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Figure 1. Putting people in perspective. In contrast to common methods like HMR2.0, CameraHMR estimates 3D human shape and
pose using a perspective camera by leveraging a learned regressor, HumanFoV, to estimate the appropriate camera intrinsics. Note how
this improves the estimated pose when there is strong foreshortening. Our approach exploits new pseudo ground-truth data and a new dense
surface keypoint detector that improve body shape estimation; this is particularly visible for the heavier people in the images. CameraHMR
defines the new state-of-the-art for 3D human pose and shape accuracy from a single image.

Abstract

We address the challenge of accurate 3D human pose
and shape estimation from monocular images. The key
to accuracy and robustness lies in high-quality training
data. Existing training datasets containing real images
with pseudo ground truth (pGT) use SMPLify to fit SMPL
to sparse 2D joint locations, assuming a simplified camera
with default intrinsics. We make two contributions that im-
prove pGT accuracy. First, to estimate camera intrinsics,
we develop a field-of-view prediction model (HumanFoV)
trained on a dataset of images containing people. We use
the estimated intrinsics to enhance the 4D-Humans dataset

1This work was done when PP was at MPI-IS.

by incorporating a full perspective camera model during
SMPLify fitting. Second, 2D joints provide limited con-
straints on 3D body shape, resulting in average-looking
bodies. To address this, we use the BEDLAM dataset to
train a dense surface keypoint detector. We apply this de-
tector to the 4D-Humans dataset and modify SMPLify to fit
the detected keypoints, resulting in significantly more realis-
tic body shapes. Finally, we upgrade the HMR2.0 architec-
ture to include the estimated camera parameters. We iterate
model training and SMPLify fitting initialized with the pre-
viously trained model. This leads to more accurate pGT and
a new model, CameraHMR, with state-of-the-art accuracy.
Code and pGT is available for research purposes.



1. Introduction
The field of monocular 3D human pose and shape (HPS)
estimation has advanced rapidly. Updated architectures,
stronger backbones, and more extensive training data have
all led to improvements in robustness and accuracy. We
argue that a key remaining source of error lies in the fact
that many HPS methods use a simplified weak-perspective
camera model. We describe how the wrong camera model
introduces error and we propose a solution. Specifically,
we collect a dataset of images of people with varied field of
view (FoV) and train a network to directly predict FoV from
pixels. We then leverage this predicted FoV in training and
show how this leads to state-of-the-art accuracy.

Recent HPS methods, such as HMR2.0 [13], achieve
notable 2D alignment by leveraging large-scale real image
datasets for training. However, this success in 2D alignment
comes at the cost of reduced 3D accuracy as described in
[10]. The core issue lies in the fact that these large-scale
real image datasets frequently lack camera intrinsic param-
eters. Training involves first creating 3D pseudo ground
truth (pGT) data by fitting a parametric 3D body model like
SMPL [33] to 2D features such as keypoints. This fitting
process typically uses a weak perspective camera model
or default camera intrinsics. When the camera model is
wrong, fitting 2D keypoints accurately forces the 3D pose
to be wrong. Consequently, methods trained on these pGT
datasets learn to replicate the 3D errors.

To achieve both accurate 2D alignment and 3D poses,
it is crucial to use the correct camera intrinsics in creating
the pGT. Unfortunately, estimating intrinsics from a single
image is challenging. While there are many state-of-the-art
approaches for camera calibration from monocular images
[18, 29, 48], they are trained on datasets such as Google
Street View [4] and SUN360 [44]. Such datasets focus
on outdoor or indoor scenes rather than people. Methods
trained on datasets containing panoramic images of streets,
natural landscapes, urban scenes, indoor settings, etc., do
not work well on images of people. On the other hand
methods trained on synthetic data like SPEC-camcalib [26]
do not generalize well to in-the-wild data. This highlights
the need for a robust camera calibration model for images
containing people to achieve accurate 3D human pose and
shape estimation.

To address this problem, we collect a dataset of about
500K images predominantly comprising people, to train a
field of view (FoV) prediction model. The human body
provides useful information for camera estimation. While
it would be going too far to call the body a “calibration ob-
ject,” bodies have highly regular proportions and a limited
range of heights. When projected into images, this reg-
ular structure systematically varies with focal length and
perspective projection. To exploit this fact, we train a di-
rect FoV regressor, HumanFoV, which generalizes well on

benchmarks featuring humans compared to other state-of-
the-art (SOTA) camera calibration methods. HumanFoV
can be directly incorporated into HPS methods that use a
full perspective camera model, enabling accurate 3D recon-
struction. Using an accurate camera not only helps HPS re-
gressors infer the 3D location of the people in camera space
but it also improves alignment of the inferred body with im-
age features, especially for wide angle images and extreme
viewing angles.

While incorporating a more accurate camera model into
HPS methods is important, we still need high-quality train-
ing data that is as diverse as possible. To that end, we use
HumanFoV to improve the real-image pGT in the 4DHu-
mans dataset that is used to train HMR2.0 [13]. The origi-
nal dataset uses SMPLify [6] to fit SMPL to 2D keypoints
under a weak-perspective assumption. Instead, we use a full
perspective camera model in SMPLify and exploit Human-
FoV to estimate the FoV of the training images.

Additionally, the original dataset is created by fitting
SMPL to only 17 sparse 2D joints; these lack the detail nec-
essary for accurate 3D shape reconstruction. To improve
this, we train a keypoint detector (DenseKP) on the BED-
LAM [5] dataset to estimate 138 dense surface keypoints.
We modify SMPLify to use these together with the origi-
nal 17 2D joints. This results in significantly more realistic
body shapes. Qualitatively, the improved camera model and
dense keypoints lead to good 2D image alignment and more
plausible 3D pGT compared to original dataset (Fig. 2).

With this, we generate high-quality 3D pGT for a large-
scale real image dataset comprising approximately 3.2 mil-
lion cropped images. Importantly, the dataset includes the
camera intrinsics estimated by HumanFoV; these are cru-
cial for HPS methods. We further modify the HMR2.0 ar-
chitecture to incorporate camera parameters from Human-
FoV in training. We iterate training this new CameraHMR
model and refining the pGT with SMPLify initialized with
the previously trained model. This significantly improves
performance, with CameraHMR achieving state-of-the-art
accuracy on multiple HPS benchmarks. See Fig. 1.

In summary, we (1) collect a dataset of varied images
of humans with known FoV, (2) using this dataset, we train
HumanFoV to regress FoV from images of people, (3) up-
date SMPLify with a full perspective model that uses the
HumanFoV output, (4) introduce a dense surface keypoint
regressor and incorporate these keypoints into SMPLify, (5)
improve the 4DHumans training set using the new version
of SMPLify, (6) incorporate the FoV estimation in HMR2.0,
(7) train a new model, CameraHMR, with SOTA accuracy.
Code and pGT dataset is available for research purposes.

2. Related Work
3D Human Pose and Shape Regression. The field of
mononcular 3D human pose and shape (HPS) estimation



has made rapid advances. The improvement of the back-
bone has played an important role, beginning with ResNet
architectures pre-trained on the ImageNet dataset [20, 21,
28], then the HRNet architecture pre-trained on the COCO
dataset [7, 11, 30, 47], and more recently Transformer-
based models [10, 13, 42]. These changes have led to sig-
nificant improvements in accuracy on standard benchmarks.

HMR [21] introduced a simplified weak perspective
camera model to facilitate training with pseudo ground
truth datasets. The availability of increasingly accurate 3D
ground truth datasets, enables methods to be trained using
the more complex full perspective camera model [5, 25, 31].
This evolution in camera modeling and training backbone
has contributed to improvements in the accuracy of 3D pose
and shape estimations. Despite advancements in achieving
accurate 3D pose estimates, aligning these poses accurately
with 2D image features remains challenging. This issue
has been recently highlighted by TokenHMR [10], which
attributes the misalignment to the use of incorrect camera
models during prediction. Even methods that incorporate a
full perspective camera model during training [25, 31, 42],
encounter alignment issues due to the absence of camera
intrinsics during inference, leading to inaccurate projection
into 2D.
Regressing Camera Intrinsics. Several approaches have
been developed to regress camera intrinsics from monoc-
ular images [18, 27, 29, 48]. However, these methods
are often trained on datasets focused on indoor [39, 45],
driving [4, 12], or object-centric [2] images, which typ-
ically feature consistent vanishing points and geometric
cues. These images are quite different from images of peo-
ple. Models trained on indoor and outdoor scenes struggle
when presented with images of people, particularly portrait
images where vanishing points are often unclear or absent.
We argue that the human body itself offers essential cues
for camera parameter estimation. To leverage this, we train
our model on a dataset composed predominantly of images
featuring people. Our experiments demonstrate that this ap-
proach significantly enhances the generalization of camera
estimation across various human-centric benchmarks.

3. Method
In this section, we detail our approach for estimating cam-
era intrinsics from images captured in uncontrolled set-
tings. We further present enhancements to the HMR2.0 ar-
chitecture by incorporating bounding box and camera pa-
rameter tokens into the vision transformer and adopting
a perspective camera model for projection, in contrast to
the previously used weak perspective model. We desig-
nate the two models as HumanFoV and CameraHMR. Fur-
thermore, we describe the generation of improved pseudo-
ground truth (pGT) by using a modified SMPLify fitting
process, CamSMPLify.

3.1. Preliminaries

We use a simple perspective camera model for our experi-
ments. In this model, a 3D point (X,Y, Z) in camera co-
ordinate space is projected onto the image plane, at a point
(x, y), using the camera intrinsic matrix parameterized by
focal length f (assuming fx = fy) and principal point,
(cx, cy) in pixels coordinates. We simplify the model by
assuming no radial distortion and that the principal point is
the center of the image. For CameraHMR, we assume the
body is always predicted in camera space, i.e. the rotation
of the camera is R = I .

As is common practice [27, 29, 48], we estimate the field
of view from images instead of the focal length. The reason
for this is that different focal lengths can produce images
with same field of view if the camera sensor size is different.
For example, a 50mm lens on a full-frame camera (35mm
sensor) has a wider field of view than a 50mm lens with a
crop sensor. While the focal length is an important charac-
teristic of a lens, the field of view is a more direct measure
of what will be captured in an image. Hence, we use verti-
cal field of view υ as the primary output of HumanFoV. The
focal length fy used in the camera intrinsics can be derived
from υ using the image height H .

fy =
H

2 · tan
(
υ
2

) . (1)

To represent the 3D human, we use the SMPL para-
metric human body model [33] controlled by parameters
(θ, β), where θ ∈ R72 represents pose and β ∈ R10 rep-
resents identity shape. SMPL is a function that outputs a
body mesh, M with vertices V ∈ R6890×3. The 3D joints
J3d ∈ RK×3 with K joints are obtained using a pre-trained
joint regressor. We use a gender-neutral SMPL model with
10 shape components. We use a cropped bounding box of
size 256× 256 as input to our models.

3.2. HumanFoV

Given an image I ∈ RW×H×3 where W and H are the
width and height of the original image respectively, we pre-
process it by resizing it to a square resolution of 256× 256
pixels. To achieve this, we resize the longer side to 256
and zero-pad the smaller side to maintain the aspect ratio.
This preprocessing ensures uniform input dimensions for
the network while preserving the aspect ratio integrity of
the original image, which is important for field of view es-
timation. We train a deep neural network architecture with
HRNet [40] as the backbone and an MLP head for direct
estimation of the vertical field of view υpred. The HRNet
backbone is pretrained on ImageNet [8]. Based on insights
from previous work [25, 27], underestimating the FoV has
less negative impact on reconstructed 3D poses compared
to overestimating the FoV. Therefore, an asymmetric loss
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Figure 2. Pseudo-Ground-Truth (pGT) training data. Row 1: example images from the 4DHumans dataset. Rows 2 and 3: original
pGT overlaid and viewed from a different perspective. Rows 4 and 5: our improved pGT using CamSMPLify. Note that our approach
reduces the bias towards bent knees (columns 1, 5, 6), improves 3D pose and image alignment when there is foreshortening (Column 2, 4,
7, 9), and estimates more realistic body shape (columns 1, 3, 7, 8).

function is incorporated to penalize overestimation more
heavily than underestimation. We define a loss, Lυ , on the
vertical field of view in radians as:

Lυ =

{
3 ∥υgt − υpred∥22 if υpred > υgt

∥υgt − υpred∥22 if υpred ≤ υgt.
(2)

The training set for HumanFoV is described in Sec. 4.1.
We train HumanFoV for around 16 epochs with a batch size
of 64 and learning rate of 5× 10−5. We use an Adam opti-
mizer [24] with no weight decay. We use different data aug-
mentation techniques during training to ensure the model’s
robustness. This includes center-cropping of images to gen-
erate different aspect ratios. This augmentation helps the
model become robust against variations in image cropping
during inference. Images are also randomly flipped hori-
zontally with a probability of 0.2, providing additional di-
versity to the training dataset.

3.3. CameraHMR

HPS methods have evolved to use progressively more pow-
erful backbones from ResNet [15] to HRNet [40], and most
recently ViT [9], resulting in improved performance. Here
we use a ViTPose [46] backbone pretrained on COCO [32]
to extract features from cropped images. Specifically, we
adopt the HMR2.0 architecture, which employs a ViT back-

bone, and modify it to support training with a full perspec-
tive camera instead of a weak perspective camera.

The ViT backbone processes images by dividing them
into patches, converting these patches into feature embed-
dings known as tokens, and utilizing self-attention mecha-
nisms to capture the relationships among them. Along with
the image tokens, we also provide bounding box informa-
tion of the cropped region and the focal length as tokens.
We follow CLIFF [31] and compute the bounding box to-
ken Tbbox, using the bounding box center cx, cy , scale s,
and the focal length f of the full image.

Tbbox =

(
cx
f
,
cy
f
,
s

f

)
(3)

The ground truth focal length is known during training and
predicted using our HumanFoV during inference.

The decoder in our modified architecture cross-attends to
both image-derived tokens and the supplementary bounding
box and focal length tokens. This approach enables the de-
coder to generate features essential for accurately regressing
3D rotations and human mesh parameters while accommo-
dating camera perspective. We explain the losses used in
training the model in Sup. Mat.
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Figure 3. Overview of CamSMPLify: The DenseKP module pro-
cesses cropped images to produce dense surface keypoints, while
the HumanFoV module uses full images to estimate camera intrin-
sics. The output from these are used by CamSMPLify to optimize
the SMPL model parameters, β, θ, and the global translation tfull.
Our iterative training strategy starts with initial estimates, Vinit

from CameraHMR, which are used to regularize the CamSMPLify
estimates. CameraHMR is then iteratively refined based on the im-
proved pGT from CamSMPLify.

3.4. CamSMPLify

To train CameraHMR, we modify the original 4DHu-
mans [13] dataset, upgrading it from a weak perspective
to a full perspective camera format. This dataset includes
images from the InstaVariety [22], COCO [32], MPII [3],
AI Challenger [43] and AVA [14] datasets. Note that
AVA [14] contains many movie clips where the aspect ratio
is stretched horizontally (e.g. from 4:3 to 16:9), violating
the assumption that fx = fy . These clips are hard to de-
tect automatically so we exclude AVA from our improved
pGT. We make several improvements to the fitting process
to enhance the dataset, including better initialization and
priors, more accurate camera intrinsics, dense surface 2D
keypoints, and multiple fitting iterations. The overview is
shown in Fig. 3. This comprehensive approach results in
better pseudo ground truth, significantly improving both 3D
pose and shape accuracy, as well as 2D alignment as shown
in Fig. 2. In the following section, we explain each step in
greater detail.
Camera Intrinsics. One major challenge with in-the-wild
image datasets is the absence of ground truth intrinsic cam-
era parameters, which makes it difficult to accurately fit a
3D body to the 2D keypoints while ensuring plausible 3D
poses and precise 2D alignment. To address this issue, we
employ our HumanFoV model to estimate the vertical field
of view υ for all images in the 4DHumans dataset. The
corresponding focal length f is then calculated from υ and
image height H using Eq. 1. This approach enables us to in-
fer the necessary camera intrinsics for the dataset, enabling
us to project the 3D joints using a full perspective camera
in contrast to the weak perspective camera used in the origi-

nal dataset. As a result, we achieve accurate 2D alignments
without compromising 3D pose accuracy during the fitting.
Surface Keypoints. Another challenge that we face is that
the original 4DHumans dataset is annotated with 17 sparse
2D body joints. This sparse annotation lacks sufficient de-
tail to accurately reconstruct the 3D body shape. To address
this, we train a dense surface keypoint detector, DenseKP,
using the synthetic datasets BEDLAM and AGORA, which
offer diverse body shapes and precise ground truth anno-
tations. We use ViTPose [46] pretrained on COCO to ex-
tract features from the cropped images. The model takes
a centered crop of the person, resized to 256 × 256 pix-
els, as input and outputs 2D dense surface keypoints S2d ∈
R138×2. To generate the 138 surface keypoint ground truth
labels, we down-sample the SMPL ground truth vertices
and project them onto the image. The down-sampling ap-
proach, adapted from COMA [36], focuses on sampling
vertices in high-curvature regions, which effectively pre-
serves the body shape and key structural details. To train
the model we use an L2 loss on ground truth Ŝ2d and pre-
dicted keypoints S2d. We use this model to generate 138
dense keypoints for all images in the 4DHumans dataset.
We modify the fitting by combining the 17 provided joints
with the estimated 138 dense surface keypoints. This, along
with improved camera intrinsics, helps achieve better shape
alignment in 2D during projection.
Initialization. Like with any optimization-based method,
the choice of initialization can significantly affect the per-
formance of the fitting process, as poor initialization can
lead to suboptimal convergence. To ensure a robust 3D
initialization, we train our CameraHMR on the BEDLAM
and AGORA dataset, which provides accurate ground truth
annotations, including camera intrinsics. Using this pre-
trained model, we generate initial 3D pose θint and shape
βint predictions for the 4DHumans dataset, resulting in bod-
ies with relatively accurate pose and shape. Additional re-
finement through surface keypoint and joint fitting improve
both the body shape and pose, leading to even more pre-
cise results. We also predict the initial global translation of
the mesh tfull

int relative to the optical center of the full im-
age. Note that instead of the standard pose prior used in
SMPLify [6], we regularize the solution to this initial pre-
diction.
Losses. We optimize the SMPL model parameters β and θ
to match the ground truth 2D body joints Ĵ2d and 2D surface
keypoints Ŝ2d while also optimizing the global translation
of the mesh tfull. The model parameters are initialized with
βint and θint, as determined during the initialization stage us-
ing CameraHMR. The output vertices Vint from the model
M(βint, θint) serve as the prior in the regularization process.
J2d and S2d are obtained from the 3D joints J3d and surface
keypoints S3d using Π(J3d + tfull), where Π represents the
perspective projection with camera intrinsics obtained from



HumanFoV. The S3d are derived from the SMPL vertices
V using a downsampling matrix similar to BEDLAM [5].
Specifically the optimization minimizes the following ob-
jective function:

E(β, θ, tfull) = λS2d
ES2d

+ λJ2d
EJ2d

+ Ereg (4)

Ereg = λβ∥β∥22 + λint∥V − Vint∥22, (5)

where EJ2d
and ES2d

are L2 losses on 2D joints and surface
keypoints, respectively. The λ terms denote the weights
for each component of the objective function. We apply
a threshold value τ to filter out results with E > τ , thereby
excluding pseudo ground truth samples with high conver-
gence errors. For further details, refer to the Sup. Mat.
Iteration. We run the whole process for multiple itera-
tions of refinement to ensure the pseudo ground truth is of
high quality. This is similar in spirit to SPIN [28]. The
θ and β parameters for CamSMPLify fitting are initialized
using version v1 of the CameraHMR trained on the BED-
LAM dataset. After applying the filtering criteria based on
the threshold τ in CamSMPLify fitting we obtain approxi-
mately 2.8 million crops out of 4 million crops from 4DHu-
mans dataset. These crops, together with the BEDLAM
dataset, are then utilized to train an enhanced version, v2,
of CameraHMR. We further iterate and employ v2 to gen-
erate improved initializations for the 4D Humans dataset,
followed by another round of CamSMPLify fitting. This
improved initialization substantially improves convergence,
leading to a more accurate fitting with lower error. Apply-
ing the same filtering criteria, we are able to further expand
our dataset to around 3.2 million high-quality annotations.

4. Datasets
4.1. HumanFoV

To train the HumanFoV model we use around 500K images
collected from Flickr [1]. To get human-centeric data, we
filter Flickr with keywords such as people, man, woman,
kid, human, crowd etc. We use the Flickr API to down-
load only the images that have associated EXIF informa-
tion, which usually contains the focal length in mm. To
calculate the vertical field of view υ from the focal length f
in mm, we need to know the sensor height sh. Vertical FoV
υ can be calculated as

υ = 2 · arctan
(

sh

2 · f

)
. (6)

We use the field FocalLengthIn35mmFormat from the
EXIF, which contains the focal length corresponding to a
36mm wide and 24mm high sensor. This allows us to use
a sensor height of 24mm directly in our calculations. Note
that if the aspect ratio of the image is less than 1 (i.e. por-
trait mode), we calculate υ using the sensor width instead

of sensor height. Please refer to the Sup. Mat. to see the
distribution of focal lengths in the dataset.

Note that the standard aspect ratios for images captured
from a phone or camera are in the range of 16:9, 4:3, 3:2,
1:1, 5:4. If the aspect ratio of the image collected from
Flickr is outside this range, we assume that the image is
cropped. Cropped images, especially those not centered,
could introduce inconsistencies with the camera model used
and might confuse the neural network. We filter such
images from the training data. Although we do not use
cropped images directly in our training data, we extensively
apply crop augmentation during training to ensure model’s
robustness.

To evaluate our HumanFoV model, unlike previous
methods, we focus on benchmarks containing images
of people. Consequently we use test-set images from
SPEC [27], 3DPW [41] and EMDB [23], which all provide
camera intrinsics. We also create a test set of around 10K
images from Flickr that are similar to training set. We also
include a scene from the BEDLAM [5] dataset, BEDLAM-
Z, which contains a wide range of focal lengths because the
camera is zooming from 28 to 80mm. This provides a more
varied distribution over the intrinsics in the test set.

4.2. CameraHMR

For training CameraHMR along with the enhanced 4DHu-
mans dataset (minus AVA) we also use the synthetic
datasets AGORA [35] and BEDLAM [5], which contain ac-
curate ground truth camera information. The combination
of all these datasets is called “All” in Table 4. For evalu-
ation we use the 3DPW [41] EMDB [23] and RICH [16]
datasets. Additionally, we evaluate accuracy on the SPEC
test set [27], which features multiple off-center individuals
and more varied camera perspectives. To evaluate 3D shape
accuracy, we utilize the SSP-3D [37] dataset. We also eval-
uate 2D alignment accuracy on the COCO validation set
and perform qualitative evaluation using images from the
LSP [19] and MPII [3] test sets in Fig. 4.

4.3. Evaluation Metrics

We follow previous work [13, 27] and evaluate 3D recon-
struction accuracy using MPJPE (Mean Per Joint Position
Error), PA-MPJPE (Procrustes Analysis Mean Per Joint Po-
sition Error), and PVE (Per Vertex Error), which measures
the Euclidean distance (in mm) between predicted and ac-
tual 3D vertices and joints after aligning the pelvis. PVE is
useful for evaluating body shape accuracy. We also evaluate
the 2D alignment using PCK (Percentage of Correct Key-
points) on COCO-val [32]. PCK measures the accuracy of
2D keypoint detection by calculating the percentage of pre-
dicted keypoints within a specified distance threshold from
the ground truth. We use thresholds of 0.05 and 0.1, which
correspond to 5% and 10% of the crop size, respectively.



Flickr-test SPEC 3DPW EMDB BEDLAM-Z

Perspective Fields [18] 15.3 8.0 14.0 12.8 18.0
Ctrl-C [29] 26.5 10.4 5.6 5.4 31.3
WildCamera [48] 10.9 17.8 8.2 2.3 4.8
SPEC-camcalib [27] 14.0 14.3 8.8 5.9 14.2
HumanFoV (Ours) 7.3 7.9 5.0 5.7 5.4

Table 1. Vertical field of view error in degrees. BEDLAM-Z
stands for the “zoom” sequence from BEDLAM used for testing
(see text). Bold and italics correspond to best and second best re-
spectively.

Method PCK 0.05 ↑ PCK 0.1 ↑

CLIFF [31] 0.66 0.84
BEDLAM-CLIFF [5] 0.62 0.80
HMR2.0a [13] 0.79 0.94
HMR2.0b [13] 0.86 0.96
TokenHMR [10] 0.80 0.95
ReFit [42] 0.74 0.84
CameraHMR (Ours) 0.84 0.94

Table 2. PCK on COCO-val dataset measures 2D alignment accu-
racy. Bold: most accurate. Italics: second most.

5. Experiments

5.1. Comparision to SOTA

HumanFoV. As shown in Table 1, HumanFoV general-
izes well across all benchmarks with diverse fields of view.
While WildCamera [48] excels on benchmarks with nar-
row to average field of view, it underperforms on those with
wide field of view, such as SPEC. In contrast, our Human-
FoV maintains consistent accuracy across all benchmarks.
CameraHMR. As shown in Table 4, CameraHMR out-
performs the baselines on all three benchmarks by a large
margin. For a fair comparison, we categorize the meth-
ods based on the major datasets that were used in train-
ing. STD refers to standard datasets comprising Hu-
man3.6M [17], COCO [32], MPII [3] and MPI-INF-
3DHP [34] while 4DHumans comprises InstaVariety [22],
COCO [32], MPII [3], AI Challenger [43] and AVA [14].
Note that CameraHMR training never uses AVA. Even
when trained on similar datasets, CameraHMR consistently
outperforms all other baselines, demonstrating notable im-
provements particularly on the EMDB and SPEC-SYN
benchmarks, which feature a wide variety of cameras. Ad-
ditionally, our estimated dense keypoints improve the pGT
body shape accuracy and this translates into improved ac-
curacy of CameraHMR on the SSP-3D [37] dataset; see
Sup. Mat.

Table 2 also shows that CameraHMR is either compara-
ble to, or better than, other baselines in terms of 2D align-
ment on the COCO-val dataset. CameraHMR is nearly
identical to HMR2.0b in terms of 2D keypoint alignment,
while having significantly better 3D accuracy. As shown
qualitatively in Fig. 4, CameraHMR achieves not only bet-

Camera EMDB [23]↓ RICH [16]↓ SPEC-SYN [27]↓

fixed 89.3 64.8 138.7
default 82.7 64.9 115.2
predicted 81.7 64.4 72.9

Table 3. Per-vertex error (PVE) in mm for different focal length
used during inference of CameraHMR.

ter 3D reconstruction, but significantly better 2D alignment,
especially in cases of foreshortening or for people with non-
average body shapes.

5.2. Ablation

To understand the effect of using the predicted camera in-
trinsics from our HumanFoV, we perform an ablation study
in which we vary the focal length used during inference. We
use a fixed focal length of 5000 pixels, the predicted focal
length from HumanFoV, and the default focal length that is
use by other HPS methods [25, 31], defined as

√
w2 + h2

where w and h are the width and height of the full image
respectively. We evaluate per-vertex error on three different
benchmarks: EMDB, RICH, and SPEC-SYN. As shown in
Table 3, the impact of using the predicted focal length is
modest on EMDB and RICH. However, there is a signifi-
cant improvement on the SPEC-SYN benchmark. EMDB
and RICH largely contain centered individuals with fixed
camera intrinsics, resulting in similar performance whether
using predicted or default focal lengths. In contrast, SPEC-
SYN includes varied camera intrinsics and off-center sub-
jects, resulting in foreshortening and perspective distortion.
In such cases, the benefits of using predicted focal length
over the default focal length is significant.

6. Conclusion

In this work, we address the limitations of using an incorrect
camera model in 3D human pose and shape estimation. By
developing HumanFoV, a robust FoV predictor trained on
a diverse human-centric dataset, we significantly enhance
the accuracy of 3D human pose and shape estimation. Our
integration of a full perspective model and dense surface
keypoints into the SMPLify process improves the quality of
pseudo ground truth data for in-the-wild images. Incorpo-
rating these advancements into the training of CameraHMR
results in state-of-the-art performance on various bench-
marks, demonstrating the effectiveness of our approach in
improving both 2D alignment and 3D reconstruction.
Disclosure. MJB has received research gift funds from Adobe,
Intel, Nvidia, Meta/Facebook, and Amazon. MJB has financial
interests in Amazon and Meshcapade GmbH. While MJB is a co-
founder and Chief Scientist at Meshcapade, his research in this
project was performed solely at, and funded solely by, the Max
Planck Society.



Method 3DPW [41] EMDB [23] SPEC-SYN [27]

PA-MPJPE ↓ MPJPE ↓ PVE↓ PA-MPJPE↓ MPJPE↓ PVE↓ PA-MPJPE ↓ MPJPE↓ PVE↓
ST

D SPEC [27] 53.2 96.5 118.5 87.7 138.9 161.3 56.9 83.5 98.9
CLIFF∗ [31] 43.0 69.0 81.2 68.3 103.5 123.7 55.8 128.5 139.0
HMR2.0a∗ [13] 44.4 69.8 82.2 61.5 97.8 120.0 55.8 133.3 153.0

B
E

D
L

A
M

TokenHMR [10] 43.8 70.5 86.0 49.8 88.1 104.2 51.8 110.5 127.6
WHAM†∗ [38] 35.9 57.8 68.7 50.4 79.7 94.4 - - -
ReFit∗ [42] 38.2 57.6 67.6 55.5 91.7 106.2 51.3 103.6 116.3
BEDLAM-CLIFF [5] 46.6 72.0 85.0 61.3 97.1 113.2 55.6 109.9 124.6
CameraHMR (Ours) 40.0 62.3 74.8 45.4 82.7 97.0 31.8 58.9 70.0

4D
H HMR2.0b [13] 54.3 81.3 93.1 79.2 118.5 140.6 67.6 150.7 172.9

CameraHMR (Ours) 38.7 62.7 73.4 43.9 73.2 85.6 37.0 66.0 79.1

A
ll CameraHMR (Ours) 38.5 62.1 72.9 43.7 73.0 85.4 33.0 61.8 73.1

CameraHMR ∗(Ours) 35.1 56.0 65.9 43.3 70.3 81.7 32.9 61.8 72.9

Table 4. Reconstruction error comparison for HPS. ∗denotes method is finetuned on 3DPW training data. †denotes video based method.
Datasets used in training; STD: standard datasets, 4DH: 4DHumans dataset, All: BEDLAM + 4DHumans dataset.

Image TokenHMRHMR2.0 CameraHMR (Ours)

Figure 4. Qualitative results of different baselines on LSP [19] and MPII [3] test images. CameraHMR achieves better 3D pose and
shape reconstruction while also achieving more accurate 2D alignment compared to other SOTA methods trained on comparable datasets.



References
[1] Flickr. https://www.flickr.com, 2024.
[2] Adel Ahmadyan, Liangkai Zhang, Artsiom Ablavatski, Jian-

ing Wei, and Matthias Grundmann. Objectron: A large scale
dataset of object-centric videos in the wild with pose annota-
tions. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 7822–7831, 2021.

[3] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and
Bernt Schiele. 2D human pose estimation: New benchmark
and state of the art analysis. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2014.

[4] Dragomir Anguelov, Carole Dulong, Daniel Filip, Christian
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