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Abstract

Sign language is a vital modality in human com-
munication, yet current Al systems face signifi-
cant challenges in recognizing it due to limited
annotated data and high intra-class variability.
In this work, we present a low-resource ap-
proach to isolated sign language recognition by
framing it as a few-shot learning problem, using
a prototypical network trained on a small sup-
port set. Our method utilizes a modified Slow-
Fast convolutional architecture to extract rich
spatio-temporal embeddings from sign videos,
facilitating metric-based comparison between
support-set exemplars and query clips. Un-
like conventional models that require extensive
training data, our approach generalizes to un-
seen sign classes using only a few labeled ex-
amples. We evaluate our model on the LSA64
dataset in a strict few-shot setting, achieving
88% accuracy on held-out classes, substantially
outperforming baselines. This study highlights
the potential of combining efficient video rep-
resentations with metric learning to enable scal-
able, data-efficient sign language understand-
ing. Our results advocate for future human-Al
interaction systems that are inclusive and ac-
cessible, even in low-resource communication
domains.

1 Introduction

Sign languages serve over 70 million deaf and
hard-of-hearing individuals worldwide but exhibit
considerable regional variation—e.g., American
Sign Language and British Sign Language are mu-
tually unintelligible among some 300 distinct lan-
guages (Rastgoo et al., 2021; Emmorey, 2023).
This diversity hinders communication both be-
tween signers of different varieties and between
signers and non-signers. Recent deep-learning
methods for Sign Language Recognition (SLR)
leverage RGB, skeletal, and multimodal inputs
(Ahn et al., 2023; Alsulami et al., 2024; Papas-
tratis et al., 2020) and address two sub-tasks:

isolated (single-sign) and continuous (sequence)
recognition (Zhou et al., 2021). Popular architec-
tures include CNN-RNN hybrids, i.e., Convolu-
tional Neural Networks (CNNs) with Recurrent
Neural Networks (RNNs) (Min et al., 2021; Pa-
pastratis et al., 2020), Transformer-based models
(Camgoz et al., 2020), and graph neural networks
(de Amorim et al., 2019). The scarcity of annotated
sign-language datasets hampers progress, motivat-
ing few-shot learning adaptations such as proto-
typical networks (Snell et al., 2017; Ferreira et al.,
2022; Alsulami et al., 2024). In this work, we in-
tegrate the SlowFast network (Feichtenhofer et al.,
2019), noted for its success in continuous SLR
(Ahn et al., 2023), into a prototypical-learning
framework and evaluate its effectiveness on the
LSA64 dataset (Ronchetti et al., 2023) for few-shot
recognition of novel sign classes under low-sample
conditions.

2 Related Works

Sign language recognition (SLR) employs various
methodological frameworks. Traditional methods
combine CNNs with RNNs for Continuous SLR
(CSLR) (Min et al., 2021; Papastratis et al., 2020),
while graph-based approaches (de Amorim et al.,
2019) are suitable for isolated SLR using skeletal
data. Transformer-based methods (Camgoz et al.,
2020; Ferreira et al., 2022; Alsulami et al., 2024)
excel in both tasks by capturing temporal depen-
dencies.

Feature extraction is essential for effective SLR.
The SlowFast network (Feichtenhofer et al., 2019),
designed for video recognition, has been adapted
for SLR, enhancing Continuous SLR (Ahn et al.,
2023) and proving effective for isolated SLR (Has-
san et al., 2021). Our work uses SlowFast as the
feature extractor in a few-shot learning approach.

Limited annotated data drives few-shot learning
in SLR. Prototypical Networks have been applied



to small datasets (Ferreira et al., 2022), while recent
studies integrate Transformers with few-shot frame-
works (Ferreira et al., 2022; Bohédek and Hruz,
2023; Alsulami et al., 2024). Interestingly, (Al-
sulami et al., 2024) achieves strong results using
skeletal data extracted from RGB videos, while
(Sari et al., 2023) employs Shufflenet_V2 to per-
form few-shot sign language recognition in Indone-
sian. In contrast, (Bilge et al., 2023) explores zero-
shot recognition using TSM, 3D CNN + BiLSTM,
and BERT; its focus differs from few-shot learning
but highlights related data scarcity solutions.

This work targets isolated SLR, leveraging Slow-
Fast in a few-shot approach. Unlike prior studies
(Alsulami et al., 2024; Sari et al., 2023), the use of
RGB-based SlowFast features is novel, enhancing
performance under data constraints.

3 Few-shot Learning

Few-shot learning (FFL) enables models to general-
ize to new categories from only a few examples per
class (Snell et al., 2017). This is especially valu-
able in sign language recognition (SLR), where
collecting large labeled datasets can be difficult or
costly (Alsulami et al., 2024). Unlike traditional
classifiers that require many samples and can only
recognize seen classes, FSL embeds samples into a
shared space where unseen classes can be handled
by comparing new examples to a small support set.

FSL methods fall into two main groups: transfer-
based (non-meta) and meta-learning, the latter in-
cluding metric-based approaches such as Siamese,
Matching, and Prototypical Networks (Parnami and
Lee, 2022). These metric-based models learn an
embedding so that examples cluster around class
“prototypes,” allowing for simple nearest-prototype
classification for novel samples.

3.1 Prototypical Networks

Prototypical Networks assume each class is rep-
resented by the mean (“prototype”) of its sup-
port embeddings (Snell et al., 2017). Training
proceeds episodically: each episode samples an
N-way k-shot support set and query set, where NV
represents the number of classes and & the number
of examples per class. The network is optimized
to minimize classification error across many such
tasks (Parnami and Lee, 2022). At the test stage,
a query is assigned to the class with the closest
prototype under a chosen distance metric. Classi-
fication uses a softmax over these distances, and

parameters are learned via negative log-likelihood.

3.2 SlowFast Network

The SlowFast network (Feichtenhofer et al., 2019)
is a two-stream architecture designed for video
recognition, featuring a Slow pathway for spatial
semantics and a Fast pathway for temporal dynam-
ics. Its proven success in sign language recognition,
achieving a low Word Error Rate (WER) on bench-
mark datasets (Ahn et al., 2023), motivated its adop-
tion for this prototypical approach to isolated sign
language recognition. In this context, the Slow
pathway captures spatial features, such as hand
shapes, while the Fast pathway targets dynamic
gestures, both of which are critical for accurate
recognition (Ahn et al., 2023). Lateral connections
fuse Fast features into the Slow stream, enriching
spatial representations with temporal cues (Feicht-
enhofer et al., 2019). Modifications, such as the
Bi-directional Feature Fusion module (Ahn et al.,
2023), further boost performance by focusing on
salient regions.

4 Methodology

4.1 Dataset

The LSA64 dataset (Ronchetti et al., 2023) con-
sists of 3200 videos of 64 common Argentinian
Sign Language signs (verbs and nouns), performed
by 10 non-expert participants with 5 repetitions
each. Recorded with fluorescent gloves to facili-
tate hand segmentation, it supports the creation of
a sign dictionary and the training of an automatic
recognition system.

4.2 Data processing

The data were loaded with a fixed seed for repro-
ducibility. All videos were normalized to the range
[0, 1], resized to 224 x 224 pixels (retaining all
three RGB channels), and zero-padded within each
batch to match the longest sequence, as sequences
varied in length. The dataset was split 80:20 into
52 training and 12 validation classes, with valida-
tion samples strictly held out to avoid embedding
adaptation (see Tab.1) to unseen samples. All split
parameters and preprocessing code are documented
in the accompanying repository'.

!Code available at https://anonymous.4open.
science/r/SlowFast_Prototypical _SLR-E54A
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Split | # Samples
Train 52

Sample IDs

1,2,4,5,8,9,10, 11, 12, 13, 14,
15,16, 17, 19, 20, 21, 22, 23, 24,
26, 28, 29, 30, 31, 32, 33, 34,
36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 51, 52,
53,55, 57, 58, 59, 60, 61, 62
3,6,7, 18, 25, 27, 35, 50, 54,
56, 63, 64

Test 12

Table 1: Dataset split into train and test sets.
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Figure 1: Illustration of the few-shot sign language
recognition pipeline using a prototypical network with
the SlowFast feature embedder. The graphic shows the
processing of video samples and the training process,
where embeddings are learned to cluster same-class
samples and separate different-class samples, enabling
classification based on proximity to class prototypes.
For SlowFast architecture details, see (Fan et al., 2020;
Feichtenhofer et al., 2019).

4.3 Training details

Training was performed for 30 epochs, each con-
sisting of 100 episodes, using a custom episodic
sampler (see 1) to enforce class balance. Due to
GPU memory limitations, we fixed n-way=4, with
three support and two query samples per class, all
sampled at random within each episode. Repro-
ducibility was ensured by seeding both PyTorch
and Python’s random libraries with 123 across train-
ing, testing, and evaluation. Optimization used the
Euclidean-distance-based loss from (Snell et al.,
2017), modified to accommodate video inputs.

5 Experiments

The experiments were conducted on a split dataset
comprising not only unseen samples but also entire
classes withheld during training (see Tab. 1). The
model’s performance was evaluated using n-way
classification with n=5 and n=10, support sizes
ranging from 1 to 10, and a fixed query size of 15,
following similar methodology in (Ferreira et al.,
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Figure 2: Confusion Matrix of Test Set Predictions.

2022). Classification accuracy, defined as the pro-
portion of correctly classified query samples per
episode, was averaged over 1000 episodes to en-
sure robust results across diverse signer samples.
The results and settings are presented in Table 2.

n_way | Accuracy (k_support)
1-shot | 5-shot | 10-shot

5-way 80.0 90.7 92.0

10-way | 66.0 81.9 84.9

Table 2: Average Classification Accuracy for Different
Few-Shot Configurations
(Qquery =15, Nepisodes = 1000; values in [%]

To further assess generalization, we extracted
embeddings for all test samples and computed class
prototypes as the mean embedding of each class
training examples. Each test embedding was then
assigned to its nearest prototype via Euclidean dis-
tance. Of 600 test samples, 73 were misclassified
(12% error; 88% accuracy). A confusion matrix
(Fig. 2) provides a detailed breakdown of classifi-
cation results, illustrating both correct predictions
and errors across all test classes.

5.1 UMAP visualization

To visualize the embeddings, we employed the
UMAP algorithm (Mclnnes et al., 2020), a dimen-
sion reduction technique that constructs a fuzzy
topological model of high-dimensional data using
local manifold approximations and fuzzy simpli-
cial sets. It assumes data points are uniformly dis-
tributed on a locally connected Riemannian man-
ifold with a constant metric, optimizing a low-
dimensional representation by minimizing cross-
entropy between high- and low-dimensional mod-
els. Unlike t-SNE, UMAP preserves both local



UMAP Projection with Labeled Prototypes of Test Dataset Split

True Class
4; * o003
5027
006
o 'y
J*‘ 007
7 #
. s ois
bea 0
) 027
¥ . 03
050
007 B
/ & Do
s
L4 * 063
064
o v os 3
ES 58/ o50
E / v/) osa
* 7y
5 . P .
i * \
=4 t -
) - 003
-"\nas i
4 Y 006
¥ 87
E /
¥
’
2

tttttt

UMAP Projection with Labeled Prototypes of Train Dataset Split Subset

o0 True Class
1 3 005
008
010
022
028
o o031

033

@3 2
% e 042
10 PRy 043
.{,' o0 o 03
ost 061
. oy L
a8 e d
H ) Ly
o061 A o2
= 'Y',
s '
)
X
. 1 0a2 W
oik,, 049 W
™
X, .

5
UMAP L

Figure 3: UMAP visualization of embeddings from the test (left) and training (right) dataset. The z-axis (UMAP 1)
and y-axis (UMAP 2) are the first and second components of the 128—2 UMAP projection. Embeddings from the
test and 12 randomly selected training classes are shown, with class prototypes indicated by star-shaped markers to
illustrate clustering behavior in the low-dimensional space.

neighborhoods and global structures efficiently
(Mclnnes et al., 2020), making it ideal for few-
shot learning where sign language samples of the
same class must cluster closely. We applied UMAP
to test embeddings to assess generalization and to
compare embeddings from 12 randomly selected
training classes, with results shown in Fig. 3.

6 Results and Discussion

The proposed slow-fast meta-based network
achieved an accuracy of 88% on the test split
dataset, effectively handling unseen data. Predic-
tions were made by calculating the distance be-
tween a sample’s embedding and class prototypes,
formed by averaging embeddings within each class.
This 88% accuracy, with a 12% error rate, aligns
with prototypical learning goals, highlighting the
network’s (Feichtenhofer et al., 2019) reliability as
a feature extractor for isolated SLR.

Visualization of test dataset embeddings using
UMAP (Mclnnes et al., 2020) revealed that some
classes formed distinct clusters, while others, such
as "025", "027", and "064", overlapped (see Fig.
3). These overlaps are reflected in the confusion
matrix, where 11 of 50 samples from class “064”
are misclassified as “027” (Fig. 2). While this
agreement between UMAP and the confusion ma-
trix reinforces the validity of our embedding space,
we note that the 2-D projection may oversimplify
the original 128-dimensional relationships and thus
could either magnify or obscure certain class prox-
imities. On the selected training subset, UMAP vi-
sualization shows good class separation, yet some
samples are near other class prototypes, suggesting

potential misclassification or similarities the model
struggles to disentangle, possibly due to unseen
training samples.

Overall, the model demonstrates strong perfor-
mance in few-shot sign language recognition, with
effective feature extraction, though challenges re-
main in separating certain classes.

7 Conclusion

This study demonstrated that the SlowFast network,
combined with prototypical learning, achieves 88%
accuracy in isolated sign language recognition
(SLR), effectively extracting features from unseen
data. While the model excels in clustering most
classes, it struggles with overlapping ones. Future
research should focus on validating the model on
larger, glove-free datasets and exploring alternative
modalities, such as skeletal landmarks, to enhance
robustness and reduce reliance on artificial markers.
Additionally, investigating margin-based loss func-
tions (e.g. multi-way contrastive loss (Parnami and
Lee, 2022)) and hyperparameter optimization could
improve class separability and address sampling
biases.

Limitations

Despite its demonstrated efficacy, the proposed pro-
totypical network exhibits notable difficulties in
discriminating among certain sign language ges-
tures. UMAP projections reveal overlapping clus-
ters for classes such as “025,” “027,” and “064,”
and the confusion matrix confirms systematic mis-
classifications—for example, instances of “064”
are frequently labeled as “027.” These observations



suggest that, while the prototypical loss effectively
draws semantically similar embeddings into close
proximity, it does not always enforce sufficient
inter-class separation. Moreover, the few-shot sam-
pling strategy employed during training may inten-
sify this issue: by randomly selecting only a subset
of classes per episode, some samples may never
contribute to prototype refinement, and increasing
episodes or epochs risks overfitting to the limited
training set.

Further limitation arises from the dataset itself.
Although the collection encompasses 64 gesture
classes, our experiments utilize only 12 randomly
selected categories (see Tab. 1), which constrains
the breadth of the evaluation. In addition, signers
wore fluorescent gloves to facilitate hand segmenta-
tion (Ronchetti et al., 2023), enhancing recognition
accuracy but undermining real-world applicability,
as everyday users are unlikely to wear such equip-
ment.

Generalization to out-of-distribution visual data
represents a further concern. By focusing exclu-
sively on raw RGB inputs, the network may rely
on background or context cues that do not transfer
across environments.

Finally, our reliance on two-dimensional UMAP
visualizations to assess embedding separability in-
troduces a methodological constraint. Reducing
128-dimensional feature vectors to a planar repre-
sentation inevitably distorts inter-point distances
and may obscure the true structure of the embed-
ding space, suggesting a need for more robust eval-
uation methods in future studies.
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A Implementation details

The SlowFast model was implemented following
(Feichtenhofer et al., 2019) using the official Slow-
Fast Meta codebase (Fan et al., 2020). To match
the Slow Pathway’s lower frame rate, we selected
every eighth frame from each video sample. The ar-
chitecture was modified by reducing the number of
residual stages to three and the number of FuseFast-
ToSlow blocks to two, with the embedding dimen-
sion (WIDTH_PER_GROUP (Fan et al., 2020)) set
to 32. The prediction head applies 3D average pool-
ing and a linear layer, producing a 128-dimensional
normalized embedding for each video. Training
was conducted using PyTorch with the Adam opti-
mizer and a learning rate of 0.001. The SlowFast
pipeline is illustrated in Fig. 1. For further details
on the implementation and additional experiments,
see the code repositoryl.
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