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Abstract001

Sign language is a vital modality in human com-002
munication, yet current AI systems face signifi-003
cant challenges in recognizing it due to limited004
annotated data and high intra-class variability.005
In this work, we present a low-resource ap-006
proach to isolated sign language recognition by007
framing it as a few-shot learning problem, using008
a prototypical network trained on a small sup-009
port set. Our method utilizes a modified Slow-010
Fast convolutional architecture to extract rich011
spatio-temporal embeddings from sign videos,012
facilitating metric-based comparison between013
support-set exemplars and query clips. Un-014
like conventional models that require extensive015
training data, our approach generalizes to un-016
seen sign classes using only a few labeled ex-017
amples. We evaluate our model on the LSA64018
dataset in a strict few-shot setting, achieving019
88% accuracy on held-out classes, substantially020
outperforming baselines. This study highlights021
the potential of combining efficient video rep-022
resentations with metric learning to enable scal-023
able, data-efficient sign language understand-024
ing. Our results advocate for future human-AI025
interaction systems that are inclusive and ac-026
cessible, even in low-resource communication027
domains.028

1 Introduction029

Sign languages serve over 70 million deaf and030

hard-of-hearing individuals worldwide but exhibit031

considerable regional variation—e.g., American032

Sign Language and British Sign Language are mu-033

tually unintelligible among some 300 distinct lan-034

guages (Rastgoo et al., 2021; Emmorey, 2023).035

This diversity hinders communication both be-036

tween signers of different varieties and between037

signers and non-signers. Recent deep-learning038

methods for Sign Language Recognition (SLR)039

leverage RGB, skeletal, and multimodal inputs040

(Ahn et al., 2023; Alsulami et al., 2024; Papas-041

tratis et al., 2020) and address two sub-tasks:042

isolated (single-sign) and continuous (sequence) 043

recognition (Zhou et al., 2021). Popular architec- 044

tures include CNN–RNN hybrids, i.e., Convolu- 045

tional Neural Networks (CNNs) with Recurrent 046

Neural Networks (RNNs) (Min et al., 2021; Pa- 047

pastratis et al., 2020), Transformer-based models 048

(Camgoz et al., 2020), and graph neural networks 049

(de Amorim et al., 2019). The scarcity of annotated 050

sign-language datasets hampers progress, motivat- 051

ing few-shot learning adaptations such as proto- 052

typical networks (Snell et al., 2017; Ferreira et al., 053

2022; Alsulami et al., 2024). In this work, we in- 054

tegrate the SlowFast network (Feichtenhofer et al., 055

2019), noted for its success in continuous SLR 056

(Ahn et al., 2023), into a prototypical-learning 057

framework and evaluate its effectiveness on the 058

LSA64 dataset (Ronchetti et al., 2023) for few-shot 059

recognition of novel sign classes under low-sample 060

conditions. 061

2 Related Works 062

Sign language recognition (SLR) employs various 063

methodological frameworks. Traditional methods 064

combine CNNs with RNNs for Continuous SLR 065

(CSLR) (Min et al., 2021; Papastratis et al., 2020), 066

while graph-based approaches (de Amorim et al., 067

2019) are suitable for isolated SLR using skeletal 068

data. Transformer-based methods (Camgoz et al., 069

2020; Ferreira et al., 2022; Alsulami et al., 2024) 070

excel in both tasks by capturing temporal depen- 071

dencies. 072

Feature extraction is essential for effective SLR. 073

The SlowFast network (Feichtenhofer et al., 2019), 074

designed for video recognition, has been adapted 075

for SLR, enhancing Continuous SLR (Ahn et al., 076

2023) and proving effective for isolated SLR (Has- 077

san et al., 2021). Our work uses SlowFast as the 078

feature extractor in a few-shot learning approach. 079

Limited annotated data drives few-shot learning 080

in SLR. Prototypical Networks have been applied 081
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to small datasets (Ferreira et al., 2022), while recent082

studies integrate Transformers with few-shot frame-083

works (Ferreira et al., 2022; Boháek and Hrúz,084

2023; Alsulami et al., 2024). Interestingly, (Al-085

sulami et al., 2024) achieves strong results using086

skeletal data extracted from RGB videos, while087

(Sari et al., 2023) employs Shufflenet_V2 to per-088

form few-shot sign language recognition in Indone-089

sian. In contrast, (Bilge et al., 2023) explores zero-090

shot recognition using TSM, 3D CNN + BiLSTM,091

and BERT; its focus differs from few-shot learning092

but highlights related data scarcity solutions.093

This work targets isolated SLR, leveraging Slow-094

Fast in a few-shot approach. Unlike prior studies095

(Alsulami et al., 2024; Sari et al., 2023), the use of096

RGB-based SlowFast features is novel, enhancing097

performance under data constraints.098

3 Few-shot Learning099

Few-shot learning (FFL) enables models to general-100

ize to new categories from only a few examples per101

class (Snell et al., 2017). This is especially valu-102

able in sign language recognition (SLR), where103

collecting large labeled datasets can be difficult or104

costly (Alsulami et al., 2024). Unlike traditional105

classifiers that require many samples and can only106

recognize seen classes, FSL embeds samples into a107

shared space where unseen classes can be handled108

by comparing new examples to a small support set.109

FSL methods fall into two main groups: transfer-110

based (non-meta) and meta-learning, the latter in-111

cluding metric-based approaches such as Siamese,112

Matching, and Prototypical Networks (Parnami and113

Lee, 2022). These metric-based models learn an114

embedding so that examples cluster around class115

“prototypes,” allowing for simple nearest-prototype116

classification for novel samples.117

3.1 Prototypical Networks118

Prototypical Networks assume each class is rep-119

resented by the mean (“prototype”) of its sup-120

port embeddings (Snell et al., 2017). Training121

proceeds episodically: each episode samples an122

N -way k-shot support set and query set, where N123

represents the number of classes and k the number124

of examples per class. The network is optimized125

to minimize classification error across many such126

tasks (Parnami and Lee, 2022). At the test stage,127

a query is assigned to the class with the closest128

prototype under a chosen distance metric. Classi-129

fication uses a softmax over these distances, and130

parameters are learned via negative log-likelihood. 131

3.2 SlowFast Network 132

The SlowFast network (Feichtenhofer et al., 2019) 133

is a two-stream architecture designed for video 134

recognition, featuring a Slow pathway for spatial 135

semantics and a Fast pathway for temporal dynam- 136

ics. Its proven success in sign language recognition, 137

achieving a low Word Error Rate (WER) on bench- 138

mark datasets (Ahn et al., 2023), motivated its adop- 139

tion for this prototypical approach to isolated sign 140

language recognition. In this context, the Slow 141

pathway captures spatial features, such as hand 142

shapes, while the Fast pathway targets dynamic 143

gestures, both of which are critical for accurate 144

recognition (Ahn et al., 2023). Lateral connections 145

fuse Fast features into the Slow stream, enriching 146

spatial representations with temporal cues (Feicht- 147

enhofer et al., 2019). Modifications, such as the 148

Bi-directional Feature Fusion module (Ahn et al., 149

2023), further boost performance by focusing on 150

salient regions. 151

4 Methodology 152

4.1 Dataset 153

The LSA64 dataset (Ronchetti et al., 2023) con- 154

sists of 3200 videos of 64 common Argentinian 155

Sign Language signs (verbs and nouns), performed 156

by 10 non-expert participants with 5 repetitions 157

each. Recorded with fluorescent gloves to facili- 158

tate hand segmentation, it supports the creation of 159

a sign dictionary and the training of an automatic 160

recognition system. 161

4.2 Data processing 162

The data were loaded with a fixed seed for repro- 163

ducibility. All videos were normalized to the range 164

[0, 1], resized to 224 × 224 pixels (retaining all 165

three RGB channels), and zero-padded within each 166

batch to match the longest sequence, as sequences 167

varied in length. The dataset was split 80:20 into 168

52 training and 12 validation classes, with valida- 169

tion samples strictly held out to avoid embedding 170

adaptation (see Tab.1) to unseen samples. All split 171

parameters and preprocessing code are documented 172

in the accompanying repository1. 173

1Code available at https://anonymous.4open.
science/r/SlowFast_Prototypical_SLR-E54A
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Split # Samples Sample IDs
Train 52 1, 2, 4, 5, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 19, 20, 21, 22, 23, 24,
26, 28, 29, 30, 31, 32, 33, 34,
36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 51, 52,
53, 55, 57, 58, 59, 60, 61, 62

Test 12 3, 6, 7, 18, 25, 27, 35, 50, 54,
56, 63, 64

Table 1: Dataset split into train and test sets.

Figure 1: Illustration of the few-shot sign language
recognition pipeline using a prototypical network with
the SlowFast feature embedder. The graphic shows the
processing of video samples and the training process,
where embeddings are learned to cluster same-class
samples and separate different-class samples, enabling
classification based on proximity to class prototypes.
For SlowFast architecture details, see (Fan et al., 2020;
Feichtenhofer et al., 2019).

4.3 Training details174

Training was performed for 30 epochs, each con-175

sisting of 100 episodes, using a custom episodic176

sampler (see 1) to enforce class balance. Due to177

GPU memory limitations, we fixed n-way=4, with178

three support and two query samples per class, all179

sampled at random within each episode. Repro-180

ducibility was ensured by seeding both PyTorch181

and Python’s random libraries with 123 across train-182

ing, testing, and evaluation. Optimization used the183

Euclidean-distance-based loss from (Snell et al.,184

2017), modified to accommodate video inputs.185

5 Experiments186

The experiments were conducted on a split dataset187

comprising not only unseen samples but also entire188

classes withheld during training (see Tab. 1). The189

model’s performance was evaluated using n-way190

classification with n=5 and n=10, support sizes191

ranging from 1 to 10, and a fixed query size of 15,192

following similar methodology in (Ferreira et al.,193

Figure 2: Confusion Matrix of Test Set Predictions.

2022). Classification accuracy, defined as the pro- 194

portion of correctly classified query samples per 195

episode, was averaged over 1000 episodes to en- 196

sure robust results across diverse signer samples. 197

The results and settings are presented in Table 2. 198

n_way Accuracy (k_support)
1-shot 5-shot 10-shot

5-way 80.0 90.7 92.0
10-way 66.0 81.9 84.9

Table 2: Average Classification Accuracy for Different
Few-Shot Configurations

(qquery = 15, nepisodes = 1000; values in [%]

To further assess generalization, we extracted 199

embeddings for all test samples and computed class 200

prototypes as the mean embedding of each class 201

training examples. Each test embedding was then 202

assigned to its nearest prototype via Euclidean dis- 203

tance. Of 600 test samples, 73 were misclassified 204

(12% error; 88% accuracy). A confusion matrix 205

(Fig. 2) provides a detailed breakdown of classifi- 206

cation results, illustrating both correct predictions 207

and errors across all test classes. 208

5.1 UMAP visualization 209

To visualize the embeddings, we employed the 210

UMAP algorithm (McInnes et al., 2020), a dimen- 211

sion reduction technique that constructs a fuzzy 212

topological model of high-dimensional data using 213

local manifold approximations and fuzzy simpli- 214

cial sets. It assumes data points are uniformly dis- 215

tributed on a locally connected Riemannian man- 216

ifold with a constant metric, optimizing a low- 217

dimensional representation by minimizing cross- 218

entropy between high- and low-dimensional mod- 219

els. Unlike t-SNE, UMAP preserves both local 220
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Figure 3: UMAP visualization of embeddings from the test (left) and training (right) dataset. The x-axis (UMAP 1)
and y-axis (UMAP 2) are the first and second components of the 128→2 UMAP projection. Embeddings from the
test and 12 randomly selected training classes are shown, with class prototypes indicated by star-shaped markers to
illustrate clustering behavior in the low-dimensional space.

neighborhoods and global structures efficiently221

(McInnes et al., 2020), making it ideal for few-222

shot learning where sign language samples of the223

same class must cluster closely. We applied UMAP224

to test embeddings to assess generalization and to225

compare embeddings from 12 randomly selected226

training classes, with results shown in Fig. 3.227

6 Results and Discussion228

The proposed slow-fast meta-based network229

achieved an accuracy of 88% on the test split230

dataset, effectively handling unseen data. Predic-231

tions were made by calculating the distance be-232

tween a sample’s embedding and class prototypes,233

formed by averaging embeddings within each class.234

This 88% accuracy, with a 12% error rate, aligns235

with prototypical learning goals, highlighting the236

network’s (Feichtenhofer et al., 2019) reliability as237

a feature extractor for isolated SLR.238

Visualization of test dataset embeddings using239

UMAP (McInnes et al., 2020) revealed that some240

classes formed distinct clusters, while others, such241

as "025", "027", and "064", overlapped (see Fig.242

3). These overlaps are reflected in the confusion243

matrix, where 11 of 50 samples from class “064”244

are misclassified as “027” (Fig. 2). While this245

agreement between UMAP and the confusion ma-246

trix reinforces the validity of our embedding space,247

we note that the 2-D projection may oversimplify248

the original 128-dimensional relationships and thus249

could either magnify or obscure certain class prox-250

imities. On the selected training subset, UMAP vi-251

sualization shows good class separation, yet some252

samples are near other class prototypes, suggesting253

potential misclassification or similarities the model 254

struggles to disentangle, possibly due to unseen 255

training samples. 256

Overall, the model demonstrates strong perfor- 257

mance in few-shot sign language recognition, with 258

effective feature extraction, though challenges re- 259

main in separating certain classes. 260

7 Conclusion 261

This study demonstrated that the SlowFast network, 262

combined with prototypical learning, achieves 88% 263

accuracy in isolated sign language recognition 264

(SLR), effectively extracting features from unseen 265

data. While the model excels in clustering most 266

classes, it struggles with overlapping ones. Future 267

research should focus on validating the model on 268

larger, glove-free datasets and exploring alternative 269

modalities, such as skeletal landmarks, to enhance 270

robustness and reduce reliance on artificial markers. 271

Additionally, investigating margin-based loss func- 272

tions (e.g. multi-way contrastive loss (Parnami and 273

Lee, 2022)) and hyperparameter optimization could 274

improve class separability and address sampling 275

biases. 276

Limitations 277

Despite its demonstrated efficacy, the proposed pro- 278

totypical network exhibits notable difficulties in 279

discriminating among certain sign language ges- 280

tures. UMAP projections reveal overlapping clus- 281

ters for classes such as “025,” “027,” and “064,” 282

and the confusion matrix confirms systematic mis- 283

classifications—for example, instances of “064” 284

are frequently labeled as “027.” These observations 285
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suggest that, while the prototypical loss effectively286

draws semantically similar embeddings into close287

proximity, it does not always enforce sufficient288

inter-class separation. Moreover, the few-shot sam-289

pling strategy employed during training may inten-290

sify this issue: by randomly selecting only a subset291

of classes per episode, some samples may never292

contribute to prototype refinement, and increasing293

episodes or epochs risks overfitting to the limited294

training set.295

Further limitation arises from the dataset itself.296

Although the collection encompasses 64 gesture297

classes, our experiments utilize only 12 randomly298

selected categories (see Tab. 1), which constrains299

the breadth of the evaluation. In addition, signers300

wore fluorescent gloves to facilitate hand segmenta-301

tion (Ronchetti et al., 2023), enhancing recognition302

accuracy but undermining real-world applicability,303

as everyday users are unlikely to wear such equip-304

ment.305

Generalization to out-of-distribution visual data306

represents a further concern. By focusing exclu-307

sively on raw RGB inputs, the network may rely308

on background or context cues that do not transfer309

across environments.310

Finally, our reliance on two-dimensional UMAP311

visualizations to assess embedding separability in-312

troduces a methodological constraint. Reducing313

128-dimensional feature vectors to a planar repre-314

sentation inevitably distorts inter-point distances315

and may obscure the true structure of the embed-316

ding space, suggesting a need for more robust eval-317

uation methods in future studies.318
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A Implementation details400

The SlowFast model was implemented following401

(Feichtenhofer et al., 2019) using the official Slow-402

Fast Meta codebase (Fan et al., 2020). To match403

the Slow Pathway’s lower frame rate, we selected404

every eighth frame from each video sample. The ar-405

chitecture was modified by reducing the number of406

residual stages to three and the number of FuseFast-407

ToSlow blocks to two, with the embedding dimen-408

sion (WIDTH_PER_GROUP (Fan et al., 2020)) set409

to 32. The prediction head applies 3D average pool-410

ing and a linear layer, producing a 128-dimensional411

normalized embedding for each video. Training412

was conducted using PyTorch with the Adam opti-413

mizer and a learning rate of 0.001. The SlowFast414

pipeline is illustrated in Fig. 1. For further details415

on the implementation and additional experiments,416

see the code repository1.417
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