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Abstract

We introduce CameraBench, a large-scale dataset and
benchmark designed to assess and improve camera mo-
tion understanding. CameraBench consists of ~3,000
diverse internet videos, annotated by experts through a
rigorous multi-stage quality control process. One of our
core contributions is a taxonomy or “language” of cam-
era motion primitives, designed in collaboration with
cinematographers. We find, for example, that some prim-
itives like “follow” (or t racking) require understand-
ing scene content like moving subjects. We conduct
a large-scale human study to quantify human annota-
tion performance, revealing that domain expertise and
tutorial-based training can significantly enhance accu-
racy. For example, a novice may confuse zoom—1in (a
change of intrinsics) with translating forward (a change
of extrinsics), but can be trained to differentiate the
two. Using CameraBench, we evaluate Structure-from-
Motion (SfM) and Video-Language Models (VLMs), find-
ing that SfM models struggle to capture semantic prim-
itives that depend on scene content, while VLMs strug-
gle to capture geometric primitives that require precise
estimation of trajectories. We then fine-tune a genera-
tive VLM on CameraBench to achieve the best of both
worlds and showcase its applications, including motion-
augmented captioning, video question answering, and
video-text retrieval. We hope our taxonomy, benchmark,
and tutorials will drive future efforts towards the ulti-
mate goal of understanding camera motions in any video.
Project page: https://linzhigiu.github.io/
papers/camerabench

1. Introduction

We must perceive in order to move, but we
must also move in order to perceive.
— J.J. Gibson, The Ecological Approach to Visual Perception [19]

Humans perceive the visual world through move-
ment. Motion parallax [50], for instance, enables pre-
cise depth perception essential for navigating the phys-

Camera Time

Figure 1. Examples of camera movements. We show videos
with their camera trajectories: a tracking shot of a tod-
dler (row 1, left), Hitchcock’s dolly zoom effect (row 2,
left), Spielberg’s dramatic pan and tilt in Jurassic Park
(row 3, left), Nolan’s rol1 shot in Inception (row 1, right), a
pedestal-up shot from The Legend of Zelda (row 2, right),
and a selfie by an amateur photographer, arcing to showcase
the scenery while centering themselves (row 3, right). Please
watch the videos at our website.

ical world [18]. Similarly, camera motion is crucial
for modern vision techniques that process videos of
dynamic scenes. For example, Structure-from-Motion
(SftM) [51, 59, 73] and Simultaneous Localization and
Mapping (SLAM) [12, 16, 55] methods must first es-
timate camera motion (pose trajectory) to reconstruct
the scenes in 4D. Likewise, without understanding cam-
era motion, video-language models (VLMs) [57, 67, 70]
would not fully perceive, reason about, or generate video
dynamics.

Human perception of camera motion. Understand-
ing camera motion comes naturally to humans because
we intuitively grasp the “invisible subject” — the cam-
era operator who shapes the video’s viewpoint, framing,
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and narrative. For example, in a video tracking a child’s
first steps, one can sense a parent’s joy through their
handheld, shaky movement. Professional cinematog-
raphers and filmmakers even use camera motion as a
tool [13, 54] to enhance visual storytelling and amplify
the emotional impact of their shots. Hitchcock’s iconic
dolly zoom moves the camera forward while zoom-
ing out, maintaining the subject’s framing while altering
the background to create the impression of vertigo. In
Jurassic Park (1993), Spielberg uses a slow upward
tilt and rightward pan to evoke a sense of awe
as the protagonists (and the audience) first see the di-
nosaurs. In Inception (2010), Nolan uses a camera rol1l
to mirror shifting gravity, blurring the line of reality. Sim-
ilarly, game developers use camera movement to enhance
player immersion. In Legend of Zelda: Breath of the
Wild (2017), a smooth pedestal—-up shot transitions
from the character’s viewpoint to a breathtaking aerial
view, hinting at the journey ahead. Even amateur photog-
raphers use camera motion as a tool; for example, selfie
videos allow one to play the role of both the cinematog-
rapher and the subject. See Figure 1 for examples.

Computational approaches to camera motion. In
contrast, classic computer vision methods learn camera
motion from what is “visible” in the frame, relying on
techniques like SfM and SLAM to estimate camera poses
from video sequences. While these geometry-based ap-
proaches perform well on simple, static scenes, it is un-
clear how well they generalize to dynamic, real-world
videos due to the difficulty of separating camera mo-
tion from scene dynamics [38, 61]. Moreover, these
approaches do not capture the high-level semantics of
camera motion [54], such as the intent behind a shot
(e.g., tracking a subject or revealing a scene) or the con-
text in which the motion occurs (e.g., handheld, gimbal-
stabilized, or vehicle-mounted). On the other hand, re-
cent multimodal vision systems like GPT-40 and Gem-
ini [45, 48, 57] show strong human-like perceptual ca-
pabilities through large-scale training, yet their ability
to understand camera motion remains largely untested.
Inspired by these end-to-end approaches, we propose a
data-driven framework for benchmarking and develop-
ing models that can perceive camera motion as humans
do. However, this seemingly straightforward task poses
challenges overlooked by prior work, as we detail next.

Challenges and our approach. We find major issues
in widely-used datasets with camera motion annotations,
such as MovieNet [27], AVE [1], and DREAM-1K [60].
First, many lack a clear or correct specification of
motion types, often conflating fundamental concepts
like translation with rotation or zoom. Second, these
datasets often assign contradictory labels to the same
video (e.g., labeling a video as both static and moving,
which are mutually exclusive). Third, they lack careful

oversight, resulting in significant annotation errors. To
address these issues, we collaborate with professional
cinematographers to develop a comprehensive taxonomy,
a robust label-then-caption framework, and a training
program backed by a large-scale human study to improve
annotation quality. These efforts allow us to scale over
150K high-quality annotations across 3,381 videos.

CameraBench. We introduce CameraBench to
benchmark and develop models for human-like under-
standing of camera motion, using our initial set of videos
(each reviewed by at least one author during the quality
control phase). Our comprehensive annotations, which
include both labels and captions, allow us to evaluate
models on a wide range of tasks, including binary classi-
fication of motion primitives, video-text retrieval, video
captioning, and video question-answering (VQA). We
evaluate a diverse set of 20 models, including discrimi-
native [34, 35, 39, 48, 63] and generative VLMs [4, 33,
40, 45, 57, 72], and StM/SLAM [38, 59, 61] methods.
Although not all models can perform every task (e.g.,
StM/SLAM cannot perform VQA tasks or reason about
object-centric motion), we ensure fair comparisons by
carefully designing the benchmarking protocol.

Findings. We find that classic STM/SLAM meth-
ods [51] often fail to handle dynamic or low-parallax
scenes (e.g, when the camera is stationary or only rotat-
ing), thus struggling with even classifying basic motion
primitives (e.g., “Is the camera moving up or not?”).
We also observe that recent learning-based STM/SLAM
methods like MegaSAM [38, 61] handle dynamic scenes
much better and outperform the classic COLMAP [51]
by 1-2x. However, they may still confuse camera motion
with object or scene motion in complex scenarios. We
argue that our benchmark serves as a reality check for
future STM/SLAM methods, helping identify areas for
improvement. On the other hand, we find that generative
VLMs show promise in understanding camera motion,
particularly in tasks requiring semantic reasoning (e.g.,
tracking shot). This motivates us to use our dataset to
post-train VLMs for better camera motion understanding.
With our small-scale yet high-quality fine-tuning data, we
show that VLMs can achieve 1-2x improvements across
both discriminative and generative tasks.

Contributions. We (1) introduce a taxonomy of cam-
era motion primitives, developed in collaboration with
domain experts; (2) design a robust annotation frame-
work and training program to improve data quality; (3)
collect a benchmark featuring real-world videos of dy-
namic scenes across diverse genres and motions; and (4)
analyze the strengths and limitations of existing models
to guide future research. We hope our data, taxonomy,
and models can improve understanding of camera mo-
tions in any video.
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Figure 2. Taxonomy of camera motion primitives. Our taxonomy, developed in collaboration with cinematographers and vision
researchers, is the first to comprehensively capture camera motion across object-, ground-, and camera-centric reference frames,
using precise cinematography terms [13] to eliminate ambiguity. It covers camera steadiness, translation, rotation, intrinsic changes,
and common object-centric movements, all detailed in this paper. We refine the taxonomy iteratively over three months by annotating
real-world videos and incorporating feedback from researchers and cinematographers to ensure both accuracy and completeness.

2. CameraBench for Motion Understanding

We repurpose our motion primitive labels and cap-
tions for both discriminative (classification, retrieval)
and generative (VQA, captioning) tasks.

Baselines. We evaluate a diverse set of 20 mod-
els, including 6 SfM/SLAM methods: COLMAP [51]
and learning-based variants such as MegaSAM [38],
CUT3R [61], and others [14, 59, 62]. We also report
3 discriminative VLMs [35, 77] like InternVideo2 [63]
and 11 generative VLMs including Qwen2.5-VL [4],
GPT-40 [45], and LLaVA-Video [72], among others [33,
57,63, 70, 71].

Classification of motion primitives. We evaluate
models on binary classification of motion primitives, re-
stricted to those defined in the camera-centric frame to
align with SfM/SLAM outputs. For SEIM/SLAM, we
compute the seven degrees of translation, rotation, and
focal change from estimated camera extrinsics and in-
trinsics (if available) between the first and last frame.
For discriminative VLMSs, we use textual definitions of
each primitive (“The camera pans to the left.””) to com-
pute matching scores. For generative VLMs, we com-
pute VQAScore [41], i.e., the probability of “Yes” to
a binary question (“Does the camera pan to the left?”).
Appendix K details prompts for VLMs.

Results. Table 1 shows that (1) learning-based
SfM/SLAM methods like MegaSAM significantly out-
perform COLMAP and set the state-of-the-art. Nonethe-
less, no methods fully solve this task, as the best overall

AP remains ~50%. Figure 7 shows failure cases, e.g.,
SfM/SLAM struggles with low-parallax (rotation only)
scenes. (2) While weaker than STM/SLAM, generative
VLMs like GPT-40 show promising results, significantly
outperforming discriminative VLMs. This motivates us
to fine-tune Qwen2.5-VL using supervised fine-tuning
(SFT) on a separate set of ~1400 videos (with no over-
lap with the testset). Despite the small dataset size, our
SFT model achieves ~2x performance, matching that
of MegaSAM. We note that certain motions like rol1l
remain particularly challenging for VLMs, likely due to
their long-tailed nature [46] in internet videos.

Beyond camera-centric motion primitives. We col-
lect ~10K VQA samples across 9 top-level skills and
81 sub-tasks. Crucially, these tasks go beyond camera-
centric frame reasoning to evaluate more aspects such as
object-centric motion, scene dynamics, steadiness, and
more. Some tasks also require logical (e.g., verifying
if only one motion type exists or if a motion is absent)
and linguistic reasoning (e.g., checking if a motion de-
scription is accurate). We follow community best prac-
tices [20, 32], pairing each question with two videos with
opposite answers so that models cannot answer blindly
without seeing the video (see Figure 06).

VQA results. Table 3 shows that all open-source
VQA models perform at or below chance on Camer-
aBench. Nonetheless, our SFT model — fine-tuned on
our small training set — achieves state-of-the-art results
across all skills, especially the most challenging ones
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Table 1. Binary classification on motion primitives defined in the camera-centric frame. We report Average Precision per
primitive. We find that (1) recent STM/SLAM methods like MegaSAM [38] significantly outperform COLMAP [51], but all methods
remain far from solving this task with ~50% AP. (2) Generative VLMs clearly outperform discriminative ones. Motivated by this,
we fine-tune Qwen2.5-VL [4] on a separate training set of ~1400 videos (no overlap with the test set). We show that simple SFT

(highlighted in ) significantly boosts performance by 1-2x, making it match the SOTA MegaSAM in overall AP. We bold the
best and underline the second-best results; finetuned models are ranked separately.
Model Translation (Dolly/Pedestal/Truck) Zooming Rotation (Pan/Tilt/Roll) Static | Avg
In  Out Up Down Right Left In Out Right Left Up Down CW CCW

Random Chance 293 97 67 86 158 115 ILI 102 150 154 127 77 89 102 97 | 122
SfM/SLAM

COLMAP 362 131 119 197 341 300 139 142 439 464 283 190 421 487 75 | 273
VGGSFM 566 289 287 382 489 353 217 173 609 587 466 433 614 555 167 | 413
DUSBR 589 240 307 180 383 269 182 246 594 638 329 273 610 579 131 |37.0
MASE3R 475 211 235 402 387 381 422 466 666 580 632 403 504 535 157 | 431
CUT3R 689 504 247 342 370 27.6 159 213 591 650 650 475 607 662 151 | 427
MegaSAM 738 439 242 201 453 442 111 102 795 822 738 653 715 758 220 | 501
CLIPScore

UMT-B16-CLIP 270 104 90 200 194 118 118 99 119 135 131 84 188 156 100 | 140
UMT-L16-CLIP 272 98 123 108 185 115 175 89 160 174 219 83 73 100 130 | 140
LanguageBind-CLIP 327 132 78 112 142 117 144 94 201 164 141 85 138 95 109 | 139
LanguageBindV1.5-CLIP 336 145 110 103 150 118 142 101 199 167 161 92 176 102 104 | 147
InternVideo2-S2-CLIP 417 94 58 97 150 120 150 99 206 188 147 91 83 108 114 | 142
ITMScore

UMT-BI6-ITM 317 115 114 143 166 128 123 92 151 169 162 100 142 121 89 | 142
UMT-LI6-ITM 406 106 85 176 219 236 124 98 213 332 310 112 135 123 94 | 184
InternVideo2-S2-ITM 524 126 105 147 158 197 201 167 294 29.1 245 184 172 134 140 | 206
VQAScore

LLaVA-OneVision-7B 468 135 126 169 237 202 107 144 335 336 169 314 193 208 188 | 222
LLaVA-Video-7B 547 152 165 193 271 236 162 169 336 368 269 372 161 217 221 | 256
InternVideo2-Chat-8B 69.9 185 193 176 179 234 122 104 226 227 172 228 196 164 202 | 220
Tarsier-Recap-7B 597 151 257 237 288 215 144 150 228 273 246 216 152 187 307 |21.0
InternLMXComposer2.5-7B 49.0 10.6 114 104 146 106 118 165 143 139 147 175 117 181 218 | 165
InternVL2.5-8B 679 129 281 259 234 232 186 321 374 309 376 369 115 253 234 | 295
InternVL2.5-26B 636 118 211 236 272 194 218 316 425 383 449 436 143 182 251 | 2938
mPLUG-OwI3-7B 476 129 139 169 173 185 129 106 314 266 261 370 104 122 178 | 208
GPT-40 663 292 211 382 380 219 417 393 447 421 436 355 240 287 320 | 364
InternVL3-8B 612 155 188 200 305 273 205 281 416 493 420 365 213 223 201 | 315
InternVL3-78B 720 182 196 325 338 294 264 334 472 535 478 403 276 250 226 | 368
Qwen2.5-VL-7B 63.0 141 200 223 285 277 232 272 365 446 384 257 260 255 202 | 295
Qwen2.5-VL-32B 668 191 111 314 3201 304 278 326 432 500 532 440 266 290 288 | 35.1
Qwen2.5-VL-72B 672 191 128 265 333 261 275 412 506 468 534 310 333 309 290 | 353
Qwen2.5-VL-7B (Ours SFT) 839 386 27.8 478 679 500 545 758 792 838 763 67.6 323 410 736 | 60.0
Qwen2.5-VL-32B (Ours SFT) 85.6 40.1 293 494 696 515 560 77.3 807 854 779 692 339 427 754 | 616
Qwen2.5-VL-72B (Ours SFT) 868 413 30.5 506 707 526 571 785 819 866 791 704 350 438 766 | 628

(e.g., Tracking Shot and Only Motion) that require object-
centric and logical reasoning.

Other tasks. We summarize key findings: (1) Cap-
tioning (Figure 8). We prompt VLMs with “Describe
the camera movements in this video”. Our SFT model
generates more accurate captions than state-of-the-art
VLMs, both qualitatively and quantitatively, as measured
by metrics like SPICE and LL.M-as-a-Judge. (2) Video-
text retrieval (Table 4). We use video pairs in Camer-
aBench’s VQA tasks to evaluate retrieval performance
and show that generative VLMs (using the discriminative
VQAScore [41]), outperform other baselines. (3) Mo-
tion control in image-to-video generation (Figure 17).
While we focus on video understanding, we note that

finetuning CogVideoX1.5-12V [69] using CameraBench
can potentially improve its camera motion control.

3. Conclusion

In conclusion, we take the first step toward human-like
camera motion understanding by introducing a taxonomy
of motion primitives and a robust annotation framework,
developed in collaboration with cinematographers. We
implement a training program to transform laypeople
into proficient annotators of camera movements. We
curate a diverse benchmark to analyze existing models
and suggest directions for future improvement. Lastly,
we show that our high-quality dataset can be used to fine-
tune VLMs for improved camera motion understanding.
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