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Abstract

We propose principled Gaussian processes
(GPs) for modeling functions defined over the
edge set of a simplicial 2-complex, a structure
similar to a graph in which edges may form
triangular faces. This approach is intended
for learning flow-type data on networks where
edge flows can be characterized by the dis-
crete divergence and curl. Drawing upon the
Hodge decomposition, we first develop classes
of divergence-free and curl-free edge GPs,
suitable for various applications. We then
combine them to create Hodge-compositional
edge GPs that are expressive enough to repre-
sent any edge function. These GPs facilitate
direct and independent learning for the dif-
ferent Hodge components of edge functions,
enabling us to capture their relevance dur-
ing hyperparameter optimization. To high-
light their practical potential, we apply them
for flow data inference in currency exchange,
ocean currents and water supply networks,
comparing them to alternative models.

1 INTRODUCTION

Gaussian processes (GPs) are a widely used class of
statistical models capable of quantifying uncertainty
associated to their own predictions (Rasmussen &
Williams, 2006). These models are determined by co-
variance kernels which encode prior knowledge about
the unknown function. Choosing an appropriate ker-
nel is often challenging, particularly when the input
space is non-Euclidean (Duvenaud, 2014).

Developing GPs on graphs has been a subject of recent
work, which requires structured kernels to encode the
dependence between nodes (Venkitaraman et al., 2020;
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Zhi et al., 2023), like the diffusion (Smola & Kondor,
2003) or random walk kernels (Vishwanathan et al.,
2010). More recently, Borovitskiy et al. (2021) derived
the more general family of Matérn kernels on graphs
from stochastic partial differential equations (SPDEs)
thereon, mirroring the continuous approaches on man-
ifolds (Borovitskiy et al., 2020; Azangulov et al., 2022,
2023). Nikitin et al. (2022) incorporated the tempo-
ral factor in this framework to build temporal-graph
kernels. However, GPs in these works are targeted for
modeling functions on the nodes of networks.

We instead focus on functions defined on the edges, of
particular interest for modeling edge-based dynamical
processes in many complex networks, such as flows of
energy, signal or mass (Schaub et al., 2014). For ex-
ample, in water supply networks, we typically monitor
the flow rates within pipes (edges) connecting tanks
(nodes) (Zhou et al., 2022). Other examples include
energy flows in power grids (Jia et al., 2019), synaptic
signals between neurons in brain networks (Faskowitz
et al., 2022), and exchange rates on trading paths
(edges) of currencies (nodes) (Jiang et al., 2011).

While it might seem intuitive to use node-based meth-
ods for edge-based tasks using line-graphs (Godsil &
Royle, 2001), this often yields sub-optimal solutions
(Jia et al., 2019). Alternatively, recent successes in
signal processing and neural networks for edge data
have emerged from modeling flows on the edge set of a
simplicial 2-complex (SC2), including (Jia et al., 2019;
Barbarossa & Sardellitti, 2020; Schaub et al., 2021;
Yang et al., 2022a,b; Roddenberry et al., 2021; Yang
& Isufi, 2023), among others. A SC2 can be viewed as
a graph with the additional set of triangular faces, en-
coding how edges are adjacent to each other via nodes
or faces. A SC2 also allows to characterize key proper-
ties of edge flows using discrete concepts of divergence
(div) and curl (Lovász, 2004; Lim, 2020), measuring
how they diverge at nodes and circulate along faces.
For example, electric currents in circuit networks re-
specting the Kirchhoff’s law are div-free (Grady &
Polimeni, 2010), and arbitrage-free exchange rates are
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curl-free along loops of trading paths (Jiang et al.,
2011). Moreover, edge functions on a SC2 admit the
Hodge decomposition into three parts: gradient, curl
and harmonic components, being either curl-free, div-
free or both div- and curl-free (Lim, 2020). This pro-
vides unique insights in various applications including
ranking (Jiang et al., 2011), gaming theory (Cando-
gan et al., 2011), brain networks (Vijay Anand et al.,
2022) and finance (Fujiwara & Islam, 2020). Never-
theless, existing works on edge-based learning remain
deterministic and there is a lack of principled ways to
define GP priors on the edge set of SCs, which is the
central goal of this work.

Our main contribution lies in the proposal of Hodge-
compositional edge GPs. We build them as combina-
tions of three GPs, each modeling a specific part of
the Hodge decomposition of an edge function, namely
the gradient, curl and harmonic parts. With a focus
on the Matérn GP family, we show that each of them
can be linked to a SPDE, extending the framework
used by Borovitskiy et al. (2020, 2021, 2023). Com-
pared to a direct extension of graph GPs, they enable
separate learning of the different Hodge components,
which allows us to capture the practical behavior of
edge flows. We also demonstrate their practical po-
tential in edge-based learning tasks in foreign currency
exchange markets, ocean current analysis and water
supply networks.

2 BACKGROUND

A random function f : X ! R defined over a set
X is a Gaussian process f ⇠ GP(µ, k) with mean
function µ(·) and kernel k(·, ·) if, for any finite set of
points x = (x1, . . . , xn)> 2 X

n, the random vector
f(x) = (f(x1), . . . , f(xn))> is multivariate Gaussian
with mean vector µ(x) and covariance matrix k(x,x).

The kernel k of a prior GP encodes prior knowledge
about the unknown function while its mean µ is usu-
ally assumed to be zero. GP regression combines
such a prior with training data x1, y1, . . . , xn, yn where
xi 2 X, yi 2 R with yi = f(xi) + ✏i, ✏i ⇠ N (0, �

2
✏
).

This results in a posterior f|y which is another GP:
f|y ⇠ GP(µ|y, k|y). For any new input x

⇤
2 X, the

mean µ|y(x⇤) is the prediction and the posterior vari-
ance k|y(x⇤

, x
⇤) quantifies the uncertainty. We refer

the reader to Rasmussen & Williams (2006) for more
details. Defining an appropriate kernel is one of the
main challenges in GP modeling (Duvenaud, 2014).

2.1 GPs on Graphs

Let G = (V, E) be an unweighted graph where V =
{1, . . . , N0} is the set of nodes and E is the set of

N1 edges such that if nodes i, j are connected, then
e = (i, j) 2 E. We can define real-valued functions
on its node set f0 : V ! R, collected into a vec-
tor f0 = (f0(1), . . . , f0(N0))> 2 RN0 . Denote the
oriented node-to-edge incidence matrix by B1 of di-
mension N0 ⇥ N1. It has entries [B1]ie = �1 and
[B1]je = 1, if an edge e = {i, j} exists, and zero oth-
erwise. One can view oriented graphs as undirected
graphs having an additional orientation structure on
the edge set (Godsil & Royle, 2001, Sec 8.3). They
are different from directed graphs, as discussed next
subsection. The graph Laplacian is then given by
L0 = B1B>

1 , which is a positive semi-definite linear
operator on the space RN0 of node functions. It ad-
mits an eigendecomposition L0 = U0⇤0U>

0 where ⇤0

collects its eigenvalues on the diagonal and U0 collects
the orthogonal eigenvectors of L0 (Chung, 1997).

A GP on graphs f0 ⇠ GP(0,K0) assumes f0 is a ran-
dom function with zero mean and a graph kernel K0

which encodes the covariance between pairs of nodes.
To construct principled graph GPs, Borovitskiy et al.
(2021) extended the idea of deriving continuous GPs
from SPDEs (Whittle, 1963; Lindgren et al., 2011) to
the domain of graphs. Specifically, given the following
SPDE on graphs with a Gaussian noise w0 ⇠ N (0, I)

�(L0)f0 = w0, with �(L0) =
⇣2⌫

2
I + L0

⌘ ⌫
2
, (1)

where �(L0) = U0�(⇤0)U>
0 and �(·) applies to ⇤0

element-wise, its solution is the Matérn graph GP

f0 ⇠ GP

⇣
0,

⇣2⌫

2
I + L0

⌘�⌫⌘
(2)

with positive parameters , ⌫. When scaled properly,
the Matérn kernel gives the graph diffusion kernel for
⌫ ! 1, which in turn relates to the random walk ker-
nel by Kondor & Lafferty (2002). This SPDE frame-
work can be extended to spatial-temporal data yield-
ing respective graph kernels (Nikitin et al., 2022).

2.2 Edge Functions on Simplicial Complexes

Simplicial 2-complexes represent discrete geometry
more expressively than graphs. They are triples SC2 =
(V, E, T ) where V, E are the sets of nodes and edges,
same as for graphs, and T is the set of triangular faces
(shortened as triangles) such that if (i, j), (j, k), (i, k)
form a closed triangle, then t = (i, j, k) 2 T (Munkres,
2018). Note that not all three pairwise connected
edges are necessarily closed and included in T . An
example of a SC2 is shown in Fig. 1a where the set
{1, 3, 4} is an open triangle and thus is not in T .

For each edge and each triangle, we assume the in-
creasing order of their node labels as their reference
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(a) SC2 (b) f1 (c) fG (d) fC (e) fH

Figure 1: (a) A SC2 where we shade (closed) triangles in green and denote reference orientations of edges/triangles
by arrows. (b) An edge function f1 with its divergence (purple values on nodes) and curl (orange values in
triangles). (c-e) Hodge decomposition: (c) gradient flow fG = B>

1 f0, obtained as the gradient of some node
function f0 (given in blue). It is curl-free: the net-circulation along each triangle is zero; (d) curl flow fC = B2f2,
induced by some circulating triangle signal f2 (given in red). It is div-free: the net-flow at each node is zero; and
(e) harmonic flow fH , circulating around the 1-dimensional “hole” (open triangle {1, 3, 4}), where the net-flow
on nodes and net-circulation in triangles are zero. All numbers are rounded to two decimal places.

orientation1. An oriented edge, denoted as e = [i, j],
is an ordering of {i, j}. This is not a directed edge
allowing flow only from i to j, but rather an assign-
ment of the sign of the flow: from i to j it is positive
and the reverse is negative. Same goes for oriented
triangles denoted as t = [i, j, k] and we have [i, j, k] =
[j, k, i] = [k, i, j] =�[i, k, j] =�[k, j, i] =�[j, i, k].

In a SC2, the functions, f1 : E ! R, on its edges E are
required to be alternating (Lim, 2020), meaning that,
we have f1(ē) = �f1(e) if ē = [j, i] is oriented oppo-
site to the reference e = [i, j]. For example, in Fig. 1b,
f1(1, 2) = �1.2 means there is a 1.2 unit of flow from 2
to 1. This property keeps the flow unchanged with re-
spect to the edge orientation. We collect the edge func-
tions on E into f1 = (f1(e1), . . . , f1(eN1))

>
2 RN1 , as

in Fig. 1b, which we also call as an edge flow.

We can also define alternating functions on triangles
in T where f2(t̄) = �f2(t) if t̄ is an odd permutation
of reference t = [i, j, k] (Lim, 2020). We collect them
in f2 2 RN2 where N2 = |T |. In topology, functions
f0, f1, f2 are called 0-, 1-, 2-cochains, which are dis-
crete analogs of differential forms on manifolds (Grady
& Polimeni, 2010). This motivates the use of sub-
scripts 0, 1, 2. Here we can view these functions as
vectors of data on nodes, edges and triangles.

2.3 Hodge Laplacians

In the similar spirit as L0 operating on node functions,
we can define the discrete Hodge Laplacian operating
on the space RN1 of edge functions

L1 = B>
1 B1 + B2B

>
2 := Ld + Lu (3)

1The orientation of a general simplex is an equivalence
class of permutations of its labels—two orientations are
equivalent (respectively, opposite) if they differ by an even
(respectively, odd) permutation (Lim, 2020, Sec 4).

where B2 is the edge-to-triangle incidence matrix. Its
entries are [B2]et = 1, for e = [i, j] or e = [j, k], and
[B2]et = �1 for e = [i, k], if a triangle t = [i, j, k]
exists, and zero otherwise. Matrix L1 describes the
connectivity of edges where the down part Ld and
the up part Lu encode how edges are adjacent, re-
spectively, through nodes and via triangles. For ex-
ample, e3 and e6 are down neighbors sharing node 4
in Fig. 1a and e1 and e2 are up neighbors, collocated
in t1. Matrix L1 is positive semi-definite, admitting
an eigendecomposition L1 = U1⇤1U>

1 where diagonal
matrix ⇤1 = diag(�1, . . . , �N1) collects the eigenvalues
and U1 is the eigenvector matrix. Likewise, one can
define L2 = B>

2 B2 encoding the adjacency between
triangles. Our discussion henceforth considers the un-
weighted L1 but it also holds for the weighted variants
in Grady & Polimeni (2010); Schaub et al. (2020).

3 EDGE GAUSSIAN PROCESSES

We now define GPs on edges of a SC2, specifically,
f1 ⇠ GP(0,K1) with zero mean and edge kernel K1.
Throughout this work, we refer to them as edge GPs,
and call graph GPs in Section 2.1 as node GPs because
they are both multivariate Gaussian but the former is
indexed by X = E and the latter by X = V . We start
with deriving edge GPs from SPDEs on edges as a
natural extension of Eq. (1). Then, by introducing ba-
sic notions from discrete calculus (Grady & Polimeni,
2010) and the Hodge decomposition theorem, we pro-
pose the divergence-free and curl-free GPs, combining
them into Hodge-compositional GPs.

3.1 Edge GPs from SPDEs on Edges

The derivation of graph GPs in Eq. (2) as solutions of
graph SPDE in Eq. (1) motivates the following SPDEs
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on edges, with edge Gaussian noise w1 ⇠ N (0, I),

�(L1)f1 = w1 (4)

where �(L1) = U1�(⇤1)U>
1 is a differential operator

defined through L1. When we consider the operators

�(L1) =
⇣2⌫

2
I + L1

⌘ ⌫
2

and �(L1) = e
2

4 L1 , (5)

the solutions to Eq. (4) give two edge GPs

f1,Matérn ⇠ GP

⇣
0,

⇣2⌫

2
I + L1

⌘�⌫⌘
,

f1,di↵usion ⇠ GP

⇣
0, e

�2

2 L1

⌘
,

(6)

which are the edge Matérn and diffusion GPs, respec-
tively. These edge GPs impose structured prior co-
variance that encodes the dependence between edges.
A related Hodge Laplacian kernel (L>

1 L1)† can be
obtained by setting �(L1) = L1, i.e., L1f1 = w1.
This kernel was used to penalize the smoothness of
edge functions in Schaub et al. (2021). The kernels
of Eq. (6) are more flexible though and allow encod-
ing non-local edge-to-edge adjacency while L1 instead
encodes the local direct (one-hop) adjacency.

3.2 Div-free and Curl-free Edge GPs

The edge GPs in Section 3.1 define distributions over
all edge functions. As opposed to this, here we seek
to define GPs on the classes of divergence-free and
curl-free edge functions. We start with defining the
appropriate notions of discrete derivatives, expressed
in terms of the incidence matrices.

Discrete Derivatives The gradient is a linear op-
erator from the space of node functions to that of edge
functions. At edge e = [i, j], it is defined as

(grad f0)(e) = (B>
1 f0)e = f0(j) � f0(i), (7)

which computes the difference between the values of a
function on adjacent nodes, resulting in a flow on the
connecting edge. We call fG = B>

1 f0 a gradient flow
and f0 a node potential, as shown in Fig. 1c.

The divergence, the adjoint of gradient, is a linear op-
erator from the space of edge functions to that of node
functions. At node i, it is defined as

(div f1)(i) = (B1f1)i = �

X

j2N(i)

f1(i, j) (8)

with N(i) the neighbors of i. Physically, it computes
the net-flow of edge functions passing through node i,
i.e., the in-flow minus the out-flow, as shown in Fig. 1b.
A divergence-free flow has a zero net-flow everywhere.

Lastly, the curl operator is a linear operator from the
space of edge functions to that of triangle functions.
At triangle t = [i, j, k], it is defined as

(curl f1)(t) = (B>
2 f1)t = f1(i, j)+f1(j, k)�f1(i, k) (9)

which computes the net-circulation of edge functions
along the edges of t, as a rotational measure of f1, as
shown in Fig. 1b. A curl-free flow has zero curl over
each triangle. As in calculus, we have the identity
curl grad = B>

2 B>
1 = 0, i.e., gradient flow is curl-free.

Analogous to their continuous vector field counter-
parts, div-free and curl-free edge functions are ubiqui-
tous, e.g., the electric currents and the exchange rates
later in Section 4.1. We refer to Grady & Polimeni
(2010); Lim (2020) for more examples. From this per-
spective, we can view the graph Laplacian as L0 =
div grad = B1B>

1 , which is a graph-theoretic analog of
the Laplace-Beltrami operator �0 on manifolds. Also,
the SPDE on graphs in Eq. (1) is a discrete coun-
terpart of the continuous one for scalar functions on
manifolds. Moreover, the Hodge Laplacian L1 can be
viewed as L1 = grad div+curl⇤ curl = B>

1 B1+B2B>
2 ,

which is a discrete analog of the vector Laplacian (or
Helmholtzian) �1 for vector fields.

Hodge Decomposition The following Hodge de-
composition theorem, unfolding an edge function, will
allow us to improve the edge GPs in Eq. (6).
Theorem 1 (Hodge (1989)). The space RN1 of edge
functions is a direct sum of three subspaces

RN1 = im(B>
1 ) � ker(L1) � im(B2), (10)

where im(B>
1 ) is the gradient space, ker(L1) the har-

monic space and im(B2) the curl space.

It states that any edge function f1 is composed of three
orthogonal parts: gradient, curl, harmonic functions

f1 = fG + fH + fC (11)

where fG = B>
1 f0, being curl-free, is the gradient of

some node function f0, and fC = B2f2, being div-free,
is the curl-adjoint of some triangle function f2. Lastly,
fH is harmonic (both div- and curl-free, L1fH = 0).
This decomposition is illustrated in Fig. 1. It provides
a crucial tool for understanding edge functions and has
been used in many applications as we discussed above.

Furthermore, the eigenspace U1 of L1 can be reorga-
nized in terms of the three Hodge subspaces as

U1 = [UH UG UC ] (12)

where UH is the eigenvector matrix associated to zero
eigenvalues ⇤H = 0 of L1, UG is associated to the
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nonzero eigenvalues ⇤G of Ld, and UC is associated
to the nonzero eigenvalues ⇤C of Lu. Moreover, they
span the Hodge subspaces:

span(UH) = ker(L1), span(UG) = im(B>
1 ),

span(UC) = im(B2),
(13)

where span(•) denotes all possible linear combinations
of columns of • (Yang et al., 2022b).

Div-free, Curl-free Edge GPs Given the eigende-
composition in Eq. (12), we can obtain special classes
of edge GPs by only using a certain type of eigenvec-
tors when building edge kernels of Eq. (6). Specifically,
we define gradient and curl edge GPs as follows

fG ⇠ GP(0,KG), fC ⇠ GP(0,KC) (14)

where the gradient kernel and the curl kernel are

KG = UG G(⇤G)U>
G

, KC = UC C(⇤C)U>
C

. (15)

We also define the harmonic GPs fH ⇠ GP(0,KH)
with the harmonic kernel KH = UH H(⇤H)U>

H
.

Proposition 2. Let fG and fC be the gradient and
curl Gaussian processes, respectively. Then, curlfG =
0 and div fC = 0 with probability one. Moreover, a
harmonic Gaussian process fH follows curlfH = 0
and div fH = 0 with probability one.

See proof in Appendix B.2. These Hodge GPs provide
more targeted priors for special edge functions which
are either div- or curl-free, capable of capturing these
key properties. In the case of Matérn kernels, we set

 ⇤(⇤⇤) = �
2
⇤
⇣2⌫⇤


2
⇤

I + ⇤⇤
⌘�⌫⇤

, (16)

for ⇤ 2 {H, G, C}, where �
2
⇤ controls the variance we

assign to the function in the subspace, and ⌫⇤, ⇤ are
the regular Matérn parameters. Note that since ⇤H =
0, we consider a scaling function for KH as  H(0) =
�
2
H

. We illustrate such a Matérn kernel function in
Fig. 2 (left). These Hodge GPs can be derived from
SPDEs on edges as well.
Proposition 3. Given a scaled curl white noise wC ⇠

N (0,WC) where WC = �
2
C
UCU>

C
, consider the fol-

lowing SPDE on edges:

�C(Lu)fC = wC , (17)

with differential operators

�C(Lu) =
⇣2⌫C


2
C

I + Lu

⌘ ⌫C
2

, �C(Lu) = e

2
C
4 Lu . (18)

The respective solutions give the curl edge GPs with
Matérn kernel in Eq. (16) and diffusion kernel

 C(⇤C) = �
2
C

e
�2

C
2 ⇤C . (19)

0 10
0

1
�G, �G = 2.5, �G = 1.5

�C , �C = 0.5, �C = 1.0

�H , �2
H

= 0.3

0 10
0

1
�, � = 0.5, � = 1.0

Figure 2: (Left) Matérn kernel functions  ⇤(�) for
⇤ = {H, G, C} in Eq. (16) of gradient, curl and har-
monic GPs in the eigen-spectrum � ranging in the min
and man eigenvalues of L1. (Right) Matérn kernel
function  (�) of non-HC GP in Eq. (6).

Likewise, we can derive the gradient Matérn and dif-
fusion GPs from the SPDEs as Eq. (17) but with op-
erators �G(Ld) and a scaled gradient white noise.

See proof in Appendix B.3. We can draw the intuition
of SPDE in Eq. (17) from the continuous analogy. In
the case of LufC = wC , the equation curl⇤curl f1(x) =
w1(x) is a stochastic vector Laplace’s equation of a
div-free (solenoidal) vector field, where w1(x) the curl
adjoint of some vector potential. In physics, this de-
scribes the static magnetic field from a magnetic vector
potential, as well as an incompressible fluid.

3.3 Hodge-compositional Edge GPs

Many edge functions of interest are indeed div- or curl
-free, but not all. In this section we combine the gra-
dient, curl and harmonic GPs to define the Hodge-
compositional (HC) edge GPs.
Definition 4. A Hodge-compositional edge Gaussian
process f1 ⇠ GP(0,K1) is a sum of gradient, curl and
harmonic GPs, i.e., f1 = fG + fC + fH where

f⇤ ⇠ GP(0,K⇤) with K⇤ = U⇤ ⇤(⇤⇤)U>
⇤ (20)

for ⇤ = H, G, C where their kernels do not share hy-
perparameters.

Given this definition, we can obtain the following prop-
erties of HC edge GPs.
Lemma 5. Let f1 ⇠ GP(0,K1) be an edge GP in
Definition 4. Its realizations then give all possible edge
functions2. It further holds that K1 = KH+KG+KC ,
and the three Hodge GPs are mutually independent,
i.e., Cov(fG,fC) = Cov(fG,fH) = Cov(fC ,fH) = 0.

See proof in Appendix B.4. Naturally, we can con-
struct a Matérn HC GP as the sum of Matérn GPs

2Note that HC edge GPs do not represent all possible
edge GPs. They are a particular GP family satisfying the
independence hypothesis on the three Hodge GPs. This,
however, does not contradict with that their realizations
can represent all edge functions.
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in the three subspaces with their kernels given by
Eq. (16), and likewise for the diffusion HC GP by
Eq. (19). Compared to the GPs in Eq. (6), referred
to as non-HC GPs henceforth, HC GPs are more flex-
ible and expressive, having more degrees of freedom.
We discuss their practical advantages below.

Inductive GP Prior The HC GP encodes the prior
covariance Cov(f1(e), f1(e0)) between edge functions
over two edges e, e

0 as follows: (i) the covariance is the
sum of three covariances Cov⇤ = Cov(f⇤(e), f⇤(e0))
for ⇤ = H, G, C; (ii) each Cov⇤ encodes the covari-
ance between the corresponding Hodge parts of f1

without affecting the others; and (iii) no covariance
is imposed across different Hodge components, e.g.,
Cov(fG(e), fC(e0)) = 0.

In the spatial/edge domain, this is related to separat-
ing the down and up adjacencies encoded in the SPDE
operators �(·). From an eigen-spectrum perspective,
the eigenvalues  ⇤ of HC GP’s kernels associated to
the three Hodge subspaces have individual parame-
ters. This enables capturing the different Hodge com-
ponents of edge functions, as well as their relevance
during hyperparameter optimization, further allowing
us to directly recover the Hodge components in pre-
dictions, which we detail in Appendix B.5. Non-HC
GPs instead require solving the Hodge decomposition
in Eq. (11) (least squares problems) (Lim, 2020). An-
other implication is that, unlike for non-HC GPs, we
do not require specific knowledge about the div or curl
of the underlying function.

Comparison to non-HC GPs When we view non-
HC GPs in terms of the Hodge decomposition, we
notice that they put priors on the three Hodge GPs
in a way that shares hyperparameters. This enforces
learning the same hyperparameters for different Hodge
components, resulting in a single function covering the
entire edge spectrum, as shown in Fig. 2 (right), as op-
posed to the three individual functions of the HC one.

This raises issues when separate learning, say, different
lengthscales, is required for the gradient and curl com-
ponents. Non-HC GPs are strictly incapable of this
practical need when an eigenvalue is associated to both
gradient and curl spaces. We also delve into this in
terms of edge Fourier features in Appendix B.6 where
we compare the priors induced on the edge Fourier
coefficients by HC and non-HC GPs.

Connection to Diffusion on Edges The HC dif-
fusion kernel, given by K1 = exp(�(

2
G
2 Ld + 

2
C
2 Lu)),

when �
2
⇤s are one, is the Green’s function for the edge

diffusion of a function � : [0,1) ⇥ E ! R

d�(t)

dt
= �(µLd + �Lu)�(t), where µ, � > 0 (21)

with �|t=⌧ = e
�(µ⌧Ld+�⌧Lu)�(0). This equation de-

scribes the diffusion process on the edge space of SC2

that was used for network analysis (Muhammad &
Egerstedt, 2006; DeVille, 2021), often arising as the
limit of random walks on edges (Schaub et al., 2020).
The covariance K1 within this context encodes the
proportion of edge flow traveling from edge e to e

0 via
down and up edge adjacencies. Its vector field coun-
terpart was used for shape analysis (Zobel et al., 2011;
Sharp et al., 2019). Compared to the graph (node) dif-
fusion converging (t ! 1) to the state that is constant
on all nodes as long as the graph is connected, the har-
monic state of the edge diffusion can be non-constant,
but lies in the span of UH . We refer to Appendix B.7
for visualizations of the two harmonic states.

Complexity The kernels of HC edge GPs can be
constructed in a scalable way by considering the l

largest eigenvalues with off-the-shelf eigen-solvers, e.g.,
Lanczos algorithm. We refer to Appendix B.8 for more
details on the complexity of implementing HC GPs, as
well as sampling from them.

3.4 Node-Edge-Triangle GP Interactions

The gradient and curl components of edge functions
are (co)derivatives of some node and triangle func-
tions, specifically, fG = B>

1 f0 and fC = B2f2 as
in Eq. (11). Since the derivative of a GP is also a GP,
we can then construct a gradient GP from node GPs.

Corollary 6. Suppose a node function f0 is a GP
f0 ⇠ GP(0,K0) with K0 =  0(L0) = U0 0(⇤0)U>

0 .
Then, its gradient is an edge GP fG ⇠ GP(0,KG)
where KG = B>

1 K0B1 = UG G(⇤G)U>
G

with

 G(⇤G) = ⇤G 0(⇤G). (22)

The proof follows from (i) derivatives preserving Gaus-
sianity, and (ii) L0 and Ld having the same nonzero
eigenvalues. We can also obtain a curl edge GP from a
GP on triangles likewise. In turn, for an edge GP, its
div is a node GP and its curl is a GP on triangles. We
refer to Appendix B.9 for the proof and more details.

Exploiting this interaction between GPs on nodes,
edges and triangles can lead to new useful GPs, es-
pecially when functions on nodes, edges and triangles
are intrinsically related by physical laws. For example,
in water networks, water flowrates in pipes are often
related to the gradient of hydraulic heads on nodes, as
we will show in Section 4.3. This implies that given an
appropriate node GP, say, node Matérn GP in Eq. (2),
a good edge GP prior can be imposed as its gradient,
as in Corollary 6. Furthermore, by leveraging this in-
teraction, we can construct HC edge GPs as follows.
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(a) Ground truth (b) Mean, HC Matérn (c) Standard deviation (d) Mean, Non-HC (e) Learned kernels

Figure 3: (a-d) Interpolating a smaller forex market (for better visibility) with train ratio 50% where dashed
(solid) edges are used for training (testing). (e) Learned Matérn kernels in the spectrum of the Hodge Laplacian,
 (�) for non-HC GP and  ⇤(�) with ⇤ = {H, G, C} for HC GPs.

Proposition 7. Let f1 be an edge function defined in
Eq. (11) with harmonic component fH , node function
f0 and triangle function f2. If we model f0 as a GP on
nodes f0 ⇠ GP(0,K0), model f2 as a GP on triangles
f2 ⇠ GP(0,K2), and fH as a harmonic GP fH ⇠

GP(0,KH), then we have GP f1 ⇠ GP(0,K1) with

K1 = KH + B>
1 K0B1 + B2K2B

>
2 . (23)

See proof in Appendix B.10. This alternative HC GP
incorporates the Hodge theorem prior in a way that di-
rectly relates the node potential and the triangle func-
tion. It can be applicable when GP priors of node or
triangle functions are more discernible. Similar ideas
for general cellular complexes are studied in the con-
current paper by Alain et al. (2023).

Continuous Counterparts Edge functions can be
viewed as discrete analogs of vector fields. Berlinghieri
et al. (2023) studied the models similar to our HC
edge GPs in Eq. (23) for Euclidean vector fields and
the concurrent work by Robert-Nicoud et al. (2024)
studies similar models for vector fields on manifolds.

4 EXPERIMENTS

We apply HC GPs for edge-based inference tasks in
three applications: foreign currency exchange (forex),
ocean current and water supply networks (WSNs). We
showcase the structured prior on edges in these tasks
by comparing them to baselines: (i) Euclidean GPs
with RBF and Matérn kernels, and (ii) Node GPs on
the line-graph—built by exchanging the nodes with
edges in the original graph (Godsil & Royle, 2001).
To highlight the prior of the Hodge decomposition, we
also compare with non-HC GPs. For each of them,
we consider Matérn and diffusion kernels. We perform
GP regression with Gaussian likelihood for model fit-
ting using the GPyTorch framework (Gardner et al.,
2018). We use the root mean squared error (RMSE)
to evaluate the predictive mean and the negative log
predictive density (NLPD) for prediction uncertainty.
We refer to Appendix C for full experimental details.

Table 1: Forex rates inference results.

Method RMSE NLPD

Diffusion Matérn Diffusion Matérn

Euclidean 2.17 ± 0.13 2.19 ± 0.12 2.12 ± 0.07 2.20 ± 0.18
Line-Graph 2.43 ± 0.07 2.46 ± 0.07 2.28 ± 0.04 2.32 ± 0.03
Non-HC 2.48 ± 0.07 2.47 ± 0.08 2.36 ± 0.07 2.34 ± 0.04
HC 0.08 ± 0.12 0.06 ± 0.12 �3.52 ± 0.02 �3.52 ± 0.02

4.1 Foreign Currency Exchange

A forex market can be modeled as a network where
nodes represent currencies and edges the exchange-
able pairs (Jiang et al., 2011). Forex rates in a fair
market ideally satisfy the arbitrage-free condition: for
any currencies i, j, k, we have r

i/j
r
j/k = r

i/k with r
i/j

the rate between i and j. That is, the exchange path
i ! j ! k provides no gain or loss over a direct
path i ! k. If we model forex rates as edge flows
f1(i, j) = log(ri/j), this condition can be translated
into that f1 is a gradient flow, being curl-free, i.e.,
f1(i, j)+ f1(j, k)� f1(i, k) = 0. Here we consider real-
world forex data on 2018/10/05 with 25 most traded
currencies forming 210 exchangeable pairs and 710 tri-
angles, formed by any three pairwise exchangeable cur-
rencies (Oanda, 2018; Jia et al., 2019). We randomly
sample 20% of edges for training and test on the rest.

From Table 1, we see that HC GPs achieve significantly
lower RMSEs with high certainty (small NLPDs), as
visualized in Fig. 3. This shows their ability to au-
tomatically capture the curl-free nature of the forex
rates. As shown in Fig. 3e, the HC Matérn GP learns
that harmonic and curl components should vanish. In
contrast, the other three give poor predictions, due to:
(i) Euclidean GPs being oblivious of the structure of
edge functions; (ii) line-graph GPs imposing inappro-
priate structure through node priors; and (iii) non-HC
GPs being unable to induce the curl-free prior with-
out removing the gradient. This results from sharing
parameters in their kernels for different Hodge compo-
nents. As shown in Fig. 3e, the non-HC Matérn GP
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(a) Original ocean current (b) Posterior mean (c) Standard deviation

(d) Curl-free component (e) Div-free component (f) Learned HC kernel

Figure 4: (a-b) Ground truth and interpolated ocean current in the vector field domain. (c) Standard deviation
approximated by sampling 50 edge flows from the predictive posterior distribution and converted to the vector
field domain. (d-e) The curl-free and div-free components directly obtained from the learned kernels. (f) Learned
diffusion kernels  G(�) and  C(�) of the HC GP in the spectrum of the Hodge Laplacian.

Table 2: Ocean current inference results.

Method RMSE NLPD

Diffusion Matérn Diffusion Matérn

Euclidean 1.00 ± 0.01 1.00 ± 0.00 1.42 ± 0.01 1.42 ± 0.10
Line-Graph 0.99 ± 0.00 0.99 ± 0.00 1.41 ± 0.00 1.41 ± 0.00
Non-HC 0.35 ± 0.00 0.35 ± 0.00 0.33 ± 0.00 0.36 ± 0.03
HC 0.34 ± 0.00 0.35 ± 0.00 0.33 ± 0.01 0.37 ± 0.04

learns a nonzero kernel in the whole spectrum, unable
to remove the non-arbitrage-free part.

4.2 Ocean Current Analysis

We consider the edge-based ocean current learning fol-
lowing the setup in Chen et al. (2021). The ocean
current velocity fields were converted using the linear
integration approximation to edge flows within a SC2

whose nodes are 1500 buoys sampled from North Pa-
cific ocean drifter records in 2010-2019 (Lumpkin &
Centurioni, 2019). We apply both non-HC and HC
GPs to predict the converted edge flows. Given the
large number of edges (⇠20k), we consider a trun-
cated approximation of kernels with eigenpairs associ-
ated with the 500 largest eigenvalues (Knyazev, 2001).
We randomly sample 20% of edges for training and
test on the rest.

From Table 2, we see that HC and non-HC GPs exhibit
similar performance. This arises from the comparable
behavior of the gradient and curl components, as de-
picted in Fig. 4f, where the learned gradient and curl
diffusion kernels display close patterns. In contrast,
Euclidean and line-graph GPs give poor predictions

emphasizing the importance of structured edge priors.

We further convert the predicted edge flows into the
vector field domain, as shown in Fig. 4b, based on
Chen et al. (2021). We see that the predictions cap-
ture the pattern of the original velocity field. We ap-
proximate the predicted velocity field uncertainty by
computing the average `2 distance per location from
50 posterior samples to the mean in the vector field
domain. As shown in Fig. 4c, the standard deviation
estimated this way is small in most locations except
for a few exceptions (small islands at the bottom left)
where the original field is more discontinuous. More-
over, since HC GPs enable the direct recovery of gradi-
ent and curl components, we show their corresponding
vector fields in Figs. 4d and 4e, giving better insights
into how ocean currents behave, of particular inter-
est in oceanography. For example, we can observe the
well-known North Pacific gyres including the North
Equatorial, Kuroshio and Alaska currents in Fig. 4e.

4.3 Water Supply Networks

Network-based methods have been used in WSNs
where tanks or reservoirs are represented by nodes,
and pipes by edges (Zhou et al., 2022). By model-
ing the hydraulic heads as node functions f0 and the
water flowrates as edge functions f1, the commonly
used empirical equation connecting the two reads as
B>

1 f0 = f̄1 := diag(r)f1.852
1 where re is the resistance

of pipe e and the exponentiation is applied element-
wise (Dini & Tabesh, 2014).

We consider the Zhi Jiang WSN with 114 tanks (in-
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(a) Ground truth (b) Mean, HC Matérn (c) Mean, non-HC Matérn

(d) Std, HC Matérn (e) Std, non-HC Matérn (f) Learned Matérn edge kernels

Figure 5: (a-e) Posterior mean and standard deviation (std) based on the Matérn node GPs, and the HC and
non-HC Matérn edge GPs. Squared (Circled) nodes represent the node samples for training (testing). Dashed
(solid) edges denote the edge samples for training (testing). (f) The learned edge GP kernels in the spectrum,
 (�) for non-HC GP and  H(0), (�) for HC GPs.

Table 3: WSN inference results.

Method Node Heads Edge Flowrates

RMSE NLPD RMSE NLPD

Diffusion, non-HC 0.16 ± 0.05 0.72 ± 2.06 0.32 ± 0.05 0.97 ± 1.80
Matérn, non-HC 0.16 ± 0.04 0.71 ± 2.39 0.26 ± 0.05 0.10 ± 0.13

Diffusion, HC 0.15 ± 0.04 �0.47 ± 0.14 0.22 ± 0.03 �0.20 ± 0.13
Matérn, HC 0.15 ± 0.04 �0.25 ± 0.48 0.23 ± 0.03 �0.45 ± 0.49

cluding one source) and 164 pipes (without triangles,
Dandy (2016)) and simulate a scenario based on Klise
et al. (2017). We perform joint state estimation of
heads f0 and the adjusted flowrates f̄1, by modeling
them as GPs on nodes and edges, respectively. To
compare HC and non-HC edge GPs, for a node GP
with kernel K0, we consider the HC GP as its gradi-
ent, as discussed in Corollary 6. For the non-HC one,
we consider a kernel K1 of the same type as K0. We
randomly sample 50% of nodes and edges for training
and test on the rest.

From Table 3, we see that while the mean predictions
of heads remain similar whether we use HC or non-HC
edge GPs, the former perform better for edge flows,
particularly in the pipes around the source, as shown in
Figs. 5b and 5c. Moreover, HC GPs have better predic-
tion uncertainty with smaller average NLPDs for both
heads and flowrates, as illustrated in Figs. 5d and 5e.

This is because HC GPs that we use share parameters
with node GPs, helping to calibrate the uncertainty of
head predictions. They also capture the physical prior
of the pipe equation that assumes flowrates are a gra-
dient flow. As shown in Fig. 5f, the HC Matérn GP
learns a kernel with a trivial harmonic prior and a
nonzero gradient prior in small eigenvalues, reflecting
the gradient nature of the pipe flowrates. Note that
due to the randomness of training samples, the WSN,
having small edge connectivity, may become discon-
nected, causing the significant variance in NLPDs.

5 CONCLUSION

We introduced Hodge-compositional (HC) Gaussian
processes (GPs) for modeling functions on the edges of
simplicial 2-complexes. These HC GPs are constructed
by combining three individual GPs, each designed to
capture the gradient, curl and harmonic components
of the Hodge decomposition of edge functions. This
allows them to learn each component separately, mak-
ing them more expressive and interpretable when com-
pared to alternatives. Moreover, they can be extended
to jointly model signals on nodes, edges and faces of
the domain. We demonstrated their practical poten-
tial in learning real-world flow data.
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Supplementary Materials for

Hodge-Compositional Edge Gaussian Processes

A BACKGROUND

A.1 Algebraic Representation of Simplicial 2-Complexes

For a SC2 with N0 nodes, N1 edges and N2 triangles in Section 2, the entries of B1 2 RN0⇥N1 and B2 2 RN1⇥N2

are given by

[B1]ie =

8
><

>:

�1, for e = [i, ·]

1, for e = [·, i]

0, otherwise.
[B2]et =

8
>>><

>>>:

1, for e = [i, j], t = [i, j, k]

�1, for e = [i, k], t = [i, j, k]

1, for e = [j, k], t = [i, j, k]

0, otherwise.

(A.1)

In the following, we show the two incidence matrices of the SC in Fig. 1a.

B1 =

0

BBBBBBBB@

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

1 �1 �1 �1 0 0 0 0 0 0 0
2 1 0 0 �1 �1 0 0 0 0 0
3 0 1 0 1 0 �1 �1 �1 0 0
4 0 0 1 0 0 1 0 0 0 0
5 0 0 0 0 1 0 1 0 �1 �1
6 0 0 0 0 0 0 0 1 1 0
7 0 0 0 0 0 0 0 0 0 1

1

CCCCCCCCA

, B2 =

0

BBBBBBBBBBBBBB@

t1 t2 t3

e1 1 0 0
e2 �1 0 0
e3 0 0 0
e4 1 1 0
e5 0 �1 0
e6 0 0 0
e7 0 1 1
e8 0 0 �1
e9 0 0 1
e10 0 0 0

1

CCCCCCCCCCCCCCA

(A.2)

B EDGE GAUSSIAN PROCESSES

Here we provide the additional details on Section 3 and the missing proofs.

B.1 Derivation of Edge GPs from SPDEs on Edges

Here we derive the edge Matérn and diffusion GPs in Eq. (6) from the two SPDEs in Eq. (4).
Proposition B.1. Given the SPDE with a general differential operator �(L1) = U1�(⇤1)U>

1 and the stochastic
Gaussian noise process w1 ⇠ N (0, I)

�(L1)f1 = w1, (B.1)

its solution is an edge GP
f1 ⇠ GP(0, (�>(L1)�(L1))

†) (B.2)

Proof. By writing out its solution
f1 = �†(L1)w1, (B.3)

which is a random process, we can find its covariance as

Cov[f1] = �†(L1)Cov[w1](�
†(L1))

> = (�>(L1)�(L1))
† (B.4)
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Corollary B.2. Matérn and diffusion edge kernels in Eq. (6) given as follows

f1 ⇠ GP

⇣
0,

⇣2⌫

2
I + L1

⌘�⌫⌘
, f1 ⇠ GP

⇣
0, e

�2

2 L1

⌘
(B.5)

are the solutions of the following two SPDEs, respectively.
⇣2⌫

2
I + L1

⌘ ⌫
2
f1 = w1, e

2

4 L1f1 = w1. (B.6)

Proof. By following the procedure in Proposition B.1, the proof completes.

B.2 Samples of Gradient and Curl Edge GPs

Here we discuss the div and curl properties of samples of gradient and curl GPs in Eq. (14), which completes
the proof of Proposition 2 .
Proposition B.3. Consider the gradient and curl GPs

fG ⇠ GP(0,KG), fC ⇠ GP(0,KC) (B.7)

where the gradient kernel and the curl kernel are

KG = UG G(⇤G)U>
G

, KC = UC C(⇤C)U>
C

. (B.8)

Their prior samples are, respectively, curl-free and div-free.

Proof. We focus on the case of gradient GPs. First, we can decompose the gradient kernel in terms of U1 =
[UH UG UC ] as

KG = U1

0

@
0

 G(⇤G)
0

1

AU>
1 . (B.9)

From a vector v = (v1, . . . , vN1)
> of variables following independent normal distribution, we can draw a random

sample of gradient function as
fG = U1diag([0, 

1
2
G

(⇤G),0])v (B.10)

where diag([a, b, c]) is the diagonal matrix with (a, b, c)> on its diagonal.

Therefore, their curls are

curlfG = B>
2 U1diag([0, 

1
2
G

(⇤G),0]) = B>
2 UG 

1
2
G

(⇤G) = 0. (B.11)

Likewise, we can show the samples of a curl GP are div-free.
Remark B.4. An alternative proof can follow by studying the curl of the gradient GP which is another GP on
triangles as given later by Proposition B.11. The kernel B>

2 KGB2 is zero, due to the orthogonality B>
2 UG = 0.

Thus, the curl of a gradient GP is a zero GP on triangles, as well as its samples. Similarly, one can show the div
of a curl GP is a zero GP on nodes, thus, its samples are zero.

B.3 Derivation of Gradient and Curl GPs from SPDEs

Here we provide proofs for Proposition 3, deriving Matérn and diffusion gradient/curl GPs from their SPDE
representations.
Proposition B.5. Given a scaled curl white noise wC ⇠ N (0,WC) where WC = �

2
C
UCU>

C
, consider the

following SPDE on edges:
�C(Lu)fC = wC , (B.12)
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with differential operators

�C(Lu) =
⇣2⌫C


2
C

I + Lu

⌘ ⌫C
2

, �C(Lu) = e

2
C
4 Lu . (B.13)

The respective solutions give the curl edge GPs with Matérn kernel and diffusion kernel

fC ⇠ GP

⇣
0, �

2
C
UC

⇣2⌫C


2
C

I + Lu

⌘�⌫C

U>
C

⌘
, fC ⇠ GP

⇣
0, �

2
C
UCe

�2
C
2 U>

C

⌘
. (B.14)

Proof. First, consider the Matérn curl GP case. The corresponding SPDE has the form
⇣2⌫C


2
C

I + Lu

⌘ ⌫C
2
fC = wC , (B.15)

with a solution fC = �†
C

(Lu)wC .

Given the scaled curl Gaussian noise process wC ⇠ G(0,WC) with WC = �
2
C
UCU>

C
, the solution fC is an edge

GP following fC ⇠ GP(0, Cov[fC ]) with the covariance of solution fC as

Cov[fC ] =
⇣2⌫C


2
C

I + Lu

⌘� ⌫C
2
WC

⇣2⌫C


2
C

I + Lu

⌘� ⌫C
2

. (B.16)

Note that we have

WC =
�
UH UG UC

�
0

@
0

0
�
2
C
I

1

A�UH UG UC

�>
. (B.17)

Moreover, Lu can be decomposed by U1 as follows

Lu =
�
UH UG UC

�
0

@
0

0
⇤C

1

A�UH UG UC

�>
, (B.18)

which follows that

⇣2⌫C


2
C

I + Lu

⌘� ⌫C
2

=
�
UH UG UC

�

0

BBBB@

⇣
2⌫C


2
C
I
⌘� ⌫C

2

⇣
2⌫C


2
C
I
⌘� ⌫C

2

⇣
2⌫C


2
C
I + ⇤C

⌘� ⌫C
2

1

CCCCA

�
UH UG UC

�>
.

(B.19)
By plugging Eq. (B.17) and Eq. (B.19) into Eq. (B.16), we can then express the covariance as

Cov[fC ] =
�
UH UG UC

�
0

B@
0

0

�
2
C

⇣
2⌫C


2
C
I + ⇤C

⌘�⌫C

1

CA
�
UH UG UC

�>

= UC�
2
C

⇣2⌫C


2
C

I + ⇤C

⌘�⌫C

U>
C

(B.20)

which returns the Matérn curl GP fC ⇠ GP

⇣
0, �

2
C
UC

⇣
2⌫C


2
C
I + Lu

⌘�⌫C

U>
C

⌘
.

Second, consider the following SPDE

e

2
C
4 LufC = wC . (B.21)

Following the same procedure as above, we have its solution as

fC ⇠ GP

⇣
0, �

2
C
UCe

�2
C
2 U>

C

⌘
(B.22)

which is the diffusion curl GP.
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Proposition B.6. Given a scaled gradient white noise wG ⇠ N (0,WG) where WG = �
2
G
UGU>

G
, consider the

following SPDE on edges:
�G(Ld)fG = wG, (B.23)

with differential operators

�G(Ld) =
⇣2⌫G


2
G

I + Ld

⌘ ⌫G
2

, �G(Ld) = e

2
G
4 Ld . (B.24)

The respective solutions give the curl edge GPs with Matérn kernel and diffusion kernel

fG ⇠ GP

⇣
0, �

2
G
UG

⇣2⌫G


2
G

I + Ld

⌘�⌫G

U>
G

⌘
fG ⇠ GP

⇣
0, �

2
G
UGe

�2
G
2 U>

G

⌘
. (B.25)

Proof. The proof follows Proposition B.5 likewise.

B.4 Proof of Properties of HC Edge GPs

Here we provide proofs for Lemma 5, which directly follow from Definition 4.

Proof. For an edge GP f1 with covariance kernel K1, due to the fact that the HC edge kernel K1 is built
using all the orthonormal basis of the edge function space U1, its realizations give all possible edge functions.
This is analogous to Karhunen-Loève theorem for GPs with Mercer kernels. For the second point that K1 =
KH + KG + KC and the three Hodge GPs mutually independent, this results from the construction of f1 and
the orthogonality of the three Hodge GPs.

B.5 Posterior Distributions of Hodge Components

Here we discuss the posterior distribution of the three Hodge components from the posterior prediction of the
edge function. As the construction of our HC edge GPs is essentially a sum of three independent functions, we
can follow Duvenaud (2014, Section 2.4) modeling the sums of Euclidean functions. Denote f1(x) and f1(x⇤)
the function values, respectively, at training locations x = [x1, . . . , xn]> and query locations x⇤ = [x⇤

1, . . . , x
⇤
n
]>.

We first write down the joint prior distribution over the three Hodge components and the edge function.
2

66666666664

fH(x)
fH(x⇤)
fG(x)
fG(x⇤)
fC(x)
fC(x⇤)
f1(x)
f1(x⇤)

3

77777777775

⇠ N

0

BBBBBBBBBB@

0,

2

66666666664

KH K⇤
H

KH K⇤
H

K⇤>
H

K⇤⇤
H

K⇤
H

K⇤⇤
H

KG K⇤
G

KG K⇤
G

K⇤>
G

K⇤⇤
G

K⇤
G

K⇤⇤
G

KC K⇤
C

KC K⇤
C

K⇤>
C

K⇤⇤
C

K⇤
C

K⇤⇤
C

KH K⇤>
H

KG K⇤>
G

KC K⇤>
C

K1 K⇤
1

K⇤>
H

K⇤⇤
H

K⇤>
G

K⇤⇤
G

K⇤>
C

K⇤⇤
C

K⇤>
1 K⇤⇤

1

3

77777777775

1

CCCCCCCCCCA

(B.26)

where we represent the kernel matrices by K1 = k1(x,x),K⇤
1 = k1(x,x⇤) and K⇤⇤

1 = k1(x⇤
,x⇤), and likewise

for the other kernel matrices. Given this joint distribution, we can obtain the posterior distributions of the three
Hodge components as follows

fH(x⇤)|f1(x) ⇠ N

⇣
K⇤>

H
K�1

1 f1(x),K⇤⇤
H

�K⇤>
H

K�1
1 K⇤

H

⌘
(B.27a)

fG(x⇤)|f1(x) ⇠ N

⇣
K⇤>

G
K�1

1 f1(x),K⇤⇤
G

�K⇤>
G

K�1
1 K⇤

G

⌘
(B.27b)

fC(x⇤)|f1(x) ⇠ N

⇣
K⇤>

C
K�1

1 f1(x),K⇤⇤
C

�K⇤>
C

K�1
1 K⇤

C

⌘
(B.27c)

From these posterior distributions, we can directly obtain the means and the uncertainties of the Hodge compo-
nents of the predicted edge function.
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B.6 Edge Fourier Feature Perspective

Edge Fourier transform From the edge eigen-feature perspective, any edge function can be viewed as a
linear combination of eigenvectors in U , that is,

f1 =
N1X

i=1

f̃1,iui = U1f̃1 with f̃1 = U>f1 (B.28)

where f̃1 is known as the (edge) Fourier feature of f1 and f̃1,i is the i-th Fourier coefficient at eigenvalue �i.
These eigenvalues carry the notion of frequency (Barbarossa & Sardellitti, 2020). Particularly, based on the
reorganized eigenvector matrix U1 = [UH UG UC ] and the associated eigenvalues ⇤1 = diag(⇤H ,⇤G,⇤C), we
have that any �G measures the squared `2-norm of the divergence while �C measures the squared `2-norm of
the curl: �G = u>

G
L1uG = u>

G
LduG = kB1uGk

2
2, and �C = u>

C
L1uC = u>

C
LuuC = kB>

2 uCk
2
2, and a zero

eigenvalue �H = 0 corresponding to harmonic eigenvector µH has zero total divergence and curl, as discussed
by (Yang et al., 2021, 2022b). Therefore, the Fourier coefficients at eigenvalues in different Hodge subspaces
measure the weights of the corresponding Fourier basis in f , each basis associated with different total divergence
or total curl. That is, we have the edge Fourier representation as

f̃1 = U>
1 f1 = [f̃>

H
, f̃>

G
, f̃>

C
]> with f̃H = U>

H
f1, f̃G = U>

G
f1, f̃C = U>

C
f1. (B.29)

Remark B.7. This provides as a spectral tool to understand the edge functions. The harmonic Fourier feature
f̃H measures the extent of harmonic Fourier basis UH in f , reflecting how harmonic f1 is. The gradient Fourier
feature f̃G measures the extent of gradient Fourier basis UG in f1, reflecting how divergent f1 is, where each
basis in UG has different total divergence. The curl Fourier feature f̃C measures the extent of curl Fourier basis
UC in f1, reflecting how rotational f1 is, where each basis in UC has different total curl.
Corollary B.8 (Fourier feature perspective of edge GPs). Let f1 ⇠ GP(0,K1) be an edge Gaussian process
with kernel diagonalizable by U1. Then, given the edge Fourier transform f̃1 = U>

1 f1, its Fourier coefficients
{f̃1,i}

N

i=1 are independently distributed Gaussian variables

f̃1,i ⇠ N (0,u>
i
K1ui), for i = 1, . . . , N. (B.30)

Proof. Using the affine transformation preserving Gaussian, we have

f̃1 ⇠ GP(0,U>
1 K1U1). (B.31)

Since the kernel K1 can be diagonalized by U1, the kernel U>
1 K1U1 is a diagonal matrix, implying the inde-

pendence between variables in f̃1. Thus, a variable f̃1,i follows normal distribution N (0,u>
i
K1ui).

This corollary indicates that an edge GP can be viewed as an affine transformation by U1 of a collection of
independent Gaussian variables, f̃1 = [f̃1,1, . . . , f̃1,N1 ]

>, which are the Fourier coefficients of f . The prior
distribution of certain Fourier coefficient is the prior imposed on the corresponding divergent or rotational part
of the function f . This allows us to compare HC and non-HC edge GPs from the following perspective.
Proposition B.9. Suppose the Hodge Laplacian L1 has eigenpairs (�,uG) and (�,uC), i.e., � is associated
to both gradient and curl subspaces. Let f1 ⇠ GP(0,K1) be an edge Gaussian process. Denote the Fourier
coefficients of f1 at �G and �C as f̃G and f̃C , respectively. Then, a non-Hodge-compositional GP with K1 =
 (L1) imposes the same prior variance on f̃G and f̃C , i.e.,

Var[f̃G] = Var[f̃C ] =  (�). (B.32)

Instead, a Hodge-compositional GP with K1 in Eq. (20) imposes different variances on two coefficients

Var[f̃G] =  G(�) and Var[f̃C ] =  C(�). (B.33)

Proof. For a non-HC edge GP with kernel  (L1), its Fourier coefficients f̃G and f̃C at a common � follows the
normal distribution with a variance  (�), which follows from the nature of kernel function  mapping each �

to exactly one value  (�). However, for a HC edge GP, we have

f̃G ⇠ N (0,u>
G
K1uG), f̃C ⇠ N (0,u>

C
K1uC). (B.34)
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Using Definition 4 [cf. Eq. (20)], we have u>
G
K1uG =  G(�) and u>

C
K1uC =  C(�), which are two different

values, arising from the individually parametrized kernels KG and KC .

This edge Fourier feature perspective directly shows that non-HC GPs impose the same prior on two Fourier
coefficients, which are however associated with two different Hodge subspaces. This prohibits individual learning
for the gradient and curl parts of edge functions particularly associated to the same eigenvalue. Instead, HC
edge GPs do not have this limitation.

B.7 Diffusion on Edges

Here we provide the details on the connection of diffusion HC edge GPs to edge diffusion equations, as well as
an illustration of diffusion process on edges. Consider the diffusion equation on the edge space

d�(t)

dt
= �(µLd + �Lu)�(t) (B.35)

where µ, � > 0. Given an initial value �(0), we obtain a solution

�|t=⌧ = e
�(µ⌧Ld+�⌧Lu)�(0), (B.36)

When �
2
G

= �
2
C

= �
2
H

= 1, the diffusion kernel can be written as

K1 = e
�(

2
G
2 Ld+

2
C
2 Lu) (B.37)

which is the Green’s function of above diffusion equation. In Fig. B.1, we illustrate the diffusion processes on
nodes and on edges, started at a random location. When the graph is connected, the node diffusion converges
to the harmonic state where all nodes are constant. Instead, the harmonic state of the edge diffusion gives an
edge flow which is div- and curl-free, cycling around the 1-dimensional “hole” of the SC2 (Munkres, 2018).

Figure B.1: Node (Top) and edge (Bottom) diffusion processes (started at one random location (Left), then two
intermediate states (Center) and harmonic state (Right)).

B.8 Complexity of Edge GPs

Here we discuss their complexity when training, e.g., in Gaussian process regression, and the complexity of
sampling from them. Note that the complexity of graph GPs naturally apply to edge GPs.

Complexity when Training The Matérn and diffusion kernels can be trained in a scalable way. Due to
their decreasing eigenvalues, we can consider the l largest eigenvalues of the kernel matrices with off-the-shelf
eigen-solvers, e.g., Lanczos algorithm. The recent work on Krylov subspace methods to accelerate graph kernels
by Erb (2023) can be extended to edge kernels. Moreover, other computational techniques applicable for graph
GPs in Borovitskiy et al. (2021, Section 3.1) can be adopted as well.
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Complexity when Sampling from Edge GPs Given an edge GP, as well as the eigenpairs for constructing
the edge kernel, we can follow the procedure in Appendix B.2 to sample an edge function. That is, from a vector
v = (v1, . . . , vN1)

> of variables following independent normal distribution, a sample of the edge function can be
given by

f1 = [UH UG UC ] diag([ 
1
2
H

(⇤H), 
1
2
G

(⇤G), 
1
2
C

(⇤C)])v (B.38)

which has a complexity of O(N2
1 ) (matrix-vector multiplication). Furthermore, the discussion on improving

sampling efficiency in graph GP models by Nikitin et al. (2022, Section 4.7) naturally applies to our proposed
edge GPs as well.

B.9 Interaction between Node, Edge and Triangle GPs

Here we provide the proof for Corollary 6, showing the gradient of a node GP is an edge GP.

Proof. Given a node GP f0 ⇠ GP(0,K0), using the derivative of a GP is also a GP, its gradient fG = B>
1 f0 is

an edge GP whose kernel can be found as

KG = Cov[fG] = B>
1 Cov[f0]B1 = B>

1 K0B1. (B.39)

By definition, L0 = B1B>
1 and Ld = B>

1 B1 are isospectral, having the same nonzero eigenvalues. Furthermore,
using K0 =  0(L0), we can write above covariance as

KG = B>
1  (B1B

>
1 )B1 = B>

1 B1 0(B
>
1 B1) = Ld 0(Ld) (B.40)

where the second equality can be shown by using the definition of analytic functions of matrix (Higham, 2008,
Corollary 1.34). Furthermore, relying on the eigendecomposition

Ld =
�
UH UG UC

�
0

@
0

⇤G

0

1

A�UH UG UC

�>
, (B.41)

we can obtain
KG = UG⇤G 0(⇤)U>

G
, (B.42)

which gives the gradient kernel function  G(⇤G) = ⇤G 0(⇤G).

In the following we provide the respective corollaries for other derivative operations of interest, where the proofs
can directly follow from the fact that derivatives preserve Gaussianity.

Corollary B.10 (Curl of a triangle GP). Suppose a triangle function f2 is a GP f2 ⇠ GP(0,K2) with K2 =
 2(L2) = U2 2(⇤2)U>

2 given the eigendecomposition L2 = U2⇤2U>
2 . Then, its curl is an edge GP fC ⇠

GP(0,KC) where KC = UC C(⇤C)U>
C

with

 C(⇤C) = ⇤C 2(⇤C). (B.43)

Proposition B.11 (Div and Curl of edge GPs). Let f1 ⇠ GP(0,K) be a Hodge-compositional edge Gaussian
process in Definition 4. Then, its divergence and curl are Gaussian processes on nodes and triangles, respectively,
as follows

B1f ⇠ GP(0,B1KGB
>
1 ), B>

2 f ⇠ GP(0,B>
2 KCB2). (B.44)

Remark B.12. These interactions between GPs on nodes, edges and triangles provide us alternative ways to
construct gradient and curl edge GPs [cf. Corollaries 6 and B.10], as well as construct appropriate node GPs
and triangle GPs. They are more applicable when the underlying physical relationships exist between the
corresponding functions and the GP priors on the original simplices are easier to construct.
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B.10 Alternative Hodge-compositional Edge GPs

Here we provide the proof for Proposition 7 giving an alternative way to build HC edge GPs.

Proof. From the Hodge decomposition, we can write an edge function as

f1 = fH + B>
1 f0 + B2f2. (B.45)

where f0 and f2 are some node and triangle functions. Then, the proof can be completed by using the results
from Corollaries 6 and B.10.

B.11 Alternative HC Edge GPs from SPDEs on Edges

While gradient and curl edge GPs in Definition 4 can be linked to their SPDEs as discussed by Proposition 3,
we can also obtain the alternatively constructed counterparts in Corollaries 6 and B.10 from SPDEs. Again, we
consider the Matérn family.
Corollary B.13. Suppose a node function f0 is a graph (node) Matérn GP f0 ⇠ GP(0,K0) with

K0 =  0(L0) =
⇣2⌫0


2
0

I + L0

⌘�⌫0

. (B.46)

Then, Corollary 6 gives us its gradient as a gradient edge GP fG ⇠ GP(0,KG) with

KG = Ld

⇣2⌫0


2
0

I + Ld

⌘�⌫0

. (B.47)

Furthermore, the gradient GP fG is the solution of the following SPDE

⇣2⌫0


2
0

I + Ld

⌘ ⌫0
2
fG = B>

1 w0 (B.48)

where w0 is a standard Gaussian noise on nodes following f0 ⇠ N (0, I).

Proof. First, we can solve the SPDE with the following solution

fG =
⇣2⌫0


2
0

I + Ld

⌘� ⌫0
2
B>

1 w0 = B>
1

⇣2⌫0


2
0

I + L0

⌘� ⌫0
2
w0 (B.49)

where the second equality follows from the definition of L0 and Ld. Given that w0 is a GP, so is fG and we can
study its covariance as

Cov[fG] = B>
1

⇣2⌫0


2
0

I + L0

⌘� ⌫0
2

Cov[w0]
⇣2⌫0


2
0

I + L0

⌘� ⌫0
2
B1

= B>
1

⇣2⌫0


2
0

I + L0

⌘�⌫0

B1

= Ld

⇣2⌫0


2
0

I + Ld

⌘�⌫0

(B.50)

which completes the proof.

For completeness, we give the corollary relating the curl Matérn edge GP obtained from some triangle GP to its
SPDE representation.
Corollary B.14. Suppose a triangle function f2 is a triangle Matérn GP f2 ⇠ GP(0,K2) with

K2 =  2(L2) =
⇣2⌫2


2
2

I + L2

⌘�⌫2

. (B.51)
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Then, Corollary B.10 gives us its curl adjoint as a curl edge GP fC ⇠ GP(0,KC) with

KC = Lu

⇣2⌫2


2
2

I + Lu

⌘�⌫2

. (B.52)

Furthermore, the curl GP fC is the solution of the following SPDE

⇣2⌫2


2
2

I + Lu

⌘ ⌫2
2
fC = B2w2 (B.53)

where w2 is a standard Gaussian noise on triangles following f2 ⇠ N (0, I).

Proof. The proof can follow the same procedure as above for Corollary B.13.

C EXPERIMENTS

Here we provide additional details on the three experiments presented in the main text.

Experimental Setup In our three experiments we consider the regression tasks and implement GP regression
using the GPyTorch library (Gardner et al., 2018). We optimize the marginal log likelihood loss for 1000 iterations
with the ADAM optimizer where the learning rate is set to the default value of 0.001. We run each experiment 10
times with hyperparameters randomly initialized. We report evaluation metrics averaged over 10 experiments
and the respective standard deviations. All experiments are run on a NVIDIA GeForce RTX 3080 GPU with
10GB of memory.

Line-graph Construction Given the incidence matrix B1 of the original graph, the adjacency matrix and the
corresponding graph Laplacian of the line-graph can be found as Alg := |B>

1 B1�2I| and Llg = diag(Alg1)�Alg.

C.1 Additional Details for the Forex Experiment

In the forex experiment, we obtain the data from Foreign Exchange Data by Oanda Corporation3. The data
was collected at 2018/20/05 17:00 UTC by Jia et al. (2019). It includes the pairwise exchange rates between
the 25 most traded currencies, which form 210 exchangeable pairs. With them as nodes and edges, we then
construct an unweighted SC2 by including the triangles formed by any three pairwise exchangeable currencies.
For an edge {i, j} connecting currencies i, j, we assign its orientation based on an alphabetical order of their
currency names, and likewise for a triangle. For each exchangeable pair, we consider the underlying edge flow
as f1(i, j) = log r

i/j , translating the arbitrage-free condition to curl-free condition, where r
i/j is the midpoint

between ask and bid prices. Fig. C.1 shows the prediction RMSEs using different GP models with respect to
training ratios from 0.1 to 0.5 with a step 0.05, as well as the learned Matérn kernels.

For visualizing the predictions using different models, we consider a smaller market for better visibility where
we first randomly removed seven currencies then half of the exchangeable pairs, resulting 18 currencies and 77
pairs, as shown in Fig. C.2.

C.2 Additional Details for Ocean Current Analysis

In the second experiment, we consider the ocean drifter data, also known as Global Lagrangian Drifter Data,
which was collected by NOAA Atlantic Oceanographic and Meteorological Laboratory4. Each point in the dataset
is a buoy at a specific time, with buoy ID, location (in latitude and longitude), date/time, velocity and water
temperature. We consider the buoys that were in the North Pacific ocean dated from 2010 to 2019 with a size of
around three million. The dataset itself is a 3D point cloud after converting the location to the earth-centered,
earth-fixed (ECEF) coordinate system. We follow the procedure in Chen & Meila (2021) to first sample 1,500
buoys furthest from each other, then construct a weighted SC2 as a Vietoris-Rips (VR) complex with N1 around
20k and N2 around 90k. We then convert the velocity field into flows on the edges of SC2 by using the linear

3https://www.oanda.com/.
4http://www.aoml.noaa.gov/envids/gld/.

https://www.oanda.com/
http://www.aoml.noaa.gov/envids/gld/
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(a) RMSEs versus training ratios (b) RMSEs versus training ratios (c) Learned Matérn kernels

Figure C.1: (a) Forex prediction RMSEs of different GPs using Matérn kernels with respect to training ratios.
(b) Forex prediction RMSEs of HC GPs using different edge kernels with respect to training ratios. (c) Learned
HC and non-HC Matérn kernels in the spectrum for a training ratio of 0.2.

(a) Forex market SC2 (b) Ground truth (c) HC Matérn, posterior mean

(d) non-HC Matérn, posterior mean (e) HC Matérn, posterior std (f) Prior variance of HC Matérn GP

Figure C.2: (a-e): Visualization of forex rates predictions in a smaller market. (f): Prior variance of the learned
HC Matérn GP. Note that (b-d) and (f) are the same as the ones in the main content [cf. Fig. 3]. Here we show
them with a better resolution.

integration approximation (Chen et al., 2021). We randomly sample 20% of the edges for training and test on
the rest. To efficiently construct the edge kernels, we use eigensolver in Knyazev (2001), implemented using the
megaman library (McQueen et al., 2016), to compute the eigenpairs associated to the 500 largest eigenvalues. We
evaluate the prediction mean and uncertainty in the edge flow domain, reported in Table C.1. Furthermore, we
obtain the gradient and curl components of the edge flow of the prediction as in Appendix B.5. We visualize the
predictions in the edge flow domain in Fig. C.3. We see that both HC and non-HC edge diffusion GPs give close
performance and they capture the general pattern of the edge flow. Moreover, the standard deviation is small
in most of the locations except few locations (small islands around the lower left corner) where the edge flows
(velocity fields) exhibit more discontinuities due to the boundary.

We further convert the edge flows back into vector fields, as shown in Fig. C.4. We refer to Chen et al. (2021) for
this procedure. We also approximate the standard deviation of the velocity field prediction by sampling 50 edge
flows from the posterior distribution and converting them to the vector field domain, followed by computing the
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Table C.1: Ocean current inference results.

Method RMSE NLPD

Diffusion Matérn Hodge Laplacian Diffusion Matérn Hodge Laplacian

Euclidean 1.00 ± 0.01 1.00 ± 0.00 — 1.42 ± 0.01 1.42 ± 0.10 —
Line-Graph 0.99 ± 0.00 0.99 ± 0.00 — 1.41 ± 0.00 1.41 ± 0.00 —
Non-HC 0.35 ± 0.00 0.35 ± 0.00 0.35 ± 0.00 0.33 ± 0.00 0.36 ± 0.03 0.33 ± 0.01
HC 0.34 ± 0.00 0.35 ± 0.00 0.35 ± 0.00 0.33 ± 0.01 0.37 ± 0.04 0.33 ± 0.01

average `2 distance between the samples and the mean per location, as shown in Fig. C.4d.

C.3 Additional Details for Water Supply Networks

We obtain the Zhi Jiang WSN from Dandy (2016) which contains 114 nodes (113 tanks and 1 source reservoir)
and 164 edges (water pipes), no triangles considered. We build an unweighted graph based on the topology of
this WSN. We model the hydraulic heads as functions on nodes f0 and water flowrates as functions on edges f1.
A WSN is often governed by the following equations

mass conservation : B1f1 = q, and Hazen-Williams equation : [B>
1 f0](e) = f̄1(e) := ref1(e)

1.852 (C.1)

for a pipe e, where q 2 RN0 is the demand on nodes, re is the roughness of pipe e (Dini & Tabesh, 2014). We
then use the WNTR library (Klise et al., 2017) to simulate a scenario generating the states of node heads and edge
flowrates given the pipe roughnesses and the node demands. The latter are sampled uniformly from 0 to 10 (unit
liter/s), modeling the read-world demand.

We consider the joint state estimation of both heads (using node GPs) and the adjusted flowrates f̄1 (using edge
GPs). Specifically, our GP models are

✓
f0

f̄1

◆
⇠ GP

 ✓
0
0

◆
,

✓
K0

K1

◆!
. (C.2)

We choose the Matérn and diffusion node GPs (Borovitskiy et al., 2021). For HC edge GPs, we leverage the
physical prior to model K1 = B>

1 K0B1 as discussed in Corollary 6, while for non-HC edge GPs, we choose them
as in Eq. (6), of the same type as node GPs. We randomly sample 50% of the nodes and edges for training and
use the rest for test. Note that the WSN has small edge connectivity. The randomness of the training set may
disconnect the graph, which may deteriorate the performance, causing the large variance in the metrics.
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(a) Original ocean current (b) Predicted ocean current

(c) Standard deviation (d) Predicted ocean current, non-HC diffusion

(e) Original gradient ocean current (f) Original curl ocean current

(g) Predicted gradient flow (h) Predicted curl flow

Figure C.3: (a-h) Results for ocean current prediction with 20% training ratio in the edge flow domain. Note
that we highlight the edge flow values on the middle points of the edges.
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(a) Original ocean current (b) Posterior mean

(c) Sample from posterior distribution (d) Standard deviation approximated using 50 samples

(e) Original curl-free component (f) Original div-free component

(g) Predicted curl-free component (h) Predicted div-free component

Figure C.4: (a-h) Results for ocean current prediction with 20% training ratio in the vector field domain. Note
that (a-b) and (g-h) are the same as in Fig. 4. We show them here for reader’s convenience.
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