ranging from 1 to 5 based on the accuracy of both the final
answer and the problem-solving process, with also the standard solutions given as the reference
context. The scoring criteria are detailed in Table 4. The average performance on the MATH∗ and
SuperCLUE-Math datasets is reported in Table 1, with specific results in Table 8. Among the four
scenarios, Scenario 1—where both chosen and rejected responses are on-policy—ensured a more
stable DPO training process and delivered the best performance.

Additionally, we report the log probabilities before and after training in Table 7 in Appendix D.2.
According to Proposition 1, the key factor affecting the impact of 3D-properties is the decline rate

1Only the prompts from the dataset were used to generate the preference dataset; further details are provided
in Section 4.2.
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Table 1: Results tested on MATH∗ and SuperCLUE-Math. Scenario 1, with both chosen and rejected
responses sampled on-policy, shows the best performance.

Baichuan2-13B Baichuan2-33B
Setting 5 points 4&5 points 5 points 4&5 points

basemodel 32.237% 42.539 % 44.485% 53.229%

DPO in Scenario 1 37.132% 47.082% 47.465% 54.759%
DPO in Scenario 2 32.860% 43.445% 44.216% 51.409%
DPO in Scenario 3 28.323% 41.576% 44.473% 53.924%
DPO in Scenario 4 26.833% 37.685% 46.618% 54.648%

Table 2: Test results on the self-built Poem and Slogan datasets. All metrics are evaluated such that
higher values indicate better performance.

Poem Slogan
Row Number Words per Row Rhythm Tone Pattern Title Word Count Content

Base 0.75 0.61 0.64 0.60 0.51 0.34 0.57

PPO 0.91 0.79 0.87 0.82 1 0.47 0.78
DPO 0.93 0.75 0.83 0.75 0.78 0.45 0.70

of rejected responses’ likelihood, log π(a−). Scenario 1 shows the slowest decline in likelihood
compared to the other scenarios, effectively mitigating the adverse effects of 3D-properties, which
explains the superior performance of on-policy DPO in our tests.

We also plot the gradients during the DPO training process for Scenario 1, as shown in Figure 6
in the Appendix D.2. This visualization supports the analysis in Section 3, demonstrating that the
gradients for rejected responses increase more rapidly during training. This excessive decline in the
likelihood of generating rejected responses can ultimately lead to model degradation.

In addition to pure on-policy and off-policy DPO, Scenario 2, where the chosen response is off-
policy and the rejected response is on-policy, is also prevalent in industry. For instance, in math
problems, researchers often treat the correct dataset solution as the chosen response and the LLM-
generated incorrect answer as the rejected one, which we demonstrate to be detrimental. Scenario 3
is a mirror experiment for Scenario 2. These experiments confirm that incorporating off-policy data
into the preference training set degrades DPO performance.

4.3 EXPERIMENTAL VALIDATION OF REGULARIZATION TECHNIQUES

0.02 0.04 0.06 0.08 0.10 0.12 0.14
beta_2

0.5

0.6

0.7
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0.9

Sc
or

e

beta_1=0.1

Performance on poem generation with beta2 varying, beta1=0.1

Row number
Words per row
Rhythm
Tone pattern
Title

Figure 4: Performance on poem gener-
ation, β− varying with β+ = 0.1.

Following Flex-DPO, the regularization methods out-
lined in Section 3.3, we fixed β+ and systematically de-
creased β−. As indicated by the gradient analysis in Ap-
pendix B.2.1, the gradient of rejected responses with re-
spect to β− follows a non-monotonic trajectory, initially
increasing and then decreasing. Reducing β− on the left
side of this extreme point can effectively reduce the gra-
dient magnitude. However, indiscriminately minimizing
the gradient is not always advantageous. As illustrated
in Figure 4, model performance does not consistently im-
prove with an excessively small β− (see the trend with
β− < 0.08). Over-reduction of β− risks causing the
DPO algorithm to deviate from the preference learning
paradigm and regress toward behavior akin to the SFT
algorithm, ultimately compromising its generalization capabilities. This finding warrants further
investigation, and while preliminary insights are discussed in Appendix D, deeper exploration is
needed. This aspect will be addressed in future research.
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Additionally, we tested other DPO variants, such as IPO and SLiC, on the MATH∗ and SuperCLUE-
Math datasets, with results presented in Table 9. Flex-DPO consistently outperforms vanilla DPO,
IPO and SLiC, highlighting the effectiveness of the proposed regularization techniques.

4.4 RELATIVE INSTABILITY OF DPO TRAINING COMPARED TO RM TRAINING
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Figure 5: Accuracy of RM and DPO on
HH-rlhf eval set over the training pro-
cess.

To assess the stability and performance gap between DPO
and RM training, we conducted a parallel comparison us-
ing identical datasets. Both models were built on the
Baichuan2-33B architecture and trained on the HH-rlhf
and UltraFeedback datasets, with evaluations conducted
on the HH-rlhf and MATH datasets. The primary eval-
uation metric was accuracy, defined as the proportion of
instances where the model correctly identified the chosen
response as superior to the rejected one.

As shown in Figure 5, RM training proved to be sig-
nificantly more stable, whereas DPO training exhibited
notable fluctuations. These findings are consistent with
the theoretical results in Section 3.4, which indicate that
3D-properties are absent in RM-based alignment meth-
ods. Furthermore, as illustrated in Figure 8 and Figure 9
in Appendix D.2, the DPO model demonstrated a higher
tendency to overfit. Specifically, the sharp deceleration in
accuracy improvement after the second epoch suggests that the model was overfitting the training
data, highlighting the more aggressive optimization dynamics of DPO.

4.5 SUBOPTIMALITY OF DPO COMPARED TO RM-BASED ALIGNMENT

To further compare the performance of DPO and the end-to-end RM-based alignment (PPO), we
tested both approaches on two datasets for poem and slogan generation. These datasets serve as
ideal benchmarks for evaluating instruction-following capabilities, given their explicit and struc-
tured scoring criteria. For poem creation, the model must generate responses in accordance with
specific text and tone formats based on the prompt. Evaluation metrics include five key aspects:
Row Number, Words per Row, Rhythm, Tone Pattern, and Title. For slogan creation, evaluation is
based on Word Count and Content. Using Baichuan2-33B for our experiments, the results, shown in
Table 2, demonstrate that DPO underperforms compared to RLHF-PPO on both datasets.

5 CONCLUSIONS AND LIMITATIONS

In this study, we conducted a comprehensive theoretical analysis to elucidate why DPO does not
perform as well as RM-based alignment algorithm. The principal challenge identified in DPO is
summarized as 3D-properties. We substantiated our theoretical framework through experimental
results obtained from both a toy model and real LLMs in practical applications, including mathe-
matical reasoning and instruction following. Additionally, we assessed the effectiveness of specific
regularization techniques. Furthermore, by contrasting DPO training with RM training, we high-
lighted the inherent instability of DPO. We hope this work could offer research directions to narrow
the gap between RM-free preference learning methods and RM-based ones.

Despite the insights provided in this study, several limitations remain. First, while our theoretical
analysis and experiments highlight the 3D-properties as a key factor in DPO’s suboptimal perfor-
mance, the complexity of real-world LLMs may involve additional factors that were not fully ex-
plored. Second, our experimental evaluation, though spanning diverse tasks such as mathematical
reasoning and instruction following, is limited in scope and may not generalize across all LLM
applications. Additionally, the regularization techniques proposed, while effective in our controlled
settings, require further validation in larger-scale models and more diverse datasets. Lastly, although
we contrasted DPO with RM-based alignment, our study does not exhaustively address other poten-
tial reward-free methods, leaving open questions for future exploration.
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A DETAILED BACKGROUND AND RELATED WORKS

Large language models (LLMs) are profoundly transforming the way we work and live. Performing
a three-stage process is the default practice for training LLMs: Pretraining, Supervised Fine-Tuning
(SFT), and Reinforcement Learning from Human Feedback (RLHF). The roles of Pretraining and
SFT are broadly understood: Pretraining encodes knowledge and SFT aligns question-answer for-
mats. Relatively speaking, the understanding of RLHF is relatively insufficient. Specifically, Direct
Preference Optimization (DPO) and its variants, as reward-model-free algorithms, have garnered
significant attention due to their elegant mathematical form and relatively low resource require-
ments (Rafailov et al., 2024; Pal et al., 2024; Guo et al., 2024; Xiong et al., 2023). However, it has
also sparked considerable debate because of its unstable performance in practical applications (Li
et al., 2023; Xu et al., 2024a).

A.1 ON-POLICY ALIGNMENT VS. OFF-POLICY ALIGNMENT

The key inspiration for the DPO algorithm (Rafailov et al., 2024) is a closed-form solution to the RL
step in RLHF, and thus an equivalent solution to the optimal policy for RLHF objective. The original
DPO work is an off-policy learning algorithm for it relies on an extra preference dataset (Helpful-
and-Harmless (Bai et al., 2022)), where the preference pairs are not generated by the policy LLM
itself. On the other hand, there are a bunch of on-policy learning algorithms developed, where the
preference responses are sampled from the policy model. Guo et al. (2024) proposed the on-policy
version of DPO. In on-policy DPO, all responses are sampled in a batch-wise way. A natural trade-
off between them is the iterative DPO introduced by Xiong et al. (2023); Xu et al. (2024a). The
algorithm begins by initializing with an additional preference dataset, then iteratively trains a policy
using DPO, collects response pairs through exploration policies, obtains preference signals from
human or AI labelers, and updates the dataset with the newly labeled data.
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A.2 INSIGHTS INTO DPO

Though the RM-free algorithms are favored due to their lower computational overhead, if they
can achieve on-performance with state-of-art RM-based methods such as RLHF-PPO sparked a
lot of discussions. Liu et al. (2023) proves that the absence of RM in DPO constrains its ability
to sample preference pairs from the optimal policy. Xu et al. (2024a) show that DPO may have
fundamental limitations that its optimal solution is a superset of the optimal solution of the PPO
algorithm. This work also reports the empirical results that the performance of DPO is affected
by the distribution shift between the model outputs and the preference dataset. Feng et al. (2024)
discusses the limitations of DPO from the perspective of gradient numerical stability, and conducted
experiments to preliminarily verify it. However, they did not conduct experiments on real LLM and
illustrate the correlation.

A.3 OTHER RM-FREE ALIGNMENT ALGORITHMS

A major limitation of the DPO objective is its reliance on the Bradley-Terry model to convert
pairwise preferences into point-wise rewards. To overcome this, Azar et al. (2024) introduced Φ-
preference optimization (ΦPO), where DPO is a special case of it that Φ(P ) = log P

1−P . Identity-
preference optimization (IPO) is a variant that replaces the Φ-function by an identity mapping func-
tion Φ(P ) = P .

Different from the DPO or IPO, the core idea of Sequence Likelihood Calibration (SLiC) (Zhao
et al., 2023) is to calibrate the likelihood of ranked sequences sampled from the policy being trained.
The SLiC loss function can be decomposed into two parts: the rank function to guarantee that the
difference between log πθ(a

+|x) and log πθ(a
−|x) is greater than δ under the current policy πθ, and

the cross-entropy regularizer that to encourage the model to stay close to the SFT model.

There are some other variants that tries to improve DPO, such as KTO (Ethayarajh et al., 2024),
NCA (Chen et al., 2024), ODPO (DPO with an offset) (Amini et al., 2024). KTO uses a Kahneman-
Tversky model of human utility and proposes a method that directly maximizes the utility of gen-
erations instead of maximizing the log-likelihood of preferences. NCA leverages Noise Contrastive
Estimation (NCE) to bridge the gap in handling reward datasets explicitly annotated with scalar
evaluations. ODPO does not treat every preference pair equally during fine-tuning and requires the
difference between the likelihood of the preferred and dispreferred response to be greater than an
offset value.

B THEORETICAL FOUNDATIONS

B.1 FUNDAMENTAL LIMITATION IN VANILLA DPO

Here we revisit the theoretical findings in Section 3.1 in detail. The loss function for vanilla DPO is
given by

ℓDPO(θ) =
∑

(x,a+,a−)

log

(
1 +

(
π0(a

+|x)
π0(a−|x)

πθ(a
−|x)

πθ(a+|x)

)β
)
.

For a given (x, a+, a−), let

α :=

(
π0(a

+|x)
π0(a−|x)

)β

, π+ := πθ(a
+|x), π− := πθ(a

−|x), z :=
πθ(a

−|x)
πθ(a+|x)

.

Then we have
∂ℓDPO

∂π+
=

∂ log(1 + αzβ)

∂z

∂z

∂π+
=

αβ

1 + αzβ
zβ−1 ∂z

∂π+
,

∂ℓDPO

∂π− =
∂ log(1 + αzβ)

∂z

∂z

∂π− =
αβ

1 + αzβ
zβ−1 ∂z

∂π− .

Considering the case when π− → 0, we get (αβ)/(1 + αzβ) → αβ, thus,

∂ℓDPO

∂π+
→ −αβ(π+)−β−1(π−)β ,

∂ℓDPO

∂π− → αβ(π+)−β(π−)β−1.
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As π− → 0, since β < 1, ∂ℓDPO

∂π+ is proportional to (π−)β and tends to 0, while ∂ℓDPO

∂π− is proportional
to (π−)β−1 and tends to infinity. Therefore, in this case, the gradient for the rejected action becomes
extremely large, while the gradient for the chosen action becomes very small.

Then we want to further explore the token-level gradient. Here, π+ and π− are the likelihood of the
sequences. Let π+

i be the current selection probability of the i-th token for the chosen sequence, and
let π−

i be the current selection probability of the i-th token for the rejected sequence:

π+ =
∏
i

π+
i = π+

−i · π
+
i , π− =

∏
i

π−
i = π−

−i · π
−
i ,

where we have ∂π
∂πi

= π−i. Consider a softmax function, si = ezi∑
j ezj

, the corresponding gradients
are

∂si
∂zi

= si(1− si),
∂sj
∂zi

= −sisj , i ̸= j.

Let
C(π+, π−) := αβ+(π+)−β+

(π−)β
−
,

then, consider the current selection probability π+
i of the i-th token for the chosen sequence, let the

sampled token’s index be c. The logit corresponding to this token c is denoted as x+
i,c, then we have

∂ℓDPO’

∂x+
i,c

=
∂ℓDPO’

∂π+

∂π+

∂π+
i

∂π+
i

∂x+
i,c

→ −C(π+, π−)(1− x+
i,c),

if c′ ̸= c, we have
∂ℓDPO’

∂x+
i,c′

=
∂ℓDPO’

∂π+

∂π+

∂π+
i

∂π+
i

∂x+
i,c′

→ C(π+, π−)x+
i,c′ .

Similarly, consider the current selection probability π−
i of the i-th token for the rejected sequence,

let the sampled token’s index be c. The logit corresponding to this token c is denoted as x−
i,c, then

we have
∂ℓDPO’

∂x−
i,c

=
∂ℓDPO’

∂π−
∂π−

∂π−
i

∂π−
i

∂x−
i,c

→ C(π+, π−)(1− x−
i,c),

if c′ ̸= c, we have
∂ℓDPO’

∂x−
i,c′

=
∂ℓDPO’

∂π−
∂π−

∂π−
i

∂π−
i

∂x−
i,c′

→ −C(π+, π−)x−
i,c′ .

We can see that the token-level gradients from the chosen response and the rejected response are
at the same scale level. This reflects that DPO may not cause gradient numerical instability in the
generation of a single token. However, if the impact of the algorithm on the state transition proba-
bility generated by autoregression is comprehensively considered, 3D-properties will still affect the
performance of the algorithm.

B.2 ANALYSIS ON REGULARIZATION TECHNIQUES

In Section 3.3, we propose two straightforward regularization techniques. Here we provide theoret-
ical analysis to see why they can mitigate 3D-properties.

B.2.1 FLEXIBLE β-DPO

The first technique employs variable values of β to control the rate at which the likelihood of rejected
responses declines. Consider using different β+ and β− for the chosen and rejected responses:

ℓflex-DPO(θ) = −
∑

(x,a+,a−)

log σ

[
β+ log

πθ(a
+|x)

π0(a+|x)
− β− log

πθ(a
−|x)

π0(a−|x)

]
.

The loss function can be re-written by:

ℓflex-DPO(θ) =
∑

(x,a+,a−)

log

(
1 +

(
π0(a

+|x)
πθ(a+|x)

)β+ (
πθ(a

−|x)
π0(a−|x)

)β−)
.
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For a given (x, a+, a−), let

α :=
π0(a

+|x)β+

π0(a−|x)β− , π+ := π(a+|x), π− := π(a−|x), z :=
πθ(a

−|x)β−

πθ(a+|x)β+ .

Then we have
∂ℓDPO’

∂π+
=

∂ log(1 + αz)

∂z

∂z

∂π+
=

α

1 + αz

∂z

∂π+
,

∂ℓDPO’

∂π− =
∂ log(1 + αz)

∂z

∂z

∂π− =
α

1 + αz

∂z

∂π− .

Considering the case when π− → 0, we get α/(1 + αz) → α, thus

∂ℓDPO’

∂π+
→ −αβ+(π+)−β+−1(π−)β

−
,

∂ℓDPO’

∂π− → αβ−(π+)−β+

(π−)β
−−1.

As shown by the expressions for the gradients of the DPO’ objective with respect to the chosen
and rejected response likelihoods, the magnitude of the gradients is controlled by the parameters
β+ and β−. In particular, increasing β+ strengthens the gradient for the chosen response, π+,
while reducing β− dampens the gradient for the rejected response, π−, as it approaches zero. This
gradient behavior suggests that adjusting these parameters can effectively mitigate the 3D-properties
discussed in Section 3. Specifically, a large β+ ensures that the likelihood of the chosen responses
remains sufficiently reinforced, while a small β− prevents the likelihood of rejected responses from
decreasing too rapidly, which would otherwise lead to the instability and degradation described
earlier.

By fine-tuning β+ and β−, it becomes possible to control the interaction between the gradients of
the chosen and rejected responses, reducing the drastic drop in rejected response likelihood, the
degradation into response suppression, and the dispersion effect on unseen responses. This strategy
thus offers a potential solution for improving the stability and performance of DPO by reducing the
severity of the 3D-properties.

B.2.2 SFT LOSS REGULARIZATION

The second technique involves augmenting the DPO loss with an SFT loss, a strategy that has been
shown to significantly enhance the stability of DPO in previous studies. We can rewrite the loss
function:

ℓSFT-DPO(θ) = −
∑

(x,a+,a−)

{
log σ

[
β log

πθ(a
+|x)

π0(a+|x)
− β log

πθ(a
−|x)

π0(a−|x)

]
− γ log πθ(a

+|x)
}

(6)

Similarly, we have,

∂ℓSFT-DPO

∂π+
=

∂ log(1 + αzβ)

∂z

∂z

∂π+
=

αβ

1 + αzβ
zβ−1 ∂z

∂π+
− γ

1

π+
,

∂ℓSFT-DPO

∂π− =
∂ log(1 + αzβ)

∂z

∂z

∂π− =
αβ

1 + αzβ
zβ−1 ∂z

∂π− .

As π− → 0, the gradient for the chosen action ∂ℓSFT-DPO

∂π+ → −γ 1
π+ ̸= 0, meaning that the likelihood

of the chosen responses can continue to be optimized. This behavior is significant, as it indicates
that even as the likelihood of rejected responses π− approaches zero, the chosen response π+ can
still be improved. This is a key advantage of SFT-DPO over the vanilla DPO, which suffers from
gradient vanishing for π+ when π− → 0. The negative impact of 3D-properties is thus reduced,
allowing for more stable and effective optimization in the long run.

B.3 OTHER INVARIANTS OF DPO

B.3.1 IDENTITY-PREFERENCE OPTIMIZATION (IPO)

In IPO, the loss function can be written by,

ℓIPO(θ) =
∑

(x,a+,a−)

[
log

[
πθ(a

+|x)π0(a
−|x)

πθ(a−|x)π0(a+|x)

]
− 1

2η

]2
(7)
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We directly give the gradients:

∂ℓIPO

∂πθ(a−|x)
= −2

[
log

[
πθ(a

+|x)π0(a
−|x)

πθ(a−|x)π0(a+|x)

]
− 1

2η

]
· 1

πθ(a−|x)
(8)

∂ℓIPO

∂πθ(a+|x)
= 2

[
log

[
πθ(a

+|x)π0(a
−|x)

πθ(a−|x)π0(a+|x)

]
− 1

2η

]
· 1

πθ(a+|x)
(9)

B.3.2 SEQUENCE LIKELIHOOD CALIBRATION (SLIC)

In SLiC, the loss function can be written by,

ℓSLiC(θ) =
∑

x,a+,a−

max
[
0, δ − log πθ(a

+|x) + log πθ(a
−|x)

]
− η · log πθ(a

+|x) (10)

if δ > log πθ(a
+|x)

πθ(a−|x) :

∂ℓSLiC

∂πθ(a+|x)
= − 1 + η

πθ(a+|x)
,

∂ℓSLiC

∂πθ(a−|x)
=

1

πθ(a−|x)
(11)

else:

∂ℓSLiC

∂πθ(a+|x)
= − η

πθ(a+|x)
,

∂ℓSLiC

∂πθ(a−|x)
= 0 (12)

B.3.3 SIMPLE PREFERENCE OPTIMIZATION (SIMPO)

In SimPO, the loss function is written by,

ℓSimPO(θ) = −
∑

x,a+,a−

[
log σ

(
β

|a+|
log πθ(a

+|x)− β

|a−|
log πθ(a

−|x)− γ

)]
, (13)

where | · | represents the length of the generated response and γ is a target reward margin term.
Similarly, we directly give the gradients:

∂ℓSimPO

∂πθ(a+|x)
= − β

|a+| · πθ(a+|x)
σ

(
−
(

β

|a+|
log πθ(a

+|x)− β

|a−|
log πθ(a

−|x)− γ

))
, (14)

∂ℓSimPO

∂πθ(a−|x)
=

β

|a−| · πθ(a−|x)
σ

(
−
(

β

|a+|
log πθ(a

+|x)− β

|a−|
log πθ(a

−|x)− γ

))
. (15)

The ratio of the gradient is

∂ℓSimPO

∂π− /
∂ℓSimPO

∂π+
= −|a+| · πθ(a

+|x)
|a−| · πθ(a−|x)

, (16)

which indicates that as π+ increases and π− decreases, the gradient with respect to π− grows faster
and leads to a rapid drop in the likelihood of the rejected response. However, different from DPO, as
π− → 0, we have ∂ℓSimPO/∂π+ → 0. As for ∂ℓSimPO/∂π−, the analysis is non-trivial. We conclude
it as a lemma.

Lemma 1. As πθ(a
−|x) → 0, the limit of the partial derivative regarding πθ(a

−|x) in SimPO is:

lim
πθ(a−|x)→0

∂ℓSimPO

∂πθ(a−|x)
=


0, if β > |a−|,
+∞, if β < |a−|,
βC
|a−| , if β = |a−|,

(17)

where C = e
− β

|a+|
log πθ(a

+|x)+γ is a constant independent of πθ(a
−|x).
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Table 3: Data source of the responses in 4 scenarios.

chosen responses source rejected responses source

Scenario 1 Baichuan2-33B Baichuan2-33B
Scenario 2 Solutions from dataset Baichuan2-33B
Scenario 3 Baichuan2-33B Qwen-7B
Scenario 4 Solutions from dataset Qwen-7B

Proof. Let π− = πθ(a
−|x) and π+ = πθ(a

+|x). The partial derivative becomes:

f(π−) =
β

|a−| · π− · σ(−z),

where z = β
|a+| log π

+ − β
|a−| log π

− − γ.

As π− → 0, log π− → −∞, thus z → +∞. The sigmoid function approximates to:

σ(−z) ≈ e−z = C · (π−)
β

|a−| ,

where C = e
− β

|a+|
log π++γ . By substituting back, we have:

f(π−) ≈ βC

|a−|
· (π−)

β

|a−|
−1

.

Taking the limit as π− → 0:

lim
π−→0

f(π−) =


0, if β

|a−| − 1 > 0 (β > |a−|),
+∞, if β

|a−| − 1 < 0 (β < |a−|),
βC
|a−| , if β

|a−| − 1 = 0 (β = |a−|).

Note that in practice, β is normally chosen less than |a−|, which means the drastic drop in rejected
response will happen and 3D-properties still occur.

Remark 1. These variants all alleviate the 3D-properties problem of DPO, so the results on math-
ematical reasoning are partly improved (see Table 9). The invariants we tested do not perform well
uniformly on all the tasks. For example, on instruction following tasks like poem generation, vanilla
DPO outperforms SLiC and IPO. One hypothesis is their solution forms diverge significantly from
the Bradley-Terry model, leading to a loss of generalization in preference learning.

C DATASET DESCRIPTION

Table 3 shows the data source for the LLM experiments in Section 4 in 4 scenarios. For example,
in Scenario 1, the chosen and the rejected responses are both sampled from Baichuan2-33B and can
be regarded as on-policy learning. In Scenario 4, the chosen responses are exactly the solutions
given in the datasets while the rejected responses are sampled from another different LLM: Qwen-
7B. In the experiments regarding Baichuan2-13B, we use the same data rather than re-sample the
on-policy chosen responses. There are two reasons: 1. The 13B model is not as strong as the 33B
model, therefore we can not sample enough high-quality responses as the chosen ones. 2. Models
in the Baichuan2-series are all using the same dataset in Pretraining and SFT, therefore we can
approximately think that their outputs are identically distributed. The log probability for the base
model in Table 7 confirms this fact.

Table 4 describes the evaluation criteria of the responses to the math questions. A score of 5 means
both the process and the result are correct, and a score of 4 or 5 means the answer is correct. We use
these two indicators to evaluate the mathematical reasoning ability of the model. GPT-4 is used as
the AI evaluator. We provide the evaluation prompt in our code in the supplementary material.
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Table 4: Evaluation criteria of the responses to the math questions.

5 points Full-score answer, requiring a correct response with the correct process,
considering all possibilities, and being comprehensive.

4 points For complex questions, the answer is correct but lacks the process; for
simple questions, the answer is correct but accompanied by a very re-
dundant and verbose reasoning process.

3 points The answer is incorrect, but most of the process is correct, or the answer
is correct, but there are obvious errors in the process.

2 points The answer is incorrect, and most of the process is incorrect.

1 point The answer and the entire process and thought process are incorrect, or
the answer doesn’t process to final result.

Table 5: Poem dataset test set.

Poem type Quatrain Song Ci Ancient Poetry Metrical poetry Modern poetry

Test set Count 138 518 93 173 85

Table 5 shows the types of different poems in the poem dataset we used and their corresponding
numbers in the test set. The language is all Chinese. Chinese poetry has strict format and rhyme
requirements depending on the type. For example, for the quatrains, the row number must be 4,
the number of words per row must be 5 or 7. The second and fourth sentences in the quatrain are
required to rhyme, that is, the words at the end of the second and fourth sentences need to follow the
prescribed tone. In this manner, we design a rule-based evaluation system to score each dimension
of the generated answers. We selected the following characteristics as the basis for our evaluation:

• Row Number: For quatrain, the row number must be 4. For metrical poetry, the row number
must be 8.

• Words per Row: For quatrain and metrical poetry, the number of words per row must be 8.
• Rhythm: Every type of poetry has a certain rhyme pattern requirement. Since it is a bit

complicated to describe case by case, we put the requirements in the form of code in the
supplementary material.

• Tone Pattern: For Song Ci, the tone pattern depends on the brand name.
• Title: Determined by the requirement in the prompt.

For the Slogan dataset, we evaluate the model’s performance based on whether it meets the word
count requirements (Word Count) and the quality of the content (Content). We also provide the
scoring and evaluation rule-based criteria in our code in the supplementary material.

Table 6 shows the amount of data in each dataset. MATH, SuperCLUE, UltraFeedBack and HH-rlfh
are open-source datasets, while Poem, Slogan are in-house self-built datasets. We provide part of the
in-house datasets in the supplementary material to clarify the format and the content. SuperCLUE
is only for cross-dataset testing, and COMMON is only used for the comparison between the RM
training and DPO training in Section 4.4.

D EXPERIMENTS DETAILS

D.1 TRAINING SETTING

In this section, we provide a detailed overview of our training settings. Following the implementa-
tion of Rafailov et al. (2024), we use the Adam optimizer with the learning rate set to 5e-7. The most
sensitive parameter in the DPO algorithm is β (and learning rate but less significant). Here we use
the default setting aligned with the original DPO paper, The β here is set to be 0.1 and the learning
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Table 6: The statistic of used datasets.

MATH∗ SuperCLUE Poem Slogan UltraFeedBack HH-RLHF

train set 5,826 - 93,269 13,592 170,000 336,820
test set 2,000 1,072 1,000 1,000 - -

rate is set to be 5 × 10−6, which is the best hyperparameter set as far as we explored. We set the
batch size to 80 and the number of gradient accumulation steps to 2. The training epoch was set to
1. In IPO training, we set η to be 0.1. In SLiC training, we set δ = 5, η = 0.1. All experiments
were conducted on a cluster consisting of 40 A100 GPUs.

D.2 SUPPLEMENTARY EXPERIMENTAL RESULTS

Table 7 reports the log probabilities before and after training. Scenario 1 exhibits the slowest decline
in likelihood compared to other scenarios, effectively mitigating the adverse effects of 3D-properties.

Table 8 show the performance enhancement in MATH and SuperCLUE by vanilla DPO training
respectively. It is easy to see that Scenario 1 where both the chosen responses and the rejected
responses are on-policy performs best.

Figure 4 and Table 9 represent the additional results on DPO variants and regularization techniques.
It can be seen that DPO variants can achieve on-par or better performance compared with vanilla
DPO. Figure 4 shows that as β− decreases, the performance in poem generation initially improves,
reaches the peak point at around β− = 0.08, and subsequently declines. The initial improvement
is intuitive. We conjecture that an excessively low β− may cause DPO to perform like SFT on
the chosen responses, thereby reducing its generalization capabilities. For different tasks, the peak
point of β− can be different. For example, in mathematical reasoning, we can set β− to be 0.01 and
achieve better performance than vanilla DPO.

Figure 6 shows the change of the absolute value of gradient for the chosen and rejected responses
(∂ℓDPO/∂π+ and ∂ℓDPO/∂π−) during the training process of DPO on MATH. It can be seen that
|∂ℓDPO/∂π−| ≫ |∂ℓDPO/∂π−|, and the increasing rate of ∂ℓDPO/∂π− is much higher than that of
∂ℓDPO/∂π+, which is align with Property 1.

Figure 8 and Figure 9 show the DPO convergence process with model trained on MATH and HH-
rlhf respectively. In the second epoch, the accuracy growth of the model slows down sharply, which
indicates that the model overfits the training data. The results further confirm that DPO is an aggres-
sive optimization strategy compared to RLHF-PPO, and makes the impact of 3D-properties more
prominent.

Among the four scenarios, Scenario 1, where both chosen and rejected responses are on-policy,
ensures a more stable DPO training process and delivers the best testing performance, as shown
in Table 1. As shown in Table 7, Scenario 1 exhibits the slowest decline in likelihood compared
to other scenarios, effectively mitigating the adverse effects of 3D-properties. This explains the
superior performance of on-policy DPO in our tests.

In addition to pure on-policy and off-policy DPO, Scenario 2 where the chosen response is off-
policy and the rejected response is on-policy is also commonly seen in the industry. For example, in
some math problems, researchers used to treat the accurate solution in the dataset to be the chosen
response and the wrong answer generated by the LLM itself to be the rejected response, which we
show is harmful. Scenario 3 is a mirror experiment to Scenario 2. These additional experimental
results confirm that as long as the off-policy data is mixed into the training preference dataset, the
performance of DPO will be weakened.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 6: When training with on-policy data, the absolute value of the gradient for rejected responses
increases, while the absolute value of the gradient for chosen responses remains almost unchanged.
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Figure 7: Comparison of DPO and RM Training. RM training demonstrates greater stability, while
DPO training shows significant fluctuations.
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(a) MATH train dataset loss.
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(b) MATH train dataset accuracy.

Figure 8: Comparison between DPO and RM training on the training set of MATH. As can be seen,
in the second epoch of DPO training, the loss is very small and the accuracy of distinguishing the
chosen response from the rejected response is 100%, which indicates that the model overfits the
training data.
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Table 7: Impact of on-policy training data on the results. log π(a+) and log π(a−) represent the
average log probability per token for the chosen and rejected responses, respectively.

Baichuan2-13B Baichuan2-33B
log π(a+) log π(a−) log π(a+) log π(a−)

basemodel -0.9181 -0.9393 -0.3603 -0.3634
DPO in Scenario 1 -0.9681 -0.9982 -0.3629 -0.3670

basemodel -1.6776 -0.9238 -1.4314 -0.3525
DPO in Scenario 2 -1.6265 -1.2293 -1.2734 -0.4254

basemodel -0.9461 -1.7110 -0.3460 -1.1204
DPO in Scenario 3 -0.8786 -1.8848 -0.3439 -1.4333

basemodel -1.7468 -1.7110 -1.2838 -1.1451
DPO in Scenario 4 -1.6617 -1.8265 -1.2273 -1.2234

Table 8: Vanilla DPO: Baichuan2-13B and Baichuan2-33B accuracy on MATH∗ and SuperCLUE.

Baichuan2-13B Baichuan2-33B

MATH∗ SuperCLUE MATH∗ SuperCLUE
5 points 4&5 points 5 points 4&5 points 5 points 4&5 points 5 points 4&5 points

basemodel 6.0% 12.2% 46.3% 58.8% 25.7% 36.5% 79.5% 84.4%

Scenario 1 7.9% 14.4% 52.8% 64.6% 29.9% 37.5% 80.2% 86.6%
Scenario 2 4.8% 9.2% 47.9% 61.8% 29.2% 36.6% 72.2% 79.0%
Scenario 3 4.3% 12.8% 41.2% 57.0% 28.2% 37.3% 74.8% 84.9%
Scenario 4 3.2% 9.3% 39.5% 52.9% 28.6% 38.1% 80.2% 85.8%
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(a) HH-rlhf train dataset loss.
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(b) HH-rlhf train dataset accuracy.

Figure 9: Comparison between DPO and RM training on the test set of HH-rlhf.

Table 9: DPO and its variants/regularized version performance on mathematical reasoning. In Flex-
DPO, β+ = 0.1, β− = 0.08.

MATH∗ SuperCLUE
5 points 4&5 points 5 points 4&5 points

basemodel 25.7% 36.5% 79.5% 84.4%

DPO 29.9% 37.5% 80.2% 86.6%
Flex-DPO 30.1% 38.0% 81.2% 86.7%

IPO 30.0% 37.7% 80.5% 85.9%
SLiC 29.3% 38.7% 79.7% 84.5%
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