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ABSTRACT

Weakly supervised phrase grounding (WSPG) aims to localize objects referred by
phrases without region-level annotations. The state-of-the-art methods use vision-
language pre-trained (VLP) models to build pseudo labels. However, their low
quality could result in the ineffectiveness of the subsequent learning. In this paper,
we propose a novel WSPG framework, Dual-cycle Consistency Learning (DCL).
Firstly, we propose a vision-modal cycle consistency to localize the referred ob-
jects and reconstruct the pseudo labels. To provide a conditional guidance, we
propose a visual prompt engineering to generate marks for input images. To fur-
ther avoid localizing randomly, we design a confidence-based regularization to
filter out redundant information in image and pixel levels. Secondly, we propose a
language-modal cycle consistency to correctly recognize the referred objects. To
correct their positions, we provide phrase-related boxes as supervision for further
learning. Extensive experiments on benchmark datasets show the effectiveness of
DCL, as well as its excellent compatibility with various VLP models. The source
code will be available at GitHub after double-blind phase.

1 INTRODUCTION

Weakly supervised phrase grounding (i.e., WSPG) localizes referred objects based on phrase queries
without any box annotation. The WSPG task has the potential to benefit various downstream works,
such as image captioning (Liu et al., 2022b; Shi et al., 2021; Li et al., 2024; Wang et al., 2024b),
vision-language navigation (Barthel et al., 2019; Li et al., 2021b; Wu et al., 2022; Eftekhar et al.,
2024), and visual question answering (Wu et al., 2023; Chen et al., 2023; Xiao et al., 2024; Peng
et al., 2024; You et al., 2024). Earlier works have employed the outputs of object detectors matched
with phrases (Ren et al., 2015; Datta et al., 2019; Gupta et al., 2020; Wang et al., 2021; Wang &
Specia, 2019; Rohrbach et al., 2016; Chen et al., 2018; Liu et al., 2021), or devised auxiliary tasks
to offer effective supervisory information for the grounding network (Fang et al., 2015; Xiao et al.,
2017; Javed et al., 2018; Zhang et al., 2018; Akbari et al., 2019; Arbelle et al., 2021). However, these
approaches are suboptimal as they are constrained by their cross-modal alignment capabilities.

Recently, various WSPG methods leverage vision language pre-training (VLP) models to aid in
grounding the target object. They rely on the attention maps of the VLP models as pseudo labels for
training. These attention maps provide visual highlights of objects’ locations in the images, and thus
can be used to guide the optimization process. Previous VLP-based WSPG studies have developed
two types: VLP-based methods with fine-tuning and those with parameters frozen. Fine-tuned VLP
approach (He et al., 2023; Zeng et al., 2024) focuses on the localization by reducing the difference
of pseudo labels during fine-tuning. Frozen VLP methods (Shaharabany et al., 2022; Shaharabany
& Wolf, 2023; Gomel et al., 2023; Lin et al., 2024a) extract pseudo labels with VLPs and devise
additional networks to refine the coarse pseudo labels. However, previous works disregard the low
quality of pseudo labels. It could result in the ineffectiveness of subsequent learning.

Here, we divide the problems caused by low-quality pseudo labels into three categories: incomplete-
ness, redundancy, and misrecognition (in Figure 1). Firstly, pseudo labels offer limited information,
as they tend to convey category-level details without comprehensive positional context. As shown
in the left example, the red highlight of pretty lady is salient but does not cover all necessary in-
formation. A naive idea of generating a similar highlight could overlook the object’s localization
information. Therefore, it becomes imperative to utilize the pseudo label as a starting point and
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“a pretty lady” “a gray suit” “a puppy dog” 

Incompleteness Redundancy Misrecognition

Figure 1: Three challenging problems in VLP-based WSPG. Incompleteness: grounding will
focus on a portion of the target object. Redundancy: pseudo labels sometimes provide redundant
information. Misrecognition: phrase-irrelevant objects are located. We illustrate WSPG’s results
(yellow box), ground-truth (red box), our results (white box), and pseudo labels (attention maps).

gradually obtain comprehensive information of the referred object during the reconstruction of the
pseudo label. Secondly, VLP-based methods are sensitive to redundant information in pseudo la-
bels. As shown in the middle example, highlight regions show gray suit, where the dimmer regions
represent redundant information, and the brighter ones contain valuable information for learning.
To accurately predict the localization of suit, it is essential to decouple the association between re-
dundant information and the phrase gray suit during the training phase. In short, we need to refine
the weakly supervised learning process by minimizing the harmful effects of redundant information
present in pseudo labels. Finally, there is a wrong recognition for the object referred by the query
phrase. As shown in the right example, if the red highlight encompasses an area of the giant dog
instead of puppy dog, the model tends to erroneously recognize the instance giant dog based on the
phrase puppy dog. To overcome this ambiguity, we need to design a language consistency strat-
egy that reduces referential confusion and ensures precise positional supervision, thereby accurately
localizing the referred object.

To mitigate the negative effects of low-quality pseudo labels, we propose a novel WSPG frame-
work, Dual-cycle Consistency Learning (i.e., DCL). Firstly, we introduce a vision-modal cycle
consistency to prevent incompleteness and redundancy. It learns to localize the referred object and
reconstruct pseudo labels. Specifically, we employ a grounding network and a recovery module to
perform two consecutive grounding operations. We use the pseudo label as a prompt to identify
and ground the referred object, and subsequently align the initial pseudo label with the second-
time grounding result. In order for the pseudo labels to provide category-level details, we treat the
pseudo labels as the conditional guidance of the network. We also develop a visual prompt engi-
neering, which equips input images with mark prompts. Furthermore, we utilize pseudo labels to
provide constraints during the first-time grounding process. It could avoid our grounding network
localizing randomly. In order to filter out redundant information from pseudo labels, we design a
regularization method that imposes image-level and pixel-level confidence constraints. Secondly,
we propose a language-modal cycle consistency to address the correspondence ambiguity between
the localized object and the query phrase. This approach represents concepts and details in a caption
format, and recognizes whether the localized objects are the referred ones by distinguishing between
captions and query phrases. To correct the location based on the phrases, we propose a region cap-
tioning verification process to generate caption-box pairs for prospective locations. Subsequently,
we select optimal boxes from them for further consistency learning.

To sum up, the main contributions of our work are three-fold.

• We propose a novel VLP-based WSPG framework to mitigate the adverse effects of low-
quality pseudo labels. To the best of our knowledge, we are the first to explore the detri-
mental impact of VLPs’ pseudo labels in WSPG and to propose an effective strategy.

• We design a dual-cycle consistency learning for WSPG. A vision-modal cycle consistency
aims to augment the functionality of pseudo labels. A language-modal cycle consistency
aims to recognize and correct the referred object based on the query phrase.

• We conduct extensive experiments on three benchmark datasets to verify the effectiveness
of our framework and its excellent compatibility with different VLP models.
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2 RELATED WORK

Vision Language Pre-trained Models. Pre-trained models have significantly advanced the domain
of CV and NLP by learning from large datasets (Kenton & Toutanova, 2019; He et al., 2019). This
trend has prompted research on handling both visual and textual data, known as Vision-Language
Pre-trained (VLP) Models (Li et al., 2019; Chen et al., 2020; Tan & Bansal, 2019). For instance,
CLIP (Radford et al., 2021) has demonstrated superior performance in aligning images with their
corresponding texts through pre-training on extensive internet-sourced image-text pairs. Other out-
standing works include TCL (Yang et al., 2022) and ALBEF (Li et al., 2021a). Additionally, some
applications have incorporated VLP models into generative frameworks (Rombach et al., 2022;
Chefer et al., 2023). These works enable textual descriptions to be represented as features for image
generation. A recent surge has employed pre-trained models for grounding-related tasks (Subrama-
nian et al., 2022; Shtedritski et al., 2023; Liu et al., 2024; Yang et al., 2024; Wang et al., 2024c).
However, the potential negative implications of these models have received limited attention.

VLP-based WSPG. VLP models have been increasingly employed for WSPG. This task focuses on
localizing objects within images based on query phrases, not relying on any region-level annotation.
Most recent methods involve either fine-tuning (He et al., 2024; Zeng et al., 2024) or maintaining
a frozen state of VLP models (Shaharabany & Wolf, 2023; Lin et al., 2024a). The former meth-
ods adjust VLP models to better localize objects by reducing inconsistencies in pseudo labels over
multiple fine-tuning phases. In contrast, the latter methods do not alter the pre-trained VLP models
but instead extract attention heatmaps. These heatmaps are used as pseudo labels to train an in-
dependent WSPG network. Following the pioneering work (Shaharabany et al., 2022), subsequent
efforts (Gomel et al., 2023; Lin et al., 2024b) have further refined the model’s localization through
collaborative learning with visual subtasks, such as segmentation and detection. However, the low
quality of pseudo labels could result in the ineffectiveness of the subsequent model’s learning.

Consistency Learning for Grounding. Our approach to WSPG can be regarded as a consistency
learning. Language related consistency learning has been explored using classical weakly supervised
referring expression grounding (REG) (Liu et al., 2019; 2022a; Zhang et al., 2023; Wang et al.,
2024a; Liu et al., 2021). For vision consistency learning, Zhu et al. (2017) pioneering proposed
unpaired translation for image generation. Recently, Cyco (Wang et al., 2024a) proposes a grounding
captioning consistency method. In this method, a collaborate learning network is designed for REG
and image captioning. To train the network, the data including the image, the text description, and
the bounding box are required. However, Cyco ignores the cost associated with manually labeling
the bounding box. In addition, Cyco does ignore the problem of incorrect pseudo labels which could
harm the model’s performance. In this paper, we propose a WSPG framework using VLP models.
We design a dual-cycle consistency learning to mitigate the negative effects of pseudo labels.

3 METHODOLOGY

3.1 OVERVIEW

Given an image I and a query phrase T , the task of phrase grounding requires the model to produce
a bounding box B. To this end, a heatmap H is generated as a helper. In VLP-based WSPG, the
model is trained with image-phrase pairs and a pseudo label A extracted with VLP models.

The overview of our proposed framework is shown in Figure 2. Our grounding network consists
of an image encoder Eimg(·), a text encoder Etxt(·), and a grounding decoder Dgnd(·). The image
encoder employs the last layer’s output of the pre-trained CNN in ImageNet as visual embedding.
The text encoder uses the text embedding branch of CLIP (VIT-B/32), which is frozen. The ground-
ing decoder only consists of two up-sampling layers. It firstly fuses bi-modal features, and converts
high-dimensional fusion features into grounding heatmaps H . The feature fusion calculates the sim-
ilarity between text features and visual ones, AM = Eimg(I)⊗ Etxt(T ). The attention is then given
as RM = Eimg(I) ◦AM , in which the symbol ◦ means Hadamard product.

To mitigate the detrimental effects of low-quality pseudo labels, we propose a dual-cycle consistency
learning (DCL) framework, including vision-modal cycle consistency and language-modal cycle
consistency. The former takes pseudo labels as prompts, enabling the grounding network to learn to
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Figure 2: Overview of our VLP-based WSPG framework. Two types of heatmap transition are based
on vision-modal and language-modal cycle consistency learning.

localize during the reconstruction of pseudo labels. The latter recognizes the referred object based
on its corresponding phrases and corrects its position. Subsequently, we describe our DCL in details.

3.2 VISION-MODAL CYCLE CONSISTENCY

We devise a novel approach that leverages pseudo-label reconstruction to localize referred objects.
Our method involves a two-stage grounding process. In the grounding network, we use the pseudo
label A as the prompt to ground the object referred by the phrase T . This produces the first grounding
heatmap H . The process is formulated as follows,

H = Dgnd (Eimg(Pimg(I, A)), Etxt(T )) (1)

where Pimg(I, A) denotes the prompt function for an image with a pseudo label. Subsequently,
in the recovery module, we once again use the grounding heatmap H as the prompt to ground the
referred object. This produces the second grounding heatmap HR. The formulate is given as follows,

HR = Dgnd (Eimg(Pimg(I,H)), Etxt(T )) (2)

The recovery module has the same structure as the grounding network. To enhance the similarity
between the grounding heatmap HR and the pseudo label A, we propose the visual consistency loss.
We use the mean squared error (MSE) criterion, i.e.,

LV I =
1

n

N∑
n=1

((HR)n −An)
2 (3)

We refer to this scheme as vision-modal cycle consistency.

Conditional Visual Prompt Engineering. The heatmaps similar to pseudo labels for capturing the
region of referred objects are previously proposed (Shaharabany et al., 2022; Gomel et al., 2023;
Lin et al., 2024b). However, these heatmaps largely contain the salient information, struggling to
delineate details. Additionally, these methods solely relying on a phrase could fail to accurately con-
vey the intended grounding content. To provide not only supervision but also category-level details,
the pseudo labels are treated as the conditional guidance. Thus, we employ visual prompt engineer-
ing by marking regions on the input image, thereby providing a conditional guidance. Specifically,
to highlight each referred object in the input images, we utilize six variants of prompt engineer-
ing, including Keypoint, Red Circle (Shtedritski et al., 2023), Red Box (Chen et al., 2020), Mask,
Crop (Yao et al., 2021), and Image Blur (Yang et al., 2024). Then the input image can be generated
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as Pimg(I, A), where Pimg contains six approaches of visual prompt engineering. Note that Image
Blur is controlled by the standard deviation in Gaussian blur kernel δ.

In the absence of constraints, the grounding network tends to localize objects randomly. A naive
idea is to adopt pseudo labels to constrain the first-stage grounding results H . However, it inevitably
suffers from redundant information. Thus, we need to design a confidence-based regularization
method to remove redundant information in pseudo labels.

“swimming player” “a gray suit”

Figure 3: Two types of redundant in-
formation can be filtered by confidence-
based regularization.

Confidence-based Regularization. To reduce the inter-
ference of redundant information in pseudo labels, we de-
sign a confidence-based regularization method. The regu-
larization involves image-level confidence (IC) and pixel-
level confidence (PC). In IC, each pseudo label’s high-
lighted area reflects the confidence of the label’s quality.
In PC, each pixel in the pseudo label indicates the confi-
dence of the position corresponding to the query phrase.
Thus, we attempt to ignore those untrusted labels and po-
sitions. This is shown in Figure 3. Specifically, given
the pseudo label A ∈ RH×W of an image, we exact its
bounding box as B(A) ∈ RHB×WB . The image-level
and pixel-level confidence maps are obtained as follows,

IC(A) =
HB ×WB

H ×W
and PC(α, β) = max(max(A(α, β)), 1−max(A(α, β))) (4)

where α and β means the pixels of pseudo labels or grounding heatmaps. We convert MSE to a
confidence-based version as follows,

LCM =

{
1
N

∑N
n=1 (Hn −An)

2
, IC ≤ µ & PC ≥ γ

0 , IC > µ or PC < γ
(5)

The hyper-parameters γ and µ help the grounding network in ignoring pixels and pseudo labels with
low confidence. Similarly, we propose a dice loss (Li et al., 2020) LCD based on the confidence to
measure similarities. The formula is given as follows,

LCD =

{
1− 2×

∑N
n=1(Hn·An)∑N

n=1 H2
n+

∑N
n=1 A2

n

, IC ≤ µ & PC ≥ γ

0 , IC > µ or PC < γ
(6)

Note that we set the confidence-based loss to 0 if the confidence score is out of the range given by µ
and γ. In addition, we re-normalize the non-zero loss values within a batch.

3.3 LANGUAGE-MODAL CYCLE CONSISTENCY

We employ a captioning approach to represent the objects’ concepts and details within that region.
This caption is then compared to the query phrase to ensure the language consistency. Specifically,
we generate a bounding box B(H) based on the grounding heatmap H . We then use the caption
module (Li et al., 2022) to describe the content of the boxed region as TB . While there may exist
semantic similarities between the caption and the query phrase, discrepancies in content can arise.
For example, “image of wide and blue air” and “image of this is the sky”, these samples are diffi-
cult to be recognized. To this end, we introduce a regularization using CLIP text encoder to extract
embeddings, which facilitates the evaluation of semantic similarity. To make sure that the grounded
region contains the referred object, we introduce LDE to minimize the difference between the em-
beddings of caption TB and query phrase T , while maximizing the difference between TB and a
negative sample TN . LDE is defined as follows,

LDE = 1− CLIPtxt (TB , T ) + CLIPtxt (TB , TN ) (7)

where CLIPtxt denotes the score calculated solely by the CLIP text encoder. Note that we treat the
description “image of colorful patches” as a negative sample. This setting is based on its common-
ness in captions generated by the caption module. Such captions typically arise when the grounded
region has either incomplete or ambiguous instances.

Less object-independent information in captions assists in judging the relevance of the localized
object to the referred object. Thus, we adopt spaCy (Subramanian et al., 2022) for Name Entity
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Recognition (NER) in phrases. To align the primary object within the grounded region and the
subject of the query phrase, we compute the cosine score between the second recognized nouns in
T and TB . For example, “image of a train pulling carts” vs. “image of this is the train”) are used.
The similarity loss LSU is defined as follows,

LSU = 1− cos (Etxt(NER(TB)), Etxt(NER(T ))) (8)

While the language-modal cycle consistency is effective for recognizing incorrect referred objects,
the guidance on how to correct to the appropriate phrase-related position is still lacking. Thus, we
give the network the guidance of phrase-related box as additional position supervision.

Boxes Generation and Selection. We design a region captioning verification process to generate the
corresponding box annotations for potential objects. To identify regions likely to contain instances,
we adopt several techniques, including selective search algorithm (Uijlings et al., 2013), bounding
box generation algorithm (Shaharabany et al., 2022), and random proposals. Thus, we generate pro-
posals {b1, ..., bn}. A challenge is to discern the specific concepts and details of these instances. To
this end, we employ the caption module (Li et al., 2022) to generate caption expressions {t1, ..., tn}
for proposed regions. We filter out semantically repetitive proposals. The semantic redundancy may
manifest as varied descriptions of the same object, such as “black coat” versus “padded jacket”, or
“red bike” versus “small bicycle”. Specifically, we use CLIP text encoder (Radford et al., 2021) to
translate the explicit captions into latent features. Based on the latent features, we build clusters
and ensure that the data points within each cluster exhibit uniformity in the feature space. Within
each cluster, instances are ranked based on scores calculated using the similarity to the mean feature
representation. We then select the top-k scoring instances, aiming to filter out instances that lack
the semantic coherence with the cluster. Finally, we select the cluster whose semantic similarity is
closest to the phrase embedding Etxt(T ), as Z = {(tk, bk)}Kk=1.
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Figure 4: The results of region captioning verification pro-
cess (left). The process of consistency learning (right).

Position Consistency Learning. To
provide reliable positional annota-
tions, we use CLIP text encoder Etxt.
It calculates the text similarity score
between the query phrase T and the
captions in cluster Z. The box bi as-
sociated with the top-1 most similar
caption ti is then propagated. Sim-
ilarly, cross-modal similarity scores
between the given image and cap-
tions are also calculated to derive a
box bj , using the complete CLIP. The
propagation processes, as shown in
Figure 4, are shown as:

argmax
Zi

= Stext (Zi = (ti, bi)|T,Z) and argmax
Zj

= Scross (Zj = (tj , bj)|T,Z) (9)

where Z represents the cluster selected by the region captioning verification process. We merge these
two obtained boxes bi and bj to form bh, representing the smallest box enclosing both. To refine
the grounding result’s boundaries, we utilize LBOX (Gomel et al., 2023) and LGIOU (Rezatofighi
et al., 2019) as follows,

LBOX = ∥B(H)− bh∥1 and LGIOU = 1−
(
|B(H) ∩ bh|
|B(H) ∪ bh|

− |ch \ (B(H) ∪ bh)|
|ch|

)
(10)

where ch is the smallest box containing B(H) and bh. We set the position loss as LPO = LBOX +
LGIOU . In addition, we set language-modal consistency loss as LLC = LDE + τLSU + ϵLPO .

Thus, we summarize the total loss for our model as follows,

LTotal = LV I + λ1LCM + λ2LCD + λ3LLC (11)

In the inference phase, we feed the prompted image Pimg(I, A) and query phrase T to the grounding
network. The module then generates a grounding heatmap H . Finally, we adopt the bounding box
generation method proposed by Shaharabany et al. (2022), obtaining the bounding box.
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4 EXPERIMENTS

4.1 DATASETS

Four datasets are used in our experiments. Flickr30K Entities (Plummer et al., 2015) contains 224K
phrases describing bounding boxes in 31K images, and each image includes five captions. We also
select 1000 images from the test split to evaluate as used in MG (Akbari et al., 2019). ReferIt has
20,000 images and 99,535 segmented regions in IAPR TC-12 (Grubinger et al., 2006) and SAIAPR-
12 (Chen et al., 2017) datasets, respectively. There exist approximately 130K entity captions. We
used the same 9K training, 1K validation, and 10K test datasets as in MG (Akbari et al., 2019).
MSCOCO 2014 (Lin et al., 2014) contains 82,783 train images and 40,504 validation images. Each
image is described with 5 captions. The training split in MG is used. Visual Genome (Krishna
et al., 2017) consists of 77,398 training images, 5,000 test images, and 5,000 validation images.
Each image possesses a series of annotations which are in a free-text format.

4.2 BASELINES AND METRICS

We chose typical VLP models as our backbones. 1) Classical image-text matching models, i.e.,
CLIP (Radford et al., 2021), ALBEF (Li et al., 2021a) and TCL (Yang et al., 2022). 2) Text-to-image
generation models, i.e., Stable Diffusion (Rombach et al., 2022) and Attend-and-Excite (Chefer
et al., 2023). In addition, we used two typical WSPG methods and seven VLP-based WSPG meth-
ods as baselines. 1) Classical WSPG baselines, i.e., MG (Akbari et al., 2019) and Gbs (Arbelle
et al., 2021). 2) VLP-based WSPG includes g (Shaharabany et al., 2022), g++ (Shaharabany, 2023),
BBR (Gomel et al., 2023), SelfEQ (He et al., 2024), TAS (Lin et al., 2024a), VPT (Lin et al., 2024b)
and APR (Zeng et al., 2024).

Two metrics, i.e., “pointing game” accuracy (Akbari et al., 2019) and bounding box accuracy (Sha-
harabany et al., 2022) are used. “Pointing Game” accuracy measure the percentage of predicted
maximum points of the heatmap that lie within the bounding box ground-truth. Bounding Box ac-
curacy measure the percentage of heatmap bounding boxes that have an IoU greater than 0.5 for the
testing set of “image-query” pairs.

4.3 IMPLEMENTATION DETAILS

For a fair comparison, we used VGG-16 as the image encoder in our framework. For VLP models,
all pseudo labels are extracted with the interpretable method GAE (Chefer et al., 2021). Note that
the specific backbone layers that GAE acts on are different. For CLIP, we use all layers of the visual
encoder for GAE. For ALBEF and TCL, we use the third layer of the cross-modality encoder. For
Stable Diffusion and Attend-and-Excited, we use the second layer and fifth layer of the last cross-
attention block. To ensure that multiple losses belong to the same scale, the weights in our loss
function were set as follows: λ1 = 16, λ2 = 4, λ3 = 0.5, τ = 4, and ϵ = 10.

4.4 QUANTITATIVE RESULTS

We conduct experiments using the same training and inference processes with MG (Akbari et al.,
2019). In subsequent analysis, our framework uses Image Blur (Yang et al., 2024) as the only
conditional visual prompt engineering.

Comparison with SoTA Methods. We compare our method with other WSPG methods on Visual
Genome (VG), Flickr30k Entities, and ReferIt. We distinguish VLP-based WSPG methods with
similar pseudo labels from three sources, including CLIP (Radford et al., 2021), ALBEF (Li et al.,
2021a), and g (Shaharabany et al., 2022). For a fair comparison, we combine DCL with three types
of pseudo labels. Differ from the first two types of pseudo labels, we use g’s output heatmaps as
pseudo labels. The experimental results are shown in Table 1. It shows that our framework exceeds
the previous state-of-the-art methods in all settings. Our approach works for different forms of
the training data (i.e., MS-COCO and VG) and the testing data (i.e., Flickr30K Entities, VG, and
ReferIt). In addition, our method could alleviate the impact of low pseudo-label quality.

Compatibility with VLP Models. We report experimental results under different VLP models,
including TCL (Yang et al., 2022), CLIP (Radford et al., 2021), and ALBEF (Li et al., 2021a).
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Model
VG Trained MS-COCO Trained

Point Accuracy Bbox Accuracy Point Accuracy Bbox Accuracy
VG Flickr ReferIt VG Flickr ReferIt VG Flickr ReferIt VG Flickr ReferIt

MG 48.76 60.08 60.01 14.45 27.78 18.85 47.94 61.66 47.52 15.77 27.06 15.15
Gbs 53.40 70.48 59.44 - - - 52.00 72.60 56.10 - - -

g 62.31 75.63 65.95 27.26 36.35 32.25 59.09 75.43 61.03 27.22 35.75 30.08
APR 60.43 78.07 63.75 - - - - - - - - -

Ours (CLIP) 64.26 78.54 68.95 29.61 39.85 35.07 61.81 77.74 62.27 27.94 40.51 31.33
SelfEQ - 81.90 67.40 - - - - 84.07 62.75 - - -

Ours (ALBEF) 62.82 82.12 68.01 28.43 39.95 30.65 60.16 84.46 63.62 26.35 37.66 28.63
g++ 66.63 79.95 70.25 30.95 45.56 38.74 62.96 78.10 61.53 29.14 46.62 32.43
BBR 63.51 78.32 67.33 31.02 42.40 35.56 60.05 77.19 63.48 28.77 47.26 30.63
TAS 58.07 76.69 70.86 27.31 45.63 35.70 60.31 77.85 62.63 29.58 45.46 33.41
VPT 62.72 80.03 68.21 27.40 45.60 34.76 60.74 81.15 64.14 27.65 45.09 31.14

Ours (g) 67.17 81.54 70.93 32.64 45.80 39.69 63.21 82.65 64.38 30.04 47.88 33.58

Table 1: Performance of WSPG methods on the test splits. The best results are shown in boldface.

Method Training Test Point Accuracy Test Bbox Accuracy
VG Flickr ReferIt VG Flickr ReferIt

TCL - 55.36 79.95 54.29 22.04 32.14 20.86
TCL+ours VG 65.88(↑10.52) 82.79(↑2.84) 64.55(↑10.26) 30.96(↑8.92) 41.27(↑9.13) 36.80(↑15.94)
TCL+ours MS-COCO 63.06(↑7.70) 82.96(↑3.01) 62.24(↑7.95) 31.14(↑9.10) 44.69(↑12.55) 33.35(↑12.49)

CLIP - 54.72 72.47 56.76 16.70 25.56 19.10
CLIP+ours VG 64.26(↑9.54) 78.54(↑6.07) 68.95(↑12.19) 29.61(↑12.91) 39.85(↑14.29) 35.07(↑15.97)
CLIP+ours MS-COCO 61.81(↑7.09) 77.74(↑5.27) 62.27(↑5.51) 27.94(↑11.24) 40.51(↑14.95) 31.33(↑12.23)

ALBEF - 51.59 78.15 57.41 20.25 28.30 15.79
ALBEF+ours VG 62.82(↑11.23) 82.12(↑3.97) 68.01(↑10.60) 28.43(↑8.18) 39.95(↑11.65) 30.65(↑14.86)
ALBEF+ours MS-COCO 60.16(↑8.57) 84.46(↑6.31) 63.62(↑6.21) 26.35(↑6.10) 37.66(↑9.36) 28.63(↑12.84)

Stable Diffusion+ours VG 55.31 65.41 53.06 18.88 28.65 20.11
Stable Diffusion+ours MS-COCO 52.89 63.96 54.22 19.06 30.41 20.73

Attend-and-Excite+ours VG 57.83 68.80 54.76 19.92 30.07 22.53
Attend-and-Excite+ours MS-COCO 59.36 68.92 53.33 18.58 32.25 21.09

Table 2: The results using different VLP models and generative models in our method. For a fair
comparison, all pseudo labels are extracted by the identical method (Chefer et al., 2021).

The experiments are shown in Table 2. It shows that our DCL is effective across a spectrum of
VLP models. Note that our DCL achieves a superior grounding performance in comparison to
the VLP models. Furthermore, we also report the results using Stable Diffusion (Rombach et al.,
2022) and Attend-and-Excite (Chefer et al., 2023) in the last four rows. These generative models
produce results based solely on phrases, without using images in the MSCOCO and VG datasets.
The synthetic images along with pseudo labels extracted via GAE (Chefer et al., 2021) are combined
with the original phrases to constitute the training corpus for our DCL. This scheme does not employ
visual prompts during the inference stage, as generative models are incapable of generating attention
heatmaps relevant to input images. The results show unsatisfactory performance when using the
generative model as the backbone of our approach. This suboptimal performance could be attributed
to two factors. 1) The inaccurate images generated by generative models can lead to cumulative
errors in the model’s learning. 2) Generative models’ propensity to generate object-centered outputs
contrasts with the complex backgrounds of input images (Plummer et al., 2015; Krishna et al.,
2017; Chen et al., 2017). It leads to distributional discrepancies when outputs used as the training
data. However, the grounding performance achieved through this approach serves as an indicator
of the generative model’s capability in capturing the semantics of the given phrase. Attend-and-
Excite (Chefer et al., 2023) exhibits a superiority in generating images that convey the semantics of
the query phrase. In contrast, the other model produces less favorable results.

4.5 ABLATION STUDY

In this section, we empirically investigate how the performance of our framework is affected by
different model settings. All models were trained on VG (Krishna et al., 2017), and we used pseudo
labels extracted from CLIP (Radford et al., 2021).
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M Prompt VI CM CD LC Test Point Accuracy Test Bbox Accuracy
VG Flickr ReferIt VG Flickr ReferIt

✓ 48.42 57.85 50.11 13.47 16.10 17.92

✓ 54.49(↑6.07) 68.72(↑10.87) 56.88(↑6.77) 16.87(↑3.40) 24.10(↑8.00) 22.14(↑4.22)
✓ ✓ 57.63(↑3.14) 72.44(↑4.06) 60.94(↑4.06) 17.55(↑0.68) 25.46(↑1.46) 24.02(↑1.88)
✓ ✓ ✓ 60.27(↑2.64) 75.85(↑3.41) 64.23(↑3.29) 26.11(↑8.56) 35.53(↑10.07) 30.31(↑6.29)
✓ ✓ ✓ 60.49(↑2.86) 75.63(↑3.19) 64.32(↑3.38) 23.58(↑6.03) 33.38(↑7.92) 27.85(↑3.83)
✓ ✓ ✓ ✓ 62.94(↑5.31) 76.61(↑4.17) 67.19(↑6.25) 26.34(↑8.79) 36.35(↑10.89) 31.18(↑7.16)
✓ ✓ ✓ ✓ ✓ 64.26(↑1.32) 78.54(↑1.93) 68.95(↑1.76) 29.61(↑3.27) 39.85(↑3.50) 35.07(↑3.89)

Table 3: The ablation results of various components. “M” represents our baseline. “Prompt” denotes
the conditional visual prompt engineering. “VI” means the vision-modal cycle consistency. “CM”
and “CD” represent confidence-based losses. “LC” means the language-modal cycle consistency.

LDE LSU LPO
Test Point Accuracy Test Bbox Accuracy
VG Flickr ReferIt VG Flickr ReferIt

✓ 63.07 77.07 67.56 28.03 38.16 33.28
✓ 63.61 77.64 68.12 27.47 37.60 32.23

✓ 64.02 78.21 68.69 28.59 38.71 34.34
✓ ✓ 63.76 77.94 67.22 28.04 38.25 33.49

✓ ✓ 64.00 78.24 68.67 28.84 38.83 34.14
✓ ✓ 63.97 78.48 68.73 29.59 39.60 34.93

Table 4: The ablation results of three losses in the
language-modal cycle consistency.

Model Components. We explore the per-
formance of DCL with various components.
Firstly, we construct a simple network as our
grounding network. The network only adopts
the MSE loss from g (Shaharabany et al., 2022)
as its training objective. This network serves as
a baseline for subsequent comparison. In ad-
dition, five key components are involved. The
experimental results are presented in Table 3.
The using of five components in our framework
consistently enhances the performance. We observe that a better performance could be achieved
with conditional visual prompt engineering. It corroborates the efficacy of our enhancements over
the original method. Then adding the vision-modal cycle consistency strategy can boost the per-
formance. The result demonstrates that the effectiveness and compatibility of two-stage grounding
process. In addition, confidence-based regularization contributes most to the performance gain. We
suppose that our method filters out noisy pseudo labels while tries to remove visual noise from the
pseudo labels. The language-modal cycle consistency strategy also demonstrates an improvement
in the model’s performance. This verifies that our approach can mitigate the influence of the er-
ror accumulation during training. Secondly, we investigate the effectiveness of different losses in
our DCL. The results are shown in Table 4. We observe that the ablation strategy’s performance is
lower than the our complete strategy. The three losses help localized objects follow the semantics of
phrases, and ensure that the grounded region contains the targeted object.

Hyperparameters. We conduct experiments on hyperparameter, µ and γ in confidence-based
losses. The results are shown in Table 5. The optimal values for MSE are 0.95 and 0.95. For
dice loss, these two values are 0.95 and 0.99. Figure 5 presents our DCL’s grounding performance
when varying the hyperparameters, k and δ. We observe that our framework achieves the best perfor-
mance when the hyperparameter k is set to 5. A higher or lower values could weaken the quality of
positional annotations, which are selected by the region captioning verification process. We also ab-
late the standard deviation of the Gaussian blur kernel in Image Blur. The deviation of 100 achieves
the best performance.

CM CD Test Point Accuracy Test Bbox Accuracy
µ γ µ γ VG Flickr ReferIt VG Flickr ReferIt

1.00 1.00 1.00 1.00 62.57 76.64 67.20 26.85 37.60 32.85

0.95 1.00 1.00 1.00 63.28 77.14 67.65 27.68 38.47 33.95

0.95 0.95 1.00 1.00 63.51 77.62 67.72 29.35 39.01 34.47

0.95 0.95 0.95 1.00 64.03 78.17 68.30 28.72 39.36 34.89

0.95 0.95 0.95 0.95 63.11 77.38 67.52 29.04 39.42 34.97

0.90 0.95 0.95 0.99 63.68 77.83 68.33 28.76 38.73 34.08

0.95 0.90 0.95 0.99 62.98 76.98 67.58 27.32 37.86 33.32

0.95 0.95 0.90 0.99 63.97 78.22 68.60 29.43 39.64 34.88

0.95 0.95 0.95 0.90 63.01 77.02 67.62 28.89 38.91 34.24

0.95 0.95 0.95 0.99 64.26 78.54 68.95 29.61 39.85 35.07

Table 5: Ablations of image-level and pixel-
level confidences. “CM” and “CD” represent
confidence-based MSE and dice loss.

Figure 5: The performance with parameters k
and δ in our DCL are shown, respectively. The
results are conducted on three datasets.
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silver car  a snowboardera snowboardertwo childrentwo children a riding lawn mowera riding lawn mower blond haired men yellow dog

Figure 6: The visualization of grounding results of six testing examples. The red boxes are ground-
truth. The green boxes are generated by our best model. The blue boxes are generated by our model
without the region captioning verification process. In addition, the orange boxes are produced by
our model without the conditional visual prompt engineering.

4.6 QUALITATIVE ANALYSIS

We show the qualitative results from the Flickr30K Entitiess in Figure 6. In the left three examples,
the key factor to localizing the referred object is leveraging the positional annotations from the
region captioning verification process. In the absence of the region captioning verification process,
there is a deviation in the estimates of silver car, two children and bland haired men compared to
the ground-truths. In the right three examples, we observe that the model trained with the prompt
localizes target objects much better than the one trained without the prompt component. In the
absence of conditional guidance, the positioning of mover, snowboarder, and dog tends to be larger
than expected. We conclude that both the proposed approaches play an essential role in accurately
grounding the referred objects.

4.7 LIMITATIONS

Phrase：Small Boat

Phrase：Broken Region

Figure 7: Failure cases of our method. The
middle column represents our results.

Our network has limited performance on domain-
specific data, such as remote sense and industrial ab-
normal datasets. A few results are shown in Figure
7. The first example fails because our method can
only select a rough range and cannot locate each tar-
get object. The second example fails since our posi-
tioning had redundant parts. This phenomenon is at-
tributed to the fact that commonly used VLP models
are unable to establish strong cross-modal associa-
tions for these domains, resulting in inaccurate posi-
tioning. We will introduce more data to enhance the
generality of our framework. In addition, the current
DCL paradigm is designed for static imagery and re-
quires significant advancements to adapt to dynamic
video streams, such as continuous updates of refin-
ing matching concepts over time, correction of erro-
neous hypotheses, and robust tracking mechanisms
for regions.

5 CONCLUSION

In this paper, we propose a novel framework, Dual-cycle Consistency Learning (DCL) for WSPG.
We propose a vision-modal cycle consistency to learn to ground the referred objects in the pro-
cess of reconstructing the pseudo labels. This consistency prevents incompleteness and redundancy
problems. We also propose a language-modal cycle consistency to learn to recognize the referred ob-
jects and correct their positions. This consistency mitigates the misrecognition problem based on the
given phrase. Extensive experiments on benchmark datasets show that our framework achieves state-
of-the-art performance and has excellent compatibility with different VLP models. In the future, we
will study the application of our framework to related multimodal tasks, such as vision-language
navigation and visual question answering.
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A BROADER IMPACTS

Our research introduces a novel weakly supervised phrase grounding paradigm that improves phrase
grounding performance, facilitating the development of multimodal interaction systems and benefit-
ing people’s daily lives. Furthermore, we explore weakly-supervised training, saving human efforts
in data annotation. Our framework is validated on large-scale public vision-language datasets and
does not leverage noise in the data, ensuring fairness and unbiasedness in the grounding results. In
contrast, the failure of this technique may lead to an inaccurate multimodal understanding and cause
the mistake of the system based on the grounding results.

B BASELINES

a. Selected VLP models: We introduce typical models from image-text matching (CLIP (Radford
et al., 2021), ALBEF (Li et al., 2021a) and TCL (Yang et al., 2022)) and text-to-image genera-
tion (Stable Diffusion (Rombach et al., 2022), Attend-and-Excite (Chefer et al., 2023)). 1) CLIP
is a joint vision and language model pre-trained using over 400 million images I and their corre-
sponding captions T. It is comprised with two networks, image Encoder and text Encoder. The
pre-training process of CLIP utilizes contrastive learning, which maximizes the cosine similarity
between cross-modal pairs and minimizes the score between different images and captions. 2) AL-
BEF composes of a text decoder, an image encoder, and a multimodal fusion encoder. It relies on
three widely used objectives for visual and textual representation learning: image-text matching,
masked language modeling and a contrastive loss. 3) TCL, a two-stream model, is an enhanced
version of ALBEF, which introduces three contrasting modules: Cross-modal Alignment (CMA),
Intramodal Contrastive (IMC), and Local Mutual Information Maximization (LMI). These modules
are designed to maximize the mutual information between matching images and texts and maximize
global mutual information. 4) Stable Diffusion operates in the latent space of an autoencoder. First,
an encoder E is trained to map a given image into a spatial latent code. A decoder is then tasked
with reconstructing the input image. Given the trained autoencoder, a denoising diffusion proba-
bilistic model (DDPM) operates over the learned latent space to produce a denoised version of an
input latent at each timestep. During the denoising process, the diffusion model can be conditioned
on an additional input vector. In Stable Diffusion, this additional input is typically a text encoding
produced by a pre-trained CLIP text encoder. 5) Attend-and-Excite is an enhanced version of Stable
Diffusion, which uses an attention-based formulation and guides the diffusion model to refine the
cross-attention units to attend to all subject tokens in the text prompt.

b. Compared baseslines: MG (Akbari et al., 2019), Gbs (Arbelle et al., 2021), g (Shaharabany et al.,
2022), g++ (Shaharabany, 2023), BBR (Gomel et al., 2023), SelfEQ (He et al., 2024), TAS (Lin
et al., 2024a), VPT (Lin et al., 2024b) and APR (Zeng et al., 2024). 1) MG maximizes the likelihood
that a caption word appears in a distribution. It exploits multiple levels of feature maps of a DCNN,
as well as word and sentence embeddings extracted from a character-based language model. The
model is guided by a multi-level multi-modal attention mechanism which outputs activated visual
features in each level. 2) Gbs uses the source separation technique to ground the phrase to the image
pixels. The insight is to synthesize text-to-image regions by random alpha-blending of arbitrary
image pairs. The query phrase is used as condition for a non-hybrid query image. 3) g utilizes the
interpretable heatmap from CLIP as the supervision. In order to provide pixel-level supervision, the
network utilizes CLIP to distinguish between the foreground and background of the output heatmap.
4) g++ designs a self-supervised segmentation training method to further optimise the grounding
network. This method gives good results by optimising the grounding annotation alone without
changing the loss function of g. 5) BBR proposes a self-supervised object detection method for
joint learning with the grounding network. 6) SelfEQ helps the grounding network to recognise
uncommon phrases by distillation, while this method pre-processes grounding-related phrase data
with the assistance of LLM. 7) TAS proposes a triple alignment strategy for solving the zero-shot
phrase grounding under weak supervision. 8) VPT proposes a visual prompt tuning method to
effectively alleviate the local optimal problem of WSPG network. 9) APR constructs attribute,
relation and priority grounding benchmarks to evaluate the compositional reasoning on grounding
tasks for different models.
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C PROMPT VARIANTS

Keypoint Red Circle Red Box

Mask Crop Image Blur

Figure 8: Six variants of visual prompt
for the query phrase “brown bear”.

There are six types of prompt engineering variants used
in our framework: 1) Red Box (Chen et al., 2020) serves
as a visual prompting. It generates red boxes as markers
on images. The position of Red Box is the same as that
of the bounding box. 2) Keypoint entails placing a small
circle at the center of Red Box. 3) Red Circle (Shtedritski
et al., 2023) corresponds to an inscribed ellipse derived
from Red Box. 4) Mask serves as a form of prompting by
masking the region within input image corresponding to
the highlight region. 5) Crop (Yao et al., 2021) serves as
a form of prompting by cropping the image region along
Red Box. 6) Image Blur (Yang et al., 2024) serves as
a form of prompting by blurring the region within input
image. This region corresponds to the highlight region. Image Blur is controlled by the standard
deviation in the Gaussian blur kernel.

D OPTIMIZATION OF OTHER WSPG METHODS

Method Backbone Flickr Setting Flickr

GAE CLIP 25.56 +DCL 39.85(↑14.29)

MaskCLIP CLIP 34.26 +DCL 41.01(↑6.75)

GradCAM CLIP 23.18 +DCL 38.37(↑6.75)

g CLIP + VGG 36.35 +prompt 38.17(↑1.82)
+DCL 45.80(↑9.45)

VPT CLIP + VGG 45.60 +prompt 45.66(↑0.06)
+DCL 46.23(↑0.63)

Table 6: Comparison with SoTA WSPG methods
evaluated using the bounding box accuracy. All
models were trained on Visual Genome dataset.

Our DCL can easily incorporate other WSPG
methods into its own framework, in visual ex-
planation algorithms (Chefer et al., 2021; Zhou
et al., 2021; Subramanian et al., 2022), and
the state-of-the-art WSPG models (Shahara-
bany et al., 2022; Lin et al., 2024b). To sum-
marize, we treated these methods as pseudo-
label generators, and formed several two-stage
weakly supervised grounding baselines. Table
6 shows the performance comparison of these
baselines, with the results obtained using their
official codes. All baselines have notable per-
formance improvement for grounding results.
In addition, we also report the performance of
our conditional visual prompt engineering com-
bined with g (Shaharabany et al., 2022) and
VPT (Lin et al., 2024b). “+prompt” represents that we utilize the Image Blur method on their input
images. The results show that prompt engineering has a positive impact on the weakly supervised
learning process. It also shows that our method could optimize other grounding methods, and has
good compatibility.

E EFFECTIVENESS OF DIFFERENT PROPOSALS

Stext Scross
Test Point Accuracy Test Bbox Accuracy
VG Flickr ReferIt VG Flickr ReferIt

✓ 63.94 77.87 68.50 29.43 39.06 34.51
✓ 61.72 76.65 66.19 28.38 36.87 33.62

✓ ✓ 64.26 78.54 68.95 29.61 39.85 35.07

Table 7: Performance of our network with differ-
ent positional annotations.

Another important factor is the quality of pro-
posals, which are generated based on region
captioning verification process. We therefore
investigated the effect of using different pro-
posals. These proposals are extracted from dif-
ferent bounding box generation methods: se-
lective search algorithm (Uijlings et al., 2013),
pseudo label’s bounding box (Chefer et al.,
2021) and random proposals. As shown in Ta-
ble 8, increasing the variety of proposals can improve the performance of our framework. The
multiple proposal generation algorithms give the process of annotating more options. In addition,
we ablated the method of obtaining positional annotations as shown in Table 7. Two variants reduce
performance across all metrics in datasets. Mixing Stext and Scross schemes attains the best result.
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SS Ran GAE
Test Point Accuracy Test Bbox Accuracy
VG Flickr ReferIt VG Flickr ReferIt

✓ 62.69 74.85 66.85 26.76 38.17 32.14

✓ 60.50 73.95 64.91 23.76 34.30 30.18

✓ 62.23 76.28 66.79 28.61 38.53 33.90

✓ ✓ 63.01 75.76 67.02 27.30 38.26 33.00

✓ ✓ 62.21 76.31 66.83 28.66 38.62 33.92

✓ ✓ 63.55 77.96 68.28 29.10 39.18 34.45

✓ ✓ ✓ 64.26 78.54 68.95 29.61 39.85 35.07

Table 8: Performance of our network with
different proposals. “Ran” represents ran-
dom proposals. We set its number as three.

λ1 λ2 λ3 τ ϵ
Test Point Accuracy Test Bbox Accuracy
VG Flickr ReferIt VG Flickr ReferIt

16 4 0.5 4 10 64.26 78.54 68.95 29.61 39.85 35.07

1 4 0.5 4 10 63.51 77.62 68.16 27.62 37.60 33.06

16 1 0.5 4 10 63.37 77.46 68.03 28.58 38.47 33.86

16 4 1 4 10 63.39 77.60 68.14 28.60 38.49 33.94

16 4 0.1 4 10 62.81 78.02 67.94 28.79 38.69 34.13

16 4 0.5 1 10 64.02 78.25 68.70 29.52 39.74 34.97

16 4 0.5 4 1 64.22 78.38 68.70 28.47 38.35 33.75

Table 9: The ablation results of various
weight of hyper-parameters. The first row
represents the settings for best performance.

F EFFECTIVENESS OF DIFFERENT VISUAL PROMPTS

We compare the sensitivity of DCL to different visual prompt variants. In this setting, visual
prompts, as illustrated in Sec. C, were generated according to our proposed framework. Conse-
quently, Image Blur shows superior performance demonstrated in Table 10. The application of
“Bokeh” blurring serves to obfuscate the background while accentuating the object, thereby pro-
viding a clearer indication of its distinctive position within the scene. Additionally, this method
facilitates the network’s comprehension of the object’s relationship with its surrounding context.

G MORE VISUALIZATIONS

In this section, we present the visualizations of our DCL’s results for the weakly supervised phrase
grounding task, as shown in Figure 9. The query phrases are displayed in the lower-left corner of the
displayed images. The results reflect the alignment between instances and query phrases within the
figure. The same cluster of caption-box pairs is indicated using identical colors, and all proposals
and positional annotations are generated in the region captioning verification process.

H ADDITIONAL FAILURE CASES

In this section, we present additional failure case of our framework. As shown in Fig. 10, “a blue
coat” belongs to “a reporter” but not “a new crew”, but we ground “blue coats” instance of all
people in the image. This is because our framework extracts only noun phrases without considering
phrases in-context during the inference, leading to an inaccurate evaluation of the referred object’s
localization.

I LOSS WEIGHT ABLATION

In this section, we ablate the weights of loss items in Table 9. The first row represents the settings
for best performance, and we present the hyper parameters in the Sec.4.3.

J ADDITIONAL TRAINING DETAILS

All models are trained on a GeForce A6000 Nvidia GPU. We use an SGD optimizer (batch size of
32 and an initial learning rate of 0.0003). We also set the optimizer momentum as 0.9 and weight
decay as 0.0001. In addition, we use a random horizontal flip with 0.5 probability. Our network
is optimized for 120 epochs, where pseudo labels are generated by CLIP (Radford et al., 2021),
ALBEF (Li et al., 2021a), TCL (Yang et al., 2022) and g (Shaharabany et al., 2022). To save the
training resource, we train our network without LDE and LSU for 115 epochs, and add both losses
in the last five epochs. When we extract pseudo labels from stable diffusion (Rombach et al., 2022)
and Attend-and-Excited (Chefer et al., 2023), our network is optimized for 1 epoch due to the time-
consuming generation of images.
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Figure 9: Visualization of DCL results on the phrase grounding task under the Flickr30K Entities,
VG, and ReferIt datasets.
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Method
Test Point Accuracy Test Bbox Accuracy
VG Flickr ReferIt VG Flickr ReferIt

Red Circle 62.26 76.54 66.95 27.61 37.85 33.07

Keypoint 59.03 72.14 61.06 18.40 26.23 20.28

Red Box 63.92 77.87 68.83 28.63 38.80 34.64

Mask 60.97 76.10 64.17 19.38 27.46 20.51

Crop 62.81 76.95 67.23 21.61 30.00 24.77

Image Blur 64.26 78.54 68.95 29.61 39.85 35.07

Table 10: Performance of our network with
different visual prompt engineering variants.

Ground TruthOur DCL ResultImage

Caption : A new crew and a reporter in a blue coat make a film in the rain.

Figure 10: Failure cases of our method. Row #1
presents the query phrase and the sentence. Col-
umn #2 presents the failure case for grounding
entities in context. Column #3 presents ground-
truth.

Method Backbone CUDA Memory Training Time Inference Time IPS Acc
AdaptingCLIP CLIP 3289 MB - 22.67 min 0.74 23.18

MaskCLIP CLIP 2004 MB - 1.02 min 16.39 34.26
GAE CLIP 4324 MB - 2.28 min 7.30 25.56

g CLIP + VGG 19364 MB 2900 min 1.90 min 8.77 36.35

VPT CLIP + VGG 19364 MB 2930 min 1.90 min 8.77 45.60

DCL* (ours) CLIP + VGG + BLIP 18954 MB 86400 min 4.18 min 3.99 39.85

DCL† (ours)

g + VGG + BLIP 18222MB 5121 min 4.18 min 3.99 45.80
CLIP + VGG + BLIP 18906 MB 5155 min 4.57 min 3.65 39.85
ALBEF + VGG + BLIP 20095 MB 5205 min 5.14 min 3.24 39.95
Stable Diffusion + VGG + BLIP 32397 MB 25239 min 1.90 min 8.77 28.65

Table 11: Comparison of training and inference cost. IPS: Image per GPU second. ∗ denotes
that extracting positional annotation is realized during the model training phase. † indicates that
extracting box annotation is implemented prior to model training.

K INFERENCE SPEED AND COMPUTATION

In this section, we present the computation and inference speed of our network in different settings,
as shown in Table 11. All trainable models were trained on Visual Genome and achieved inference
on Flickr30K Entities, gaining their bounding box accuracy.
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