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Abstract

Science is a system defined in part by measurability. Claims made under its banner
are trusted under the implicit understanding that they can be verified through
measurement. Trustworthy science is therefore only possible when accurate and
verifiable measurements of all aspects of a discovery or observation are possible.
Recently, a new interloper has emerged in the form of Al scientists. Driven by
companies such as Sakana Al and Google, these hybrid human-AlI systems tasked
with scientific discovery strive to augment and accelerate the current research
paradigm by intelligently innovating upon and combining preexisting ideas. As
researchers attempt to build collaborative workflows with Al scientists, the need
for better measurements of their capabilities and limitations escalates. In this
paper, we argue that the complexity of scientific research represents a significant
challenge to Al scientist benchmarking attempts on account of construct validity
issues. Scientific research tasks must be parseable by Al scientists, otherwise these
in silico collaborators pose a significant epistemic risk to the trustworthiness of
scientific research. To address this, we propose a new framework for designing
benchmarks for Al scientists based on Arthur Koestler’s concept of holons. Instead
of benchmarking high-level human-interpretable tasks, we instead break them
down and build specialized benchmarks at the LLM-executable level. The semantic
sum of an Al scientist’s performance on these benchmarks will then approximate
performance on the original task. Our framework outlines key criteria for future
benchmarks to avoid construct validity issues. We also exemplify the potential of
our framework by prototyping a benchmark for attributional accuracy ultimately
aimed at evaluating Al scientists on their ability to generate literature reviews.

1 Introduction

Science is a human-designed system that exists to engage with and explain the natural universe
defined by our ability to measure. The scientific community has evolved into a knowledge ecosystem
joined by the mission that any claim can be validated due to its inherent measurability. Science
is therefore only “scientific” when accurate and verifiable measurements are possible; for it is the
measurability of scientific results that differentiates modern science from its medieval antecedents
like alchemy and astrology. The critical subtlety here is that trustworthy science is only possible if all
steps of the scientific process are verifiably measurable and documentable. However, this imperative
now finds itself challenged by rising interest in utilizing hybrid human-AlI systems known colloquially
as "Al scientists’ to automate scientific discovery workflows.

Al systems have already proven to be useful inclusions in the pursuit of scientific discoveries. Two
of the most recent Nobel Prizes (Chemistry, 2024 [14] and Physics, 2025 [13]]) have exemplified
the value provided by Al models in performing complex computational scientific tasks. As such,
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it is no surprise that scientists have pursued even greater degrees of collaboration with Al systems,
ultimately seeking to fully automate the whole scientific discovery workflow. Numerous works
across multiple fields of study have sought to demonstrate that large language models (LLMs) are
capable of performing scientific discovery tasks such as scientific contextualization [6], problem
specification [33[][27][36], hypothesis generation [2]], experimental design [3]][S]], and evaluation
[34][16]. However, these attempts are still a far cry from proving that LLMs can perform trustworthy
science. Notably, these prototypal automated workflows struggle with specialized scientific reasoning,
long-term iterative planning, and critical analysis in collaborative workflows [21]]. Fully integrating
Al systems in scientific discovery workflows can then result in critical epistemic risks for scientific
research. Unlike in test scenarios, real data is often incomplete or imprecise, which can result in
emergent errors in data analysis and conclusion drawing [7]. Giving Al systems access to physical
experimental setups can lead to hazardous consequences resulting from departures from intended
safety measures [30]. Generally speaking, outsourcing more agency to these systems allows for
the possibility of biasing research output, propagating unreliable results, and experimental system
failures [10]]. To ensure that the automation of high-level human-interpretable scientific discovery
tasks by Al scientists will not result in emergent risks to scientific integrity, scientists must be able
to clearly define each task in a measurable manner that is both representative of the original and
executable by an LLM.

The challenge arises from the fact that scientific discovery at a high level is not easily discretized.
More explicitly, high-level human-interpretable tasks within scientific discovery workflows such as
literature review or experimental design are poorly mapped to the space of low-level LLM-executable
tasks such as searching or fact checking. Thus, any misalignment between the Al scientists’ output
and the desired outcome stems from the former’s inability to fully conceptualize and comprehend the
intent behind any step in the scientific discovery cycle, fundamentally a construct validity issue [20].
As a rational call for better guardrailing, we posit that the danger of Al scientists comes not from
simply using them, but using them without sufficient comprehension of our expectations for a task.
No tool is ever ideal, but by measuring its deviation from the optimal outcome, we can bound our
expectations through quantifiable uncertainties.

Benchmarks serve as the primary method by which researchers can study the performance and
limitations of Al systems on complex tasks. These evaluation workflows typically consist of a
cultivated dataset made up of a taxonomized list of tasks and a series of metrics to test the aptitude of
Al systems [20]. As the concept of collaborating with Al scientists transitions from being prototypal
to commonplace, it becomes increasingly vital to design realistic benchmarks to measure the capacity
that Al scientists have to perform common tasks in the scientific discovery workflow.

However, these tasks are not easily disentangled into discrete, regulatable actions executable by LLMs.
Rather, scientific discovery is a dynamic workflow of indeterminate human-interpretable steps tied
together via highly complex reasoning and perception that constantly evolves as new technologies are
introduced. Many existing efforts to benchmark Al scientists side-step this difference by evaluating
human-interpretable tasks by constructing and measuring performance on limited and potentially
misleading reductions that are unrealistic and unrepresentative of the original task. For example, in
attempting to assess citation accuracy in the context of literature reviews, the CiteME benchmark is
comprised of queries to identify a referenced paper given a text excerpt with a masked in-text citation
[19]. While an improvement over earlier retrieval-based benchmarks [11], this task construction is
not representative of realistic use cases of Al systems as research assistants and thus indicative of a
construct validity issue. It should be noted that concerns over construct validity are not exclusive to
Al scientist benchmarks. Other domains involving complex tasks such as legal reasoning face similar
misalignment obstacles between claims of general task mastery and the representativeness of the
benchmark’s task set [12]].

To address the construct validity issue for Al scientist benchmarks, we propose a framework for
breaking down aspects of scientific discovery into valid benchmark tasks derived from Arthur
Koestler’s descriptions of holons in The Ghost in the Machine [15]. Our framework underscores
that performance on human-interpretable tasks is approximately equivalent to the semantic sum of
assessments on LLM-executable sub-tasks or holons. Each holon defines its own problem space to
be evaluated, but remains a part of a larger system to measure more general reasoning capabilities.
By constructing holonic benchmarks that are representative of specific constructs within scientific
research tasks, yet are valid evaluations in their own rights, we can strive for collaborative settings in
which Al scientists will interpret any high-level task in alignment with our expectations for scientific



research. Section ] exemplifies the power of our framework by using it to sketch a benchmark for
attributional accuracy and show how it can be used to evaluate the Al scientist’s upstream ability to
generate realistic and useful literature reviews.

2 Al Scientists

As this paper seeks to define a new framework for benchmarking Al scientists, it is imperative that
we explicitly define what types of hybrid human-Al systems we seek to evaluate. Conventionally,
the term Al scientists refers to workflows involving Al agents that autonomously perform scientific
research tasks. However, as the concept is nascent, this description remains a convention rather than
any strict denotation. Al systems have been used as in silico collaborators to perform a wide range
of tasks from code review to hypothesis generation [21][9]]. Despite their differences in scope, each
setup has the potential to obfuscate the valid measurability of the scientific discovery workflow. To
encompass all possible collaborative setups, we opt for the broadest possible definition of an Al
scientist, while also accounting for the spectrum of possible human steering present:

Definition 2.1. An Al scientist refers to any hybrid human-AI workflow that relies on Al for scientific
discovery assistance beyond simple quantitative analyses. We further subdivide the category into
three mutually exclusive types of Al scientists based on the degree of human steering present.

1. Human-AlI assistant: The research workflow remains in its traditional, human-driven form
augmented with aid from Al assistants such as chatbots.

2. Human-AlI agent: Specific steps of the research process are outsourced to singular agents
with a human overseer. When multiple, decoupled agents are used, the burden of aggregating
and adjudicating the results lies with the human overseer. Here, the singular agents are
equivalent to what are conventionally known as Al scientists: autoregressive large language
models guided by agentic frameworks to adopt reasoning akin to those exhibited by human
researchers [9].

3. Multi-agentic system: (Nearly) all steps of the research process are outsourced to agents
with a central agent overseer and a human adjudicator [9]][35]].
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Across multiple fields of study, scientists have already shown the potential benefits of the ‘““‘scientist-
in-the-loop” collaborative paradigm” [9]]. Coscientist, a GPT-4 based system for autonomous chemical
research, was able to successfully optimize the reaction of palladium-catalysed cross-couplings [3].
CellAgent, another GPT-4 agent, has been shown to automate single-cell RNA sequencing data
analysis more reliably than its contemporaries [34]. PriM is a multi-agent system designed for
automated materials discovery that yields high materials exploration rate without significant reduction
in scientific rigor [16].

In spite of the benefits, integrating Al into scientific research pipelines proves to be a double-edged
sword replete with significant epistemic risks. It has already been demonstrated that Al agents struggle
with computational reproducibility, a critical method for maintaining the integrity of scientific research
[28]. Additionally, the fact that many Al scientists are built using privately trained large language
models (LLMs) makes it difficult to determine any possible biases in their outputs and whether they
are inherited from their training corpora [32] or programmed preference optimization schema [[18]].
The problem is not limited to agentic Al, as baseline LLMs continue to struggle on benchmarks
of latent constructs critical to scientific discovery such as mathematical reasoning [25]. Beyond
experimentally verified risks, Al researchers also forecast emergent risks such as over-reliance among
human users [18] and self-preservation in conflict with human interests [4].

3 Benchmarking Scientific Research

While scientists can rigorously answer questions about the quantifiable validity of their discoveries,
explicitly defining the required research steps to produce these results proves to be more elusive
of a goal. Due to the complicated reality of scientific discovery, taxonomies of scientific research
tasks such as the “scientific method” are typically left as instructional tools and thus vary greatly
in diction [8]]. However, if we as scientists cannot establish a reasonable list of scientific research
tasks and their respective aims, expecting Al scientists to perform accurately on these high-level
human-interpretable tasks is overstepping the mark.



Scientific research tasks pose significant challenges when serving as the target for AI benchmarks.
Having been in use since the 1970s [20], AI benchmarks have acquired a conventional construction
consisting of a training dataset, queries, and a series of evaluation metrics to assess an Al model
on certain tasks. Here, tasks refer to any mapping between a problem and action space with
intensional (human-interpretable task description) and extensional (empirical pairs of states and
actions) definitions [26]]. However, unlike strictly computational tasks with defined problem-action
mappings such as image classification [23], scientific research tasks are ill-defined in scope, frequently
with problem spaces mapping to other problem spaces before any notion of actions are relevant. Under
such unclear construction, these high-level hierarchical tasks introduce significant variability among
the possible trajectories from original problem space to outcome states on account of the actor’s
interpretation of the task [26]]. While humans can sort through the interconnected and multifaceted
dependencies of scientific research tasks intuitively, it is currently unknown if or to what degree
Al scientists could. While highlighted here for Al scientist benchmarks, this mismatch between
intensional and extensional definitions manifests as construct validity issues in any assessment of
high-level linguistic competence [20] including but not limited to legal reasoning [12], diagnosing
mental disorders [29]], and financial support [31]]. Without clear and specific definitions of outcome
expectations, Al systems are prone to misalignment with respect to our desires as collaborators.

For the sake of exemplifying our proposed framework, we define the following taxonomy of research
tasks required for scientific discovery. Due to the ad hoc nature of scientific discovery, a perfect
enumeration of tasks is not achievable. As we will argue later on, the construction of a taxonomy of
an overall concept such as scientific discovery is subjective and thus requires justification. While
other task breakdowns are theoretically possible, we chose this taxonomy due to its simplicity due to
defining relatively exclusive tasks within the space of scientific discovery. It should be noted that in
practice, scientific discovery tasks are often done in parallel with many interwoven dependencies,
thus requiring domain expert input to integrate this relationships into a more involved taxonomy.

* Literature review: Detailed and extensive knowledge retrieval and contextualization within
the current status quo of the field of study

* Problem specification: Identification of a novel knowledge gap or an unexplained observation
to be formulated into a research project

* Research design: Theorizing of a potential solution to the selected research problem that is
both empirically testable and potentially falsifiable.

» Experimentation: Encompasses all aspects of experimental design and execution, whether it
be computational or physical in nature

* Communication: All steps required for the dissemination of scientific results via the peer
review publication process

3.1 Holonic Solution

A critical limitation of benchmarks aimed at assessing the capability of Al systems to perform
language tasks is the conceptual gap between the evaluation framework and the intended human-
interpretable task to be completed [24]. The scientific discovery workflow is no exception. Due
to their inherent complexity, any task enumerated in Section [3| necessitates the model to exhibit
general scientific reasoning. Each human-interpretable task corresponds to a collection of trajectories
between sub-tasks and possible outcomes with no one precise solution. This variability poses a
fundamental dilemma to the construction of realistic benchmark tasks in closing the aforementioned
conceptual gap. Conventional benchmarks opt for reducing human-interpretable tasks to simpler
versions with easier (albeit less representative) datasets to compile [24]. However, these reduced
tasks frequently end up being contrived “samples of convenience: tasks and collections of tasks
arbitrarily built out of what is easily available to the team developing these benchmarks, even if
such constructions are theoretically unsound” [[20]. For example, instead of directly tackling the
corresponding human-interpretable task of literature review according to our taxonomy in Section 3]
the CiteME benchmark narrows in on evaluating an LLM’s capacity for citation attribution. CiteME
chooses to model queries of citation attribution as a retrieval task for a referenced paper from a text
excerpt with a masked in-text citation [[19]. While the intensional and extensional definitions are
consistent, their construction is not representative of real attributional queries by human researchers,
who usually are not validating known citations in text excerpts. Without attempting to realistically
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Figure 1: Prototypal holonic breakdown of the scientific discovery workflow

reduce the semantic distance between real human-interpretable tasks and the simulated tasks in
the benchmark, the conventional development framework fails to accurately specify the expected
trajectory and outcome of the human-interpretable task and by extension, fails to accurately evaluate
the model on its aptitude for scientific research.

To address this construct validity issue, we propose a new framework for developing benchmarks
for Al scientists based on a holonic perspective on scientific research. In The Ghost in the Machine,
Arthur Koestler defined a holon as an identifiable subsystem with a unique identity such that it is both
a self-contained system in its own right as well as part of a larger holarchical structure [15]]. We posit
that scientific research as a whole can be interpreted as a holarchical structure with the largest holon
being the task of scientific discovery, further divided into intermediate holonic human-interpretable
tasks like those enumerated in Section[3] While this breakdown is sufficient for human researchers,
we argue that another layer of splitting is required for Al scientists. This layer further subdivides the
human-interpretable holons into holonic tasks that are executable by LLMs. Rather than constructing
a single benchmark for each human-interpretable task, our framework poses that benchmarks should
be built at the LLM-executable level. By only building benchmarks for LLM-executable tasks, we
minimize the conceptual gap between the evaluation framework (extensional definition) and the
intensional definition of the task. Under this methodology, we rely on the combined evaluations
of each LLM-executable benchmark to approximate the Al scientist’s aptitude for any (human-
interpretable) scientific research task. While the constituent holons themselves are still narrowly
defined, by creating summative evaluation frameworks at the human-interpretable level, we become
more adept at validating trajectories of Al scientists between problem spaces and subspaces for the
complex tasks described in Section 3] Figure [3.1]illustrates how our framework maps the taxonomy
of scientific discovery tasks chosen in Section [3|to a holonic breakdown all the way to the LLM-
executable level. Section ] will exemplify the theoretical utility of our framework by outlining a
benchmark design to assess the attributional aptitude of Al scientists.

As benchmarks in their own right, the LLM-executable holons are subject to the same validity
issues as contemporary benchmarks. In Koestler’s words, regardless of the holarchical structure,
“constituent holons are defined by fixed rules and flexible strategies” [[13]. As such, we require
each LLM-executable benchmark to exhibit the following criteria inspired by the forms of validity
discussed in Salaudeen et al. [24]:

1. Focused: The central task(s) of the benchmark should be highly specialized in scope to
maintain high reproducibility and reliability.

2. Realistic: The task(s) should be constructed in accordance with actual use cases sourced
from human researchers.

3. Measurable in depth: The benchmark should evaluate its task(s) with a variety of metrics,
not only for technical accuracy but also for alignment and robustness against adversarial use
cases.

4. Scale independence: The task(s) should be measurable across all Al scientist workflows
regardless of the degree of human steering present.



5. Domain generalizability: The benchmark dataset should, if relevant, contain queries from
multiple scientific domains with domain-specific benchmarks requiring stronger justification.

4 Attribution

With our framework defined, we can now showcase how this could apply in practice by prototyping
a benchmark for a single LLM-executable holon: attribution. Ultimately, this benchmark could be
in conjunction with other LLM-executable benchmarks to assess the ability of an Al scientist to
generate realistic and useful literature reviews.

Accurate attribution is a requirement for properly situating one’s work and potential future ideas
within the existing knowledge ecosystem of scientific knowledge. Beyond communicating directly
with the primary researcher(s), attribution provides the only public avenue for tracing the provenance
of any scientific result via the listed citations in a peer-reviewed publication. If these citations are
unethically compiled, peer scientists lose a critical means by which to assess the results of another
party as well as a starting point for their own literature reviews. Attribution however is not limited
to assessments of content mapping accuracy, but can extend to more qualitative requirements. For
example, in performing a literature review, scientists need to acquire information from sources that
are modern, unbiased, and diverse in methodology [22]. Thus, an Al scientist would also need to
recommend a variety of sources that allow for a comprehensive survey of a topic landscape. As such,
we extend the definition of attributional accuracy to encompass both evaluations of accuracy and
unbiased utility.

While the importance of literature reviews is commonly overshadowed by experimentation or evalua-
tion, it remains a vital foundation for scientific discovery. Within the system of science, literature
reviews serve as the primary mechanism by which the scientific community can referentially engage
with each other by way of the compendium of scientific knowledge. For researchers, the aim of litera-
ture reviews is to survey relevant literature to engender original ideas and logically support actions
taken in the pursuit of scientific discovery. Here, the underlying principle of measurability extends
not only to empirical observations of the physical world, but also the congruence of one’s work with
the existing literature. As the desire to fully automate the scientific discovery workflow escalates, we
must advocate for the construction of realistic benchmarks for all constituent human-interpretable
tasks including literature review. For without ensuring accurate literature reviews, how can we hope
to protect the integrity of science?

Literature reviews seek to survey and analyze scientific literature in order to “synthesise current
knowledge, critically discuss existing proposals, and identify trends” [6]. Accurate literature reviews
should be well-defined in scope, justified in its inclusion and exclusion criteria, comprehensive,
and unbiased [22]]. Each of these criteria further complicate a task already challenging for human
researchers, let alone for Al scientists. We argue that the problem space defined by the act of
generating accurate and useful literature reviews proves to be too large to easily map onto action
spaces in one step. This inevitably leads to a conceptual gap between the intended human-interpretable
task of literature review and any attempt at designing a representative benchmark, therefore denoting
a construct validity issue.

To exemplify the validity issues present with the conventional approach to benchmarking Al scientists,
we review contemporary benchmarks that seek to evaluate similarly defined tasks. CiteME is a
citation-based benchmark that focuses on asking whether LLMs are capable of correctly identifying a
target paper from masked in-text citation in a text excerpt from a source paper [19]. However, the
citation attribution task designed for CiteME is a limited construction. The task is an ex post facto
verification of attribution, essentially side-stepping the full task of citation attribution in favor of
semantic searching. As such, we find the task definition in the CiteME benchmark as not realistic.
LitSearch is a retrieval benchmark that primarily seeks to assess non-LLM retrieval systems on
citation recommendation queries [1l]. The task construction of LitSearch differs from CiteME by
sampling inline target citations from source papers and then using GPT-4 to generate natural language
information requests to guide its citation recommendations. The authors of LitSearch also manually
reviewed the queries to ensure they were rigorous by removing any that were too close semantically
to the target paper title. However, LitSearch was aimed at non-LLM retrieval systems, reducing
its applicability in evaluating a broad spectrum of Al scientists. Additionally, the datasets of both
CiteME and LitSearch only contain queries pertaining to ML and NLP papers specifically.
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While CiteME and LitSearch struggled to overcome the validity issues posed by benchmarking the
human-interpretable task of literature review, it is through such complex task setups that our proposed
holonic framework for benchmark development shines. Using the conventions laid out in Section
[3.1] instead of directly constructing a benchmark for the human-interpretable holon of literature
review, we divide the latter into the LLM-executable holons of factuality and attribution. Figure
illustrates how our framework can be used to more effectively evaluate the human-interpretable task
of literature review as the semantic sum of LLM-executable holonic benchmarks. Here, factuality
refers to queries of content accuracy. A factuality benchmark would focus on assessing whether
summaries of scientific works present content that is accurate to the modern knowledge ecosystem
of a scientific discipline. Attribution refers to queries of content mapping aptitude. An attributional
benchmark would seek to evaluate both the relevance of provided source materials as well as the
accuracy of the mapping between intellectual content to its original source.

4.1 Benchmark Design

Having broken down the human-interpretable task of literature review to the LLM-executable level,
the tasks at the holonic level prove to be specialized enough to ensure that each benchmark is focused.
For the attributional benchmark, each query will be constructed as a request for a set of sources
relevant to provided information in the prompt. The dataset will then consist of pairings of prompts
defining the request space and appropriate listings of relevant sources defining the output space.
In order for our queries to be realistic, we will request feedback from human scientists who either
currently collaborate with or are interested in collaborating with Al scientists. This feedback will
guide our construction of the queries that will serve as the underlying dataset by aligning the diction
and syntax of these queries with real or desired use cases. Additionally, we will require that the
queries sample sources from a variety of scientific domains.

We identify two distinct types of queries based on the size of the desired output space: provenance
and exploration. The task of provenance is defined as a mapping between a request space populated
by information requests and an output space of low dimensionality (O(k =~ 1)) populated by potential
references. The query will be framed as either directly asking for a specific source or requesting
specific information that maps to a low number of potential sources. The output of provenance tasks
will be structured as a ranked list of k sources, ordered based on their relevance to their initial query.
Similarly to provenance queries, the task of exploration is defined as a mapping between a request
space populated by information requests and an output space of unbounded dimensionality populated
by relevant references. The final iteration of the task will also be a ranked list of k sources, where a
reasonable & will be chosen to represent typical reference counts requested by human researchers.

Despite the focused task set, we can maximize the utility of the benchmark by assessing each task
with a variety of metrics. Specifically, we will choose metrics to determine the likelihood and severity
by which an Al scientist could exhibit attributional malpractices. We define three risk areas for



Table 1: Taxonomized list of attributional malpractices

Risk Areas Malpractices
Mistake Fabrication of content
(plagiarism)

Fabrication of sources
Mis-mapping between sources

Misuse Injected biases
Direct output sculpting

Misalignment Misinterpretation Source incomprehension
Source misrepresentation

Biased Attribution Intrinsic biases
Learned strategies

attributional malpractices: mistakes (technical failures), misuse (adversarial exploitation by human
collaborators), and misalignment (knowingly acting against the intent of human collaborators). Table
[T presents a taxonomy of attributional malpractices segregated between the three risk areas. These
malpractices could be measured by assessing the impact of propagated biases, model robustness to
prompt perturbations, and through adversarial simulations [[17]. We will also test our benchmark
across the multiple scales of Al scientist workflows defined in Section [2]to quantify their potential
risk factors.

5 Conclusions

Al scientists have the potential to completely revolutionize the pursuit of scientific truths forever.
With explosive rates of publications, the rise of the big data paradigm, and a growing desire for
automation in general, it is no surprise that scientists across multiple fields of study have sought to
harness the power of LLMs to augment their capabilities for scientific discovery. As such, it is a
futile effort to obstruct the oncoming wave of Al scientist efforts. We have already seen significant
preliminary benefits from human-Al collaborations [Sl][34][16]]. However, the immense power of Al
scientists should beget an even greater responsibility among current scientists to protect the integrity
of scientific research.

In order to determine and prevent the potential risks posed by Al scientists to the scientific discovery
workflow, we must act scientifically by measuring the aptitude of Al scientists on scientific research
tasks. Unfortunately, scientific research is an ever-evolving series of ill-defined tasks that prove
challenging even for human researchers to navigate. The conceptual gap posed by improper com-
munication of the expectations of a task’s outcome to an Al scientist can lead to critical failures
in workflows it was intended to accelerate. Attempting to benchmark tasks at this high level of
abstraction results in construct validity issues [20]. Contemporary benchmarks fail to overcome
this challenge, opting to generate task sets reduced in scope that are more manageable and thus
more easily measurable. However, these reduced tasks frequently are not representative of their
intended real-world equivalent. Our paper proposes a new framework for developing benchmarks
based on Arthur Koestler’s holons [15]]. Instead of building benchmarks for human-interpretable
tasks such as literature review, we opt to construct benchmarks for LLM-executable holons, whose
semantic sum becomes approximately equivalent to the original human-interpretable task. Each
LLM-executable holon is robust enough to warrant its own benchmark, but specific enough to better
ensure the reproducibility and validity of the results.

To exemplify the power of our framework, we sketched a prototypal benchmark for attribution, an
LLM-executable holon for the human-interpretable task of literature review. When completed, the
benchmark promises to be the first benchmark to assess the attributional accuracy of Al scientists at
all scales of human steering with cross-disciplinary queries. In conjunction with this paper, we hope
that the benchmark will inspire further efforts to benchmark Al scientists as they become ubiquitous
additions to the scientific discovery workflow.
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