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Abstract

We introduce CameraBench, a large-scale dataset and001
benchmark designed to assess and improve camera mo-002
tion understanding. CameraBench consists of ∼3,000003
diverse internet videos, annotated by experts through a004
rigorous multi-stage quality control process. One of our005
core contributions is a taxonomy or “language” of cam-006
era motion primitives, designed in collaboration with007
cinematographers. We find, for example, that some prim-008
itives like “follow” (or tracking) require understand-009
ing scene content like moving subjects. We conduct010
a large-scale human study to quantify human annota-011
tion performance, revealing that domain expertise and012
tutorial-based training can significantly enhance accu-013
racy. For example, a novice may confuse zoom-in (a014
change of intrinsics) with translating forward (a change015
of extrinsics), but can be trained to differentiate the016
two. Using CameraBench, we evaluate Structure-from-017
Motion (SfM) and Video-Language Models (VLMs), find-018
ing that SfM models struggle to capture semantic prim-019
itives that depend on scene content, while VLMs strug-020
gle to capture geometric primitives that require precise021
estimation of trajectories. We then fine-tune a genera-022
tive VLM on CameraBench to achieve the best of both023
worlds and showcase its applications, including motion-024
augmented captioning, video question answering, and025
video-text retrieval. We hope our taxonomy, benchmark,026
and tutorials will drive future efforts towards the ulti-027
mate goal of understanding camera motions in any video.028
Project page: https://linzhiqiu.github.io/029
papers/camerabench030

1. Introduction031

We must perceive in order to move, but we032
must also move in order to perceive.033
– J. J. Gibson, The Ecological Approach to Visual Perception [19]034

Humans perceive the visual world through move-035
ment. Motion parallax [50], for instance, enables pre-036
cise depth perception essential for navigating the phys-037

Figure 1. Examples of camera movements. We show videos
with their camera trajectories: a tracking shot of a tod-
dler (row 1, left), Hitchcock’s dolly zoom effect (row 2,
left), Spielberg’s dramatic pan and tilt in Jurassic Park
(row 3, left), Nolan’s roll shot in Inception (row 1, right), a
pedestal-up shot from The Legend of Zelda (row 2, right),
and a selfie by an amateur photographer, arcing to showcase
the scenery while centering themselves (row 3, right). Please
watch the videos at our website.

ical world [18]. Similarly, camera motion is crucial 038
for modern vision techniques that process videos of 039
dynamic scenes. For example, Structure-from-Motion 040
(SfM) [51, 59, 73] and Simultaneous Localization and 041
Mapping (SLAM) [12, 16, 55] methods must first es- 042
timate camera motion (pose trajectory) to reconstruct 043
the scenes in 4D. Likewise, without understanding cam- 044
era motion, video-language models (VLMs) [57, 67, 70] 045
would not fully perceive, reason about, or generate video 046
dynamics. 047

Human perception of camera motion. Understand- 048
ing camera motion comes naturally to humans because 049
we intuitively grasp the “invisible subject” – the cam- 050
era operator who shapes the video’s viewpoint, framing, 051
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and narrative. For example, in a video tracking a child’s052
first steps, one can sense a parent’s joy through their053
handheld, shaky movement. Professional cinematog-054
raphers and filmmakers even use camera motion as a055
tool [13, 54] to enhance visual storytelling and amplify056
the emotional impact of their shots. Hitchcock’s iconic057
dolly zoom moves the camera forward while zoom-058
ing out, maintaining the subject’s framing while altering059
the background to create the impression of vertigo. In060
Jurassic Park (1993), Spielberg uses a slow upward061
tilt and rightward pan to evoke a sense of awe062
as the protagonists (and the audience) first see the di-063
nosaurs. In Inception (2010), Nolan uses a camera roll064
to mirror shifting gravity, blurring the line of reality. Sim-065
ilarly, game developers use camera movement to enhance066
player immersion. In Legend of Zelda: Breath of the067
Wild (2017), a smooth pedestal-up shot transitions068
from the character’s viewpoint to a breathtaking aerial069
view, hinting at the journey ahead. Even amateur photog-070
raphers use camera motion as a tool; for example, selfie071
videos allow one to play the role of both the cinematog-072
rapher and the subject. See Figure 1 for examples.073

Computational approaches to camera motion. In074
contrast, classic computer vision methods learn camera075
motion from what is “visible” in the frame, relying on076
techniques like SfM and SLAM to estimate camera poses077
from video sequences. While these geometry-based ap-078
proaches perform well on simple, static scenes, it is un-079
clear how well they generalize to dynamic, real-world080
videos due to the difficulty of separating camera mo-081
tion from scene dynamics [38, 61]. Moreover, these082
approaches do not capture the high-level semantics of083
camera motion [54], such as the intent behind a shot084
(e.g., tracking a subject or revealing a scene) or the con-085
text in which the motion occurs (e.g., handheld, gimbal-086
stabilized, or vehicle-mounted). On the other hand, re-087
cent multimodal vision systems like GPT-4o and Gem-088
ini [45, 48, 57] show strong human-like perceptual ca-089
pabilities through large-scale training, yet their ability090
to understand camera motion remains largely untested.091
Inspired by these end-to-end approaches, we propose a092
data-driven framework for benchmarking and develop-093
ing models that can perceive camera motion as humans094
do. However, this seemingly straightforward task poses095
challenges overlooked by prior work, as we detail next.096

Challenges and our approach. We find major issues097
in widely-used datasets with camera motion annotations,098
such as MovieNet [27], AVE [1], and DREAM-1K [60].099
First, many lack a clear or correct specification of100
motion types, often conflating fundamental concepts101
like translation with rotation or zoom. Second, these102
datasets often assign contradictory labels to the same103
video (e.g., labeling a video as both static and moving,104
which are mutually exclusive). Third, they lack careful105

oversight, resulting in significant annotation errors. To 106
address these issues, we collaborate with professional 107
cinematographers to develop a comprehensive taxonomy, 108
a robust label-then-caption framework, and a training 109
program backed by a large-scale human study to improve 110
annotation quality. These efforts allow us to scale over 111
150K high-quality annotations across 3,381 videos. 112

CameraBench. We introduce CameraBench to 113
benchmark and develop models for human-like under- 114
standing of camera motion, using our initial set of videos 115
(each reviewed by at least one author during the quality 116
control phase). Our comprehensive annotations, which 117
include both labels and captions, allow us to evaluate 118
models on a wide range of tasks, including binary classi- 119
fication of motion primitives, video-text retrieval, video 120
captioning, and video question-answering (VQA). We 121
evaluate a diverse set of 20 models, including discrimi- 122
native [34, 35, 39, 48, 63] and generative VLMs [4, 33, 123
40, 45, 57, 72], and SfM/SLAM [38, 59, 61] methods. 124
Although not all models can perform every task (e.g., 125
SfM/SLAM cannot perform VQA tasks or reason about 126
object-centric motion), we ensure fair comparisons by 127
carefully designing the benchmarking protocol. 128

Findings. We find that classic SfM/SLAM meth- 129
ods [51] often fail to handle dynamic or low-parallax 130
scenes (e.g, when the camera is stationary or only rotat- 131
ing), thus struggling with even classifying basic motion 132
primitives (e.g., “Is the camera moving up or not?”). 133
We also observe that recent learning-based SfM/SLAM 134
methods like MegaSAM [38, 61] handle dynamic scenes 135
much better and outperform the classic COLMAP [51] 136
by 1-2x. However, they may still confuse camera motion 137
with object or scene motion in complex scenarios. We 138
argue that our benchmark serves as a reality check for 139
future SfM/SLAM methods, helping identify areas for 140
improvement. On the other hand, we find that generative 141
VLMs show promise in understanding camera motion, 142
particularly in tasks requiring semantic reasoning (e.g., 143
tracking shot). This motivates us to use our dataset to 144
post-train VLMs for better camera motion understanding. 145
With our small-scale yet high-quality fine-tuning data, we 146
show that VLMs can achieve 1-2x improvements across 147
both discriminative and generative tasks. 148

Contributions. We (1) introduce a taxonomy of cam- 149
era motion primitives, developed in collaboration with 150
domain experts; (2) design a robust annotation frame- 151
work and training program to improve data quality; (3) 152
collect a benchmark featuring real-world videos of dy- 153
namic scenes across diverse genres and motions; and (4) 154
analyze the strengths and limitations of existing models 155
to guide future research. We hope our data, taxonomy, 156
and models can improve understanding of camera mo- 157
tions in any video. 158
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Figure 2. Taxonomy of camera motion primitives. Our taxonomy, developed in collaboration with cinematographers and vision
researchers, is the first to comprehensively capture camera motion across object-, ground-, and camera-centric reference frames,
using precise cinematography terms [13] to eliminate ambiguity. It covers camera steadiness, translation, rotation, intrinsic changes,
and common object-centric movements, all detailed in this paper. We refine the taxonomy iteratively over three months by annotating
real-world videos and incorporating feedback from researchers and cinematographers to ensure both accuracy and completeness.

2. CameraBench for Motion Understanding159

We repurpose our motion primitive labels and cap-160
tions for both discriminative (classification, retrieval)161
and generative (VQA, captioning) tasks.162

Baselines. We evaluate a diverse set of 20 mod-163
els, including 6 SfM/SLAM methods: COLMAP [51]164
and learning-based variants such as MegaSAM [38],165
CUT3R [61], and others [14, 59, 62]. We also report166
3 discriminative VLMs [35, 77] like InternVideo2 [63]167
and 11 generative VLMs including Qwen2.5-VL [4],168
GPT-4o [45], and LLaVA-Video [72], among others [33,169
57, 63, 70, 71].170

Classification of motion primitives. We evaluate171
models on binary classification of motion primitives, re-172
stricted to those defined in the camera-centric frame to173
align with SfM/SLAM outputs. For SfM/SLAM, we174
compute the seven degrees of translation, rotation, and175
focal change from estimated camera extrinsics and in-176
trinsics (if available) between the first and last frame.177
For discriminative VLMs, we use textual definitions of178
each primitive (“The camera pans to the left.”) to com-179
pute matching scores. For generative VLMs, we com-180
pute VQAScore [41], i.e., the probability of “Yes” to181
a binary question (“Does the camera pan to the left?”).182
Appendix K details prompts for VLMs.183

Results. Table 1 shows that (1) learning-based184
SfM/SLAM methods like MegaSAM significantly out-185
perform COLMAP and set the state-of-the-art. Nonethe-186
less, no methods fully solve this task, as the best overall187

AP remains ∼50%. Figure 7 shows failure cases, e.g., 188
SfM/SLAM struggles with low-parallax (rotation only) 189
scenes. (2) While weaker than SfM/SLAM, generative 190
VLMs like GPT-4o show promising results, significantly 191
outperforming discriminative VLMs. This motivates us 192
to fine-tune Qwen2.5-VL using supervised fine-tuning 193
(SFT) on a separate set of ∼1400 videos (with no over- 194
lap with the testset). Despite the small dataset size, our 195
SFT model achieves ∼2x performance, matching that 196
of MegaSAM. We note that certain motions like roll 197
remain particularly challenging for VLMs, likely due to 198
their long-tailed nature [46] in internet videos. 199

Beyond camera-centric motion primitives. We col- 200
lect ∼10K VQA samples across 9 top-level skills and 201
81 sub-tasks. Crucially, these tasks go beyond camera- 202
centric frame reasoning to evaluate more aspects such as 203
object-centric motion, scene dynamics, steadiness, and 204
more. Some tasks also require logical (e.g., verifying 205
if only one motion type exists or if a motion is absent) 206
and linguistic reasoning (e.g., checking if a motion de- 207
scription is accurate). We follow community best prac- 208
tices [20, 32], pairing each question with two videos with 209
opposite answers so that models cannot answer blindly 210
without seeing the video (see Figure 6). 211

VQA results. Table 3 shows that all open-source 212
VQA models perform at or below chance on Camer- 213
aBench. Nonetheless, our SFT model – fine-tuned on 214
our small training set – achieves state-of-the-art results 215
across all skills, especially the most challenging ones 216
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Table 1. Binary classification on motion primitives defined in the camera-centric frame. We report Average Precision per
primitive. We find that (1) recent SfM/SLAM methods like MegaSAM [38] significantly outperform COLMAP [51], but all methods
remain far from solving this task with ∼50% AP. (2) Generative VLMs clearly outperform discriminative ones. Motivated by this,
we fine-tune Qwen2.5-VL [4] on a separate training set of ∼1400 videos (no overlap with the test set). We show that simple SFT
(highlighted in green) significantly boosts performance by 1-2x, making it match the SOTA MegaSAM in overall AP. We bold the
best and underline the second-best results; finetuned models are ranked separately.

Model
Translation (Dolly/Pedestal/Truck) Zooming Rotation (Pan/Tilt/Roll)

Static Avg
In Out Up Down Right Left In Out Right Left Up Down CW CCW

Random Chance 29.3 9.7 6.7 8.6 15.8 11.5 11.1 10.2 15.0 15.4 12.7 7.7 8.9 10.2 9.7 12.2

SfM/SLAM

COLMAP 36.2 13.1 11.9 19.7 34.1 30.0 13.9 14.2 43.9 46.4 28.3 19.1 42.1 48.7 7.5 27.3

VGGSFM 56.6 28.9 28.7 38.2 48.9 35.3 21.7 17.3 60.9 58.7 46.6 43.3 61.4 55.5 16.7 41.3

DUSt3R 58.9 24.0 30.7 18.0 38.3 26.9 18.2 24.6 59.4 63.8 32.9 27.3 61.0 57.9 13.1 37.0

MASt3R 47.5 21.1 23.5 40.2 38.7 38.1 42.2 46.6 66.6 58.0 63.2 40.3 50.4 53.5 15.7 43.1

CUT3R 68.9 50.4 24.7 34.2 37.0 27.6 15.9 21.3 59.1 65.0 65.0 47.5 60.7 66.2 15.1 42.7

MegaSAM 73.8 43.9 24.2 29.1 45.3 44.2 11.1 10.2 79.5 82.2 73.8 65.3 71.5 75.8 22.0 50.1

CLIPScore

UMT-B16-CLIP 27.0 10.4 9.0 20.0 19.4 11.8 11.8 9.9 11.9 13.5 13.1 8.4 18.8 15.6 10.0 14.0

UMT-L16-CLIP 27.2 9.8 12.3 10.8 18.5 11.5 17.5 8.9 16.0 17.4 21.9 8.3 7.3 10.0 13.0 14.0

LanguageBind-CLIP 32.7 13.2 7.8 11.2 14.2 11.7 14.4 9.4 20.1 16.4 14.1 8.5 13.8 9.5 10.9 13.9

LanguageBindV1.5-CLIP 33.6 14.5 11.0 10.3 15.0 11.8 14.2 10.1 19.9 16.7 16.1 9.2 17.6 10.2 10.4 14.7

InternVideo2-S2-CLIP 41.7 9.4 5.8 9.7 15.0 12.0 15.0 9.9 20.6 18.8 14.7 9.1 8.3 10.8 11.4 14.2

ITMScore

UMT-B16-ITM 31.7 11.5 11.4 14.3 16.6 12.8 12.3 9.2 15.1 16.9 16.2 10.0 14.2 12.1 8.9 14.2

UMT-L16-ITM 40.6 10.6 8.5 17.6 21.9 23.6 12.4 9.8 21.3 33.2 31.0 11.2 13.5 12.3 9.4 18.4

InternVideo2-S2-ITM 52.4 12.6 10.5 14.7 15.8 19.7 21.1 16.7 29.4 29.1 24.5 18.4 17.2 13.4 14.0 20.6

VQAScore

LLaVA-OneVision-7B 46.8 13.5 12.6 16.9 23.7 20.2 10.7 14.4 33.5 33.6 16.9 31.4 19.3 20.8 18.8 22.2

LLaVA-Video-7B 54.7 15.2 16.5 19.3 27.1 23.6 16.2 16.9 33.6 36.8 26.9 37.2 16.1 21.7 22.1 25.6

InternVideo2-Chat-8B 69.9 18.5 19.3 17.6 17.9 23.4 12.2 10.4 22.6 22.7 17.2 22.8 19.6 16.4 20.2 22.0

Tarsier-Recap-7B 59.7 15.1 25.7 23.7 28.8 21.5 14.4 15.0 22.8 27.3 24.6 21.6 15.2 18.7 30.7 21.0

InternLMXComposer2.5-7B 49.0 10.6 11.4 10.4 14.6 10.6 11.8 16.5 14.3 13.9 14.7 17.5 11.7 18.1 21.8 16.5

InternVL2.5-8B 67.9 12.9 28.1 25.9 23.4 23.2 18.6 32.1 37.4 30.9 37.6 36.9 11.5 25.3 23.4 29.5

InternVL2.5-26B 63.6 11.8 21.1 23.6 27.2 19.4 21.8 31.6 42.5 38.3 44.9 43.6 14.3 18.2 25.1 29.8

mPLUG-Owl3-7B 47.6 12.9 13.9 16.9 17.3 18.5 12.9 10.6 31.4 26.6 26.1 37.0 10.4 12.2 17.8 20.8

GPT-4o 66.3 29.2 21.1 38.2 38.0 21.9 41.7 39.3 44.7 42.1 43.6 35.5 24.0 28.7 32.0 36.4

InternVL3-8B 61.2 15.5 18.8 29.0 30.5 27.3 29.5 28.1 41.6 49.3 42.0 36.5 21.3 22.3 20.1 31.5

InternVL3-78B 72.0 18.2 19.6 32.5 33.8 29.4 26.4 33.4 47.2 53.5 47.8 40.3 27.6 25.0 22.6 36.8

Qwen2.5-VL-7B 63.0 14.1 20.1 22.3 28.5 27.7 23.2 27.2 36.5 44.6 38.4 25.7 26.0 25.5 20.2 29.5

Qwen2.5-VL-32B 66.8 19.1 11.1 31.4 32.1 30.4 27.8 32.6 43.2 50.0 53.2 44.0 26.6 29.0 28.8 35.1

Qwen2.5-VL-72B 67.2 19.1 12.8 26.5 33.3 26.1 27.5 41.2 50.6 46.8 53.4 31.0 33.3 30.9 29.1 35.3

Qwen2.5-VL-7B (Ours SFT) 83.9 38.6 27.8 47.8 67.9 50.0 54.5 75.8 79.2 83.8 76.3 67.6 32.3 41.0 73.6 60.0

Qwen2.5-VL-32B (Ours SFT) 85.6 40.1 29.3 49.4 69.6 51.5 56.0 77.3 80.7 85.4 77.9 69.2 33.9 42.7 75.4 61.6

Qwen2.5-VL-72B (Ours SFT) 86.8 41.3 30.5 50.6 70.7 52.6 57.1 78.5 81.9 86.6 79.1 70.4 35.0 43.8 76.6 62.8

(e.g., Tracking Shot and Only Motion) that require object-217
centric and logical reasoning.218

Other tasks. We summarize key findings: (1) Cap-219
tioning (Figure 8). We prompt VLMs with “Describe220
the camera movements in this video”. Our SFT model221
generates more accurate captions than state-of-the-art222
VLMs, both qualitatively and quantitatively, as measured223
by metrics like SPICE and LLM-as-a-Judge. (2) Video-224
text retrieval (Table 4). We use video pairs in Camer-225
aBench’s VQA tasks to evaluate retrieval performance226
and show that generative VLMs (using the discriminative227
VQAScore [41]), outperform other baselines. (3) Mo-228
tion control in image-to-video generation (Figure 17).229
While we focus on video understanding, we note that230

finetuning CogVideoX1.5-I2V [69] using CameraBench 231
can potentially improve its camera motion control. 232

3. Conclusion 233

In conclusion, we take the first step toward human-like 234
camera motion understanding by introducing a taxonomy 235
of motion primitives and a robust annotation framework, 236
developed in collaboration with cinematographers. We 237
implement a training program to transform laypeople 238
into proficient annotators of camera movements. We 239
curate a diverse benchmark to analyze existing models 240
and suggest directions for future improvement. Lastly, 241
we show that our high-quality dataset can be used to fine- 242
tune VLMs for improved camera motion understanding. 243
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