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Abstract

Recent deep-learning-based single image super-resolution
(SISR) methods have shown impressive performance whereas
typical methods train their networks by minimizing the pixel-
wise distance with respect to a given high-resolution (HR)
image. However, despite the basic training scheme being the
predominant choice, its use in the context of ill-posed inverse
problems has not been thoroughly investigated. In this work,
we aim to provide a better comprehension of the underly-
ing constituent by decomposing target HR images into two
subcomponents: (1) the optimal centroid which is the ex-
pectation over multiple potential HR images, and (2) the in-
herent noise defined as the residual between the HR image
and the centroid. Our findings show that the current training
scheme cannot capture the ill-posed nature of SISR and be-
comes vulnerable to the inherent noise term, especially during
early training steps. To tackle this issue, we propose a novel
optimization method that can effectively remove the inherent
noise term in the early steps of vanilla training by estimating
the optimal centroid and directly optimizing toward the esti-
mation. Experimental results show that the proposed method
can effectively enhance the stability of vanilla training, lead-
ing to overall performance gain.

1 Introduction
With the drastic development of deep-learning-based tech-
niques, recent single image super-resolution (SISR) methods
have shown promising performance against previous meth-
ods. Here, the two primary objectives of SISR are; achieving
precise reconstruction at the pixel level (known as fidelity-
oriented methods); and producing visually appealing (Mit-
tal, Soundararajan, and Bovik 2012; Zhang et al. 2018a)
images (referred to as perceptual-quality-oriented methods).
While perceptual-quality-oriented methods have become in-
creasingly popular in recent years, fidelity-oriented methods
still remain a mainstream of research due to the high demand
for reliable reconstruction. Accordingly, we limit our focus
to fidelity-oriented methods in this paper.

Typically, modern fidelity-oriented SISR networks adopt
a very simple training strategy. In most cases, the only ob-
jective is to optimize the likelihood of the predicted image
based on pairs of HR images and corresponding downscaled
LR images. Here, with fair assumptions on the distribution
of image spaces and empirical results (Lim et al. 2017), the

majority decision of the objective function is narrowed down
as the pixel-wise L1 loss. However, although this basic train-
ing scheme is the predominant choice, its use and limitations
have not been thoroughly investigated, particularly with re-
gard to the ill-posed nature of image super-resolution.

In this paper, we aim to analyze the underlying compo-
nents of vanilla training in the context of SISR tasks and sys-
tematically develop the current training process. We start our
analysis by decomposing the original HR image into two key
components: optimal centroid and inherent noise. Given the
ill-posed nature of image SR (Hyun and Heo 2020; Lugmayr
et al. 2020), we define the optimal centroid as the expecta-
tion over multiple potential HR images that downsamples
to an identical LR image instance. Additionally, we define
the inherent noise term as the residual between the HR im-
age sample and the optimal centroid, which is a fundamental
component underlying in each HR image instance.

Our findings are that vanilla training neglects the ill-posed
nature of inverse problems, which results as a residual noise
term per sample. Consequently, the overall training proce-
dure becomes highly dependent on each HR image sample
within a mini-batch, leading to noisy and unstable training,
especially in early training steps.

In order to tackle this issue, we take the ill-posed nature of
SR into account and formulate a noise-free objective, which
simplifies as minimizing the L1 distance between the net-
work’s estimation and the expectation over all possible HR
samples (i.e., the true centroid term). However, since direct
usage of this objective is impossible due to the intractability
of the centroid term, we utilize a surrogate objective that can
effectively act as a substitute for the intractable objective.
Specifically, we estimate the true centroid by an empirical
centroid obtained from pretrained SR networks and define a
tractable objective for noise-free optimization. Further, we
show that Knowledge Distillation (KD) can be understood
as a specific case of this noise-free optimization, but with
apparent flaws: spatial inconsistency. We make a quick fix
for the shortcomings of KD and construct a noise-free train-
ing objective that optimizes directly towards the empirical
centroid while being both tractable and spatially aligned.
It turns out that the proposed objective can lead to well-
behaving loss values and gradients (i.e., better Lipschitz-
ness) enabling stable optimization which is especially ben-
eficial in the early steps of training. At last, we address the



𝝁𝒆𝒎𝒑

𝝁𝒕𝒓𝒖𝒆

↓ 𝝁𝒆𝒎𝒑

↓ 𝒚∗(=LR)

KD

Vanilla

𝑬𝑪𝑶𝜶
↓ (𝝁𝒆𝒎𝒑 +𝜶(𝜟𝝁 + 𝝐 ))

𝐧𝐨𝐢𝐬𝐞 (𝝐)

𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐢𝐨𝐧 𝐞𝐫𝐫𝐨𝐫 (𝚫𝝁)

𝑬𝑪𝑶𝜶=𝟎

𝒚∗ (=HR) 𝒚𝟏

𝒚𝒏…

…

Gradually 
change 𝜶

𝜶 =0

𝜶 =1

mixup

noise-free target

spatial mismatch

noisy training

𝝁𝒆𝒎𝒑+𝜶(𝜟𝝁 + 𝝐 )

…
…

spatially aligned
noise-free

𝐈𝐧𝐩𝐮𝐭 𝐈𝐦𝐚𝐠𝐞𝐬 ℝ𝑯×𝑾 𝐓𝐚𝐫𝐠𝐞𝐭 𝐈𝐦𝐚𝐠𝐞𝐬 ℝ𝒔𝑯×𝒔𝑾𝐓𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝐒𝐜𝐡𝐞𝐦𝐞

Figure 1: Visualization of our method (ECO) compared to vanilla training and knowledge distillation (KD). Data points indi-
cated in gray text are not available during training. Vanilla training leads to noisy training since it is unaware of the inherent
noise ϵ, which is defined as the difference of a given HR image y∗ and the expectation over all possible HR images, µtrue. On
the other hand, KD benefits from noise-free targets but suffers from spatial inconsistency between the input and target images
as in Eq.(9). The proposed objective Eq.(11) benefits from noise-free training while being spatially aligned. Then, we overcome
the limitations that arise by removing the estimation error term ∆µ := µtrue − µemp with a smooth transition from the proposed
objective to the original objective. Remarkably, the overall solution can be greatly simplified with the use of mixup strategy as
in Eq.(14) (Section 5.2). Starting from synthetic data pairs (α = 0), gradually migrate to real data pairs (α = 1). This way, we
enjoy noise-free training during the early steps, and finetune the network with supervision from real data samples in later steps.

limitations that come from the estimation error and provide
a simple method to overcome this. With a smooth transition
between the proposed noise-free objective and the original
loss, it is shown that the proposed training framework can
benefit from stable training during early steps and minimize
shortcomings of approximation errors in later steps.

To sum up, the major contribution of this work is in of-
fering improved comprehension of the underlying processes
involved in training neural networks for SISR tasks. This
is further extended to a novel training framework, which
we refer to as Empirical Centroid-oriented Optimization
(ECO). Experimental results show that ECO can lead to
performance gain against vanilla training by enabling sta-
ble training and providing well-behaving optimization land-
scapes, especially helpful in the early training stages.

2 Probabilistic Modeling
2.1 Traditional objective function
With plausible assumptions of the HR image manifold, the
widely used MLE strategy in low-level vision tasks are for-
mulated as minimizing the Lp-norm. Here, the majority
choice in SR tasks is the L1-norm since it has been em-
pirically shown to have better convergence than the L2-
norm (Lim et al. 2017). Accordingly, typical methods em-
ploy pixel-wise L1 loss as the objective function where each
HR image sample from the training dataset is treated as the
sole ground truth image. Thus, it is a clear choice to con-
struct the objective function in the form of a loss for a single
data point as follows:

f := RH×W → RsH×sW

L1(HR,SR) = ||y∗ − f(x)||1,
(1)

where f(·) is the SR network with scale-factor s, which is
piece-wise linear (Bunel et al. 2018) with only ReLU (Nair
and Hinton 2010) as the non-linearity, and y∗, x each corre-
sponds to the HR, LR image sample in the training dataset,
respectively.

2.2 Optimal centroid and inherent noise
Before we start our analysis, we define two fundamental
components of ill-posed inverse problems: (1) the optimal
centroid µtrue which is the expectation over multiple plausi-
ble solutions, and (2) the inherent noise ϵ which is the resid-
ual between the optimal centroid and a single data point.
Here, the inherent noise term ϵ can be understood as a factor
being highly random and indeterministic due to its ill-posed
nature. In terms of SISR, we can define µtrue and ϵ with re-
spect to an observed LR image x and the corresponding HR
image sample y as following:

µtrue :=

∫
yp(y|x)dy, (2)

ϵ := y − µtrue, (3)
where, ϵ is expected to reside in high-frequency regions
within every HR image sample, which makes exact pixel-
wise reconstruction impossible. Accordingly, representing
the vanilla L1 loss in terms of the components defined
above, the original objective function can be reformulated
as follows:

||y∗ − f(x)|| = ||µtrue + ϵ∗ − f(x)||, (4)

where ϵ∗ is the inherent noise term for ground truth image
y∗ in the training dataset. In the following sections, we will
provide a comprehensive analysis based on this formulation.



2.3 Modifying the objective function
Taking the ill-posed nature into account Regarding the
ill-posed nature of SISR, multiple HR images can corre-
spond to a single LR image. Therefore, following general
principles in machine learning, it is natural to maximize the
likelihood over all plausible answers. Accordingly, we be-
gin our investigation by taking the posterior distribution into
account and delve deeper into the underlying essentials of
image super-resolution as below:∫

||y − f(x)||p(y|x)dy

=

∫
||µtrue + ϵ− f(x)||p(y|x)dy.

(5)

Then given an LR image x, an ideal SR model should es-
timate µtrue, which is the optimal point of maximum likeli-
hood, regarding that Ep(y|x)(y) = µtrue by construction.

Vanilla training induces noisy training It is worth not-
ing that the original loss Eq.(4) is a specific case of Eq.(5).
If we let p(y|x) as a Delta function where p(y|x) = 0 for
all points except for y = y∗, Eq.(5) is found to be identical
to the original objective function. Based on this observation,
we can conclude that the current training protocol, indeed,
fails in capturing the ill-posed nature of inverse problems.
Instead, it treats the given HR sample as a unique and well-
defined solution. However, this assumption does not account
for the non-deterministic mapping from LR to HR, which
makes the use of the Delta function for p(y|x) less appro-
priate. Moreover, this induces inherent noise ϵ per every HR
image, which can potentially hinder the stability of the train-
ing procedure. However, in general, it is hard to disentangle
the noise term since µtrue is intractable. In further sections,
we provide systematic methods to remove the noise term and
enable optimization towards the centroid.

3 Noise-free Objective Function
3.1 Removing the noise term
In this section, our goal is to remove the inherent noise term
in Eq.(5), which can hinder the optimization, and only re-
tain the centroid term. For any measurable and convex func-
tion ϕ(·), we can obtain a lower bound of the expectation
as E(ϕ(·)) ≥ ϕ(E(·)) by Jensen’s inequality. Since all Lp-
norms are convex for p ≥ 1; and µtrue and f(x) are indepen-
dent from y; and Ey∼p(y|x)(ϵ) = 0 by definition, Eq.(5) can
be simplified as following:

Ey∼p(y|x)(||µtrue + ϵ− f(x)||)
≥||E(µtrue) + E(ϵ)− E(f(x))||
=||µtrue − f(x)||.

(6)

By eliminating the per sample inherent noise, we obtain a
noise-free lower bound of the original objective function.

3.2 Empirical centroid estimation
Although a noise-free objective has been obtained in Eq.(6),
the true centroid term is still intractable and cannot be di-
rectly utilized since it involves taking the expectation over

an infinite number of possible HR images. Here, pretrained
networks serve as a remedy to the problem at hand. It has
been observed that low-level vision methods with pixel-wise
loss implicitly tend to estimate the average among all plau-
sible estimations (Buades, Coll, and Morel 2005a,b; Ledig
et al. 2017; Wang et al. 2018) . This phenomenon, which
we refer to as centroid-oriented optimization, is acknowl-
edged as a limitation of the training paradigm. However, by
carefully integrating the retrospective centroid-oriented op-
timization phenomenon into the original training scheme in
advance (i.e., by explicitly targeting the centroid), surpris-
ingly, we can achieve favorable results. To this extent, we
employ a pretrained super-resolution network as a centroid
estimator. Thus, we refer to the estimation of a pretrained
network as an empirical centroid, which can be simply de-
fined as follows:

µemp := f̂(x), (7)

where f̂ is the pretrained SR network. Here, the empirical
centroid µemp can be understood as the expectation, but with
regard to the learned natural image prior obtained by the
training dataset of the pretrained network.

4 Estimation Error of Empirical Centroids
In the previous section, we leveraged a pretrained network
as an approximation of the centroid of the posterior distribu-
tion. However, even the state-of-the-art pretrained networks
are followed by estimation errors, and thus should not be
treated as ideal networks. Here, we examine the estimation
errors from the perspectives of both (1) low-frequency (LF)
components, which can be observed when SR images do
not downsample to the original LR images, and (2) high-
frequency (HF) components, which is the case when SR im-
ages only contain limited sharp details, below the theoretical
upper-bound of pixel-wise reconstruction. Hence, we start
this section by reformulating Eq.(6) as following:

||(µemp +∆µ)− f(↓ (µemp +∆µ+ ϵ))||, (8)

where ∆µ := µtrue − µemp is the estimation error and ↓ is
the downsampling operation. We emphasize that these limi-
tations of pretrained networks should be taken into account,
which will be further discussed in the following sections.

Revisiting Knowledge Distillation Here, we demonstrate
that a well-known training technique, Knowledge Distilla-
tion (KD), can be simply represented in terms of the compo-
nents derived in the previous sections as below:

||f̂(x)− f(x)||
=||µemp − f(x)||
=||(µemp +∆�µ)− f(↓ (µemp +∆µ+ ϵ))||,

(9)

where the first row is the original formulation of KD and
the others are equivalent objectives in terms of our obser-
vation. This can be understood as a special case of Eq.(8),
with ∆µ = 0 only on the left term. In other words, the ob-
jective of KD (Eq.(9)) neglects the estimation error of the
teacher model in the target image but leaves it in the LR im-
age. However, predictions of pretrained networks may not
downsample to the original LR image precisely due to the



LF components of ∆µ, and conversely, the given HR image
will not align with the corresponding LR image. We refer to
this discrepancy as spatial inconsistency between the input
and target images, highlighting a critical limitation in the
formulation of KD. Specifically, this spatial inconsistency
hinders KD to provide proper supervision, thereby leading
to potential instability in the training process. Additionally,
since the estimation error term ∆µ of the target image is ig-
nored, this term will not be optimized which leads to limited
performance bounded by the teacher network. Overall, while
KD-based training may benefit from the noise-free objective
and converge faster in the early steps of training, it will suf-
fer from additional challenges by ignoring ∆µ only in the
target image.

5 Empirical Centroid-oriented Optimization
In this section, we make a quick fix of the limitations ob-
served above and construct a noise-free optimization objec-
tive in a spatially consistent manner, followed by a method
to handle the estimation error.

5.1 Spatially consistent noise-free objective
Regarding that µtrue are linear combinations of plausible HR
images, f(↓ (y∗)) = f(↓ (µtrue)) holds if the network f
and the downsampling operation ↓ are linear. By taking into
account the piece-wise linearity (Bunel et al. 2018) of f and
the fact that “plausible” HR images downsample to identical
images by construction, we make a fair approximation of
Eq.(6) as follows:

||µemp +∆µ− f(↓ (µemp +∆µ))||. (10)

Instead of assuming ∆µ = 0 only on the left side as in KD,
we remove ∆µ in both terms of the approximation and pro-
pose an objective as below:

||µemp +��∆µ− f(↓ (µemp +��∆µ))||
=||(µemp)− f(↓ (µemp)||.

(11)

This way, we obtain a tractable noise-free objective function,
which enables the proposed Empirical Centroid-oriented
Optimization (ECO) without risking the optimization pro-
cedure from spatial inconsistency observed in KD.

5.2 Taking the estimation error into account
Trade-off of removing the error term While it is im-
portant to prevent highly random and noisy HF components
from disturbing the training, removing more HF components
than required (i.e., over-smoothing) will lead to failure in
providing sufficient supervision for necessary detail recov-
ery. Regarding that pretrained networks can fail in generat-
ing sharp details, the problem of insufficient HF supervision
still remains in the objective in Eq.(11). Thus, Eq.(11) has
a trade-off between stable training and the limited capabil-
ity of HF supervision. In practice, the impact of neglecting
∆µ can empirically be larger than the benefit of noise-free
objective after sufficient training iterations, where networks
need to be fine-tuned. Overall, both our tractable noise-free
objective Eq.(11) and the vanilla training objective Eq.(4)
come with their own set of advantages and disadvantages.

Mixup as rescue To this extent, we propose a simple
and efficient workaround to capture the advantages of both
Eq.(11) and Eq.(4). The proposed method starts by train-
ing the network with our tractable noise-free objective in
Eq.(11). However, once adequate convergence is achieved,
we switch the objective to the original objective Eq.(4) and
obtain additional supervision on HF components. Remark-
ably, it turns out that this type of approach can be formu-
lated with a well-known data augmentation method, mixup
(Zhang et al. 2017). As the first step, we reformulate the
original loss function Eq.(4) as follows:

||y∗ − f(↓ (y∗))||
=||(µtrue + ϵ)− f(↓ (µtrue + ϵ))||
=||(µemp + 1(∆µ+ ϵ))− f(↓ (µemp + 1(∆µ+ ϵ))||.

(12)
Equally, the objective function based on mixup can be inter-
preted as an additive term of a single data pair and another
as below:

L(αY1 + (1− α)Y2, ϕ(αX1 + (1− α)X2))

=L(Y2 + α(Y1 − Y2), ϕ(X2 + α(X1 −X2)),
(13)

where L(·, ·) is an arbitrary loss function with inputs
X1, X2, targets Y1, Y2 and the network to optimize as ϕ.
Here, if we let L(·, ·) as the pixel-wise norm, ϕ = f ,
(X1, Y1) as the original data pair (x, y∗) and (X2, Y2) as
the synthetic data pair (↓ (µemp), µemp), we can obtain our
final objective function as follows:

||(µemp + α(y∗ − µemp))− f(↓ (µemp + α(y∗ − µemp)))||
=||(µemp + α(∆µ+ ϵ∗))− f(↓ (µemp + α(∆µ+ ϵ∗)))||.

(14)
With a smooth transition of α = 0 to α = 1, we can eas-
ily balance through the spatially aligned tractable noise-free
objective (α = 0) and the vanilla objective (α = 1). It
should be noted that the inherent noise will be reintroduced
back into the training as α increases. However, our empiri-
cal findings in Sec.6 reveal that the early stages of training
play a crucial role in overall performance. In later steps, net-
works become relatively stabilized, allowing them to toler-
ate the reintroduced noise while benefiting from enhanced
high-frequency (HF) supervision. Overall, this balanced ap-
proach allows for the advantages of noise-free training in
the early stages without sacrificing the benefits of HF super-
vision in later training. By preprocessing synthetic images
and parallelizing mixup with separate CPU processes, the
proposed method can be implemented in just a few lines of
code. The overall framework of our method is illustrated in
Fig.1. Unless specified otherwise, the term ‘ECO’ through-
out this paper refers to our proposed method together with
the usage of the mixup strategy described in Eq.(14).

Difference with conventional mixup The proposed
method is a mixture of the original (HR, LR) image pairs
and synthetic reconstruction of the identical images. On the
other hand, conventional mixup refers to blending between
different data samples in order to augment limited data sam-
ples. Note that these two methods are fairly orthogonal and
can be applied simultaneously.



6 Experiments
6.1 Analyzing the impact of noise-free training
We use EDSR-baseline (Lim et al. 2017) as the representa-
tive model and investigate the impact of the noise-free ob-
jective obtained in Eq.(11), without mixup.

Exploring the optimization landscape Following (San-
turkar et al. 2018), we identify the impact of the proposed
noise-free objective within the training process by inves-
tigating the optimization landscape and the Lipschitzness
of the loss function. At each specific training point, we
move through the gradient direction and observe the loss
variation and the maximum gradient difference in terms of
L2-norm, as illustrated in Fig.2. Through the use of the
noise-free objective, we observe well-bounded loss values,
which aligns with our theoretical analysis. Moreover, of
greater importance is that while vanilla training leads to
sharp spikes during early training steps, noise-free training
shows well-bounded gradients. In other words, noise-free
training demonstrates a notably improved level of effective
β-smoothness (Nesterov 2003; Santurkar et al. 2018). In the
context of gradient-based training methods, it is clear that
the overall training procedure can be significantly influenced
by gradient behaviors. Specifically, vanishing or exploding
gradients can raise additional challenges when training deep
networks. Thus, by having a well-behaving and predictable
gradient with the proposed noise-free objective, we can al-
leviate these issues and obtain faster convergence with im-
proved stability. This observation underlines the significance
of noise-free training during the early stages, as it minimizes
fluctuations and instabilities that could hinder the learning
process. By enhancing stability in these crucial initial steps,
our method can lead to an overall performance gain, setting
a strong foundation for later stages of training.

Comparison against vanilla training and KD In Fig.3,
we provide training curves of noise-free training (w/o
mixup) against vanilla training and knowledge distillation
(KD). It demonstrates that KD can also lead to slightly faster
convergence during early training since the formulation of
KD is also expected to have noise-free targets. However, we
have shown that it is followed by a fundamental limitation:
spatial inconsistency between input and target images. Ac-
cordingly, the final performance turns out to be worse than
that of vanilla training, while the proposed spatially aligned
noise-free objective obtains overall performance gain. Re-
markably, despite the only changes being the construction
of LR images, it shows significant improvement.

Comparison over various batch-size With smaller mini-
batch sizes, each gradient step becomes more reliant on ev-
ery individual data point within the batch. In the case of
vanilla training, the training procedure becomes more sus-
ceptible to per sample noise originating from each image
instance. Comparatively, the proposed method is relatively
free from per-sample noise, which enables additional ro-
bustness to smaller mini-batch size selection. To validate
the statement, we perform extensive experiments over var-
ious selections of smaller mini-batch sizes as in Fig.4. The
mini-batch size is chosen as 2, 4, 8, and 16 where 16 is the
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Figure 2: Visualization of maximum gradient difference and
the loss variation. Sharp spikes of gradient differences indi-
cate that the gradients are not well-bounded (i.e., not Lips-
chitz).
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Figure 3: Comparison of our method (w/o mixup) with KD
and vanilla training on Set5. It verifies the impact of spatial
inconsistency in training image pairs.

default setting for most works. As demonstrated in Fig.4,
vanilla training shows fluctuating PSNR scores with small
mini-batch sizes, especially in early training steps, while our
method provides increased stability and faster convergence
over various mini-batch size choices.

Empirical impact of the estimation error Fig.5 illus-
trates the empirical trade-off between smoother gradients
and the ignorance of the estimation error. In the early stages,
we can observe clear improvement when training with the
proposed noise-free objective. However, the impact of the
estimation error empirically increases, and the final perfor-
mance turns out to be lower than that of the original train-
ing scheme if the mixup strategy is not used. Together with
mixup, it is shown that we can obtain superior performance
over the entire training steps. We have further analyzed the
mixup strategy by shifting the scheduling hyperparameter α
in Eq.(14) but did find it to be significant.



Scale Model Method Set5 Set14 BSD100 Urban100 Manga109

×2

EDSR (Lim et al. 2017) Vanilla 38.18 / 0.9612 33.82 / 0.9197 32.33 / 0.9016 32.83 / 0.9349 39.05 / 0.9777
EDSR (Lim et al. 2017) ECO (ours) 38.29 / 0.9615 34.07 / 0.9210 32.37 / 0.9022 33.07 / 0.9369 39.26 / 0.9782
RCAN (Zhang et al. 2018b) Vanilla 38.26 / 0.9615 34.04 / 0.9215 32.35 / 0.9019 33.05 / 0.9364 39.34 / 0.9783
RCAN (Zhang et al. 2018b) ECO (ours) 38.28 / 0.9615 34.07 / 0.9215 32.39 / 0.9023 33.22 / 0.9378 39.39 / 0.9783

×3

EDSR (Lim et al. 2017) Vanilla 34.70 / 0.9294 30.58 / 0.8468 29.26 / 0.8095 28.75 / 0.8648 34.17 / 0.9485
EDSR (Lim et al. 2017) ECO (ours) 34.80 / 0.9302 30.64 / 0.8476 29.32 / 0.8108 28.95 / 0.8679 34.36 / 0.9496
RCAN (Zhang et al. 2018b) Vanilla 34.80 / 0.9302 30.62 / 0.8476 29.32 / 0.8107 29.01 / 0.8685 34.48 / 0.9500
RCAN (Zhang et al. 2018b) ECO (ours) 34.86 / 0.9306 30.68 / 0.8484 29.33 / 0.8111 29.09 / 0.8700 34.56 / 0.9504

×4

EDSR (Lim et al. 2017) Vanilla 32.50 / 0.8986 28.81 / 0.7871 27.71 / 0.7416 26.55 / 0.8018 30.97 / 0.9145
EDSR (Lim et al. 2017) ECO (ours) 32.59 / 0.8998 28.90 / 0.7892 27.78 / 0.7432 26.77 / 0.8064 31.32 / 0.9182
RCAN (Zhang et al. 2018b) Vanilla 32.71 / 0.9008 28.87 / 0.7887 27.77 / 0.7434 26.83 / 0.8078 31.31 / 0.9168
RCAN (Zhang et al. 2018b) ECO (ours) 32.70 / 0.9011 28.91 / 0.7895 27.80 / 0.7437 26.88 / 0.8086 31.38 / 0.9174

Table 1: Quantitative comparison of the proposed method ECO (w/ mixup) against vanilla training. We report PSNR (dB) and
SSIM scores for ×2, ×3, and ×4 SR over standard benchmark datasets. The best result are highlighted in bold.
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Figure 4: Validation results are reported for both vanilla
training and the proposed method (without mixup) across
mini-batch sizes of 2, 4, 8, and 16. The shaded regions in-
dicate the minimum and maximum PSNR values at each it-
eration across all settings. Noise-free optimization enables
additional stability throughout various batch-size choices.

6.2 Evaluation on the state-of-the-art methods
Experimental Setup We validate the effectiveness of our
method on benchmark datasets: Set5 (Bevilacqua et al.
2012), Set14 (Zeyde, Elad, and Protter 2010), BSD100
(Martin et al. 2001), Urban100 (Huang, Singh, and Ahuja
2015) and Manga109 (Matsui et al. 2017). We reproduce all
methods and mixup is used for our method. For Tab.1, we
follow (Lin et al. 2022) and train networks with larger mini-
batch size and fewer iterations in order to reduce the overall
training time. See the supplementary materials for details.

Benchmark comparison In Tab.1, we compare the pro-
posed training scheme against vanilla training in stan-
dard SR settings. Specifically, evaluation is performed for
×2, ×3 and ×4 SR tasks with bicubic downsampling. It
demonstrates that our method leads to sustainable perfor-
mance gain in terms PSNR and SSIM over standard bench-
mark datasets. In qualitative comparison (Fig.6) for ×4
SR, we can clearly see that the proposed method provides
more visually pleasing results, successfully recovering high-
frequency details.

Larger scale factor and adaptation to real-world We
further perform extensive experiments comparing our
method against vanilla training in ×8 SR task and real-world
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Figure 5: Validation results over various configurations of
mixup. Without mixup, the performance is limited due to
neglecting the estimation error factor ∆µ as in Eq.(11).

×2 SR settings. In the case of the real-world setting, LR im-
ages with additive color Gaussian noise were used for both
training and evaluation and the average score of 10 differ-
ent runs is reported. Tab.2.(c) and Tab.2.(d) indicate that the
proposed training framework leads to performance gain in
both real-world ×2 SR and bicubic ×8 SR. Remarkably, we
reach comparable performance to vanilla training with only
20% of the total iterations for ×8 SR. It verifies the higher
benefits of noise-free training when the inherent noise term
is expected to exhibit greater randomness.

Independence of architecture and loss In Tab.2.(a-b),
we further validate the proposed training framework with
SwinIR (Liang et al. 2021) and with the L2 loss, respec-
tively. Experimental results verify that the application of the
proposed method is not limited to only CNN architectures
or the L1 loss.

7 Related Work
Starting with the pioneering work (Dong et al. 2015), CNN
base networks (Dai et al. 2019; Niu et al. 2020; Lim et al.



Figure 6: Visual comparison of the proposed method and vanilla training for ×4 SR. Zoom in for best view.

Set5 Set14 Urban100 Manga109
(a) ×2 SR on SwinIR-small
Vanilla 38.19/.9613 33.93/.9203 32.74/.9338 39.11/.9781
ECO 38.21/.9613 33.96/.9209 32.78/.9345 39.16/.9781
(b) ×2 SR on EDSR-baseline with L2 loss
Vanilla 37.89/.9601 33.47/.9167 31.74/.9246 38.12/.9759
ECO 37.94/.9602 33.47/.9170 31.77/.9249 38.34/.9764
(c) ×2 SR on EDSR-baseline, on real-world dataset
Vanilla 33.46/.9074 30.58/.8412 29.37/.8744 34.08/.9399
ECO 33.49/.9078 30.60/.8416 29.38/.8748 34.16/.9403
(d) ×8 SR on EDSR-baseline
Vanilla 26.88/.7712 24.85/.6370 22.30/.6089 24.34/.7696
ECO* 26.90/.7700 24.91/.6378 22.37/.6091 24.40/.7697
ECO 27.00/.7743 24.94/.6398 22.41/.6132 24.52/.7749

Table 2: ECO (ours) compared to vanilla training. PSNR
(dB) and SSIM scores are reported, and the best and second-
best results are highlighted in bold and underlines. ECO*
indicates training only up to 20% of the total iterations.

2017; Kim, Lee, and Lee 2016; Zhang et al. 2018b, 2021b)
aiming for high fidelity reconstruction has shown drastic de-
velopment. Later, ViT and Swin-based networks (Chen et al.
2021; Liang et al. 2021; Zhang et al. 2022; Chen et al. 2023)
have achieved the state-of-the-art performances revealing
the effectiveness of self-attention in context of image recon-
struction. Several works investigate the objective function of
SISR where (Fuoli, Van Gool, and Timofte 2021) introduces
Fourier domain losses and empirical results of (Lim et al.
2017) demonstrate that the L1 loss can lead to better con-
vergence against the widely used L2 loss. Also, it is shown
that additive noise on HR samples (He and Cheng 2022) bet-
ter reflects the distribution prior of natural images. Knowl-
edge distillation methods (Zhang et al. 2021a; Wang et al.
2021; Lee et al. 2020; Gao et al. 2019) have shown their ef-
ficiency on small SR networks where (Lee et al. 2020) uses

privileged information to boost the teacher network’s per-
formance. In order to tackle the ill-posed nature of SISR,
several methods (Ledig et al. 2017; Wang et al. 2018; Zhang
et al. 2019) obtain enhanced visual quality by utilizing the
adversarial loss and the perceptual loss (Johnson, Alahi, and
Fei-Fei 2016). Further, (Jo et al. 2021) generates adaptive
targets, and (Hyun and Heo 2020; Lugmayr et al. 2020) en-
ables the generation of multiple plausible SR samples.

8 Limitation
It should be noted that Eq.(14) cannot disentangle the inher-
ent noise term and the estimation error term. Thus, it reintro-
duces the inherent noise back into the training in later steps.
Despite this, experiments emphasize the critical role of sta-
bility during the initial steps, setting a strong foundation that
leads to overall performance gains. However, we acknowl-
edge the opportunity for further advancement especially for
the later training steps, which we leave for future work.

9 Conclusion
In this work, we have analyzed the underlying components
of vanilla training and systematically developed the current
training process. As a first step, we have disentangled the
original loss function into two fundamental components; the
centroid and the noise term. It turns out that the inherent
noise term, induced by the ill-posed nature, can potentially
raise additional difficulty in vanilla training. To overcome
this issue, we estimate the centroid of all possible high-
resolution images and obtain a noise-free lower bound of
the original loss function which leads to a well-behaving op-
timization landscape with enhanced Lipschitzness. We fur-
ther provide an effective method to overcome the limitation
of estimation errors, which can be simply adapted into cur-
rent methods within a few lines of code. Experimental re-
sults lead us to conclude that the proposed training frame-
work can indeed lead to favorable results.



References
Bevilacqua, M.; Roumy, A.; Guillemot, C.; and Alberi-
Morel, M. L. 2012. Low-complexity single-image super-
resolution based on nonnegative neighbor embedding.
Buades, A.; Coll, B.; and Morel, J.-M. 2005a. A non-local
algorithm for image denoising. In 2005 IEEE computer so-
ciety conference on computer vision and pattern recognition
(CVPR’05), volume 2, 60–65. Ieee.
Buades, A.; Coll, B.; and Morel, J.-M. 2005b. A review
of image denoising algorithms, with a new one. Multiscale
modeling & simulation, 4(2): 490–530.
Bunel, R. R.; Turkaslan, I.; Torr, P.; Kohli, P.; and
Mudigonda, P. K. 2018. A unified view of piecewise linear
neural network verification. Advances in Neural Information
Processing Systems, 31.
Chen, H.; Wang, Y.; Guo, T.; Xu, C.; Deng, Y.; Liu, Z.; Ma,
S.; Xu, C.; Xu, C.; and Gao, W. 2021. Pre-trained image
processing transformer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
12299–12310.
Chen, X.; Wang, X.; Zhou, J.; Qiao, Y.; and Dong, C. 2023.
Activating More Pixels in Image Super-Resolution Trans-
former. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 22367–
22377.
Dai, T.; Cai, J.; Zhang, Y.; Xia, S.-T.; and Zhang, L. 2019.
Second-order attention network for single image super-
resolution. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 11065–11074.
Dong, C.; Loy, C. C.; He, K.; and Tang, X. 2015. Image
super-resolution using deep convolutional networks. IEEE
transactions on pattern analysis and machine intelligence,
38(2): 295–307.
Fuoli, D.; Van Gool, L.; and Timofte, R. 2021. Fourier space
losses for efficient perceptual image super-resolution. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2360–2369.
Gao, Q.; Zhao, Y.; Li, G.; and Tong, T. 2019. Image
super-resolution using knowledge distillation. In Computer
Vision–ACCV 2018: 14th Asian Conference on Computer
Vision, Perth, Australia, December 2–6, 2018, Revised Se-
lected Papers, Part II, 527–541. Springer.
He, X.; and Cheng, J. 2022. Revisiting L1 loss in super-
resolution: a probabilistic view and beyond. arXiv preprint
arXiv:2201.10084.
Huang, J.-B.; Singh, A.; and Ahuja, N. 2015. Single im-
age super-resolution from transformed self-exemplars. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 5197–5206.
Hyun, S.; and Heo, J.-P. 2020. VarSR: Variational super-
resolution network for very low resolution images. In Com-
puter Vision–ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23–28, 2020, Proceedings, Part XXIII,
431–447. Springer.
Jo, Y.; Oh, S. W.; Vajda, P.; and Kim, S. J. 2021. Tackling
the ill-posedness of super-resolution through adaptive target

generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 16236–16245.
Johnson, J.; Alahi, A.; and Fei-Fei, L. 2016. Percep-
tual losses for real-time style transfer and super-resolution.
In European conference on computer vision, 694–711.
Springer.
Kim, J.; Lee, J. K.; and Lee, K. M. 2016. Accurate image
super-resolution using very deep convolutional networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 1646–1654.
Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham,
A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.;
et al. 2017. Photo-realistic single image super-resolution us-
ing a generative adversarial network. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 4681–4690.
Lee, W.; Lee, J.; Kim, D.; and Ham, B. 2020. Learning with
privileged information for efficient image super-resolution.
In Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings, Part
XXIV 16, 465–482. Springer.
Liang, J.; Cao, J.; Sun, G.; Zhang, K.; Van Gool, L.; and
Timofte, R. 2021. Swinir: Image restoration using swin
transformer. In Proceedings of the IEEE/CVF international
conference on computer vision, 1833–1844.
Lim, B.; Son, S.; Kim, H.; Nah, S.; and Mu Lee, K. 2017.
Enhanced deep residual networks for single image super-
resolution. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition workshops, 136–144.
Lin, Z.; Garg, P.; Banerjee, A.; Magid, S. A.; Sun, D.; Zhang,
Y.; Van Gool, L.; Wei, D.; and Pfister, H. 2022. Revisiting
rcan: Improved training for image super-resolution. arXiv
preprint arXiv:2201.11279.
Lugmayr, A.; Danelljan, M.; Van Gool, L.; and Timofte, R.
2020. Srflow: Learning the super-resolution space with nor-
malizing flow. In Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part V 16, 715–732. Springer.
Martin, D.; Fowlkes, C.; Tal, D.; and Malik, J. 2001. A
database of human segmented natural images and its appli-
cation to evaluating segmentation algorithms and measur-
ing ecological statistics. In Proceedings Eighth IEEE Inter-
national Conference on Computer Vision. ICCV 2001, vol-
ume 2, 416–423. IEEE.
Matsui, Y.; Ito, K.; Aramaki, Y.; Fujimoto, A.; Ogawa, T.;
Yamasaki, T.; and Aizawa, K. 2017. Sketch-based manga
retrieval using manga109 dataset. Multimedia Tools and Ap-
plications, 76: 21811–21838.
Mittal, A.; Soundararajan, R.; and Bovik, A. C. 2012. Mak-
ing a “completely blind” image quality analyzer. IEEE Sig-
nal processing letters, 20(3): 209–212.
Nair, V.; and Hinton, G. E. 2010. Rectified linear units im-
prove restricted boltzmann machines. In Proceedings of the
27th international conference on machine learning (ICML-
10), 807–814.



Nesterov, Y. 2003. Introductory lectures on convex optimiza-
tion: A basic course, volume 87. Springer Science & Busi-
ness Media.
Niu, B.; Wen, W.; Ren, W.; Zhang, X.; Yang, L.; Wang, S.;
Zhang, K.; Cao, X.; and Shen, H. 2020. Single image super-
resolution via a holistic attention network. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XII 16, 191–
207. Springer.
Santurkar, S.; Tsipras, D.; Ilyas, A.; and Madry, A. 2018.
How does batch normalization help optimization? Advances
in neural information processing systems, 31.
Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao,
Y.; and Change Loy, C. 2018. Esrgan: Enhanced super-
resolution generative adversarial networks. In Proceedings
of the European conference on computer vision (ECCV)
workshops, 0–0.
Wang, Y.; Lin, S.; Qu, Y.; Wu, H.; Zhang, Z.; Xie, Y.;
and Yao, A. 2021. Towards compact single image super-
resolution via contrastive self-distillation. arXiv preprint
arXiv:2105.11683.
Zeyde, R.; Elad, M.; and Protter, M. 2010. On single im-
age scale-up using sparse-representations. In International
conference on curves and surfaces, 711–730. Springer.
Zhang, D.; Huang, F.; Liu, S.; Wang, X.; and Jin, Z. 2022.
SwinFIR: Revisiting the SWINIR with fast Fourier convolu-
tion and improved training for image super-resolution. arXiv
preprint arXiv:2208.11247.
Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D.
2017. mixup: Beyond empirical risk minimization. arXiv
preprint arXiv:1710.09412.
Zhang, R.; Isola, P.; Efros, A. A.; Shechtman, E.; and Wang,
O. 2018a. The unreasonable effectiveness of deep features as
a perceptual metric. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 586–595.
Zhang, W.; Liu, Y.; Dong, C.; and Qiao, Y. 2019. Ranksr-
gan: Generative adversarial networks with ranker for image
super-resolution. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 3096–3105.
Zhang, Y.; Chen, H.; Chen, X.; Deng, Y.; Xu, C.; and Wang,
Y. 2021a. Data-free knowledge distillation for image super-
resolution. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 7852–7861.
Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; and Fu,
Y. 2018b. Image super-resolution using very deep residual
channel attention networks. In Proceedings of the European
conference on computer vision (ECCV), 286–301.
Zhang, Y.; Wei, D.; Qin, C.; Wang, H.; Pfister, H.; and Fu,
Y. 2021b. Context reasoning attention network for image
super-resolution. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 4278–4287.


