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Abstract

Science is a system defined in part by measurability. Claims made under its banner1

are trusted under the implicit understanding that they can be verified through2

measurement. Trustworthy science is therefore only possible when accurate and3

verifiable measurements of all aspects of a discovery or observation are possible.4

Recently, a new interloper has emerged in the form of AI scientists. Driven by5

companies such as Sakana AI and Google, these hybrid human-AI systems tasked6

with scientific discovery strive to augment and accelerate the current research7

paradigm by intelligently innovating upon and combining preexisting ideas. As8

researchers attempt to build collaborative workflows with AI scientists, the need9

for better measurements of their capabilities and limitations escalates. In this10

paper, we argue that the complexity of scientific research represents a significant11

challenge to AI scientist benchmarking attempts on account of construct validity12

issues. Scientific research tasks must be parseable by AI scientists, otherwise these13

in silico collaborators pose a significant epistemic risk to the trustworthiness of14

scientific research. To address this, we propose a new framework for designing15

benchmarks for AI scientists based on Arthur Koestler’s concept of holons. Instead16

of benchmarking high-level human-interpretable tasks, we instead break them down17

and build specialized benchmarks at the LLM-executable level. These semantic18

sum of an AI scientist’s performance on these benchmarks will then approximate19

performance on the original task. Our framework outlines key criteria for future20

benchmarks to avoid construct validity issues. We also exemplify the potential of21

our framework by prototyping a benchmark for attributional accuracy ultimately22

aimed at evaluating AI scientists on their ability to generate literature reviews.23

1 Introduction24

Science is a human-designed system that exists to engage with and explain the natural universe and25

thus is defined by our extent of measurement. As contributors to the system, the scientific community26

has evolved into a knowledge ecosystem joined by the mission that any claim can be verified due27

to its inherent measurability. Science is therefore only “scientific” when accurate and verifiable28

measurements are possible, for it is the measurability of scientific results that differentiates modern29

science from its medieval antecedents like alchemy and astrology. The critical subtlety here is that30

trustworthy science is only possible if all steps of the scientific process are verifiably measurable and31

documentable. However, this imperative now finds itself challenged by rising interest in utilizing32

hybrid human-AI systems known colloquially as ’AI scientists’ to automate scientific discovery33

workflows.34

AI systems have already proven to be useful inclusions in the pursuit of scientific discoveries. Both35

the 2024 Nobel Prize in Chemistry (1) and 2025 Nobel Prize in Physics (2) have proven the value36
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provided by AI models in performing complex computational scientific tasks. As such, it is no surprise37

that scientists have pursued even greater degrees of collaboration with AI systems, ultimately seeking38

to fully automate the whole scientific discovery workflow. Numerous works across multiple fields39

of study have sought to demonstrate that large language models (LLMs) are capable of performing40

scientific discovery tasks such as scientific contextualization (3), problem specification (4)(5)(6),41

hypothesis generation (7), experimental design (8)(9), and evaluation (10)(11). However, these42

attempts are still a far cry from proving that LLMs can perform trustworthy science. Notably, these43

prototypal automated workflows struggle with specialized scientific reasoning, long-term iterative44

planning, and critical analysis in collaborative workflows (12). Fully integrating AI systems in45

scientific discovery workflows can result in critical epistemic risks for scientific research. Unlike46

in test scenarios, real data is often incomplete or imprecise, which can result in emergent errors in47

data analysis and conclusion drawing. Giving AI systems access to physical experimental setups can48

lead to hazardous consequences resulting from departures from intended safety measures. Generally49

speaking, outsourcing more agency to these systems allows for the possibility of biasing research50

output, propagating unreliable results, and experimental system failures (13). To ensure that the51

automation of high-level human-interpretable scientific discovery tasks by AI scientists will not52

lead to emergent risks to scientific integrity, scientists must be able to clearly define each task in a53

measurable manner that is parseable and executable by an LLM.54

The challenge arises from the fact that scientific discovery at a high level is not easily discretized.55

More explicitly, high-level human-interpretable tasks within scientific discovery workflows such as56

literature review or experimental design are poorly mapped to the space of low-level LLM-executable57

tasks such as searching or fact checking. Thus, any misalignment between the AI scientists’ output58

and the desired outcome stems from the former’s inability to fully conceptualize and comprehend the59

intent behind any step in the scientific discovery cycle, fundamentally a construct validity issue (14).60

As a rational call for better guardrailing, we posit that the danger of AI scientists comes not from61

simply using them, but using them without sufficient comprehension of our expectations for a task.62

No tool is ever optimal, but by measuring its deviation from the ideal, we can bound our expectations63

through quantifiable uncertainties.64

Benchmarks serve as the primary method by which researchers can study the performance and65

limitations of AI systems on complex tasks. These evaluation workflows typically consist of a66

cultivated dataset and a series of metrics to test the aptitude of AI systems on a taxonomized list67

of tasks (14). As the concept of collaborating with AI scientists transitions from prototypal to68

commonplace, it becomes increasingly vital to design realistic benchmarks to measure the capacity69

that AI scientists have to perform common tasks in the scientific discovery workflow. However,70

scientific discovery cannot be reduced to a singular LLM-executable task, but is rather a dynamic71

workflow of indeterminate human-interpretable steps tied together via highly complex reasoning72

and perception that constantly evolves as new technologies are introduced. Many existing efforts73

to benchmark AI scientists side-step this difference by evaluating human-interpretable tasks via74

constructing and measuring performance on limited and potentially misleading reductions that are75

unrealistic and overall unrepresentative of the original task. For example, in attempting to assess76

citation accuracy, the CiteME benchmark is comprised of queries to identify a referenced paper given77

a text excerpt with a masked in-text citation (15). While an improvement over earlier retrieval-based78

benchmarks (16), this task construction is not representative of realistic use cases of AI systems79

being used as research assistants and thus indicative of a construct validity issue. It should be noted80

that concerns over construct validity are not exclusive to AI scientist benchmarks. Other domains81

involving complex tasks such as legal reasoning face similar misalignment obstacles between claims82

of general task mastery and the representativeness of the benchmark’s task set (17).83

To address the construct validity issue for AI scientist benchmarks, we propose a framework for84

developing benchmark tasks representative of aspects of scientific discovery derived from Arthur85

Koestler’s descriptions of holons in The Ghost in the Machine (18). Our framework seeks to evaluate86

performance on human-interpretable tasks by summing over assessments of LLM-executable sub-87

tasks or holons. Each holon thus defines its own problem space to be evaluated, but also a part of a88

larger system to measure more general reasoning capabilities. By constructing holonic benchmarks89

that are representative of specific intents for scientific research tasks, yet are complete evaluations90

in their own rights, we can strive for collaborative settings in which AI scientists will interpret any91

high-level task in alignment with our expectations for scientific research. We then exemplify the92

power of our framework by using it to sketch a benchmark for attributional accuracy and show how it93
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can be used to evaluate the AI scientist’s upstream ability to generate realistic and useful literature94

reviews.95

2 AI Scientists96

As this paper seeks to define a new framework for benchmarking AI scientists, it is imperative that97

we explicitly define what types of hybrid human-AI systems we will be testing. Conventionally,98

the term AI scientists refers to workflows involving AI agents that autonomously perform scientific99

research tasks. However, as the concept is nascent, this description remains a convention rather than100

any strict denotation. AI systems have been used as in silico collaborators to perform a wide range of101

tasks from code review to hypothesis generation (12)(19). Despite their differences in scope, each102

setup has the potential to obfuscate the complete measurability of the scientific discovery workflow,103

resulting in an emergent harm to scientific integrity. Thus, to cover all possible collaborative setups,104

we opt for the broadest possible definition of an AI scientist, while also accounting for the spectrum105

of possible human steering present:106

Definition 2.1. An AI scientist refers to any hybrid human-AI workflow that relies on AI beyond107

simple quantitative analytic purposes. We further subdivide the category into three mutually exclusive108

types of AI scientists based on the measure of human steering present.109

1. Human-AI assistant: The research workflow remains in its traditional, human-driven form110

augmented with aid from AI assistants such as chatbots.111

2. Human-AI agent: Specific steps of the research process are outsourced to singular agents112

with a human overseer. When multiple, decoupled agents are used, the burden of aggregating113

the results and adjudicating lies with the human overseer. Here, the singular agents are114

equivalent to what are conventionally known as AI scientists: autoregressive large language115

models guided by agentic frameworks to adopt reasoning akin to those exhibited by human116

researchers (19).117

3. Multi-agentic system: (Nearly) all steps of the research process are outsourced to agents118

with a central agent overseer and a human adjudicator (19)(20).119

Across multiple fields of study, scientists have already shown the potential benefits of the ““scientist-in-120

the-loop” collaborative paradigm” (19). Coscientist, a GPT-4 based system for autonomous chemical121

research, was able to successfully optimize the reaction of palladium-catalysed cross-couplings (9).122

CellAgent, another GPT-4 agent, has been shown to automate single-cell RNA sequencing data123

analysis more reliably than its contemporaries (10). PriM is a multi-agent system designed for124

automated materials discovery that yields high materials exploration rate without significant reduction125

in scientific rigor (11).126

However, integrating AI into scientific research pipelines is a double-edged sword replete with signif-127

icant epistemic risks. It has already been demonstrated that AI agents struggle with computational128

reproducibility, a critical method for maintaining the integrity of scientific research (21). Additionally,129

the fact that many AI scientists are built using privately trained large language models (LLMs) makes130

it difficult to determine any possible biases in their outputs and whether they are inherited from131

their training corpora (22) or programmed preference optimization schema (23). The problem is132

not limited to agentic AI, as baseline LLMs continue to struggle on benchmarks of mathematical133

reasoning (24). Beyond experimentally verified risks, AI researchers also predict several emergent134

epistemic risks such as over-reliance amongst human users (23) and self-preservation in conflict with135

human interests (25).136

3 Benchmarking Scientific Research137

While scientists can rigorously answer questions about the quantifiable validity of their results,138

explicitly defining the required research steps for a scientific discovery proves to be more of an art.139

Due to the complicated reality of scientific discovery, categorizations of scientific research tasks such140

as the “scientific method” are typically left as instructional tools and thus vary greatly in diction (26).141

However, if we as scientists cannot establish a reasonable list of scientific research tasks and their142

aims, expecting AI scientists to perform accurately on these high-level human-interpretable tasks is143
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overstepping the mark. Thus, for the sake of clarity, we define the following as the research tasks144

required for scientific discovery:145

• Literature review: This task entails detailed and extensive knowledge retrieval and contextu-146

alization within the current status quo of the field of study.147

• Problem specification: This task describes the identification of a novel knowledge gap or148

unexplained observation to be formulated into a research project.149

• Research design: This task involves the theorizing of a potential solution to the selected150

research problem that is both empirically testable and potentially falsifiable.151

• Experimentation: This task encompasses all aspects of experimental design and execution,152

whether it be computational or physical in nature.153

• Communication: This task represents steps required for the dissemination of scientific154

results via the peer review publication process.155

It should be noted however that this task enumeration is not meant to define mutually exclusive tasks156

or be indicative of a proper chronology for scientific discovery as in practice, these research tasks are157

often done in parallel with many interwoven dependencies.158

Scientific research tasks pose significant challenges when serving as the target for AI benchmarks.159

Having been in use since the 1970s (14), AI benchmarks have acquired a conventional construction160

consisting of a training dataset, queries, and a series of evaluation metrics to assess an AI model on161

certain tasks. Here, tasks refer to any mapping between a problem and action space with intensional162

(human-interpretable task description) and extensional (empirical pairs of states and actions) defini-163

tions (27). However, unlike strictly computational tasks with defined problem-action mappings such164

as image classification (28), scientific research tasks are ill-defined in scope, frequently with problem165

spaces mapping to other problem spaces before any notion of actions are relevant. With unclear166

construction, such high-level hierarchical tasks introduce significant variability amongst the possible167

trajectories from original problem space to outcome states on account of the actor’s interpretation of168

the task (27). While humans can sort through the interconnected and multifaceted dependencies of169

scientific research tasks intuitively, it is currently unknown to what degree AI scientists could. While170

highlighted here for AI scientist benchmarks, this mismatch between intensional and extensional171

definitions manifests as construct validity issues in any assessment of language competence (14)172

including but not limited to legal reasoning (17), diagnosing mental disorders (29), and financial173

support (30). Without clear and specific definitions of outcome expectations, AI systems are prone to174

misalignment with our desires as collaborators.175

3.1 Holonic Solution176

A critical limitation of benchmarks aimed at assessing the capability of AI systems to perform177

language tasks is the conceptual gap between the evaluation framework and the intended human-178

interpretable task to be completed (31). The scientific discovery workflow is no exception. Due179

to the inherent uniqueness of scientific research, any task enumerated in Section 3 is in practice a180

test of general scientific reasoning with numerous sub-tasks each with a series of ad hoc parameters181

modulating the possible outcomes. This variability poses a fundamental dilemma to the construction182

of realistic benchmark tasks to close the aforementioned conceptual gap. Conventional benchmarks183

opt for reducing human-interpretable tasks to simpler versions with easy representative datasets184

to compile (31). However, these reduced tasks frequently end up being contrived “samples of185

convenience: tasks and collections of tasks arbitrarily built out of what is easily available to the186

team developing these benchmarks, even if such constructions are theoretically unsound” (14). For187

example, instead of directly tackling the human-interpretable task of literature review, the CiteME188

benchmark focuses on evaluating an LLM’s capability for citation attribution. Defined as the task189

in which "a system is asked to fetch the title of a referenced paper," CiteME chooses to model190

queries of citation attribution as a retrieval task for a referenced paper given a text excerpt with a191

masked in-text citation (15). While the intensional and extensional definitions are consistent, their192

construction is not representative of real attributional queries by human researchers, who usually193

are not validating the known citations in text excerpts. Without significant attempts to realistically194

reduce the semantic distance between real human-interpretable tasks and the simulated tasks in195

the benchmark, the conventional development framework fails to accurately specify the expected196
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Figure 1: Prototypal holonic breakdown of the scientific discovery workflow

trajectory and outcome of the human-interpretable task and by extension, thus fails to accurately197

evaluate the model on its aptitude for scientific research.198

To address this construct validity issue, we propose a new framework for developing benchmarks199

for AI scientists based on a holonic perspective on scientific research. In The Ghost in the Machine,200

Arthur Koestler defined a holon as an identifiable subsystem with a unique identity such that it is both201

a self-contained system in its own right as well as part of a larger holarchical structure (18). We posit202

that scientific research as a whole can be interpreted as a holarchical structure with the largest holon203

being the task of scientific discovery, further divided into intermediate holonic human-interpretable204

tasks like those enumerated in Section 3. These human-interpretable holons can then be subdivided205

into holonic tasks that are parseable and executable by LLMs. Rather than constructing a single206

benchmark for each human-interpretable task, our framework poses that benchmarks should be207

built at the LLM-executable level. By only building benchmarks for LLM-executable tasks, we208

minimize the conceptual gap between the evaluation framework (extensional definition) and the209

intensional definition of the task. Under this methodology, we rely on the combined evaluations210

of each LLM-executable benchmark to approximate the AI scientist’s aptitude for any (human-211

interpretable) scientific research task. While the constituent holons themselves are still narrowly212

defined, by creating summative evaluation frameworks at the human-interpretable level, we become213

more adept at validating trajectories of AI scientists between problem spaces and subspaces for the214

complex tasks described in Section 3. Figure 3.1 illustrates the landscape of scientific discovery and215

its constituent holons when interpreted under our framework. Section 4 will exemplify the utility of216

our framework in practice by outlining a benchmark design to assess the attributional aptitude of AI217

scientists.218

Koestler notes that regardless of the holarchical structure, “constituent holons are defined by fixed219

rules and flexible strategies” (18). As benchmarks in their own right, the LLM-executable holons are220

subject to the same validity issues as contemporary benchmarks. As such, we require each LLM-221

executable benchmark to exhibit the following criteria inspired by the forms of validity addressed in222

Salaudeen et al.(31):223

1. Focused: The central task(s) of the benchmark should be highly specialized in scope to224

maintain high reproducibility and reliability.225

2. Realistic: The task(s) should be constructed in accordance with actual use cases sourced226

from human researchers.227

3. Measurable in depth: The benchmark should evaluate its task(s) with a variety of metrics,228

not only for technical accuracy but also for alignment and robustness against adversarial use229

cases.230

4. Scale independence: The task(s) should be measurable across all AI scientist workflows231

regardless of the degree of human steering present.232

5. Domain generalizability: The benchmark dataset should contain queries from multiple233

scientific domains with domain-specific benchmarks requiring stronger justification.234
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4 Attribution235

To demonstrate the utility of our framework, we prototype a benchmark for a single LLM-executable236

holon, attribution, using it to assess an aspect of the human-interpretable task of generating realistic237

and useful literature reviews.238

Within the system of science, literature reviewing is the mechanism by which the scientific community239

can referentially engage with each other by way of the compendium of scientific knowledge. While240

the importance of literature reviews is commonly overshadowed by experimentation or evaluation,241

it remains a vital foundation for scientific discovery. For researchers, the aim of literature reviews242

is to survey relevant literature to engender original ideas and logically support one’s progression243

through the scientific discovery workflow. The underlying principle of measurability extends not244

only to empirical observations of the physical world, but also the congruence of one’s work with the245

existing literature. Consequently, as the desire to fully automate the scientific discovery workflow246

escalates, we must advocate for the construction of realistic benchmarks for all constituent tasks247

including literature review. For without ensuring accurate literature reviews, how can we hope to248

protect the integrity of science?249

Literature reviews seek to survey and analyze scientific literature in order to “synthesise current250

knowledge, critically discuss existing proposals, and identify trends” (3). As such, accurate literature251

reviews should be well-defined in scope, justified in its inclusion and exclusion criteria, compre-252

hensive, and unbiased (32). Each of these criteria further complicate the already challenging task253

for human researchers, let alone for AI scientists. We argue that the problem space defined by the254

act of generating accurate and useful literature reviews proves to be too large to easily map onto255

action spaces in one step. This inevitably leads to a conceptual gap between the intended human-256

interpretable task of literature review and any attempt at designing a representative benchmark,257

therefore denoting a construct validity issue.258

To exemplify the validity issues present with the conventional approach to benchmarking AI scientists,259

we review contemporary benchmarks that seek to evaluate similarly defined tasks. CiteME is a260

citation-based benchmark that focuses on asking whether LLMs are capable of correctly identifying261

a target paper from a text excerpt from a source paper including a reference to the target (15).262

However, the citation attribution task designed for CiteME is a limited construction. The task is an263

ex post facto verification of attribution, essentially side-stepping the greater issue for a question of264

semantic searching. As such, we find the task definition in the CiteME benchmark as not realistic.265

LitSearch is a retrieval benchmark that primarily seeks to assess non-LLM retrieval systems on266

citation recommendation queries (33). The task construction of LitSearch differs from CiteME by267

sampling inline target citations from source papers and then using GPT-4 to generate natural language268

information requests to guide its citation recommendations. LitSearch also manually reviewed the269

queries to ensure they were rigorous by removing any that were too close semantically to the target270

paper title. However, LitSearch was aimed at non-LLM retrieval systems, reducing its applicability in271

evaluating a broad spectrum of AI scientists. Additionally, the datasets of both CiteME and LitSearch272

only contain queries pertaining to ML and NLP papers specifically.273

While CiteME and LitSearch struggled to overcome the validity issues posed by benchmarking the274

human-interpretable task of literature review, it is through such complex task setups that our proposed275

holonic framework for benchmark development shines. Using the conventions laid out in Section 3.1,276

instead of directly constructing a benchmark for literature review, we divide the human-interpretable277

holon of literature review into the LLM-executable holons of factuality and attribution. Figure 4278

illustrates the application of our proposed framework to the human-interpretable task of literature279

review. Factuality refers to queries of content accuracy. A factuality benchmark would focus on280

assessing that summaries of scientific works present content that is accurate with respect to the281

modern knowledge ecosystem of a scientific discipline. Attribution refers to queries of content282

mapping aptitude. An attributional benchmark would therefore seek to evaluate both the relevance of283

provided source materials as well as the accuracy of the mapping between intellectual content to its284

original source.285

Accurate attribution is a requirement for properly situating one’s work and potential future ideas286

within the existing knowledge ecosystem of scientific knowledge. Beyond the primary researcher,287

attribution provides the only public avenue for tracing the provenance of any scientific result via288

the listed citations in a peer-reviewed publication. If these citations are unethically compiled, peer289
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Figure 2: Proposed holonic structure for benchmarking literature review

scientists lose a critical means by which to assess the results of another party as well as a starting290

point for their own literature reviews. Attribution however is not limited to assessments of content291

mapping accuracy, but can extend to more qualitative requirements. For example, in performing292

a literature review, scientists need to acquire information from sources that are modern, unbiased,293

and diverse in methodology (32). Thus, an AI scientist would also need to recommend a variety of294

sources that allow for a comprehensive survey of a topic landscape. As such, we extend the definition295

of attributional accuracy to encompass both evaluations of accuracy and unbiased utility.296

4.1 Benchmark Design297

Having outlined our holonic framework for developing benchmarks for AI scientists, we now298

exemplify its potential by sketching out a design for a benchmark at the LLM-executable level for299

attributional accuracy. While prototyped on the human-interpretable holon of literature review, our300

framework is generalizable to any attempt at benchmarking complex, hierarchical language tasks,301

including but not limited to the other tasks of the scientific discovery workflow.302

Having broken down the human-interpretable task of literature review to the LLM-executable level,303

the tasks at the holonic level prove to be specialized enough to ensure that each benchmark is focused.304

For the attributional benchmark, each query will be constructed as a request for a set of sources305

relevant to provided information in the prompt. The dataset will then consist of pairings of prompts306

defining the request space and appropriate listings of relevant sources defining the output space.307

In order for our queries to be realistic, we will request feedback from human scientists who either308

currently collaborate with or are interested in collaborating with AI scientists. This feedback will309

guide our construction of the queries that will serve as the underlying dataset by aligning the diction310

and syntax of these queries with real or desired use cases. Additionally, we will require that the311

queries sample sources from a variety of scientific domains.312

We identify two distinct types of queries based on the size of the desired output space: provenance313

and exploration. The task of provenance is defined as a mapping between a request space populated314

by information requests and an output space of low dimensionality (O(k ≈ 1)) populated by potential315

references. The query will be framed as either directly asking for a specific source or requesting316

specific information that maps to a low number of potential sources. The output of provenance tasks317

will be structured as a ranked list of k sources, ordered based on their relevance to their initial query.318

Similarly to provenance queries, the task of exploration is defined as a mapping between a request319

space populated by information requests and an output space of unbounded dimensionality populated320

by relevant references. The final iteration of the task will be also structured as a ranked list of k321

sources, where a reasonable k will be chosen to represent typical reference counts requested by322

human researchers.323

Despite the focused task set, we can maximize the utility of the benchmark by assessing each task324

with a variety of metrics. Specifically, we will choose metrics to determine the likelihood and severity325
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Table 1: Taxonomized list of attributional malpractices

Risk Areas Malpractices
Mistake Fabrication of content

(plagiarism)
Fabrication of sources

Mis-mapping between sources

Misuse Injected biases
Direct output sculpting

Misalignment Misinterpretation Source incomprehension
Source misrepresentation

Biased Attribution Intrinsic biases
Learned strategies

by which an AI scientist could exhibit attributional malpractices. We define three risk areas for326

attributional malpractices: mistakes (technical failures), misuse (adversarial exploitation by human327

collaborators), and misalignment (knowingly acting against the intent of human collaborators). Table328

1 presents a taxonomy of attributional malpractices segregated between the three risk areas. These329

malpractices could be measured by assessing the impact of propagated biases, model robustness to330

prompt perturbations, and through adversarial simulations (34). We will also test our benchmark331

across the multiple scales of AI scientist workflows defined in Section 2 to quantify their potential332

risk factors.333

5 Conclusions334

AI scientists have the potential to completely revolutionize the pursuit of scientific truths forever.335

With explosive rates of publications, the rise of the big data paradigm, and a growing desire for336

automation in general, it is no surprise that scientists across multiple fields of study have sought337

to harness the power of LLMs to augment their capabilities for scientific discovery. As such, it is338

a futile effort to obstruct the oncoming wave of AI scientist efforts. Clearly, we have already seen339

preliminary benefits from human-AI collaborations (9)(10)(11). However, the immense power of AI340

scientists should beget an even greater responsibility amongst current scientists to protect the integrity341

of scientific research.342

In order to determine the potential risks posed by AI scientists to the scientific discovery workflow,343

we must act scientifically by measuring the aptitude of AI scientists on scientific research tasks.344

Unfortunately, scientific research is an ever-evolving series of ill-defined tasks that prove challenging345

even for human researchers to navigate. The conceptual gap posed by improper communication of346

the expectations for a task’s outcome to an AI scientist can lead to critical failures in workflows it was347

designed to accelerate. In attempting to benchmark tasks at this level, this results in construct validity348

issues (14). Contemporary benchmarks fail to overcome this challenge, opting to generate task sets349

reduced in scope that are more manageable and thus more easily measurable. However, these reduced350

tasks frequently are not representative of their intended model, leading to construct validity issues.351

Our paper proposes a new framework for developing benchmarks based on Arthur Koestler’s holons352

(18). Instead of building benchmarks for human-interpretable tasks such as literature review, we opt353

to construct benchmarks for LLM-parseable holons, whose semantic sum is equivalent to the original354

human-interpretable task. Each LLM-parseable holon is robust enough to warrant its own benchmark,355

but specific enough to ensure the reproducibility and reliability of the results.356

To exemplify the power of our framework, we sketched a prototypal benchmark for attribution, an357

LLM-executable holon of the human-interpretable task of literature review. When completed, the358

benchmark promises to be the first benchmark to assess the attributional accuracy of AI scientists at359

all scales of human steering with cross-disciplinary queries. In conjunction with this paper, we hope360

that the benchmark will inspire further efforts to benchmark AI scientists as they become ubiquitous361

additions to the scientific discovery workflow.362
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[30] Vuković, D. B., Dekpo-Adza, S. & Matović, S. AI integration in financial services: a systematic448

review of trends and regulatory challenges. Humanities and Social Sciences Communica-449

tions 12, 562 (2025). URL https://www.nature.com/articles/s41599-025-04850-8.450

Publisher: Palgrave.451

[31] Salaudeen, O. et al. Measurement to Meaning: A Validity-Centered Framework for AI Evalu-452

ation (2025). URL http://arxiv.org/abs/2505.10573. ArXiv:2505.10573 [cs] version:453

4.454

[32] Ressing, M., Blettner, M. & Klug, S. J. Systematic Literature Reviews and Meta-Analyses.455

Deutsches Ärzteblatt International 106, 456–463 (2009). URL https://www.ncbi.nlm.nih.456

gov/pmc/articles/PMC2719096/.457

10

http://arxiv.org/abs/2308.11462
https://books.google.com/books?id=tJS-QgAACAAJ
http://arxiv.org/abs/2502.18864
http://arxiv.org/abs/2502.18864
http://arxiv.org/abs/2502.18864
https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00178h
http://arxiv.org/abs/2409.11363
http://arxiv.org/abs/2211.13709
http://arxiv.org/abs/2211.13709
http://arxiv.org/abs/2211.13709
http://arxiv.org/abs/2502.02649
http://arxiv.org/abs/2404.00344
http://arxiv.org/abs/2502.15657
http://arxiv.org/abs/2504.03912
https://aclanthology.org/2021.acl-short.85/
https://aclanthology.org/2021.acl-short.85/
https://aclanthology.org/2021.acl-short.85/
http://arxiv.org/abs/1409.0575
https://www.nature.com/articles/s41380-025-03072-3
https://www.nature.com/articles/s41380-025-03072-3
https://www.nature.com/articles/s41380-025-03072-3
https://www.nature.com/articles/s41599-025-04850-8
http://arxiv.org/abs/2505.10573
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719096/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719096/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719096/


[33] Ajith, A. et al. LitSearch: A Retrieval Benchmark for Scientific Literature Search (2024). URL458

http://arxiv.org/abs/2407.18940. ArXiv:2407.18940 [cs].459

[34] Lin, L. et al. Against The Achilles’ Heel: A Survey on Red Teaming for Generative Models460

(2024). URL http://arxiv.org/abs/2404.00629. ArXiv:2404.00629 [cs] version: 2.461

11

http://arxiv.org/abs/2407.18940
http://arxiv.org/abs/2404.00629

	Introduction
	AI Scientists
	Benchmarking Scientific Research
	Holonic Solution

	Attribution
	Benchmark Design

	Conclusions

