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Abstract

Science is a system defined in part by measurability. Claims made under its banner
are trusted under the implicit understanding that they can be verified through
measurement. Trustworthy science is therefore only possible when accurate and
verifiable measurements of all aspects of a discovery or observation are possible.
Recently, a new interloper has emerged in the form of Al scientists. Driven by
companies such as Sakana Al and Google, these hybrid human-AlI systems tasked
with scientific discovery strive to augment and accelerate the current research
paradigm by intelligently innovating upon and combining preexisting ideas. As
researchers attempt to build collaborative workflows with Al scientists, the need
for better measurements of their capabilities and limitations escalates. In this
paper, we argue that the complexity of scientific research represents a significant
challenge to Al scientist benchmarking attempts on account of construct validity
issues. Scientific research tasks must be parseable by Al scientists, otherwise these
in silico collaborators pose a significant epistemic risk to the trustworthiness of
scientific research. To address this, we propose a new framework for designing
benchmarks for Al scientists based on Arthur Koestler’s concept of holons. Instead
of benchmarking high-level human-interpretable tasks, we instead break them down
and build specialized benchmarks at the LLM-executable level. These semantic
sum of an Al scientist’s performance on these benchmarks will then approximate
performance on the original task. Our framework outlines key criteria for future
benchmarks to avoid construct validity issues. We also exemplify the potential of
our framework by prototyping a benchmark for attributional accuracy ultimately
aimed at evaluating Al scientists on their ability to generate literature reviews.

1 Introduction

Science is a human-designed system that exists to engage with and explain the natural universe and
thus is defined by our extent of measurement. As contributors to the system, the scientific community
has evolved into a knowledge ecosystem joined by the mission that any claim can be verified due
to its inherent measurability. Science is therefore only “scientific” when accurate and verifiable
measurements are possible, for it is the measurability of scientific results that differentiates modern
science from its medieval antecedents like alchemy and astrology. The critical subtlety here is that
trustworthy science is only possible if all steps of the scientific process are verifiably measurable and
documentable. However, this imperative now finds itself challenged by rising interest in utilizing
hybrid human-AI systems known colloquially as *Al scientists’ to automate scientific discovery
workflows.

Al systems have already proven to be useful inclusions in the pursuit of scientific discoveries. Both
the 2024 Nobel Prize in Chemistry (1) and 2025 Nobel Prize in Physics (2) have proven the value
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provided by Al models in performing complex computational scientific tasks. As such, it is no surprise
that scientists have pursued even greater degrees of collaboration with Al systems, ultimately seeking
to fully automate the whole scientific discovery workflow. Numerous works across multiple fields
of study have sought to demonstrate that large language models (LLMs) are capable of performing
scientific discovery tasks such as scientific contextualization (3)), problem specification (4)(5)(6),
hypothesis generation (7)), experimental design (8)(9), and evaluation (10)(L1). However, these
attempts are still a far cry from proving that LLMs can perform trustworthy science. Notably, these
prototypal automated workflows struggle with specialized scientific reasoning, long-term iterative
planning, and critical analysis in collaborative workflows (12). Fully integrating Al systems in
scientific discovery workflows can result in critical epistemic risks for scientific research. Unlike
in test scenarios, real data is often incomplete or imprecise, which can result in emergent errors in
data analysis and conclusion drawing. Giving Al systems access to physical experimental setups can
lead to hazardous consequences resulting from departures from intended safety measures. Generally
speaking, outsourcing more agency to these systems allows for the possibility of biasing research
output, propagating unreliable results, and experimental system failures (13)). To ensure that the
automation of high-level human-interpretable scientific discovery tasks by Al scientists will not
lead to emergent risks to scientific integrity, scientists must be able to clearly define each task in a
measurable manner that is parseable and executable by an LLM.

The challenge arises from the fact that scientific discovery at a high level is not easily discretized.
More explicitly, high-level human-interpretable tasks within scientific discovery workflows such as
literature review or experimental design are poorly mapped to the space of low-level LLM-executable
tasks such as searching or fact checking. Thus, any misalignment between the Al scientists’ output
and the desired outcome stems from the former’s inability to fully conceptualize and comprehend the
intent behind any step in the scientific discovery cycle, fundamentally a construct validity issue (14).
As a rational call for better guardrailing, we posit that the danger of Al scientists comes not from
simply using them, but using them without sufficient comprehension of our expectations for a task.
No tool is ever optimal, but by measuring its deviation from the ideal, we can bound our expectations
through quantifiable uncertainties.

Benchmarks serve as the primary method by which researchers can study the performance and
limitations of Al systems on complex tasks. These evaluation workflows typically consist of a
cultivated dataset and a series of metrics to test the aptitude of Al systems on a taxonomized list
of tasks (14). As the concept of collaborating with Al scientists transitions from prototypal to
commonplace, it becomes increasingly vital to design realistic benchmarks to measure the capacity
that Al scientists have to perform common tasks in the scientific discovery workflow. However,
scientific discovery cannot be reduced to a singular LLM-executable task, but is rather a dynamic
workflow of indeterminate human-interpretable steps tied together via highly complex reasoning
and perception that constantly evolves as new technologies are introduced. Many existing efforts
to benchmark Al scientists side-step this difference by evaluating human-interpretable tasks via
constructing and measuring performance on limited and potentially misleading reductions that are
unrealistic and overall unrepresentative of the original task. For example, in attempting to assess
citation accuracy, the CiteME benchmark is comprised of queries to identify a referenced paper given
a text excerpt with a masked in-text citation (15). While an improvement over earlier retrieval-based
benchmarks (16), this task construction is not representative of realistic use cases of Al systems
being used as research assistants and thus indicative of a construct validity issue. It should be noted
that concerns over construct validity are not exclusive to Al scientist benchmarks. Other domains
involving complex tasks such as legal reasoning face similar misalignment obstacles between claims
of general task mastery and the representativeness of the benchmark’s task set (17).

To address the construct validity issue for Al scientist benchmarks, we propose a framework for
developing benchmark tasks representative of aspects of scientific discovery derived from Arthur
Koestler’s descriptions of holons in The Ghost in the Machine (18). Our framework seeks to evaluate
performance on human-interpretable tasks by summing over assessments of LLM-executable sub-
tasks or holons. Each holon thus defines its own problem space to be evaluated, but also a part of a
larger system to measure more general reasoning capabilities. By constructing holonic benchmarks
that are representative of specific intents for scientific research tasks, yet are complete evaluations
in their own rights, we can strive for collaborative settings in which Al scientists will interpret any
high-level task in alignment with our expectations for scientific research. We then exemplify the
power of our framework by using it to sketch a benchmark for attributional accuracy and show how it
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can be used to evaluate the Al scientist’s upstream ability to generate realistic and useful literature
reviews.

2 Al Scientists

As this paper seeks to define a new framework for benchmarking Al scientists, it is imperative that
we explicitly define what types of hybrid human-Al systems we will be testing. Conventionally,
the term Al scientists refers to workflows involving Al agents that autonomously perform scientific
research tasks. However, as the concept is nascent, this description remains a convention rather than
any strict denotation. Al systems have been used as in silico collaborators to perform a wide range of
tasks from code review to hypothesis generation (12)(19). Despite their differences in scope, each
setup has the potential to obfuscate the complete measurability of the scientific discovery workflow,
resulting in an emergent harm to scientific integrity. Thus, to cover all possible collaborative setups,
we opt for the broadest possible definition of an Al scientist, while also accounting for the spectrum
of possible human steering present:

Definition 2.1. An Al scientist refers to any hybrid human-Al workflow that relies on Al beyond
simple quantitative analytic purposes. We further subdivide the category into three mutually exclusive
types of Al scientists based on the measure of human steering present.

1. Human-AlI assistant: The research workflow remains in its traditional, human-driven form
augmented with aid from Al assistants such as chatbots.

2. Human-AlI agent: Specific steps of the research process are outsourced to singular agents
with a human overseer. When multiple, decoupled agents are used, the burden of aggregating
the results and adjudicating lies with the human overseer. Here, the singular agents are
equivalent to what are conventionally known as Al scientists: autoregressive large language
models guided by agentic frameworks to adopt reasoning akin to those exhibited by human
researchers (19).

3. Multi-agentic system: (Nearly) all steps of the research process are outsourced to agents
with a central agent overseer and a human adjudicator (19)(20).

Across multiple fields of study, scientists have already shown the potential benefits of the ‘“‘scientist-in-
the-loop” collaborative paradigm” (19). Coscientist, a GPT-4 based system for autonomous chemical
research, was able to successfully optimize the reaction of palladium-catalysed cross-couplings (9).
CellAgent, another GPT-4 agent, has been shown to automate single-cell RNA sequencing data
analysis more reliably than its contemporaries (10). PriM is a multi-agent system designed for
automated materials discovery that yields high materials exploration rate without significant reduction
in scientific rigor (11).

However, integrating Al into scientific research pipelines is a double-edged sword replete with signif-
icant epistemic risks. It has already been demonstrated that Al agents struggle with computational
reproducibility, a critical method for maintaining the integrity of scientific research (21). Additionally,
the fact that many Al scientists are built using privately trained large language models (LLMs) makes
it difficult to determine any possible biases in their outputs and whether they are inherited from
their training corpora (22) or programmed preference optimization schema (23). The problem is
not limited to agentic Al, as baseline LLMs continue to struggle on benchmarks of mathematical
reasoning (24). Beyond experimentally verified risks, Al researchers also predict several emergent
epistemic risks such as over-reliance amongst human users (23) and self-preservation in conflict with
human interests (23)).

3 Benchmarking Scientific Research

While scientists can rigorously answer questions about the quantifiable validity of their results,
explicitly defining the required research steps for a scientific discovery proves to be more of an art.
Due to the complicated reality of scientific discovery, categorizations of scientific research tasks such
as the “scientific method” are typically left as instructional tools and thus vary greatly in diction (26)).
However, if we as scientists cannot establish a reasonable list of scientific research tasks and their
aims, expecting Al scientists to perform accurately on these high-level human-interpretable tasks is
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overstepping the mark. Thus, for the sake of clarity, we define the following as the research tasks
required for scientific discovery:

* Literature review: This task entails detailed and extensive knowledge retrieval and contextu-
alization within the current status quo of the field of study.

* Problem specification: This task describes the identification of a novel knowledge gap or
unexplained observation to be formulated into a research project.

» Research design: This task involves the theorizing of a potential solution to the selected
research problem that is both empirically testable and potentially falsifiable.

» Experimentation: This task encompasses all aspects of experimental design and execution,
whether it be computational or physical in nature.

e Communication: This task represents steps required for the dissemination of scientific
results via the peer review publication process.

It should be noted however that this task enumeration is not meant to define mutually exclusive tasks
or be indicative of a proper chronology for scientific discovery as in practice, these research tasks are
often done in parallel with many interwoven dependencies.

Scientific research tasks pose significant challenges when serving as the target for AI benchmarks.
Having been in use since the 1970s (14), AI benchmarks have acquired a conventional construction
consisting of a training dataset, queries, and a series of evaluation metrics to assess an Al model on
certain tasks. Here, tasks refer to any mapping between a problem and action space with intensional
(human-interpretable task description) and extensional (empirical pairs of states and actions) defini-
tions (27). However, unlike strictly computational tasks with defined problem-action mappings such
as image classification (28)), scientific research tasks are ill-defined in scope, frequently with problem
spaces mapping to other problem spaces before any notion of actions are relevant. With unclear
construction, such high-level hierarchical tasks introduce significant variability amongst the possible
trajectories from original problem space to outcome states on account of the actor’s interpretation of
the task (27). While humans can sort through the interconnected and multifaceted dependencies of
scientific research tasks intuitively, it is currently unknown to what degree Al scientists could. While
highlighted here for Al scientist benchmarks, this mismatch between intensional and extensional
definitions manifests as construct validity issues in any assessment of language competence (14)
including but not limited to legal reasoning (17, diagnosing mental disorders (29), and financial
support (30). Without clear and specific definitions of outcome expectations, Al systems are prone to
misalignment with our desires as collaborators.

3.1 Holonic Solution

A critical limitation of benchmarks aimed at assessing the capability of Al systems to perform
language tasks is the conceptual gap between the evaluation framework and the intended human-
interpretable task to be completed (31). The scientific discovery workflow is no exception. Due
to the inherent uniqueness of scientific research, any task enumerated in Section [3]is in practice a
test of general scientific reasoning with numerous sub-tasks each with a series of ad hoc parameters
modulating the possible outcomes. This variability poses a fundamental dilemma to the construction
of realistic benchmark tasks to close the aforementioned conceptual gap. Conventional benchmarks
opt for reducing human-interpretable tasks to simpler versions with easy representative datasets
to compile (31). However, these reduced tasks frequently end up being contrived “samples of
convenience: tasks and collections of tasks arbitrarily built out of what is easily available to the
team developing these benchmarks, even if such constructions are theoretically unsound” (14). For
example, instead of directly tackling the human-interpretable task of literature review, the CiteME
benchmark focuses on evaluating an LLM’s capability for citation attribution. Defined as the task
in which "a system is asked to fetch the title of a referenced paper,” CiteME chooses to model
queries of citation attribution as a retrieval task for a referenced paper given a text excerpt with a
masked in-text citation (15). While the intensional and extensional definitions are consistent, their
construction is not representative of real attributional queries by human researchers, who usually
are not validating the known citations in text excerpts. Without significant attempts to realistically
reduce the semantic distance between real human-interpretable tasks and the simulated tasks in
the benchmark, the conventional development framework fails to accurately specify the expected



197
198

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

219
220
221
222
223

224

225

226
227

228
229

231
232

233
234

‘ Scientific Discovery |

I
\72 7 v v v

| . | ‘ oo | | § | | | |

ﬁ; ==

Human-Interpretable Holon

Figure 1: Prototypal holonic breakdown of the scientific discovery workflow

trajectory and outcome of the human-interpretable task and by extension, thus fails to accurately
evaluate the model on its aptitude for scientific research.

To address this construct validity issue, we propose a new framework for developing benchmarks
for Al scientists based on a holonic perspective on scientific research. In The Ghost in the Machine,
Arthur Koestler defined a holon as an identifiable subsystem with a unique identity such that it is both
a self-contained system in its own right as well as part of a larger holarchical structure (18). We posit
that scientific research as a whole can be interpreted as a holarchical structure with the largest holon
being the task of scientific discovery, further divided into intermediate holonic human-interpretable
tasks like those enumerated in Section [3] These human-interpretable holons can then be subdivided
into holonic tasks that are parseable and executable by LLMs. Rather than constructing a single
benchmark for each human-interpretable task, our framework poses that benchmarks should be
built at the LLM-executable level. By only building benchmarks for LLM-executable tasks, we
minimize the conceptual gap between the evaluation framework (extensional definition) and the
intensional definition of the task. Under this methodology, we rely on the combined evaluations
of each LLM-executable benchmark to approximate the Al scientist’s aptitude for any (human-
interpretable) scientific research task. While the constituent holons themselves are still narrowly
defined, by creating summative evaluation frameworks at the human-interpretable level, we become
more adept at validating trajectories of Al scientists between problem spaces and subspaces for the
complex tasks described in Section 3} Figure[3.T]illustrates the landscape of scientific discovery and
its constituent holons when interpreted under our framework. Section 4 will exemplify the utility of
our framework in practice by outlining a benchmark design to assess the attributional aptitude of Al
scientists.

Koestler notes that regardless of the holarchical structure, “constituent holons are defined by fixed
rules and flexible strategies” (18). As benchmarks in their own right, the LLM-executable holons are
subject to the same validity issues as contemporary benchmarks. As such, we require each LLM-
executable benchmark to exhibit the following criteria inspired by the forms of validity addressed in
Salaudeen et al.(31):

1. Focused: The central task(s) of the benchmark should be highly specialized in scope to
maintain high reproducibility and reliability.

2. Realistic: The task(s) should be constructed in accordance with actual use cases sourced
from human researchers.

3. Measurable in depth: The benchmark should evaluate its task(s) with a variety of metrics,
not only for technical accuracy but also for alignment and robustness against adversarial use
cases.

4. Scale independence: The task(s) should be measurable across all Al scientist workflows
regardless of the degree of human steering present.

5. Domain generalizability: The benchmark dataset should contain queries from multiple
scientific domains with domain-specific benchmarks requiring stronger justification.
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4 Attribution

To demonstrate the utility of our framework, we prototype a benchmark for a single LLM-executable
holon, attribution, using it to assess an aspect of the human-interpretable task of generating realistic
and useful literature reviews.

Within the system of science, literature reviewing is the mechanism by which the scientific community
can referentially engage with each other by way of the compendium of scientific knowledge. While
the importance of literature reviews is commonly overshadowed by experimentation or evaluation,
it remains a vital foundation for scientific discovery. For researchers, the aim of literature reviews
is to survey relevant literature to engender original ideas and logically support one’s progression
through the scientific discovery workflow. The underlying principle of measurability extends not
only to empirical observations of the physical world, but also the congruence of one’s work with the
existing literature. Consequently, as the desire to fully automate the scientific discovery workflow
escalates, we must advocate for the construction of realistic benchmarks for all constituent tasks
including literature review. For without ensuring accurate literature reviews, how can we hope to
protect the integrity of science?

Literature reviews seek to survey and analyze scientific literature in order to “synthesise current
knowledge, critically discuss existing proposals, and identify trends” (3). As such, accurate literature
reviews should be well-defined in scope, justified in its inclusion and exclusion criteria, compre-
hensive, and unbiased (32). Each of these criteria further complicate the already challenging task
for human researchers, let alone for Al scientists. We argue that the problem space defined by the
act of generating accurate and useful literature reviews proves to be too large to easily map onto
action spaces in one step. This inevitably leads to a conceptual gap between the intended human-
interpretable task of literature review and any attempt at designing a representative benchmark,
therefore denoting a construct validity issue.

To exemplify the validity issues present with the conventional approach to benchmarking Al scientists,
we review contemporary benchmarks that seek to evaluate similarly defined tasks. CiteME is a
citation-based benchmark that focuses on asking whether LLMs are capable of correctly identifying
a target paper from a text excerpt from a source paper including a reference to the target (L5).
However, the citation attribution task designed for CiteME is a limited construction. The task is an
ex post facto verification of attribution, essentially side-stepping the greater issue for a question of
semantic searching. As such, we find the task definition in the CiteME benchmark as not realistic.
LitSearch is a retrieval benchmark that primarily seeks to assess non-LLM retrieval systems on
citation recommendation queries (33)). The task construction of LitSearch differs from CiteME by
sampling inline target citations from source papers and then using GPT-4 to generate natural language
information requests to guide its citation recommendations. LitSearch also manually reviewed the
queries to ensure they were rigorous by removing any that were too close semantically to the target
paper title. However, LitSearch was aimed at non-LLM retrieval systems, reducing its applicability in
evaluating a broad spectrum of Al scientists. Additionally, the datasets of both CiteME and LitSearch
only contain queries pertaining to ML and NLP papers specifically.

While CiteME and LitSearch struggled to overcome the validity issues posed by benchmarking the
human-interpretable task of literature review, it is through such complex task setups that our proposed
holonic framework for benchmark development shines. Using the conventions laid out in Section [3.T}
instead of directly constructing a benchmark for literature review, we divide the human-interpretable
holon of literature review into the LLM-executable holons of factuality and attribution. Figure
illustrates the application of our proposed framework to the human-interpretable task of literature
review. Factuality refers to queries of content accuracy. A factuality benchmark would focus on
assessing that summaries of scientific works present content that is accurate with respect to the
modern knowledge ecosystem of a scientific discipline. Attribution refers to queries of content
mapping aptitude. An attributional benchmark would therefore seek to evaluate both the relevance of
provided source materials as well as the accuracy of the mapping between intellectual content to its
original source.

Accurate attribution is a requirement for properly situating one’s work and potential future ideas
within the existing knowledge ecosystem of scientific knowledge. Beyond the primary researcher,
attribution provides the only public avenue for tracing the provenance of any scientific result via
the listed citations in a peer-reviewed publication. If these citations are unethically compiled, peer
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scientists lose a critical means by which to assess the results of another party as well as a starting
point for their own literature reviews. Attribution however is not limited to assessments of content
mapping accuracy, but can extend to more qualitative requirements. For example, in performing
a literature review, scientists need to acquire information from sources that are modern, unbiased,
and diverse in methodology (32)). Thus, an Al scientist would also need to recommend a variety of
sources that allow for a comprehensive survey of a topic landscape. As such, we extend the definition
of attributional accuracy to encompass both evaluations of accuracy and unbiased utility.

4.1 Benchmark Design

Having outlined our holonic framework for developing benchmarks for Al scientists, we now
exemplify its potential by sketching out a design for a benchmark at the LLM-executable level for
attributional accuracy. While prototyped on the human-interpretable holon of literature review, our
framework is generalizable to any attempt at benchmarking complex, hierarchical language tasks,
including but not limited to the other tasks of the scientific discovery workflow.

Having broken down the human-interpretable task of literature review to the LLM-executable level,
the tasks at the holonic level prove to be specialized enough to ensure that each benchmark is focused.
For the attributional benchmark, each query will be constructed as a request for a set of sources
relevant to provided information in the prompt. The dataset will then consist of pairings of prompts
defining the request space and appropriate listings of relevant sources defining the output space.
In order for our queries to be realistic, we will request feedback from human scientists who either
currently collaborate with or are interested in collaborating with Al scientists. This feedback will
guide our construction of the queries that will serve as the underlying dataset by aligning the diction
and syntax of these queries with real or desired use cases. Additionally, we will require that the
queries sample sources from a variety of scientific domains.

We identify two distinct types of queries based on the size of the desired output space: provenance
and exploration. The task of provenance is defined as a mapping between a request space populated
by information requests and an output space of low dimensionality (O(k =~ 1)) populated by potential
references. The query will be framed as either directly asking for a specific source or requesting
specific information that maps to a low number of potential sources. The output of provenance tasks
will be structured as a ranked list of k sources, ordered based on their relevance to their initial query.
Similarly to provenance queries, the task of exploration is defined as a mapping between a request
space populated by information requests and an output space of unbounded dimensionality populated
by relevant references. The final iteration of the task will be also structured as a ranked list of &
sources, where a reasonable k£ will be chosen to represent typical reference counts requested by
human researchers.

Despite the focused task set, we can maximize the utility of the benchmark by assessing each task
with a variety of metrics. Specifically, we will choose metrics to determine the likelihood and severity
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Table 1: Taxonomized list of attributional malpractices

Risk Areas Malpractices
Mistake Fabrication of content
(plagiarism)

Fabrication of sources
Mis-mapping between sources

Misuse Injected biases
Direct output sculpting

Misalignment Misinterpretation Source incomprehension
Source misrepresentation

Biased Attribution Intrinsic biases
Learned strategies

by which an Al scientist could exhibit attributional malpractices. We define three risk areas for
attributional malpractices: mistakes (technical failures), misuse (adversarial exploitation by human
collaborators), and misalignment (knowingly acting against the intent of human collaborators). Table
[[]presents a taxonomy of attributional malpractices segregated between the three risk areas. These
malpractices could be measured by assessing the impact of propagated biases, model robustness to
prompt perturbations, and through adversarial simulations (34). We will also test our benchmark
across the multiple scales of Al scientist workflows defined in Section [2]to quantify their potential
risk factors.

5 Conclusions

Al scientists have the potential to completely revolutionize the pursuit of scientific truths forever.
With explosive rates of publications, the rise of the big data paradigm, and a growing desire for
automation in general, it is no surprise that scientists across multiple fields of study have sought
to harness the power of LLMs to augment their capabilities for scientific discovery. As such, it is
a futile effort to obstruct the oncoming wave of Al scientist efforts. Clearly, we have already seen
preliminary benefits from human-AlI collaborations (9)(10)(11). However, the immense power of Al
scientists should beget an even greater responsibility amongst current scientists to protect the integrity
of scientific research.

In order to determine the potential risks posed by Al scientists to the scientific discovery workflow,
we must act scientifically by measuring the aptitude of Al scientists on scientific research tasks.
Unfortunately, scientific research is an ever-evolving series of ill-defined tasks that prove challenging
even for human researchers to navigate. The conceptual gap posed by improper communication of
the expectations for a task’s outcome to an Al scientist can lead to critical failures in workflows it was
designed to accelerate. In attempting to benchmark tasks at this level, this results in construct validity
issues (14). Contemporary benchmarks fail to overcome this challenge, opting to generate task sets
reduced in scope that are more manageable and thus more easily measurable. However, these reduced
tasks frequently are not representative of their intended model, leading to construct validity issues.
Our paper proposes a new framework for developing benchmarks based on Arthur Koestler’s holons
(18)). Instead of building benchmarks for human-interpretable tasks such as literature review, we opt
to construct benchmarks for LLM-parseable holons, whose semantic sum is equivalent to the original
human-interpretable task. Each LLM-parseable holon is robust enough to warrant its own benchmark,
but specific enough to ensure the reproducibility and reliability of the results.

To exemplify the power of our framework, we sketched a prototypal benchmark for attribution, an
LLM-executable holon of the human-interpretable task of literature review. When completed, the
benchmark promises to be the first benchmark to assess the attributional accuracy of Al scientists at
all scales of human steering with cross-disciplinary queries. In conjunction with this paper, we hope
that the benchmark will inspire further efforts to benchmark Al scientists as they become ubiquitous
additions to the scientific discovery workflow.
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