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Abstract

Actor-critic (AC) algorithms, empowered by neural networks, have had signifi-
cant empirical success in recent years. However, most of the existing theoretical
support for AC algorithms focuses on the case of linear function approximations,
or linearized neural networks, where the feature representation is fixed through-
out training. Such a limitation fails to capture the key aspect of representation
learning in neural AC, which is pivotal in practical problems. In this work, we
take a mean-field perspective on the evolution and convergence of feature-based
neural AC. Specifically, we consider a version of AC where the actor and critic are
represented by overparameterized two-layer neural networks and are updated with
two-timescale learning rates. The critic is updated by temporal-difference (TD)
learning with a larger stepsize while the actor is updated via proximal policy opti-
mization (PPO) with a smaller stepsize. In the continuous-time and infinite-width
limiting regime, when the timescales are properly separated, we prove that neural
AC finds the globally optimal policy at a sublinear rate. Additionally, we prove that
the feature representation induced by the critic network is allowed to evolve within
a neighborhood of the initial one.

1 Introduction

In reinforcement learning (RL) [56], an agent aims to learn the optimal policy that maximizes the
expected total reward by interacting with the environment. Policy-based RL algorithms achieve such a
goal by directly optimizing the expected total reward as a function of the policy, which often involves
two components: policy evaluation and policy improvement. Specifically, policy evaluation refers
to estimating the value function of the current policy, which characterizes the performance of the
current policy and reveals the updating direction for finding a better policy, which is known as policy
improvement. Algorithms with these two ingredients are also called actor-critic (AC) methods [36],
where the actor and the critic refer to the policy and its corresponding value function, respectively.
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Recently, in RL applications with large state spaces, actor-critic empowered by expressive function
approximators such as neural networks have achieved striking empirical successes [3, 4, 9, 20, 51,
52, 60]. These successes benefit from the data-dependent representations learned by neural networks.
Unfortunately, however, the theoretical understanding of this data-dependent benefit is very limited.
The classical theory of AC focuses on the case of linear function approximation, where the actor
and critic are represented using linear functions with the feature mapping fixed throughout learning
[10, 11, 36]. Meanwhile, a few recent works establish convergence and optimality of AC with
overparameterized neural networks [26, 39, 61], where the neural network training is captured by
the Neural Tangent Kernel (NTK) [30]. Specifically, with properly designed parameter initialization
and stepsizes, and sufficiently large network widths, the neural networks employed by both actor and
critic can be assumed to be well approximated by linear functions of a random feature determined
by initial parameters. In other words, concerning representation learning, the features induced by
these algorithms are by assumption infinitesimally close to the initial featural representation, which is
data-independent.

In this work, we make initial steps towards understanding how representation learning comes into
play in neural AC. Specifically, we address the following questions:

Going beyond the NTK regime, does neural AC provably find the globally optimal policy? How does
the feature representation associated with the neural network evolve along with neural AC?

We focus on a version of AC where the critic performs temporal-difference (TD) learning [55] for
policy evaluation and the actor improves its policy via proximal policy optimization (PPO) [49],
which corresponds to a Kullback-Leibler (KL) divergence regularized optimization problem, with
the critic providing the update direction. Moreover, we utilize two-timescale updates where both
the actor and critic are updated at each iteration but with the critic having a much larger stepsize. In
other words, the critic is updated at a faster timescale. Meanwhile, we represent the critic explicitly
as a two-layer overparameterized neural network and parameterize the actor implicitly via the critic
and PPO updates. To examine convergence, we study the evolution of the actor and critic in the
continuous-time limiting regime with the network width going to infinity. In such a regime, the actor
update is closely connected to replicator dynamics [12, 28, 50] and the critic update is captured by a
semigradient flow in the Wasserstein space [59]. Moreover, the semigradient flow runs at a faster
timescale according to the two-timescale mechanism.

It turns out that the separation of timescales plays an important role in the convergence analysis. In
particular, in the continuous-time limit, it enables us to first separately analyze the evolution of actor
and critic and then combine these results to get final theoretical guarantees. Specifically, focusing
solely on the actor, we prove that the time-averaged suboptimality of the actor converges sublinearly
to zero up to the time-averaged policy evaluation error associated with critic updates. Moreover,
for the critic, under proper regularity conditions, we connect the Bellman error to the Wasserstein
distance and show that the time-averaged policy evaluation error also converges sublinearly to
zero. Therefore, we show that neural AC provably achieves global optimality at a sublinear rate.
Furthermore, regarding representation learning, we show that the critic induces a data-dependent
feature representation within an O(1/«) neighborhood of the initial representation in terms of the
Wasserstein distance, where « is a sufficiently large scaling parameter.

The key to our technical analysis reposes on three ingredients: (i) infinite-dimensional variational
inequalities with a one-point monotonicity [27], (ii) a mean-field perspective on neural networks
[19, 41, 42, 53, 54], and (iii) the two-timescale stochastic approximation [13, 37]. In particular, in
the infinite-width limit, the neural network and its induced feature representation are identified with
a distribution over the parameter space. The mean-field perspective enables us to characterize the
evolution of such a distribution within the Wasserstein space via a partial differential equation (PDE)
[5, 6, 58, 59]. For policy evaluation, such a PDE is given by the semigradient flow induced by TD
learning. We characterize the error of policy evaluation by showing that mean-field Bellman error
satisfies a version of one-point monotonicity tailored to the Wasserstein space. Moreover, our actor
analysis utilizes the geometry of policy optimization, which shows that the expected total reward,



as a function of the policy, also enjoys the property of one-point monotonicity in the policy space.
Finally, the actor and critic errors are connected via two-timescale stochastic approximation. To the
best of our knowledge, this is the first time that convergence and global optimality guarantees have
been obtained for neural AC.

Related Work. AC with linear function approximation has been studied extensively in the literature.
In particular, using a two-timescale stochastic approximation via ordinary differential equations,
[10, 11, 36] establish asymptotic convergence guarantees in the continuous-time limiting regime.
More recently, using more sophisticated optimization techniques, various works [29, 35, 64-66] have
established discrete-time convergence guarantees that show that linear AC converges sublinearly
to either a stationary point or the globally optimal policy. Furthermore, when overparameterized
neural networks are employed, [26, 39, 61] prove that neural AC converges to the global optimum at
a sublinear rate. In these works, the initial value of the network parameters and the learning rates are
chosen such that both actor and critic updates are captured by the NTK. In other words, when the
network width is sufficiently large, such a version of neural AC is well approximated by its linear
counterpart via the neural tangent feature. In comparison, we establish a mean-field analysis that
has a different scaling than the NTK regime. We also establish finite-time convergence to global
optimality, and more importantly, the feature representation induced by the critic is data-dependent
and allowed to evolve within a much larger neighborhood around the initial one.

Furthermore, our work is also related to the recent line of research on understanding stochastic
gradient descent (SGD) for supervised learning problems involving an overparameterized two-layer
neural network under the mean-field regime. See, e.g., [16, 19, 21, 22, 31, 40-42, 53, 54, 63] and the
references therein. In the continuous-time and infinite-width limit, these works show that SGD for
neural network training is captured by a Wasserstein gradient flow [5, 6, 59] of an energy function
that corresponds to the objective function in supervised learning. In contrast, our analysis combines
such a mean-field analysis with TD learning and two-timescale stochastic approximation, which are
tailored specifically to AC. Moreover, our critic is updated via TD learning, which is a semigradient
algorithm and there is no objective functional making TD learning a gradient-based algorithm. Thus,
in the mean-field regime, our critic is given by a Wasserstein semigradient flow, which also differs
from these existing works.

Additionally, our work is closely related to [1, 69], who provide mean-field analyses for neural
TD-learning and Q-learning [62]. In comparison, we focus on AC, which is a two-timescale policy
optimization algorithm. Finally, [2] studies softmax policy gradient with neural network policies in
the mean-field regime, where policy gradient is cast as a Wasserstein gradient flow with respect to the
expected total reward. The algorithm assumes that the critic directly gets the desired value function
and thus the algorithm is single-timescale. Moreover, the convergence guarantee in [2] is asymptotic.
In comparison, our AC is two-timescale and we establish non-asymptotic sublinear convergence
guarantees to global optimality.

Notation. We denote by &2(X) the set of probability measures over the measurable space X'. Given
acurve p : R — X, we denote by p, = 0;p; | ,_, its derivative with respect to the time. For an
operator F' : X — X and a measure y € & (X), we denote by Fypu = p10 F~1 the push forward of u
through F'. We denote by x?(p || ;1) the chi-squared divergence between probability measures p and i,
which is defined as x?(p || #) = [ (p/p— 1)?dp. Given two probability measures p and p, we denote
the Kullback-Leibler divergence or the relative entropy from  to p by KL(p || 1) = [log(p/p)dp.
For vy, v, i € P(X), we define the H~' (1) weighted homogeneous Sobolev norm as ||, —
vall -1y = sp {1 (o2 = v2) [l g1y < 1} We denote by [[£(@) .0 = ([ |/ (@)} ()
the £,-norm with respect to probability measure ;.. We denote by @ the semidirect product, i.e.,
@ K = K(y|z)pu(z) for p € £(X) and transition kernel K : X — Z?(Y). For a function
[+ X = R, wedenote by Lip(f) = sup, yex 2y |f(2) = f(y)|/]lx —yl| its Lipschitz constant. We
denote a normal distribution on R? by N/ (y, ), where 1 is the mean value and ¥ is the covariance
matrix.



2 Background

In this section, we first introduce the policy optimization problem and the actor-critic method. We
then present the definition of the Wasserstein space.

2.1 Policy Optimization and Actor-Critic

We consider a Markov decision process (MDP) given by (S, A, v, P,r, D), where S C R% is the
state, A C R% is the action space, vy € (0,1) is the discount factor, P : S x A — H(S) is the
transition kernel, 7 : S x A — Ry is the reward function, and Dy € Z(S) is the initial state
distribution. Without loss of generality, we assume that S x A C R% and ||(s,a)||2 < 1, where
d = dy + d2. We remark that as long as the state-action space is bounded, we can normalize the
space to be within the unit sphere. Given a policy 7 : § x A — Z(S), at the mth step, the agent
takes an action a,, at state s,, according to 7(- | s,,,) and observes a reward r,,, = 1 (S, Gy, ). The
environment then transits to the next state s,,41 according to the transition kernel P(-| Sy, G, ).
Note that the policy 7 induces Markov chains on both S and S x A. Considering the Markov chain
on S, we denote the induced Markov transition kernel by P™ : § — Z2(S), which is defined as
P7(s'|s) = [, P(s'| s,a)mw(da]s). Likewise, we denote the Markov transition kernel on S x A
by P™: S x A — 97’(5 x A), which is defined as P™(s',d’ | s,a) = w(a’ | s')P(s' | s,a). Let D
be a probability measure on S x A. We then define the visitation measure induced by policy 7 and
starting from D as

&5 (d(s,a)) = (1—"7)- Z Y™ P(($m, am) € d(s,a) | (so, ao) ~ D), 2.1

m>0

where (s, @) is the trajectory generated by starting from (so, ao) ~ ~ D and following policy
thereafter. If D = D ® m holds, we then denote such a visitation measure by 5 % . Furthermore, we
denote by £(ds) = [, & 1 €(ds, da) the marginal distribution of visitation measure & with respect to

S. In particular, when (sg,ag) ~ D ® 7 holds in (2.1), it follows that 57’5 = &} ® m. In policy
optimization, we aim to maximize the expected total rewards J () defined as follows,

—E”[Z A (Simy Q) | S ~ DO},

m>0
where we denote by E™ the expectation with respect to a,, ~ 7(- | $m) and Spmi1 ~ P(+ | S, @)
for m > 0. We define the action value function Q™ : S x A — R and the state value function
V7™ :S8 — R as follows,

Q7 (s,a) E’T[ny sm,am)|50:s,a0:a}, V”(s):<Q“(s,-),7r(-\s)>A, (2.2)
m>0

where we denote by (-, -) 4 the inner product on the action space A. Correspondingly, the advantage

function A™ : S x A — R is defined as

Aﬂ-(87 Cl) = Qﬂ-(sa Cl) - Vﬂ-(s)
It is known that the action value function Q™ is the unique global minimizer to the following
mean-squared Bellman error (MSBE),

]' / !
MSBE(Qs ) = 5E(, 1) - [ (Q(5:0) = 7(5,0) = VE(y s pr(. .0 [Q- )] 23)

where 7 is a weighting distribution depending on policy 7 and is with full support, i.e., supp@”) =

S x A. Therefore, the policy optimization problem can be written as the following bilevel optimization

problem,

max J(7) = Egup, [(Q”( Y, 7 (- |s)>A}, subject to Q™ = argmin MSBE(Q; 7).  (2.4)
Q

e

The inner problem in (2.4) is known as a policy evaluation subproblem, while the outer problem is
the policy improvement subproblem. One of the most popular way to solve the policy optimization
problem is actor-critic (AC) methods [56], where the job of the critic is to evaluate current policy and
then the actor updates its policy according to the critic’s evaluation.



2.2 Wasserstein Space

Let © C RP be a Polish space. We denote by &25(0) C £2(O) the set of probability measures with
finite second moments. Then, the Wasserstein-2 (W5) distance between u, v € H5(0O) is defined as
follows,

1/2

Wa(u, v) = inf{]E[HX ~Y|?] ‘ law(X) = p, law(Y) = y},

where the infimum is taken over the random variables X and Y on © and we denote by law(X) the
distribution of a random variable X. We call M = (%5(©), W5) the Wasserstein (1W2) space, which
is an infinite-dimensional manifold [59]. See §A.1 for more details.

3 Algorithm

Two-timescale Actor-critic. We consider a two-timescale Actor-critic (AC) algorithm [34, 45] for
the policy optimization problem in (2.4). For policy evaluation, we parameter the critic ) with a
neural network and update the parameter via temporal-difference (TD) learning [55]. For policy
improvement, we update the actor policy 7w via proximal policy optimization (PPO) [49]. Our
algorithm is two-timescale since both the actor and critic are updated at each iteration with different
stepsizes. Specifically, we parameterize the critic () by the following neural network with width M
and parameter = (1), ... 9M)) ¢ RPXM

M
Qa(s,a) = %Z sa@ 3.1

Here o(s,a;0) : S x A x RP — R is the activation function and o > 0 is the scaling parameter.
Such a structure also appears in [17, 18, 41]. In a descrete-time finite-width (DF) scenario, at the kth
iteration, the critic and actor are updated as follows,

DF-TD: 6}, =0} - %(Q@k(sk, ar) — (s ax) — 1Qg, (s a})) Voo(s,a:0)),  (3.2)
DF-PPO: 74 i(-|5) = argmax{<Q§k(s, Dom(-18)) = KL(w(- | 9) | Fx(- | 9)) } (3.3)

where (sk, ax) ~ &7+ and (8}, ap,) ~ ~ P (.| s, ax). Here 7, is the policy for the actor at the kth
iteration, ®7* is the corresponding weighting distribution, € and &’ are the stepsizes for the DF-PPO
update and the DF-TD update, respectively. In (3.2), the scaling of o' arises since our update falls
into the lazy-training regime [18]. In the sequel, we denote by n = &/« the relative TD timescale.
Note that in a double-loop AC algorithm, the critic can usually be solved with high precision. In
the two-timescale AC however, even with the KL-divergence term in (3.3) which regularizes the
policy update and helps to improve the local estimation quality of the TD update, the critic @ o, for

updating the actor’s policy 7, can still be far from the true action value function Q7*. Since the
policy evaluation problem is not fully solved at each iteration, the two-timescale AC can be more
efficient in computation while more challenging to establish a theoretical guarantee.

Mean-field (MF) Limit. To analyze the convergence of the two-timescale AC with neural networks,
we employ the analysis that studies the mean-field limit regime [41, 42]. Here, by saying the mean-
field limit, we refer to the infinite-width limit, i.e., M — oo for the neural network width M in
(3.1), and the continuous-time limit, i.., ¢ = ke where € — 0 for the stepsize in (3.2) and (3.3). For
6 = {9 )}M independently sampled from a distribution p, we can write the infinite-width limit of
(3.1) as

Q(s,a;p) = a/a(s,a;@)p(d@). (3.4)

In the sequel, we denote by py the distribution of 5,(:) for the infinite-width limit of the neural network
at the kth iteration. We further let p, and 74 be the continuous-time limits of py and 7, respectively.



As studied in [69], the mean-field limit of the DF-TD update in (3.2) is
MFE-TD: 0O,p; = —0 div(pt - g(-; pr, 7rt)), (3.5)

where 7 is the relative TD timescale and
9(0;p,m) = —EZ, { [Q(s,a;p) —r(s,a) —v-Q(s',d';p)] - & 'Vgo(s, a; 9)} (3.6)

is a vector field. Here ET _ is taken with respect to (s, a) ~ ® and (s',a’) ~ P™(-| s, a). It remains
to characterize the mean-field limit of the DF-PPO update in (3.3). By solving the maximization
problem in (3.3), the infinite-width limit of DF-PPO update can be written in closed form as

~

et {log [Frsa(al 5)] —log [F(al )] | = Q(s, 03 5k) — Zi(s),

where Z,(s) is the normalizing factor such that [ 7k(da]s) = 1forany s € S. By letting t = ke
and ¢ — 0, we have 0, logm, = Q; — Z;, which can be further written as 0,7y = 7 - (Qr — Zt).

Here we have Q;(a, s) = Q(a, s; p;) and Z; is the continuous-time limit of Zj. Furthermore, noting
that 9, [ m;(da|s) = 0, the mean-field limit of the DF-PPO update in (3.3) is

d
MEF-PPO: FT Ag, where Ai(s,a) = Q¢(s,a) — /Qt(s, a)m(dal s). 3.7

The two updates (3.5) and (3.7) correspond to the mean-field limits of (3.2) and (3.3), respectively,
and together serve as the mean-field limit of the two-timescale AC. In particular, we remark that the
MF-TD update in (3.5) for the critic is captured by a semigradient flow in the Wasserstein space [59]
while the MF-PPO update in (3.7) for the actor resembles the replicator dynamics [12, 28, 50]. Note
that such a framework is applicable to continuous state and action space. In this paper, we aim to
provide a theoretical analysis of the mean-field limit of the two-timescale AC.

4 Main Result

In this section, we first establish the convergence of the MF-PPO update in §4.1. Then, with additional
assumptions, we establish the optimality and convergence of the mean-field two-timescale AC in
§4.2.

4.1 Convergence of Mean-field PPO

For the MF-PPO update in (3.7), we establish the following theorem on its global optimality and
convergence rate.

Theorem 4.1 (Convergence of MF-PPO). Let 7* = argmax,. J(m) be the optimal policy and 7y be
the initial policy. Then, it holds that

—/ 7rt))dt< £—|—4/@ —/ 1Qe — Q™ ||, 5w, dt, 4.1

policy evaluation error

where 5’” € P(S x A) is an evaluation distribution for the policy evaluation error and ¢ =
E,ez [KL (7| s) [ mo (| s))] is the expected KL-divergence between 7* and 7y. Furthermore,
0

letting (E”t = %qgo + %(ﬁo ® ¢, where qgo € P(8 x A) is a base distribution and ¢9 = | A 50(-, da
the concentrability coefficient  is then given by

81’50
%o

Proof. See §B.1 for a detailed proof. O

/41 ‘
oo



The concentrability coefficient commonly appears in the reinforcement learning literature [7, 23, 24,
38, 39, 43, 48, 57, 61]. In contrast to a more standard concentrability coefficient form, note that « is
irrelevant to the update of the algorithm. To show the convergence of the MF-PPO, our condition
here is much weaker since we only need a given base distribution ¢g such that x < oo.

Theorem 4.1 shows that the MF-PPO converges to the globally optimal policy at a rate of O(T~1) up
to the policy evaluation error. Such a theorem implies the global optimality and convergence of a
double-loop AC algorithm, where the critic Q); is solved to high precision and the policy evaluation
error is sufficiently small. In the sequel, we consider a more challenging setting, where the critic Q¢
is updated simultaneously along with the update of the actor’s policy ;.

4.2 Global Optimality and Convergence of Two-timescale AC

In what follows, we aim to characterize the upper bound of the policy evaluation error when the
critic and the actor are updated simultaneously. Specifically, the actor is updated via MF-PPO in
(3.7) and the critic Q; = Q(+; p;) is updated via the MF-TD in (3.5). For the smooth function ¢ in
the parameterization of the Q function in (3.4), we consider it to be the following two-layer neural
network,

o(s,a;8) = Bg - B(b) - E(MT(S, a, 1)), 4.2)

where o : R — R is the activation function, § = (b, w) is the parameter, and 8 : R — (—1,1) is
an odd and invertible function with scaling hyper-parameter Bg > 0. It then holds that D = d + 2,
where d and D are the dimensions of (s, a) and 6, respectively. It is worth noting that the function
class of [ o(s,a;0)p(d0) for p € P5(RP) is the same as

/ﬁ o(w'(s,a,1))v(df,dw) ‘ v € P5((—Bg, Bg) x Rd+1)}, (4.3)

which captures a vast function class because of the universal function approximation theorem [8, 47].
We remark that we introduce the rescaling function S in (4.2) to avoid the study of the space of
probability measures over (—Bg, Bg) x R4*1 in (4.3), which has boundary and thus lacks the
regularity in the study of optimal transport. Furthermore, note that we introduce a hyper-parameter
« > 1 in the Q function in (3.4). Thus, we are using « - F to represent F, which causes an “over-
representation” when o > 1. Such over-representation appears to be essential for our analysis. For a
brief peek, we remark that «v actually controls the gap in the average total reward over time when the
relative time-scale 7 is properly selected according to Theorem 4.6. Furthermore, such an influence
is imposed through Lemma 4.4, which shows that the Wasserstein distance between pg and p, is
upper bounded by O(1/«). In what follows, we consider the initialization of the TD update to be
po = N (0, Ip), which implies that Q(s, a; py) = 0. We next impose the following assumption on
the two-layer neural network o.

Assumption 4.2 (Regularity of the Neural Network). For the two-layer neural network ¢ defined in
(4.2), we assume that the following properties hold.

(i) The rescaling function 5 : R — (—1,1) is odd, L¢ g-Lipschitz continuous, L; z-smooth,
and invertible. Meanwhile, the inverse 3! is locally Lipschitz continuous. In particular, we
assume that 31 is £-Lipschitz continuous in [—2/3,2/3].

(ii) The activation function ¢ : R — R is odd, Bz-bounded, L z-Lipschitz continuous, and
Ly z-smooth.

We remark that Assumption 4.2 is not restrictive and can be satisfied by a large family of neural
networks, e.g., 5(z) = tanh(z) and 8(b) = tanh(b). Noting that ||(s,a)|l2 < 1, Assumption
4.2 implies that the function o (s, a; #) in (4.2) is odd with respect to w and b and is also bounded,
Lipschitz continuous, and smooth in the parameter domain, that is,

Voo (s,a;0)] < By, [Vgeo(s,a;0)| < Bs. 4.4)

We then impose the following assumption on the MDP.



Assumption 4.3 (Regularity of the MDP). For the MDP (S, A, v, P, r, Dy), we assume the following
properties hold.

(i) The reward function r and the transition kernel P admit the following representations with
respect to the activation function &,

r(s,a) = B, - /5((8,@, D) Tw)p(dw), 4.5)
P(s'|s,a) = /5((s,a, I)Tw)cp(s’)d}(s’; dw), (4.6)

where p and 1) (s’; -) are probability measures in 22, (R?*1) for any s’ € S, B, is a positive
scaling parameter, and ¢(s’) : S — R is a nonnegative function.

(ii) The reward function r satisfies that (s, a) > 0 forany (s,a) € S x.A. For the representation
of r in (4.5) and the representation of the transition kernel P in (4.6), we assume that

Xl puo) < Muy  X3(W(s:) || puo) < My, Vs €S,
/@(S)ds < Ml,ga, /Q@(S)st < MQ;W’

where p,, o is the marginal distribution of py with respect to w, i.€., py,0 = f po(db, ), X2

is the chi-squared divergence, and M,,, M., M, ,, M> , are absolute constants.

(iii) We assume that there exists an absolute constant G such that
||1/1(3a ) - 1/’(3,3 )HH_l(M) < ga ||7/’(8, ) - 'LLHH_l(u,) < g7
||¢(5,) _MHH*l(w(s/,)) < ga Hw(&) _w(sl;')HH—l(w(su;,)) < g7 VS,S/,SH GS,

where |[-[| -1 ) is the weighted homogeneous Sobolev norm.

We remark that by assuming 1) to be a probability measure and that ¢(s’) > 0 in (4.6), the represen-
tation of the transition kernel does not lose generality. Specifically, the function class of (4.6) is the
same as

P = { /5((s,a, 1) Tw)(s"s dw) | 4(s's -) is a signed measure for any s" € S}.

See §C.1 for a detailed proof. Assumption 4.3 generalizes the linear MDP in [14, 32, 67, 68]. In
contrast, our representation of the reward function and the transition kernel benefits from the universal
function approximation theorem and is thus not as restrictive as the original linear MDP assumption.
Note that the infinite-width neural network has a two-layer structure by (4.2). We establish the
following lemma on the regularity of the representation of the action value function Q™ by such a
neural network.

Lemma 4.4 (Regularity of Representation of Q™). Suppose that Assumptions 4.2 and 4.3 hold. For
any policy 7, there exists a probability measure p, € P5(RP) for the representation of Q™ with the
following properties.

(i) For function Q(s, a; p,) defined by (3.4) with p = p, and the action value function Q™ (s, a)
defined by (2.2), we have Q(s, a; pr) = Q™ (s,a) for any (s,a) € S x A.

(i) By letting Bz > 2(B, +v(1 — v) !B, M ) for the neural network defined in (4.2) and
po ~ N(0,Ip) for the initial distribution, we have Wy(p., po) < D for any policy 7,
where we define Wa(+,-) = aWs (-, -) as the scaled W5 metric. Here constant D depends on

the discount factor v and the absolute constants Lg g, L1 g, g, By, M,,, My, My ,, M> .
defined in Assumptions 4.2 and 4.3.

Proof. See §B.2 for a detailed proof. O



Property (i) of Lemma 4.4 shows that the action value function Q™ can be parameterized with the
infinite-width two-layer neural network Q(-; pr) in (3.4). Note that a larger B captures a larger
function class in (4.3). Without loss of generality, we consider that Bg > 2(B,+~(1—~) !B, M ,)
holds in the sequel. Hence, by Property (ii), it holds that Wg(pﬂ, po) < O(1) for any policy 7. In
particular, it holds by Property (i) of Lemma 4.4 that ||Q; — Q™ ||2}$M =|Q(; pt) — Q(; pa,) ||27$”
and we have the following theorem to characterize such an error with regard to the W5 space.
Theorem 4.5 (Upper Bound of Policy Evaluation Error). Suppose that Assumptions 4.2 and 4.3 hold
and po ~ N(0, Ip) is the initial distribution. We specify the weighting distribution ®™* in MF-TD
(3.5) as O™t = & Z;;Ffrt’ where ¢™ € P (S x A) is the evaluation distribution for the policy evaluation
error in Theorem 4.1. Then, it holds that

2 <_£’V\[722(pt7pm)

1 =)@ = Q™3 57, < T o + Ay, 4.7

where
A, =202 BBy - Wa(py, po)Wa(pt, pr,)
+a 'By- (431 max {Wa(pr,, p0)s Wa(pt, po) } + BT)W2(pta pr)>.

Here B; and B, are defined in (4.4) of Assumption 4.2, 7 is the relative TD timescale, « is the
scaling parameter of the neural network, and Wy = oW is the scaled W5 metric. Moreover, constant

B depends on the dicount factor v, the scaling parameter Bg in (4.2), and the absolute constants
lg, By, M ,,G defined in Assumptions 4.2 and 4.3.

Proof. See §B.3 for a detailed proof. O

Here we give a nonrigorous discussion on how to upper bound A; in (4.7). If W, (pt, po) < O(1)
holds for any ¢ € [0, T], by Wo (pr,» P0) < O(1) in Lemma 4.4 and the triangle inequality of W5
distance [59], it follows that Wa(p¢, pr,) < O(1) and A, < O(a'/2p~! + a~1). Taking a time
average of integration on both sides of (4.7), the policy evaluation error - f0T||Qt — Q™ [|y g dt is
then upper bounded by O(n~ T~ 4 o'/?p~! + a~!). Inspired by such a fact, we introduce the
following restarting mechanism to ensure WQ( Pty o) < O(1).

Restarting Mechanism. Let WO = A\D be a threshold, where D is the upper bound for Wg (P P0)
by Lemma 4.4, A > 3 is a constant scaling parameter for the restarting threshold, p; is the distribution
of the parameters in the neural network at time ¢, and py is the initial distribution. Whenever we detect
that Wg (pt, po) reaches WO in the update, we pause and reset p; to pg by resampling the parameters
from pg. Then, we reset the critic with the newly sampled parameters while keeping the actor’s policy
7 unchanged and continue the update.

The restarting mechanism guarantees WQ (pt, po) < AD by restricting the distribution p; of the
parameters to be close to pg. Moreover, by letting A > 3, we ensure that p,, is realizable by p;
since Wg (pr,,p0) < D < AD, which means that the neural network is capable of capturing the
representation of the action value function Q™. We remark that by letting WO = O(1), we allow p;
to deviate from pg up to Wa(ps, po) < O(a™!) in the restarting mechanism. In contrast, the NTK
regime [15] which corresponds to letting ov = +/M in (3.1) only allows p; to deviate from pg by the
chi-squared divergence x2(p; || po) < O(M~1) = o(1). That is, the NTK regime fails to induce a
feature representation significantly different from the initial one. Before moving on, we summarize
the construction of the weighting distribution ®™* in Theorem 4.1 and 4.5 as follows,

~ ~ ~ 1~ 1 -
g G ghtghen, = [ o), (48)
A

where 50 is the base distribution. Now we have the following theorem that characterizes the global
optimality and convergence of the two-timescale AC with restarting mechanism.



Theorem 4.6 (Global Optimality and Convergence Rate of Two-timescale AC with Restarting
Mechanism). Suppose that (4.8) and Assumptions 4.2 and 4.3 hold. With the restarting mechanism,
it holds that

l /T(J(’]T*) _ J(ﬂ't))dt < £ _,_4,{\/@151 + 041/277*152 + ﬂ 4.9)
T Jo I 2T(1~ )
(a) ®)
where we have
CZESNS"* |:KL(7T*(|S)H7T-O(|S))i|’ K= ‘ %Z 3
o ¢O 00
g - (1+ )\)2DQBQ(4B:[)\D + B,) - 2BB1 (1 + )\)DQ
1 — 1_ ﬁ ) 2 = 1 _ ﬁ .

Here B,, B; and By are defined in Assumption 4.2 and 4.3, D is the upper bound for Wg (P, po) in
Lemma 4.4, B depends on the discount factor v and the absolute constants defined in Assumption
4.2 and 4.3, and X is the scaling parameter for the restarting threshold. Besides, it holds for the total
restarting number N that

N <=2 (e 'S +al/28,)2TD2(1 — /) + 1).
Proof. See §B.4 for a detailed proof. O

Note that for a given MDP with starting distribution Dy, the expected KL-divergence ( and the
concentrability coefficient x are both independent of the two-timescale update. We remark that our
condition for (4.9) to be bounded is not restrictive. Specifically, we only need a given 7y and ¢ such
that the KL-divergence ( < oo and the concentrability coefficient x < oo, which is weaker than the
concentrability coefficient used in [7, 23, 24, 38, 39, 43, 48, 57, 61].

The first term (a) on the right-hand side of (4.9) diminishes as 7' — co. The second term (b)
corresponds to the policy evaluation error. We give an example to demonstrate the convergence
of the two-time AC. We let the scaling parameter A = 3 for the restarting threshold. By letting
n = o*2, itholds that (b) = O(a~'/?) as @ — oo. Thus, we have that + fOT (J(7*) = J(m))dt
descends at a rate of O(T~! + O(a~'/2) + O(a=3/4T~1/2)). Note that n = o/ shows that the
critic has a larger relative TD timescale in (3.5). As for the total number of restartings [V, it holds
that N < O(al/ T ) as @ — oo, which induces a tradeoff, i.e., a larger « guarantees a smaller gap in

T fOT (J(*) — J(m))dt but yields in more restartings and a larger relative TD timescale.
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