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Abstract

Visual instruction tuning refines pre-trained001
Multimodal Large Language Models (MLLMs)002
to enhance their real-world task performance.003
However, the rapid expansion of visual in-004
struction datasets introduces significant data005
redundancy, leading to excessive computational006
costs. Existing data selection methods predom-007
inantly rely on proxy models or loss-based met-008
rics, both of which impose substantial com-009
putational overheads due to the necessity of010
model inference and backpropagation. To ad-011
dress this challenge, we propose PRISM, a012
novel training-free approach for efficient multi-013
modal data selection. Unlike existing methods,014
PRISM eliminates the reliance on proxy mod-015
els, warm-up pretraining, and gradient-based016
optimization. Instead, it leverages Pearson cor-017
relation analysis to quantify the intrinsic vi-018
sual encoding properties of MLLMs, comput-019
ing a task-specific correlation score to iden-020
tify high-value instances. This not only en-021
ables data-efficient selection, but maintains the022
model’s original performance. Empirical eval-023
uations across multiple MLLMs demonstrate024
that PRISM reduces the overall time required025
for visual instruction tuning and data selection026
to just 30% of conventional methods, while027
surpassing fully fine-tuned models across eight028
multimodal and three language understanding029
benchmarks, achieving a 101.7% relative im-030
provement in final performance.031

1 Introduction032

The rapid advancement of Multimodal Large Lan-033

guage Models (MLLMs) has significantly trans-034

formed artificial intelligence by integrating vision035

and language processing capabilities (Liu et al.,036

2024a; Zhu et al., 2023; Dai et al., 2023). Mod-037

ern MLLMs typically undergo a two-stage training038

process: (1) large-scale pretraining on web-scale039

image-text pairs to establish cross-modal align-040

ment, followed by (2) visual instruction tuning041

3X Tuning Speed

101.7% Rel

-The shaded regions indicate data selection time.

Figure 1: The radar chart illustrates the performance of
PRISM, LLaVA, and TIVE across multiple benchmarks.
PRISM demonstrates competitive performance while us-
ing significantly fewer training samples. The bar chart
on the right highlights the data efficiency of PRISM-
Instruct-250K, achieving 101.7% relative performance
with only 30% of the data used by LLaVA-Instruct-
665K and significantly outperforming TIVE-Instruct-
100K. The shaded regions indicate data selection time,
showing that PRISM achieves 3× faster tuning speed
compared to LLaVA and TIVE, emphasizing its effi-
ciency in multimodal instruction tuning.

on task-specific datasets to enhance instruction- 042

following abilities. While instruction tuning is cru- 043

cial for achieving strong downstream performance, 044

the exponential growth of low-quality and redun- 045

dant data (Chen et al., 2024; Wei et al., 2023) in 046

curated datasets poses a major challenge. This pro- 047

liferation not only increases computational costs 048

but also leads to diminishing returns, highlighting 049

the need for efficient data selection strategies that 050

maximize informativeness while minimizing redun- 051

dancy. 052

As training on the full dataset becomes increasingly 053

impractical, selecting the most informative sam- 054

ples is essential for maintaining strong performance 055

while reducing computational overhead. Existing 056

data selection approaches can be broadly classified 057

into two categories: Model-Agnostic Selection and 058

Gradient-Based Selection. Model-Agnostic Selec- 059

tion relies on proxy models, such as pretrained scor- 060
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ers (Chen et al., 2024) or auxiliary MLLMs (Lee061

et al., 2024), to estimate data importance. However,062

these methods often introduce bias due to potential063

misalignment between the proxy and target models.064

Gradient-Based Selection, on the other hand, uti-065

lizes criteria derived from model training dynamics,066

such as loss-based (Liu et al., 2024d) or influence067

function-driven metrics (Wu et al., 2025). These068

approaches are computationally expensive due to069

the iterative nature of gradient computation. More070

critically, both paradigms often fail to outperform071

full-dataset training within practical computational072

constraints, limiting their real-world applicability.073

To address these shortcomings, we introduce074

PRISM, a novel training-free framework that rede-075

fines multimodal data selection by exploiting the in-076

trinsic visual encoding properties of MLLMs. Un-077

like existing Model-Agnostic and Gradient-Based078

methods, PRISM represents a third paradigm: In-079

trinsic Selection. A key challenge in developing080

such a method is that MLLMs encode rich multi-081

modal interactions in high-dimensional token rep-082

resentations, yet directly leveraging these internal083

structures for data selection is nontrivial. Unlike084

Gradient-Based approaches, which capture model085

learning dynamics, or Model-Agnostic methods,086

which rely on external scoring heuristics, our In-087

trinsic Selection extracts meaningful structural in-088

formation without access to model training or aux-089

iliary predictors.090

PRISM overcomes this challenge by leveraging the091

architectural synergy between vision encoders (e.g.,092

CLIP (Radford et al., 2021)) and language mod-093

els (Li et al., 2023b; Zheng et al., 2023), wherein094

visual inputs are projected into the LLM’s latent095

space via projectors. Our key insight is that the096

informational uniqueness of images is inherently097

captured within the LLM’s intermediate token em-098

beddings. By computing pairwise Pearson corre-099

lations of token embeddings, PRISM quantifies100

the representational distinctiveness of visual sam-101

ples, selecting those that maximize diversity while102

minimizing redundancy—all without relying on103

proxy models, gradient computations, or additional104

training. This method reframes multimodal data105

selection by leveraging the LLM’s intrinsic repre-106

sentations as a quality-sensitive filter, where high-107

value samples—aligned with the model’s semantic108

priors and exhibiting complementary feature pat-109

terns—form unique correlation structures and con-110

tribute to increased Shannon entropy, ultimately111

improving multimodal learning.112

We validate PRISM through extensive experi- 113

ments on a diverse set of multimodal bench- 114

marks, evaluating its efficacy against state-of-the- 115

art data selection methods. Our results demon- 116

strate that MLLMs fine-tuned on PRISM-selected 117

data (PRISM-Instruct-250K) outperform models 118

trained on the full dataset while reducing computa- 119

tional costs by 70%. Furthermore, we conduct addi- 120

tional analyses on Cross-Model Generalization and 121

Scalability and Knowledge Retention, demonstrat- 122

ing that PRISM generalizes effectively across dif- 123

ferent MLLM architectures and better preserves lin- 124

guistic capabilities compared to full-dataset train- 125

ing. 126

Our key contributions are as follows: 127

• We introduce PRISM, a paradigm shift in mul- 128

timodal data selection. As the first training- 129

free framework, PRISM fundamentally de- 130

parts from traditional selection paradigms by 131

eliminating reliance on proxy models, gradi- 132

ent computation, and iterative retraining, of- 133

fering an efficient yet principled alternative. 134

• We propose the intrinsic selection mechanism 135

that unlocks the latent structure of multimodal 136

representations. By directly quantifying intrin- 137

sic feature redundancy within MLLMs’ token 138

embeddings, PRISM enables scalable, high- 139

fidelity data selection—achieving stronger 140

multimodal generalization without additional 141

training overhead. 142

• Extensive experiments show that PRISM- 143

selected data outperforms full-dataset training 144

while significantly reducing computational 145

costs, making it a practical solution for scal- 146

able multimodal learning. 147

2 Visual Instruction Selection 148

Visual instruction selection is an approach that can 149

effectively reduce training time of visual instruc- 150

tion tuning by identifying high-value instruction in- 151

stances. Numerous studies have explored effective 152

methods for selecting such instruction instances 153

while minimizing computational overheads. In 154

this section, we first introduce two fundamental 155

principles for visual instruction selection, which 156

provide a framework for evaluating the effective- 157

ness of different methods in real-world scenarios. 158

Furthermore, we position existing developments in 159

this research area, highlighting key advancements 160
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Figure 2: Comparison of data selection paradigms for MLLMs. Model-Agnostic Selection (left) relies on external
proxy models without involving the LLM, potentially misaligning with its learned representations. Gradient-Based
Selection (middle) uses the LLM’s gradients for selection but incurs high computational costs. Intrinsic Selection
(PRISM) (right) directly utilizes the LLM’s token embeddings, enabling training-free, efficient, and model-aware
data selection.

and their implications for optimizing multimodal161

instruction tuning.162

Principle 1: Data selection should not come at163

the cost of performance. An effective visual in-164

struction selection method should ensure that the165

model’s performance is at least not worse than a166

fully fine-tuned counterpart. While it is acceptable167

to achieve better performance with more data, it168

is not justifiable to compromise model quality in169

pursuit of dataset reduction.170

Principle 2: The time required for visual instruc-171

tion selection should not exceed the time saved172

in visual instruction tuning. The primary goal173

of visual instruction selection is to improve effi-174

ciency by reducing the computational burden of175

instruction tuning. However, if the selection pro-176

cess itself is excessively time-consuming, it defeats177

the purpose by negating the computational savings178

gained from dataset reduction. In contrast, an ideal179

selection method should strike a balance between180

efficiency and effectiveness, ensuring that the over-181

all training pipeline benefits from reduced resource182

consumption without introducing additional over-183

head that outweighs the savings.184

As shown in Fig. 2, we categorize current visual in-185

struction selection methods mentioned before into186

two main types. The first is Model-Agnostic Selec-187

tion, where the target MLLM remains untouched,188

and data quality is assessed using a proxy model.189

Such a proxy model can be a scoring function, such190

as a pre-trained scoring model (Chen et al., 2024),191

human reward models, or GPT-based scoring mech-192

anisms (Wei et al., 2023). Some approaches (Lee193

et al., 2024) also involve training a small MLLM to194

guide the selection process for the target MLLM. 195

The second category is Gradient-Based Selection, 196

where the target MLLM is first pre-trained on a spe- 197

cific data partition, and data value is subsequently 198

assessed using loss, perplexity, or gradient-based 199

metrics. 200

Both approaches have inherent limitations: 201

(1) Performance degradation—While the ex- 202

isting two types of selection methods effec- 203

tively filter a subset of the data, they often de- 204

grade the model performance compared to full 205

fine-tuning (see in Table 1). This contradicts 206

Principle 1, as the objective is to construct a 207

stronger model with fewer data, rather than a 208

weaker model due to reduced data availability. 209

(2) High computational cost—Gradient-based 210

selection is computationally prohibitive. For 211

instance, TIVE (Liu et al., 2024d) employs 212

LoRA-based warm-up training on the target 213

MLLM before computing gradient vectors. 214

However, the time required for this process 215

often surpasses the time saved in instruction 216

tuning (see in Table 4), violating Principle 2 217

and rendering it impractical. 218

(3) Proxy model bias—To mitigate computa- 219

tional overhead, some methods rely on proxy 220

models, keeping the target MLLM indepen- 221

dent during training. However, this introduces 222

bias from the pre-trained proxy model (e.g., 223

GPT or a human reward model) or a warm-up 224

trained small MLLM, which may not gener- 225

alize well to the target MLLM. Since proxy 226

3



models and warm-up data significantly in-227

fluence selection results, a general selection228

strategy that excludes the target MLLM will229

yield the same selected data across different230

MLLMs, despite their distinct data require-231

ments. Consequently, such approaches fail232

to provide optimal data selection tailored to233

specific MLLMs.234

To overcome these challenges, we introduce235

PRISM, a self-PRuning Intrinsic Selection Method236

for training-free multimodal data selection.237

3 PRISM238

The PRISM framework establishes a new paradigm239

for multimodal data selection by directly har-240

nessing the intrinsic representation structures of241

MLLMs. Unlike existing methods that depend on242

external heuristics or model-driven proxies, PRISM243

leverages the model’s intrinsic encoding mecha-244

nisms to assess data informativeness. Modern245

MLLMs, such as LLaVA (Liu et al., 2024a), unify246

visual and textual modalities through a vision en-247

coder and projector, embedding images into the248

LLM’s latent space—where their uniqueness is in-249

herently captured. This approach ultimately en-250

hances performance while reducing training time251

by 70%. Our initial research (as in Fig. 3) revealed252

that layer-wise token embeddings inherently cap-253

ture structural distinctions between informative and254

redundant samples. Inspired by this, we explored255

the statistical dependencies within these embed-256

dings to systematically identify high-value data in-257

stances. These findings ultimately led to the design258

of PRISM, a method that selects informative sam-259

ples without relying on external supervision (e.g.,260

proxy models or gradient-based computations).261

PRISM formalizes this approach in a three-stage262

pipeline: feature representation, correlation analy-263

sis, and self-pruning selection. As we will see in264

the performance evaluation, PRISM offers a scal-265

able and computationally efficient solution to mul-266

timodal data selection.267

3.1 Feature Representation and Correlation268

Analysis269

LetD = {I1, I2, . . . , IN} denote the image dataset270

for target task T . For each image Ii, the vision en-271

coder (VE) extracts and projects visual embeddings272

into the LLM’s latent space:273

vi = VE(Ii) ∈ Rdv , zi = Proj(vi) ∈ Rd (1)274
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Figure 3: Correlation-based distribution of multimodal
data across datasets. The selection strategy prioritizes
samples that balance redundancy reduction and infor-
mation diversity, ensuring that high-correlation images
do not dominate while preserving a broad range of se-
mantic variance. The highlighted region represents the
top 30% of high-value samples identified from LLaVA-
665K.

where Proj : Rdv → Rd is a linear projector. The 275

LLM processes zi through transformer layers, with 276

averaged token features from layer l computed as: 277

Fi =
1

T

T∑
t=1

LLM(l)(zi)t ∈ Rd (2) 278

where T denotes the number of tokens. We hy- 279

pothesize that images with divergent feature corre- 280

lations provide complementary information. This 281

is quantified through Pearson analysis: 282

Pij =
E[(Fi − µi)(Fj − µj)]

σiσj
, Ci =

∑N

j=1
Pij

(3)

283

where µi, σi are mean and standard deviation of 284

Fi, and Ci measures alignment with D’s feature 285

distribution. 286

3.2 Self-Pruning Selection 287

Images with the lowest Ci values (i.e., those in 288

the bottom τ% of the sorted correlation scores) are 289

selected as high-value candidates. This selection 290

strategy is guided by three factors: 291

Reduction of Feature Redundancy: High corre- 292

lation images (↑ Ci) exhibit substantial semantic 293

overlap, contributing diminishing returns during 294

training. 295

Information-Theoretic Diversity: Low correla- 296

tion samples (↓ Ci) maximize the Shannon entropy 297

of the selected subset, as formally analyzed in Ap- 298

pendix C. 299

Outlier Resilience: Unlike variance-based selec- 300

tion, Pearson correlation’s scale invariance en- 301

sures robustness to embedding magnitude varia- 302

tions caused by projector miscalibrations. 303
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Formally, given a threshold τ (e.g., τ = 30%), the304

selected subset is defined as:305

Dselected = {Ii | Ci ≤ Qτ (C)}, (4)306

where Qτ denotes the τ -th percentile of correlation307

scores. Algorithm 1 is organized into three main308

phases, corresponding to the selection strategy’s309

core factors:310

Intrinsic Feature Extraction (Step 1): This phase311

computes visual embeddings and projects them312

into the LLM’s latent space, obtaining layer-wise313

averaged token features. By capturing intrinsic314

semantic information, it prepares the feature space315

for correlation analysis, laying the foundation for316

Outlier Resilience.317

Correlation Analysis (Step 2): The Pearson cor-318

relation matrix is computed to evaluate feature319

similarity across all images. Summing each row320

gives the total correlation score for each image,321

Ci, which quantifies its semantic redundancy. This322

phase directly targets the Reduction of Feature Re-323

dundancy by identifying images with high semantic324

overlap.325

Self-Pruning Selection (Step 3): By sorting and326

selecting images with the lowest Ci scores, this327

step maximizes diversity while avoiding redundant328

samples. It achieves Information-Theoretic Diver-329

sity by preserving images that contribute the most330

to the subset’s entropy, ensuring data efficiency.331

4 Experiments332

We first present our experimental setup and evalu-333

ation benchmarks, followed by comparisons with334

state-of-the-art methods. Next, we analyze our335

method’s behavior and effectiveness across various336

dimensions. Additionally, we evaluate the transfer-337

ability of our strategy to unseen tasks and model338

architectures. Finally, we conduct ablation studies339

to assess the contribution of each component.340

4.1 Experiment Setup341

Dataset & Model: We evaluate PRISM on the vi-342

sual instruction tuning dataset LLaVA-665K (Liu343

et al., 2024a), using LLaVA-1.5-7B (Liu et al.,344

2024a) as our primary base model. All experi-345

ments are conducted for one epoch following the346

official fine-tuning hyperparameters. To ensure a347

fair comparison, we maintain a consistent training348

environment across all evaluations.349

Baselines: We compare PRISM against a compre-350

hensive set of data selection baselines, including351

Algorithm 1 PRISM Data Selection

Require: Image dataset D = {I1, . . . , IN}, vi-
sion encoder VE, projector Proj, LLM layer l,
threshold τ

Ensure: Selected subset Dselected
1: Step 1: Intrinsic Feature Extraction
2: for each image Ii ∈ D do
3: Compute visual embedding: vi ← VE(Ii)
4: Project to LLM space: zi ← Proj(vi)
5: Extract layer-l features:

Fi ←
1

T

T∑
t=1

LLM(l)(zi)t

6: end for
7: Step 2: Correlation Analysis
8: Construct feature matrix F ∈ RN×d

9: Compute Pearson matrix Pij ← cov(Fi,Fj)
σFi

σFj

10: Score images: Ci ←
∑N

j=1 Pij ,∀i
11: Step 3: Self-Pruning Selection
12: Sort indices: argsort(C) ← [i1, . . . , iN ] s.t.

Ci1 ≤ · · · ≤ CiN

13: Select subset: Dselected ← {Iik | k ≤ ⌊τN⌋}
14: return Dselected

Random Selection, Instruction Length, Perplex- 352

ity (Liu et al., 2024d), GraNd (Paul et al., 2023), 353

EL2N (Paul et al., 2023), InstructionGPT-4 (Wei 354

et al., 2023), SELF-FILTER (Chen et al., 2024), 355

TIVE (Liu et al., 2024d), COINCIDE (Lee et al., 356

2024), DataTailor (Yu et al., 2024a), and ICONS 357

(Wu et al., 2025). To ensure fair comparisons, we 358

adopt the experimental settings and incorporate re- 359

sults from ICONS (Wu et al., 2025) and TIVE (Liu 360

et al., 2024d). 361

Benchmarks: Following the evaluation framework 362

of LLaVA-1.5 (Liu et al., 2024a), we assess the 363

effectiveness of PRISM across a diverse set of mul- 364

timodal benchmarks designed to test various capa- 365

bilities of MLLMs. These benchmarks are grouped 366

into three main categories: understanding and rea- 367

soning, factual consistency and generalization, and 368

visual conversation and core multimodal skills. 369

For understanding and reasoning, we evaluate the 370

model’s ability to perform multiple-choice tasks 371

(MMBench (Liu et al., 2024c)), scientific question 372

answering (ScienceQA (Lu et al., 2022)), and mul- 373

timodal reasoning (MME (Yin et al., 2023)). For 374

factual consistency and generalization, we measure 375

the model’s tendency for hallucination (POPE (Li 376
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et al., 2023a)) and its zero-shot generalization abil-377

ity on unseen visual queries (VizWiz (Gurari et al.,378

2018)). Finally, for visual conversation and core379

multimodal skills, we assess the model’s conversa-380

tional capabilities (MM-Vet (Yu et al., 2024b)) and381

its proficiency in perception, knowledge integra-382

tion, and reasoning (MMMU (Yue et al., 2024)).383

4.2 Main Results384

We present a comprehensive evaluation of PRISM385

across multiple settings. First, in Table 1, we386

compare PRISM with the baseline methods se-387

lected above on the LLaVA-1.5-7B model (Liu388

et al., 2024a). This demonstrates its superior per-389

formance in multimodal data selection. Next, Table390

2 showcases the results of PRISM across different391

MLLMs, which highlights its generalizability and392

robustness. Finally, Table 3 focuses on PRISM’s393

text-only capabilities, which provides insights into394

its effectiveness in uni-modal settings.395

We further analyze these results as follows:396

Superior Multimodal Understanding. As shown397

in Table 1, PRISM achieves the best performance398

across 11 multimodal benchmarks, surpassing full-399

dataset fine-tuning by 1.7% in relative perfor-400

mance. Notably, PRISM excels in instruction-401

sensitive tasks: it outperforms full fine-tuning on402

MMBench (65.2 vs. 64.3) and MM-Vet (32.0 vs.403

31.1), demonstrating its ability to select samples404

that enhance complex reasoning and visual con-405

versation capabilities. The improvements are par-406

ticularly significant compared to gradient-based407

methods like GraNd (62.9 vs. 65.2 on MMBench),408

highlighting the limitations of loss-driven selection409

in multimodal contexts.410

Hallucination Mitigation. PRISM achieves411

the highest scores on all POPE subsets412

(87.7/88.7/85.5), outperforming even spe-413

cialized hallucination reduction methods like414

ICONS (87.5). This suggests that low-correlation415

samples inherently reduce the model’s tendency416

to generate inconsistent facts, as they avoid417

overfitting to spurious text-visual correlations418

prevalent in redundant data.419

Balanced Efficiency and Performance. While420

gradient-based methods like TIVE achieve compa-421

rable average performance (100.6% rel.), their total422

time costs (selection + training) often exceed full423

fine-tuning due to iterative model updates. In con-424

trast, PRISM achieves higher accuracy (101.7%)425

and reduces total time by 70%. This efficiency426

stems from its training-free advantage: feature ex-427

traction and correlation computation are executed 428

in a single forward pass and offline batched process- 429

ing, respectively, with negligible overhead com- 430

pared to full training cycles. Remarkably, PRISM 431

simultaneously enhances spatial reasoning capa- 432

bilities (330.0 on MME-C vs. 311.9 for full fine- 433

tuning), validating that its selection criteria pre- 434

serve geometrically informative samples often lost 435

in random or length-based pruning. 436

4.3 Model Behavior Analysis 437

Cross-Model Generalization and Scalability. 438

PRISM is designed to identify high-value data that 439

remains effective across different model architec- 440

tures and scales. To validate this, we assess whether 441

data selected using one model setup can benefit 442

others. While our subset was initially selected 443

with LLaVA-1.5-7B, we further evaluate its effec- 444

tiveness on two additional model configurations. 445

The detailed architectures of these models are sum- 446

marized in Appendix 7. The results approve that 447

PRISM captures generally useful training samples 448

rather than those tailored to a specific model. 449

As shown in Table 2, PRISM demonstrates strong 450

cross-architecture and cross-scale generalization 451

capabilities. The subset selected using the 7B 452

model achieves competitive performance across 453

different model sizes and architectures, suggest- 454

ing that our method captures fundamental visual- 455

language understanding capabilities that are trans- 456

ferable and scalable. This highlights the robustness 457

of PRISM in identifying high-value data points that 458

generalize well across diverse multimodal model 459

configurations. 460

Language Knowledge Retention. While visual 461

instruction tuning significantly enhances perfor- 462

mance on vision-centric tasks, it often leads to a 463

degradation in the model’s ability to handle text- 464

only tasks (Zhang et al., 2024). To assess the text- 465

only performance, we evaluate PRISM on a range 466

of benchmarks accordingly, including interdisci- 467

plinary knowledge assessments such as MMLU 468

(Hendrycks et al., 2021) and MMLU-PRO (Wang 469

et al., 2024), as well as reasoning tasks like Hel- 470

laSwag (Zellers et al., 2019). These benchmarks 471

are designed to test the model’s ability to retain and 472

utilize its original language understanding capabili- 473

ties after multimodal fine-tuning. 474

The results in Table 3 further demonstrate that 475

PRISM in some cases can even improve the 476

model’s performance on text-only tasks, suggesting 477

that our data selection method effectively mitigates 478

6



Method SQA SQA-I VizWiz POPE-P POPE-R POPE-A MM-Vet MMBench MME-P MME-C MMMU Rel. (%)

Full-Finetune 69.4 66.8 50.0 86.1 87.3 84.2 31.1 64.3 1510.7 311.9 35.4 100%

Random 65.5 64.5 48.1 85.1 84.6 83.6 30.2 55.5 1492.0 233.5 30.5 93.2%
Length 66.8 66.7 47.0 85.4 85.5 84.1 31.5 57.0 1422.1 306.0 33.1 96.6%
EL2N 70.2 70.6 44.4 85.6 85.6 85.6 - 61.6 1356.5 294.7 - 97.2%
Perplexity 70.5 67.9 - 83.3 83.3 83.3 - 62.3 1393.3 260.7 - 95.8%
GraNd 71.4 68.4 37.8 82.5 82.5 82.5 - 62.9 1400.5 287.1 - 94.6%
TIVE 72.2 70.6 - 85.6 85.6 85.6 - 63.2 1433.0 322.1 - 100.6%
InstructionGPT-4 - - - - - - - 31.4 463.3 - - 39.75%
Self-Filter - 61.4 53.2 83.8 83.8 83.8 - 61.4 1306.2 - - 96.1%
COINCIDE - 69.2 46.8 86.1 86.1 86.1 - 63.1 1495.6 - - 99.3%
ICONS - 70.8 - 87.5 87.5 87.5 - 63.1 1485.7 - - 101.0%
DataTailor 71.0 - 49.5 85.3 85.3 85.3 - - 1476.1 319.2 - 99.9%

PRISM (Ours) 71.3 69.1 50.1 87.7 88.7 85.5 32.0 65.2 1470.0 330.0 34.7 101.7%

Table 1: Evaluation of PRISM against full fine-tuning and existing data selection approaches across multiple
multimodal understanding benchmarks. PRISM achieves superior performance, surpassing full fine-tuning while
significantly reducing computational costs. Metrics in bold indicate improvements over the full fine-tuning baseline.
For POPE, we report the average score across three subsets for certain baselines due to the unavailability of complete
results.

Model SQA SQA-I VizWiz POPE-P POPE-R POPE-A MM-Vet MMBench MME-P MME-C MMMU Rel. (%)

LLaVA-Phi2-3B 75.3 72.7 41.2 87.3 88.6 86.1 35.6 68.7 1467.7 298.0 37.7 100%
PRISM-3B 76.3 72.8 40.9 87.5 88.8 86.5 34.1 68.9 1485.5 305.0 37.6 100.1%

LLaVA-Vicuna-7B 69.4 66.8 50.0 86.1 87.3 84.2 31.1 64.3 1510.7 311.9 35.4 100%
PRISM-7B 71.3 69.1 50.1 87.7 88.7 85.5 32.0 65.2 1470.0 330.0 34.7 101.7%

LLaVA-Vicuna-13B 74.4 71.6 53.6 87.4 88.0 85.6 36.1 67.7 1531.3 295.4 35.1 100%
PRISM-13B 74.5 71.8 53.1 87.7 88.4 85.7 36.4 65.8 1538.5 307.5 35.7 100.4%

Table 2: Performance on Cross-Model Generalization and Scalability with PRISM.

Model Hellaswag MMLU MMLU-PRO Rel. (%)

LLaVA-Phi2-3B 66.0 50.5 9.1 100%
PRISM-3B 67.4 52.7 8.6 100.3%

LLaVA-Vicuna-7B 66.5 35.0 17.8 100%
PRISM-7B 66.5 41.1 15.7 101.9%

LLaVA-Vicuna-13B 69.5 36.2 6.8 100%
PRISM-13B 69.6 39.5 12.4 130.6%

Table 3: Results on language benchmarks.

Method Data Selection Visual Instruction Tuning Overall

Full-Finetune - 94 (Hours) 94

TIVE 87 (Hours) 14 (Hours) 101 (+7.5%)
PRISM 1.5 (Hours) 28 (Hours) 29.5 (-71%)

Table 4: Wall-clock runtime (measured as A100 80G
GPU) for total computation cost.

the knowledge forgetting problem commonly as-479

sociated with visual instruction tuning. This high-480

lights the dual benefit of PRISM: enhancing mul-481

timodal task performance while maintaining the482

model’s foundational language capabilities.483

4.4 Ablation Study484

To validate the design choices of PRISM, we con-485

duct systematic ablation studies on three key com-486

ponents: LLM layer selection, correlation-based487

scoring, and token aggregation for image represen-488

tation. 489

Influence of LLM Layer Selection. We first in- 490

vestigate how different transformer layers impact 491

PRISM’s performance by extracting features from 492

three representative layers: Shallow Layer 1, which 493

captures low-level visual patterns such as edges 494

and textures; Middle Layer 16, which balances vi- 495

sual and semantic features; and Deep Layer 32, 496

which encodes high-level semantic abstractions. 497

As shown in Table 5, PRISM achieves the high- 498

est performance when using shallow layer features, 499

outperforming deeper layers by 2.8%. This result 500

indicates that early-layer embeddings sufficiently 501

capture the necessary information for redundancy 502

detection, while deeper layers may overfit to task- 503

specific semantics, leading to reduced generaliz- 504

ability. 505

Impact of Correlation-based Selection. We eval- 506

uate PRISM’s correlation-based selection strat- 507

egy by partitioning the dataset into three groups 508

based on their Pearson correlation scores: Low- 509

Correlation Group, Medium-Correlation Group, 510

and High-Correlation Group. The results in Table 5 511

demonstrate that selecting low-correlation samples 512

leads to the highest performance, outperforming 513

the high-correlation group by 3.7%. This supports 514
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Method SQA SQA-I VizWiz POPE-P POPE-R POPE-A MM-Vet MMBench MME-P MME-C MMMU Rel. (%)

Deep Layer 71.2 69.1 51.6 86.6 88.0 84.2 31.1 62.9 1477.0 254.0 34.5 97.2%
Middle Layer 70.9 69.1 47.7 86.5 87.8 84.2 31.9 65.0 1517.1 276.0 34.9 97.9%

Shallow Layer 71.3 69.1 50.1 87.7 88.7 85.5 32.0 65.2 1470.0 330.0 34.7 100.0%

High Correlation 70.6 68.0 48.1 85.8 87.6 83.9 30.7 64.0 1428.5 275.3 33.5 96.3%
Moderate Correlation 71.0 69.7 48.3 85.9 86.7 84.0 30.0 64.2 1509.0 286.0 34.1 97.3%

Low Correlation 71.3 69.1 50.1 87.7 88.7 85.5 32.0 65.2 1470.0 330.0 34.7 100.0%

Last Token 69.9 67.3 49.4 87.4 88.3 85.0 31.6 62.6 1471.0 272.0 35.3 97.4%
Avg Pooling 71.3 69.1 50.1 87.7 88.7 85.5 32.0 65.2 1470.0 330.0 34.7 100.0%

Table 5: Ablation study results on LLM layer selection, correlation-based scoring, and token aggregation for image
representation.

our hypothesis that prioritizing samples with mini-515

mal correlation maximizes informational diversity,516

whereas high-correlation samples tend to be redun-517

dant, diminishing their contribution to multimodal518

learning. Our findings underscore the effectiveness519

of leveraging feature correlation as a criterion for520

efficient data selection (see Appendix C for further521

analysis).522

Effect of Token Aggregation Strategy. Finally,523

we examine how different token aggregation meth-524

ods influence image feature modeling. We compare525

two approaches: Average Token, which computes a526

global average over all transformer tokens, and Last527

Image Token, which uses only the final image token528

in the sequence. As shown in Table 5, the average529

token method achieves the best performance, sur-530

passing the last image token by 2.6%. This result531

aligns with PRISM’s design principle that averag-532

ing token representations captures holistic visual533

semantics, whereas relying on the last token may534

introduce positional biases or task-specific artifacts.535

These findings validate our choice of average pool-536

ing as a more robust and generalizable strategy for537

training-free multimodal data selection.538

5 Related Work539

Visual Instruction Tuning: Visual instruction tun-540

ing is essential for aligning MLLMs with both541

practical applications and academic benchmarks.542

Early methods relied on synthetic visual instruc-543

tions, which performed well in conversations but544

struggled on rigorous benchmarks. A hybrid ap-545

proach later emerged, integrating synthetic data546

with academic datasets to improve training diver-547

sity. This advancement has enhanced models like548

LLaVA (Liu et al., 2024b), InstructBLIP (Dai et al.,549

2023), and Cambrian (Tong et al., 2024), enabling550

better visual-linguistic understanding. Beyond task551

performance, visual instruction tuning improves552

model alignment with user expectations, ensuring553

both practical utility and strong academic perfor- 554

mance. 555

Visual Instruction Selection: Despite the strong 556

performance of MLLMs, the rapid growth of vi- 557

sual instruction datasets has introduced signifi- 558

cant redundancy, similar to challenges in LLMs 559

(Zhou et al., 2024; Chen et al., 2023; Xia et al., 560

2024). State-of-the-art models like BLIP3 (Xue 561

et al., 2024), InternVL2.5 (Chen et al., 2025), and 562

LLaVA-OneVision (Li et al., 2024) rely on billions 563

of instructions to enhance understanding, but their 564

massive scale leads to substantial computational 565

costs, often requiring hundreds to thousands of 566

GPU hours. 567

To address this, various data selection strategies 568

aim to reduce redundancy while preserving per- 569

formance. TIVE (Liu et al., 2024d) selects valu- 570

able data based on gradient similarity but requires 571

additional training on downstream tasks. SELF- 572

FILTER (Chen et al., 2024) uses an auxiliary 573

evaluation model to prioritize high-value samples. 574

COINCIDE (Lee et al., 2024) clusters data by 575

conceptual and skill-based representations, while 576

InstructionGPT-4 (Wei et al., 2023) filters 200 in- 577

structions for MiniGPT-4 (Zhu et al., 2023), though 578

it lacks scalability. ICONS (Wu et al., 2025) ex- 579

tends LESS (Xia et al., 2024) by incorporating 580

specialist influence estimation for instruction tun- 581

ing. DataTailor (Yu et al., 2024a) selects data based 582

on informativeness, uniqueness, and representative- 583

ness to retain the most relevant samples. 584

6 Conclusion 585

PRISM leverages MLLMs’ intrinsic cross-modal 586

alignment to select high-value samples using Pear- 587

son correlations of token embeddings, requiring 588

no proxy models or training. It achieves 70% cost 589

reduction while maintaining performance, setting a 590

new standard for efficient multimodal learning. 591
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Limitations592

A limitation of this work is the static nature of593

the data selection strategy, which only handles text594

and image modalities. Extending this approach to595

include video and sound could introduce challenges596

due to the temporal and sequential properties of597

these modalities.598

Additionally, our method does not incorporate dy-599

namic data selection during training. Adapting the600

selection process over time could improve model601

efficiency by focusing on the most relevant data602

at each stage, particularly for large and diverse603

datasets.604
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A Dataset Details774

We present the detailed composition of the PRISM-775
Instruct-250K dataset, which spans multiple visual776
question answering (VQA), image understanding,777
and text-based tasks. This diverse selection ensures a778
comprehensive representation of multimodal learning779
challenges. The table below shows the distribution of780
samples across different data sources.

Dataset Number of Samples

LLaVA 53,591
VQAv2 27,567
OKVQA 2,997
A-OKVQA 22,032
RefCOCO 16,933
VG 28,777
GQA 24,023
OCRVQA 26,638
TextCaps 7,311
Text-Only 40,688

Total 250,557

Table 6: Sample distribution of the PRISM-selected
Instruct-250K dataset.

781

B Model Architectures782

In our experiments, we assess PRISM’s transferabil-783
ity across various model architectures and scales,784
following the methodology outlined in (Bi et al.,785
2025). The models tested include LLaVA-Vicuna-786
7B, LLaVA-Phi2-3B, and LLaVA-Vicuna-13B. Each787
model consists of a vision encoder, a projector, and a788
language model. The table below summarizes their789
configurations.790

Table 7: Architectural configurations of the models used
in our experiments.

Model Vision Encoder Language Model

LLaVA-Vicuna-7B CLIP ViT-L/14 336px Vicuna v1.5 7B
LLaVA-Phi2-3B SigLIP-SO400M-Patch14-384 Phi-2 2.7B
LLaVA-Vicuna-13B CLIP ViT-L/14 336px Vicuna v1.5 13B

C Shannon Entropy and Feature791

Diversity792

Let F = {f1, f2, . . . , fN} denote the set of feature793
vectors extracted from the dataset D, where each fi ∈794
Rd corresponds to the averaged token embedding of795
image Ii. The Shannon entropy H(F ) of the feature796
set is defined as:797

H(F ) = −
N∑
i=1

p(fi) log p(fi), (5)798

where p(fi) is the probability density of feature fi.799
In practice, p(fi) can be approximated using kernel800

density estimation or other non-parametric methods. 801
However, directly maximizing H(F ) is computation- 802
ally infeasible for large datasets. Instead, we use the 803
Pearson correlation matrix P as a proxy for feature 804
diversity. 805

The Pearson correlation matrix P captures pairwise 806
linear dependencies between feature vectors. For a 807
given feature fi, the correlation score is given by: 808

Ci =

N∑
j=1

Pij , (6) 809

which quantifies its overall alignment with the dataset. 810
Low Ci values indicate that fi is weakly correlated 811
with other features, suggesting that it contributes 812
unique information to the dataset. 813

Let Fselected = {fi | Ci ≤ Qτ ({Cj}Nj=1)} denote the 814
subset of features selected by PRISM, where Qτ is 815
the τ -th percentile of correlation scores. The entropy 816
of Fselected can be approximated as: 817

H(Fselected) ≈ −
∑

fi∈Fselected

p(fi) log p(fi). (7) 818

By selecting features with minimal Ci, we implicitly 819
minimize the pairwise dependencies within Fselected, 820
thereby maximizing the entropy H(Fselected). This 821
is because low-correlation features are less likely 822
to share redundant information, leading to a more 823
diverse and informative subset. 824

We now formalize this intuition with the following 825
theorem: 826

Theorem 1 (Entropy Maximization via Low- 827
Correlation Selection): Let F be a set of feature 828
vectors with correlation matrix P . For any subset 829
Fselected ⊆ F , the Shannon entropy H(Fselected) is 830
maximized when Fselected consists of features with 831
minimal row-wise sums: 832

Ci =

N∑
j=1

Pij . (8) 833

Proof: The proof follows from the properties of Shan- 834
non entropy and the definition of Pearson correlation. 835
Let Fselected = {fi | Ci ≤ Qτ ({Cj}Nj=1)}. By con- 836
struction, Fselected contains features that are minimally 837
correlated with the rest of the dataset. This implies 838
that the pairwise dependencies within Fselected are 839
reduced, leading to a higher entropy H(Fselected). 840

Formally, for any two subsets F1 and F2 with 841
H(F1) > H(F2), the features in F1 exhibit lower 842
pairwise correlations on average. Thus, selecting fea- 843
tures with minimal Ci ensures that H(Fselected) is 844
increased. 845

The above theorem provides a theoretical founda- 846
tion for PRISM’s low-correlation selection strategy. 847
By prioritizing features with minimal Ci, PRISM 848
ensures that the selected subset Fselected is both di- 849
verse and informative, aligning with the principles of 850
information-theoretic feature selection. 851
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