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ABSTRACT

The selection of pertinent features constitutes a pivotal step in developing interpretable machine
learning models, particularly when handling high-dimensional data, where the combinatorial
interactions among features must be considered. The Shapley value, a concept originating
from cooperative game theory, has gained recognition as a method for quantifying feature im-
portance. However, the Shapley value often fails to precisely reflect the variance reduction
that occurs when a feature is removed from the model. As the number of features increases,
these challenges are further exacerbated by the high computational complexity of computing
the exact Shapley value. Additionally, the common approximation techniques used to calcu-
late the Shapley value are not model-agnostic. To address these gaps, we propose utilizing
Sobol’s total indices, a variance-based sensitivity analysis technique, as a more efficient and
robust alternative to Shapley values. In this paper, we present both theoretical and empirical
studies comparing these two methods. Sobol’s total indices provide several key advantages. It
captures both main effects and interactions, offering a more accurate importance measure than
Shapley values. Its computation scales linearly with the number of features, making it suit-
able for high-dimensional problems. Additionally, it is derived from the data itself, ensuring
complete model-agnosticism. Experiments on synthetic and real-world datasets demonstrate
that feature selection using Sobol’s total indices achieves better predictive performance than
Shapley-based selection while requiring significantly less computational time. Our findings
suggest that Sobol’s total indices are a promising alternative to Shapley values, offering greater
computational efficiency, comprehensiveness in accounting for interactions, and robustness in
estimating variance. This represents a favorable substitute, particularly for high-dimensional
feature selection. Code for the empirical experiments is provided in supplementary materials.

1 INTRODUCTION

In the era of big data and high-dimensional datasets, developing interpretable machine learning
models that can elucidate the relationship between input features and model predictions has become
increasingly important [Molnar| (2020); Murdoch et al| (2019). Feature selection is a fundamen-
tal aspect of building effective machine-learning models. It involves identifying the most relevant
features that contribute to the predictive power of a model, thereby enhancing its performance and
interpretability while reducing complexity and overfitting|Guyon & Elisseeff](2003));|(Chandrashekar
& Sahin| (2014). Among the various techniques proposed for feature selection, methods that quan-
tify each feature’s importance or contribution to the model’s predictions have gained significant
attention [Ribeiro et al.| (2016)); Molnar et al.| (2020). One such method that has gained widespread
popularity in recent years is the Shapley value, derived from cooperative game theory Shapley et al.
(1953). The Shapley value assigns a unique importance value to each feature by considering its
marginal contribution to the model’s predictions across all possible coalitions of features [Lundberg
& Lee|(2017). Due to its robust theoretical foundation, this approach has been successfully applied
to various machine learning models, including tree-based methods |[Lundberg et al.| (2020), neural
networks |Shrikumar et al.[(2017)), and kernel methods|Song et al.|(2016). Shapley values belong to
variance-based feature-selection methods, which are special in feature selection due to a few merits.
First, they offer unparalleled levels of explainability, which is crucial for understanding and inter-
preting the contributions of individual features in a model. Traditional feature-selection methods
primarily focus on improving model performance but often lack clear, interpretable insights into
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Criteria Sobol’s Total Indices  Shapley Values

Variance Capture  Accurate Over- or Under-estimate (due to averaging)
Time Complexity Lower Higher (due to factorial growth)

Model Agnostic Yes Approximation methods are model-dependent

Table 1. Comparison of Sobol’s Total Indices and Shapley Values

why certain features are selected or discarded. Comparatively, variance-based methods decompose
the variance of the model output attributed to each feature and their interactions, providing a clear
understanding of how each feature influences the outcome and making it easier for stakeholders to
understand and trust the feature selection results. Second, the variance-based methods are purely
based on data and can be applied to any machine learning model, making them versatile tools for
feature selection across different domains and applications. This model-agnostic nature is not al-
ways present in other feature-selection methods, which might be tailored to specific types of models
(e.g., decision trees or linear models). Third, these methods are capable to capture and quantify
interaction effects among features. Traditional feature selection methods often consider features in
isolation or through simple pairwise interactions, potentially missing out on complex, higher-order
interactions. On the other hand, the variance-based methods explicitly account for the contribution of
interactions among features, providing a more comprehensive understanding of feature importance.
Last but not least, variance-based methods are particularly effective at estimating the performance
loss when a feature is selected to be excluded from the model, which is a critical aspect of fea-
ture selection. This ability to quantify the impact of excluding features helps in understanding the
robustness and resilience of the model. Overall, variance-based methods are particularly useful in
high-dimensional settings, where understanding the interplay between features is crucial for model
interpretability and performance optimization.

However, despite its theoretical elegance @~ —
. 1. . Sobol's total indices .~

and interpretability, the Shapley values el ™ 7 Featur
suffer from several major limitations. '

First, inaccuracy arises because the Shap-

ley values cannot correctly capture the
lost variance when certain features are ex-
cluded. To satisfy the Efficiency Axiom
Roth| (1988)), the Shapley value of a fea-
ture only partially reflects its interaction
effect with other features. Consequently,
when that feature is excluded from model
training, the entire interaction effect and
its first-order effect are lost, leading to in-
accurate results when using the Shapley
value to measure the variance lost due to
feature exclusion. Second, the high com-
plexity of Shapley values is a significant
drawback. Its computational complex-

ivty scales exponentially with feature count Fig. 1. Variance lost when excluding a feature. Sobol’s
Strumbelj & Kononenko| (2014), mak- total index captures all variance attributed to the ex-
ing Shapley values impractical for high- cluded feature, while the Shapley value retains part
dimensional data analysis in fields like ge-  of the interaction effect with remaining features, even
nomics Libbrecht & Noble (2015), finance  though these interactions no longer exist.

Heaton et al.|(2017), and computer vision

Krizhevsky et al.|(2012). Third, due to its high computational complexity, modern approaches often
approximate the Shapley value, but these approximations are typically model-dependent [Lundberg
& Lee|(2017);\Lundberg et al.| (2018); Sundararajan et al.| (2017). Even so-called “model-agnostic”
approaches still require model predictions despite not needing access to the model internals.

To address this limitation, we propose using Sobol’s total index as an alternative approach for quan-
tifying feature importance and performing feature selection. Sobol’s indices are a variance-based
sensitivity analysis technique originally developed in uncertainty quantification [Sobol| (2001)). They
decompose the variance of the model output into contributions from individual features and their
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interactions, providing a comprehensive understanding of each feature’s importance. Specifically,
the total Sobol’s index for a given feature quantifies its overall importance, encompassing both its
main effect and its interactions with other features Saltelli (2002)). By decomposing the total vari-
ance of the model output, Sobol’s indices reflect the true importance of features within the predictive
model. This capability is crucial for understanding the intricate interplay between features and their
combined impact on the model’s performance, making Sobol’s total index particularly well-suited
for feature selection and mitigating the inaccurate estimation of the lost variance when using the
Shapley value Wei et al.| (2015). The difference between how Sobol’s total indices and Shapley
values decompose the variance is demonstrated in Fig. [[l Moreover, the computation of Sobol’s
indices scales linearly with the number of features, making them significantly more efficient than
Shapley values for high-dimensional problems |Sudret| (2008). Also, the computation of Sobol’s in-
dices involves solely the variance of the target variable given the feature. This process is totally free
of limitations from prediction models. The ability to accurately capture feature interactions, coupled
with the computational advantage and the true model-agnostic nature, positions Sobol’s total index
as a promising alternative to Shapley values for feature selection. Specifically, this paper presents a
comprehensive study comparing the performance of Sobol’s total indices and Shapley values for fea-
ture selection across a diverse range of synthetic and real-world datasets. Our primary contributions
include:

* We provide a detailed comparison between Sobol’s total index and the Shapley value, high-
lighting their capability of capturing the variance lost due to feature exclusion. Through
theoretical analysis, we illustrate how Sobol’s total index accurately captures the variance lost
due to feature exclusion, including both main and interaction effects. We explain the potential in-
accuracies of the Shapley value in estimating the lost variance due to its averaging process, which
can lead to overestimation or underestimation.

¢ The performance difference on feature selection tasks is evaluated through empirical exper-
iments. Real-world and synthetic datasets are employed to demonstrate that Sobol’s total index
achieves comparable or superior performance.

* Time complexities of calculating or estimating the Shapley values and Sobol’s total index are
compared. This paper includes a detailed empirical evaluation of the running time for calculating
Sobol’s total indices and the Shapley values across different datasets and model types.

2 PROBLEM FORMULATION

The central task in this study is feature exclusion - the identification of the least relevant feature to
remove from the dataset while minimizing the impact on model performance. Specifically, the goal
is to quantify the performance loss after excluding a feature and to determine a method that best
approximates this loss.

Given a trained model, removing any feature might affect its prediction performance. Our objective
is to find the method (between Shapley values and Sobol’s total indices) that yields the most accurate
approximation of the true performance loss caused by excluding a feature. More formally, for a
model Y = f(X), where Y is the output variable and X = {x1,x2,...,x,} is the set of input
features, the task is to exclude a feature x; and quantify the resulting change in model performance

A(zi) = Bval(f(X)) — Eval(f(X~i))- (D

Here, Fval() stands for the model performance, such as accuracy for classification models and R?
for regression models. X..; means all the elements in set X except for the ¢-th element.

We aim to minimize the discrepancy between the approximated loss (as predicted by Shapley values
or Sobol’s total indices) and the real influence observed after removing the feature from the model.
Specifically, let the true performance change after removing x; be A(z;), and the approximation by

a given method be A(x;). We seek to minimize the difference |A(x;) — A(z;)| across all features,
ensuring that the method selected provides the most accurate measure of feature importance.

This formulation leads us to a natural comparison between Shapley values and Sobol’s total indices
to determine which method best captures the true model impact of excluding a feature and supports
better feature selection decisions.
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Sobol’s Indices are metrics for global sensitivity analysis that quantify each input variable’s contri-
bution to a model’s output variability. They are essential for assessing how inputs affect a model’s
output variance [Sobol (1993). This method is useful for complex models with non-linear input-
output relationships. Sobol’s indices decompose the output variance into contributions from each
input and their interactions, capturing both first-order (individual) and higher-order (interaction)
effects|Saltelli| (2002). For Y = f(X1, Xa, ..., X4), the total variance V(Y") is decomposed as:

V) =2 Vi + SicicicaVij + -+ Viza 2)

The first-order Sobol’s index is S; = %, while the fotal Sobol’s index St, includes all variance
Vi+32iVij++Via...a4
N4

contributions involving X;: St, =
can be used directly. Sobol’s total index is:

o 1 VEYIXW)  Ex., (Vx (V| X))

i V() V() '

. For machine learning, input-output data

3)

Shapley Value Shapley et al.|(1953)) is used to fairly distribute the total gain generated by a coalition
of players based on their contributions. This method ensures that both main effects and interaction
effects are accounted for, providing a holistic measure of feature importance|Lundberg & Lee|(2017)).
Given a model Y = f(X;, X, ..., X4), the Shapley value for feature X; is defined as:

o= ¥ PR s - 1) @
SCN\{i}

where NV is the set of all features, S is a subset of N not containing X;, and f(.5) denotes the model
output when only the features in S are used. The Shapley value computes the average marginal
contribution of a feature across all possible subsets, ensuring a fair distribution of importance scores.
To calculate the exact Shapley values, we need to iterate through all subsets that include the target
feature and calculate the variance accounted for the interaction effect involving all elements in each
subset. This variance can be computed by Sobol’s higher-order effect. The variance brought by the
interactions between two variables can be computed by removing the first-order effects of the two
variables from the first-order effect of the two-variable subset. That is to say Vi ; = V;; — V; =V},
where V;; is the second-order interaction effect of variables X; and X;. Similarly, the variance
brought by the third-order interaction of three variables X;, X;, and X}, can be written as:

Visiixk = Vije = Vij = Vi = Vi = Vi = V; = Vi, 5

From Eq.[2] we can see that the total variance explained by the input variables is decomposed to the
first-order effects of the variables and the interaction effects of all orders. The exact Shapley value
of one feature can be calculated by:

Yi2iVixj n Dititk Vixjxk - Vixax..xd ©)
2 3 d

Calculating exact Shapley values is computationally infeasible for large feature sets due to the fac-
torial growth of subsets. To address this challenge, several approximation methods have been devel-
oped. These include Monte Carlo Sampling, which approximates Shapley values by randomly sam-
pling subsets of possible coalitions and then estimating the Shapley value from these samples|Castro
et al.|(2009). Kernel SHAP uses a weighted linear regression approach to approximate Shapley val-
ues, particularly efficient for linear models |Lundberg & Lee| (2017). Tree SHAP is an algorithm
specifically designed for tree-based models, leveraging the structure of trees to reduce the complex-
ity of Shapley value computation Lundberg et al.| (2020). These techniques significantly reduce the
computational burden, making Shapley values feasible for large datasets. However, these methods
are often model-dependent, requiring either access to the model’s inner workings or its predictions
to speed up the computation.

o =Vi+

The actual performance loss for regression models and classification models are scaled differently.
On the one hand, R? measures how well a regression model’s predictions approximate the actual data
points, where 1 means perfect predictions and 0 means that the model performs as well as simply
predicting the mean of the target variable. On the other hand, accuracy for a classification model
also ranges from 0 to 1, where 1 indicates perfect predictions. A random guessing classification
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model has an expected accuracy of % instead of 0, where c is the number of classes. For example,
random guessing would typically yield 0.5 accuracy for a binary classification task. Noticing that
R? = 0 and accuracy = 0 have different meanings, we standardize the accuracy of a classification
model such that a model performing as well as a random guessing model has an accuracy of 0.

Accuracy — % ¢ * Accuracy — 1

Accuracy = = 7
ccuracy 1 % 1 (7)
- R? for regression tasks
Alw) =4 s - B (®)

Accuracy for classification tasks

Given Equations [3] [6] and[8] our objective is to prove that for all features in the input sets:

|A(zi) — ¢i| < |A(z;) — S| )

3 THE ADVANTAGE OF SOBOL’S TOTAL INDICES

Past research indicates that the Shapley values are preferable for feature selection, as they consider
all possible combinations of features, thereby providing a comprehensive insight into feature con-
tributions [Lundberg & Lee|(2017). Conversely, other studies argue against the use of Sobol’s total
index, citing two primary reasons: (1) it fails to satisfy the efficiency axiom (the additive assump-
tion), and (2) when features are positively correlated, the sum of Sobol’s total indices is less than
the total variance Song et al.| (2016). In this section, we will demonstrate that Sobol’s total index is
superior to the Shapley value due to its ability to quantify lost variance more accurately and lower
computational cost.

More accurate estimation of the variance loss. The most critical advantage of Sobol total indices
is their ability to accurately capture the variance loss when a feature is excluded from the model.
When a feature is removed, all the variance explained by that feature and its interactions with other
features is lost. Sobol total indices are designed to capture this total variance, including both main
effects and interaction effects, providing a comprehensive measure of feature importance. In con-
trast, while theoretically rigorous in distributing contributions among features, the Shapley value can
overestimate or underestimate the lost variance due to its averaging process across all subsets Owen
& Prieur| (2017). The Shapley value calculates the marginal contribution of each feature by av-
eraging its impact across all possible subsets, which can lead to inaccuracies in capturing the true
variance loss when features are excluded. This averaging process may not fully account for complex
interactions between features, leading to potential biases in the importance measures.

By focusing on the total variance, Sobol indices provide a more Al B| AXORB
precise and reliable assessment of feature importance, particularly 010 0
in models where interactions play a significant role. This accurate 01 1
capture of lost variance is crucial for developing robust and inter- 110 1
pretable machine learning models, ensuring that important features 111 0

are correctly identified and leveraged. From Figure |1} we can in-
tuitively observe why Sobol’s total index evaluates the lost vari- Taple 2. XOR function: Nei-
ance due to excluding a feature more accurately than the Shapley iher of the features has a first-
value. In the Venn diagram with three overlapping circles repre- order effect on the output,
senting three features, the areas of overlap indicate the interactions yhile the interaction can ac-
between features. Sobol’s total indices capture each feature’s indi-  cyrately predict the output.
vidual contributions and interactions. For instance, the total index

for Feature 3 includes the variance explained by Feature 3 alone, the variance explained by the
second-order interactions between Feature 3 and other features, and the variance explained by the
third-order interaction of all three features. Thus, we have Srp, = Vi + Vixs + Vaxs + Vikaxs.
When Feature 3 is excluded from the model due to feature selection, the variance explained by the
rest of the model is

V(Y |(x1,22)) = V(Y |(z1,22,23)) — S, = V1 + Vo + Vixa (10)
Contrarily, the Shapley value allocates the importance of each feature by averaging their contribu-

tions over all possible subsets of features. Therefore, ¢3 = V3 + % + % + % The Shapley
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value approach predicts that the variance explained by the rest of the model is:

V; V; 2.V,
V(Y |(21,22)) = V(Y |(x1, 22, 23)) — 3 = Vi + Vo + Vi + 1;3 + 2;3 + ?2*3 (11)

From Eq. [IT] we can tell that the variance explained by the new model predicted by the Shapley
value feature-selection approach accounts for the interactions that are not in the model anymore.
Depending on the sign of the last three terms, this approach would overestimate or underestimate
the new model’s performance. We can bring this estimation inaccuracy of the Shapley-value-based
feature selection approach to an extreme when the remaining feature set has no first-order effect on
the variance of the output. Consider a function Y = f(X7, X5). When X; and X5 have no first-
order effect, excluding either will result in the new model losing all its explaining power. A typical
example of this function is the XOR function (Table. [2). Neither of the features is correlated with
function output, but the interaction of the two features can fully predict the output. Sobol’s total
indices of both features are 1, suggesting that excluding either of the features would cause the full
predicting power of the model. However, the Shapley values of the features suggest that the new
model can still explain half of the variance in the output when excluding either one of the features.

Refutation of Contemporary Criticisms on Sobol’s Total Indices. We mentioned above that
Sobol’s total indices were considered unsuitable for feature selection because they do not satisfy
the efficiency axiom (Owen| (2014). We will discuss why the efficiency axiom is unnecessary and
demonstrate that free of this nature helps accurately estimate the lost variance.

The efficiency axiom Roth| (1988)), a fundamental principle in cooperative game theory, asserts that
the total value generated by a coalition of players should be fully distributed among them, such that
X7 ,m = 1 where 7; is the contribution of the i-th player. While this axiom is crucial for fair
distribution in resource allocation problems, its application to feature selection in machine learning
is both unnecessary and potentially harmful, and here is why. The efficiency axiom ensures that the
sum of contributions of all players equals the total value of the coalition, making it highly relevant in
scenarios where resources or rewards need to be distributed among participants. In feature selection,
however, the goal is different. Rather than distributing resources within a system, we are concerned
with evaluating the impact of excluding individual features from the model. The efficiency axiom
does not naturally apply in this context because removing a feature from a model is not analogous to
distributing resources among the remaining features. Instead, it focuses on understanding features’
individual and collective contributions to the model’s performance. For instance, when we exclude a
feature in a machine learning model, we are interested in the change in the model’s predictive power.
This is not about redistributing the model’s accuracy or variance among the remaining features but
about assessing the importance of the removed feature. Thus, adhering to the efficiency axiom can
distort this evaluation by imposing a constraint that is irrelevant to the actual task. As demonstrated
by the XOR function example, if we allocate the features’ contributions to the model’s predictive
power, both Sobol’s total indices and the Shapley values indicate that the two features have the same
contribution. ¢ = ¢o = 0.5, and S, = S, = 1. However, Sobol’s total indices correctly suggest
that excluding either feature will result in the loss of all predictive power, while the Shapley values
fail to do so due to the limitation of the efficiency axiom.

Song et al. [Song et al.| (2016) also proved that there exists a joint distribution of features X and
function f such that ¢ | V; > V(Y) > B¢, St,. This theorem has been traditionally considered
as a reason why Sobol’s total indices are not a good basis for feature selection. This phenomenon
happens when the features are highly correlated with each other. However, this is actually how
Sobol’s total indices inherently recognize and handle redundancy. Consider a set of positively cor-
related features. If a feature is highly correlated with others, it provides less unique information. In
this case, Sobol’s total index will be lower for this feature, indicating that its exclusion will result in
less variance loss. This aligns with practical expectations: a largely redundant feature should not be
deemed critical, and its exclusion should not significantly impact the model’s performance. This is
also the rationale of feature selection based on feature correlations. In contrast, enforcing the effi-
ciency axiom through the Shapley values would distribute the total variance among features without
accounting for redundancy. This distribution can overstate the importance of highly-correlated fea-
tures, leading to suboptimal feature selection results. By not imposing the efficiency axiom, Sobol’s
total indices offer a more realistic measure of feature importance, recognizing the diminishing re-
turns of redundant information.
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Lower Time Complexity and Computational Efficiency. One of the primary advantages of
Sobol’s total index over Shapley value is its lower time complexity and reduced computational ex-
pense. The computational cost of calculating Shapley values increases factorially with the number
of features, making it impractical for high-dimensional datasets. Specifically, the exact computation
of the Shapley value for a model with d features requires evaluating 2¢ possible subsets of features,
leading to a time complexity of O(2%) Lundberg & Lee (2017). This exponential growth makes
Shapley values computationally infeasible without resorting to approximations. In contrast, Sobol’s
Total Indices can maintain this nature with a linear time complexity. Given a dataset consisting of
input features X and the output Y with N data points, the time complexity of the calculation is on
the order of O(N - d) |Saltelli et al.|(2010). This efficiency makes Sobol’s total indices particularly
suitable for high-dimensional problems and complex models with limited computational resources,
making it a versatile tool for feature selection across a wide range of applications.

4 EMPIRICAL EXPERIMENTS

We implemented Sobol’s total indices and the exact Shapley values algorithms in Python using
standard libraries such as NumPy and Pandas. The experiments are carried out on a server with
AMD Ryzen Threadripper PRO 5955WX 16-core CPU with 128GB RAM. Datasets. We utilize
two synthetic datasets and four realistic datasets from UCI | Lichman et al.|(2013)) to compare Sobol’s
total indices and the Shapley values for feature selection. They include: 1, Synthetic Correlated
Dataset: Four features and one output, all with a correlation of 0.9, designed to test the handling
of highly correlated features. 2, Synthetic XOR Dataset: Two binary features and one binary
outcome representing the XOR function are used to assess the handling of interactions. 3, Diabetes:
Medical diagnostic measurements with a binary outcome indicating diabetes presence. 4, Wine:
Thirteen chemical properties of wines from three cultivars are used for multi-class classification. 5,
Auto-MPG: Automobile attributes predicting miles per gallon (MPG), used for regression. And 6,
Concrete Compressive Strength: Ingredients of concrete predicting compressive strength. These
datasets provide a comprehensive evaluation across different types of data and tasks.

Feature Standardized Actual Performance Loss Sobol’s Total Shapley
High-Correlation Feature 1 0 0 0.25
High-Correlation Feature 2 0 0 0.25
High-Correlation Feature 3 0 0 0.25
High-Correlation Feature 4 0 0 0.25
XOR Feature 1 1 1 0.5
XOR Feature 2 1 1 0.5

Table 3. Comparison of Sobol’s Total Indices and Shapley Values for Feature Importance.
Top: Highly Correlated Dataset. Bottom: XOR Dataset

Synthetic Datasets Analysis.

—— Sobol's Total Indices
We first utilize the Synthetic Corre- L —— Shapley Values

lated Dataset to demonstrate the ca-
pability difference between Sobol’s
total indices and the Shapley values
on handling highly correlated fea-
tures. From the top part of Table[3|we
can observe that Sobol’s total indices
for all four features are all 0, while
their Shapley values are all 0.25. The
actual performance loss of the regres- 0ss
sion model is 0 when excluding one

of the four input features. This in-
dicates that Sobol’s total indices ac- Fig. 2. Accuracy Change of Logistic Regression on the Di-
curately identify redundant features, abetes Dataset As the Feature Number Decreases.
indicating that any of these features

=4
o
&
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could be removed without loss of

variance, aligning with the expected behavior in cases of high feature redundancy. Comparatively,
the Shapley values, enforced by the efficiency axiom, overestimate the individual contributions of
highly correlated features, exaggerating their importance in feature selection tasks. Then, we cal-
culate the Sobol’s total indices and the Shapley values of the two features in the Synthetic XOR
Dataset. Sobol’s total indices for the two features are both 1, indicating that excluding any of them
would make the model lose all its predictive power. The Shapley values, which average the variance
accounted for the interaction effect, are both 0.5. This suggests that with only one feature, the model
can still account for half of the variance in the XOR function. Obviously, this conclusion is wrong
since either feature is independent of the XOR function output.

Realistic Datasets Analysis.

To demonstrate the superiority of Sobol’s total indices over the Shapley values, we test the feature-
selection performance of both algorithms with four realistic datasets, two for classification and two
for regression. We utilize Random Forest Classifiers, Decision Tree Classifiers, and Logistic Re-
gression Classifiers for classification tasks, and use Random Forest Regressors, Decision Tree Re-
gressors, and Linear Regression for regression tasks. Fig. [2|illustrates the accuracy change of a
Logistic Regression model over the Diabetes Dataset. As the number of features decreases from 8§ to
1, Sobol’s total indices and the Shapley values suggest two different exclusion orders in Table.[d] We
can observe that the model suffers from less variance loss when following Sobol’s order. The sudden
drop in prediction accuracy happens when the number of features drops to 3. When excluding fea-
tures based on Shapley’s order, the sudden drop appears as early as when the feature number drops
to 5. This is because a relatively important feature is excluded too early due to underestimating its
importance or overestimating the other features’ importance.

Sobol’s totgl indices are particularly well-suited Sobol Shapley
for regression tasks because they directly eval- DiabetesPedigreeFunction Age
uate the variance explained by the model due Insulin ~ BMI
to individual features and combinations of fea- Glucose SkinThickness

. y .- BMI BloodPressure
tures. This property makes Sobgl s total 1nd1§es SkinThickness Glucose
highly relevant for understanding the relative BloodPressure Pregnancies
importance of features in explaining the vari- Pregnancies . Insulin .
ance of the target variable in regression models. Age DiabetesPedigreeFunction

Fig. [3|shows the R? score change of a Random
Forest Regressor over the Auto-MPG Dataset.
We can observe that Sobol’s total indices can maintain a relatively high performance until the num-
ber of features drops under 3. This is due to the high interaction effects existing among the three fea-
tures left. The Shapley values experience that performance drop when the feature number changes
from 6 to 5 because one of the features with a significant high-order interaction effect is excluded
there. This incorrect feature-selection decision comes from the underestimation of the importance of
the highly interacted features, which is due to the averaging process of the Shapley values. The two
algorithms’ performance with multiple datasets and machine-learning models show similar results,
as demonstrated in Tables[5} [6] and

Runtime Analysis. To validate
whether Sobol’s total indices are
more scalable than the Shapley 1
value, we measure the runtime
of calculating both given vari-
ous instance numbers and fea-
ture numbers. The results are il-
lustrated in Figure 4, When the
number of instances is fixed, the
runtime of Sobol’s total indices
remains consistently low across
different numbers of features, —e— Sobol's Total Indices
reflecting its linear time com- -15] —— Shapley Values

plexity. Contrarily, the runtime 7 G
of the Shapley value increases
exponentially as the number of

Table 4. Orders of Feature Exclusion

,,,,,,

0.5

0.0

R”2 Scores: Variance Explained

5 4 3 2 1
Number of Features Left in the Model

Fig. 3. R? Change of Random Forest Regressor on Auto-MPG.
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features increases, illustrating

its combinatorial time complexity. For example, with 8 features and 100 instances, Sobol’s total
indices required only 0.085 seconds, while the Shapley Values took 9111.088 seconds. This stark
contrast underscores the substantial difference in computational efficiency and scalability between
the two methods. We also investigated the runtime performance of both algorithms with a fixed num-
ber of features while varying the number of instances to understand how each algorithm scales with
increasing data volume. As shown in the right sub-figure of Fig. @ both Sobol’s total indices and
the Shapley values exhibited an increase in runtime as the number of instances increased, which is
expected due to the additional computational overhead associated with processing more data. How-
ever, the rate of increase was remarkedly different between the two algorithms. Sobol’s total indices
demonstrated a much smaller slope and consistently outperformed the Shapley values in terms of
runtime across all instances. The results indicate that Sobol’s total indices offer superior runtime
performance compared to Shapley Values for feature selection tasks. This advantage becomes more
pronounced with larger datasets, where Shapley Values exhibit significant computational overhead.
Therefore, when considering computational efficiency, Sobol’s total indices emerge as the preferred
choice for feature selection tasks, especially with high-dimensional datasets.

10* = 60 —
—— Sobol's total indices —— Sobol's total indices
5w T Shapley values 0] T Shapley values
i<} )
5 S 40
o 10 O
a} o}
2 2
10t *
(] Q
1S 1S
= =l
c 10° c
=) >
4 &
107!
.—/—0’/”/'7/'7/4. 0
3 4 5 6 7 8 50 100 150 200 250 300 350 400
Number of Features Number of Instances

Fig. 4. Runtime Comparison of Sobol’s Total Indices and Shapley Values for Different Instance
Numbers and Feature Numbers. Left: Instance Number Fixed to 100 While Feature Number
Changes. Right: Feature Number Fixed to 5 While Instance Number Changes.

5 RELATED WORK

Feature selection is a critical step in the machine learning pipeline, aimed at improving model per-
formance by identifying the most relevant features while reducing the dimensionality of the dataset.
This process not only enhances computational efficiency but also aids in the interpretability of the
model. There are various methodologies and frameworks for feature selection, which can be broadly
classified into three categories: (1) Filter methods apply statistical techniques to evaluate the rele-
vance of each feature independently of the learning algorithm. These methods are generally compu-
tationally efficient and scalable to high-dimensional datasets. Common filter techniques include:
correlation coefficent (Guyon & Elisseeff] (2003), mutual information [Battiti| (1994), Chi-Square
test |[Liu & Setiono| (1995), and variance thresholding Roffo et al| (2015). These methods typi-
cally evaluate features in isolation without considering higher-order interactions. They also do not
provide a clear estimate of how the exclusion of features impacts model performance. (2) Wrapper
methods evaluate feature subsets based on the performance of a specific learning algorithm. These
methods typically involve iterative search procedures to find the optimal feature subset, which makes
them computationally intensive but often more accurate than filter methods. Some popular wrapper
techniques include: recursive feature elimination |Guyon et al.| (2002), genetic algorithms Holland
(1992), and forwards and backward selection Draper & Smith! (1998). These methods do not explic-
itly quantify the interaction effects among the features and fail to provide a clear understanding of
why features are selected or discarded. Also, they are highly dependent on the choice of the models
and may be computationally expensive when the model-fitting is complex. (3) Embedded methods
integrate the selection process within the construction of the machine learning model itself. These
methods leverage the model’s predictive capabilities to evaluate and select the most relevant features,
typically during the training phase. Classic embedded methods include regularization techniques,
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such as LASSO Tibshirani| (1996)) and Ridge Regression|Hoerl & Kennard (1970)), and decision tree-
based methods, such as random forests |Breiman| (2001) and Gradient Boosting Machines Friedman
(2001). These methods are tied to specific models and cannot be easily generalized across differ-
ent model types. Also, regularization methods do not explicitly account for interactions between
features. Tree-based methods can capture some interactions but do not quantify them separately.

6 CONCLUSION AND LIMITATIONS

In this paper, we proposed using Sobol’s total indices instead of Shapley Values for feature se-
lection tasks. They have more accurate variance loss estimation, lower time complexity, and are
model-agnostic. Our experiments demonstrated that they offer superior computational efficiency
and better feature-selection performance compared to Shapley Values. Despite the promising re-
sults obtained in our experiments, several limitations should be considered: (1). Due to resource
constraints and the computational complexity of the Shapley values, we could not conduct experi-
ments on large datasets. As a result, the performance of Sobol’s total indices and Shapley Values
on high-dimensional datasets is not empirically tested. (2). While Sobol’s total indices work better
for feature selection tasks, they might not interpret a machine-learning model as well as the Shapley
values do. Therefore, based on our findings, we conclude that Sobol’s total indices are better suited
for feature selection in machine learning applications. Future research could be conducted to explore
ways to enhance the interpretability of Sobol’s total indices.

Number of Features 13 12 11 10 9 8 7
LR | 955 950 944 950 950 944 0933
Shapley DT | 84.8 894 899 894 894 90.0 88.8

RF | 983 96.7 983 978 972 972 972
LR | 955 956 972 956 956 950 944
Sobol DT | 848 91.1 90.0 933 927 922 949
RF | 983 972 978 978 978 983 0972

Table 5. The accuracy (%) comparison between the two methods on the Wine dataset, with the
feature numbers shrinking from 13 to 7.
LR: Logistic Regression. DT: Decision Tree Classifier. RF: Random Forest Classifier

Number of Features 8 7 6 5 4 3 2
LR | 0.278 0.283 0.289 0.300 -0.019 0.015 -0.104
Shapley DT | 0455 0438 0459 0.545 0.503 0424 0.121

RF | 0.740 0.728 0.748 0.741 0.728 0.606 0.322
LR | 0.278 0.285 0.294 0.300 0.201 0.113 -0.068
Sobol DT | 0455 0.597 0.570 0.562 0.527 0454 0.119
RF | 0.740 0.749 0.748 0.742 0.728 0.606 0.324

Table 6. The R? score comparison between the two methods on the Concrete Compressive Strength
dataset, with the feature numbers shrinking from 8 to 2.
LR: Linear Regression. DT: Decision Tree Regressor. RF: Random Forest Regressor

Number of Features 14 13 12 11 10 9 8 7
LR | 798 776 789 754 70.1 648 60.6 564
Shapley DT | 76.2 754 748 732 669 643 606 55.1

RF | 852 837 851 79.6 732 654 625 587
LR | 79.8 809 794 772 702 648 58.8 55.1
Sobol DT | 76.2 780 76.8 754 669 645 588 534
RF | 852 864 852 813 767 647 60.6 572

Table 7. The accuracy (%) comparison between the two methods on the Adult dataset, with the
feature numbers shrinking from 14 to 7.
LR: Logistic Regression. DT: Decision Tree Classifier. RF: Random Forest Classifier
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