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Abstract

We address the task of learning generative models of human gait. As gait motion
always follows the physical laws, a generative model should also produce outputs
that comply with the physical laws, particularly rigid body dynamics with contact
and friction. We propose a deep generative model combined with a differentiable
physics engine, which outputs physically plausible signals by construction. The
proposed model is also equipped with a policy network conditioned on each sample.
We show an example of the application of such a model to style transfer of gait.

1 Introduction

Analysis and synthesis of human gait are prevalent issues in biomechanics [see, e.g., 40]. In this
work, we aim to address them via learning generative models of human gait motion. Generative
models of gait can help us to analyze gait patterns by examining inferred quantities such as latent
representations, as well as to synthesize gait patterns with desired properties. They are useful, for
example, in clinical decision making for treatment of pathological gait.

One of the challenges in learning generative model of gait is to ensure the physical validity of model’s
outputs. As motion of gait must always follow the physical laws, a generative model should also
yield motions that comply with the physical laws. However, purely data-driven generative models
(e.g., ones only with deep neural networks) can often produce physically impossible or implausible
motion patterns. A quick remedy is to impose regularization that penalizes violation of the physical
laws, but it does not guarantee the compliance of the physical laws outside the training data regime.

We suggest learning deep generative models built from a physics simulator as well as neural networks
(see figure 1), so that the outputs comply by construction with the physical laws encoded in the simu-
lator. More specifically, we incorporate a differentiable simulator of articulated rigid body dynamics
[see, e.g., 7, 5, 9, 10, 12, 14, 17, 27, 11, 28, 39] into the framework of variational autoencoders
(VAEs) [22, 29]. We also consider a policy network for controlling the agent in the physics simulator
and condition it with the latent representation to provide a sample-dependent control law. We present
an application of such hybrid generative models to style transfer of human gait.

Related work Combination of differentiable physics engines and machine learning models such as
neural networks have been actively studied recently. Many studies have been done in the context of
prediction or system identification [e.g., 7, 31, 19, 25, 8, 20, 32, 33, 37, 38, 6, 21, 41] and control
or reinforcement learning [e.g., 7, 31, 16, 15, 34, 6, 18, 42]. Some researchers have investigated
generative modeling or related methodologies combined with differentiable physics engines [7, 14,
17, 2, 35]. For example, de A. Belbute-Peres et al. (2018) [7] suggested an autoencoding architecture
with a differentiable physics simulator inside. Takeishi and Kalousis (2021) [35] proposed a method
to strike a balance between physics models and data-driven models in learning VAEs combined with
physics models. Our work is on this track of research but is more focused on gait modeling.
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Figure 1: Diagram of the proposed generative model with differentiable physics engine.

Physics Controller Amortized
inference

IK/ID/tracking X
Control/RL X X

(V)AE X
Ours X X X

Table 1: Features of related tasks.

Our task combines features of related tasks (see table 1).
In human pose tracking (i.e., pose estimation from mea-
surements such as videos and motion capture data) [e.g.,
3], consistency with the physical laws is often considered
via inverse kinematics (IK), inverse dynamics (ID), and/or
physics-informed regularization. Reinforcement learning
(RL) is at the intersection of machine learning, control, and
physics simulation and has been applied to human motion [e.g., 23]. One of the strengths of VAE and
its variants, which have been applied to gait as well [e.g., 4], is the capability of amortized inference,
with which latent variables for new observations can be inferred quickly. Our method is also notable
in the sense that training of the model including a policy network is done with a single gradient
descent loop only with the evidence lower bound (and some regularizers) as objective.

2 VAE with physics engine for gait

2.1 Target measurements

In this work, we deal with time-series of the three-dimensional position of markers attached to a
subject, which can be measured by motion capture systems. If there are m markers, each sequence
is 3m-dimensional multivariate time-series. We suppose we have a collection of such sequences
as data and would like to learn a generative model from them. Simultaneous treatment of other
signals that are often available in gait analysis, such as ground reaction force and electromyography
measurements, is an extension to be addressed in the future.

2.2 Model architecture

The architecture of the proposed method, depicted in figure 1, follows the autoencoding structure.
Given a marker position sequence as input data x, encoder networks compute latent variable z. The
decoder comprises a differentiable physics engine for rigid body dynamics simulation. An agent in
the physics engine is controlled with a neural network (i.e., policy network) conditioned on the latent
variable z. The physics engine should return a simulated marker position sequence, denoted by p in
figure 1. Finally, we match the scale of p with that of x to give the final reconstruction x̂.

Let us formalize the idea. Let x ∈ R`×3m be an input marker position sequence of length `. The
encoder networks, µencoder : R`×3m → Rdz and σ2

encoder : R`×3m → R>0, give the sufficient
statistics of the approximated posterior of the latent variable z ∈ Rdz , that is,

z ∼ N (z;µencoder(x), σ2
encoder(x)I). (1)

Latent variable z is subsequently utilized in two ways. Firstly, we compute from z the initial condition
s0 ∈ Rds fed into the physics simulator (because x is marker position while s include joint angles):

s0 = finitializer(z). (2)

Secondly, we use z as an additional argument of the controller of the simulator’s agent, that is,

ut = fcontroller(st,PositionalEncoding(z; t)), (3)

where st ∈ Rds and ut ∈ Rdu are the simulator’s state and input signal (i.e., action) at time t,
respectively. We use the technique called positional encoding to vary z slightly at each time t. Given
such a conditioned controller, the physics engine runs the simulation of rigid body dynamics.
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The core computation of the physics engine is the temporal transition of the state variable st given
action ut following the rigid body dynamics. Namely, for each of t = 0, . . . , `− 1, it computes

st+1 = TemporalTransition(st, ut). (4)

The state variable st comprises the generalized position and velocity of the agent, an articulated rigid
body. More specifically, in this work, it comprises the position, velocity, orientation, and angular
velocity of the floating base of the agent, as well as the angle and angular velocity of the joints of the
agent’s articulated body. Consequently, the action ut is generalized force applied to each joint (i.e.,
torque). We used a 21-degree-of-freedom model of the human musculoskeletal system as the agent,
so ds = 21× 2 and du = 21− 6 as we do not directly control the floating base, which 6 dofs. The
physics engine should finally output a simulated position sequence of the markers attached to the
agent. We denote such a simulated sequence by p ∈ R`×3m.

At the final stage of the decoding process, we rescale p because the scale of the simulator’s agent
is fixed1, while the data may comprise subjects with different scales. To this end, we compute the
optimal scaling factors between p and x using differentiable convex optimization [1]. Let pt,i,j be
the element of p corresponding to the position of the j-th marker along the i-axis at timestep t, for
t = 1, . . . , `, i = X,Y, Z, and j = 1, . . . ,m. Let x̂ ∈ R`×3m be the final reconstruction after scaling,
and let x̂t,i,j be the element of x̂ analogously to the case of pt,i,j . Furthermore, let pt,i,fb denote the
element of p corresponding to the floating base position along the i-axis at timestep t. With these
notions, the final reconstruction x̂ is given by the following linear scaling of p:

E[x̂t,i,j ] = αi(pt,i,j − pt,i,fb) + βipt,i,fb + γi, (5)

where φ := {αi, βi, γi} is the set of scaling factors. They are computed via the following problem:

min
αi,βi,γi

∑̀
t=1

m∑
j=1

|E[x̂t,i,j ]− xt,i,j |2 s.t. αi ∈ [αlb, αub], βi ∈ [βlb, βub], γi ∈ [γlb, γub], (6)

for i = X,Y, Z. Note that this convex optimization layer takes the original input x unlike ordinary
autoencoder structures. It is not problematic because it needs x only in training, and in a test phase, we
can use arbitrary scaling factors for generating x̂ (e.g., ones computed with some reference datapoint).

2.3 Learning

Learning is done by maximizing the evidence lower bound (ELBO) of the marginal log likelihood
[see, e.g., 22], that is, Ez∼pencoder

[log pdecoder(x | z)]−DKL(pencoder(z) ‖ pprior(z)), where pencoder
is the distribution in equation 1, pdecoder is a distribution such that the first moment is given by
equation 5, and pprior is some prior distribution of z. To reduce the variance, we use the path derivative
ELBO [30]. Note that the policy network is also trained within this scheme altogether.

In addition to the evidence lower bound, we take several regularization terms into account. First, we
penalize the magnitude of the power by the agent’s action, i.e., the product of torque and angular
velocity. We also penalize the first-order and second-order differences (along time) of ut to prevent
implausible torque sequences. In the case of conditional modeling, which will be introduced later
in section 2.4, we consider independence-enforcing regularization for disentanglement of the latent
variable. We empirically found that when training the proposed model, it was essential to start
training from short sequences and then feed longer sequences gradually.

2.4 Incorporating conditional variable for style transfer

We present an extension of the model in section 2.2. We focus on the application of style transfer;
given some x and some features c describing a “style” of the gait, we would like to generate new gait
motion x′ having altered gait style c′ 6= c. To this end, we incorporate a conditional variable c into
the model. It particularly appears in the encoder part of the model; instead of computing z directly
from x, we first compute some intermediate quantity y ∈ Rdy from x and c and then compute z from
y and c′, where c′ has the same value with c in training but has an arbitrary value in test.

1It is also possible to optimize agent’s scale during training or infer it in an amortized manner, but sample-
dependent physical property of an agent might cause issues in the numerical stability of simulation (e.g., tuning
simulator’s setting may become difficult). Such an approach should be explored in future studies.
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During training, equation 1 is to be replaced by

y = g(x, c) and (7)

z ∼ N (z; µ̃encoder(y, c), σ̃2
encoder(y, c)I), (8)

where g, µ̃encoder, and σ̃2
encoder are neural networks. In this two-stage computation, the intermediate

variable y should capture the part of the information of x that is not described by c. Then, z is again
encoded with c so that z retains all the information from x and c. In other words, y should be a
representation of x disentangled from c. Such semantics of y and z are not automatically obtained
by simply maximizing the evidence lower bound. We ensure the independence between c and y and
the dependence between z and c by imposing regularization on the Hilbert–Schmidt independence
criterion (HSIC) [13]. It is known that HSIC between two random variables becomes zero if and only
if the variables are statistically independent [13], and when the variables are dependent, HSIC takes a
positive value. We minimize the following quantity as regularizer: λ1ĤSIC(c, y)− λ2ĤSIC(c, z),
where λ1 and λ2 are hyperparameters, and ĤSIC means an empirical estimation of HSIC. We used
the Gaussian kernel with width determined by the median trick. We note that regularization of VAEs
with HSIC was also studied in [26, 36].

x y z p x̂

c

z′c′ p′ x̂′

φ

Figure 2: Diagram of the pro-
posed model with conditional
variable for style transfer.

In a test phase, we perform another branch of computation from

z′ ∼ N (z′; µ̃encoder(y, c′), σ̃2
encoder(y, c

′)I), (8′)

where c′ may have a value different from that of c. If y is success-
fully disentangled from c, this new z′ informed by c′ should attain
information of c′ (and not of c), which would enable style transfer
of x into some x̂′ having the property of c′. Here, we assume that
the condition variable c (or c′) does not contain the scale of the
subject. Such an assumption enables us to use the scaling factor φ
computed with the original c even for x̂′. In figure 2, we show the computation flow of the model
with the original or altered conditional variable. During training, only the upper part of figure 2 with
the original c is run. The lower part of figure 2 with the altered c′ works in applying style transfer.

3 Preliminary experiment

3.1 Configuration

Dataset We used a public dataset of human locomotion [24]. We divided the 50 subjects of the
dataset into training, validation, and test sets. From the original dataset, we extracted the data of
marker position measurements during walking and used them as x. We had n = 328, 34, and 97
sequences for the training, validation, and test sets, respectively. Each sequence contains one gait
cycle (i.e., from a heel strike to the next heel strike). We aligned the length of all the sequences to be
` = 500 with cubic interpolation. We also used the information of the gait cadence as the conditional
variable c, which varied from 40 to 170 [step/min] within the dataset.

Model As a differentiable physics engine in the proposed model, we used nimblephysics [39]
library. Other parts of the model were neural networks. g comprised a multilayer perceptron (MLP)
for computing features from x and c, a self-attention layer, and an average-pooling (along time) layer.
µ̃encoder, finitializer, and fcontroller were MLPs.

3.2 Result

Figures 3a–3c show an example of the reconstruction by the proposed method, and figure 3d shows
the corresponding motion of the agent in the physics simulator. The result on a test sample without
style transfer is displayed. It successfully mimics gait motion. For the whole test set, the average
reconstruction root-mean-square error was 1.94± 0.36 [cm]. The error is relatively large for the later
part of the sequence. We again emphasize that the inferred motion, such as one in figure 3, inherently
complies with the physical laws up to the fidelity of the physics simulator.

We show an example of the style transfer, where we tried to change the cadence of gait. We randomly
picked 20 test samples and performed style transfer with the method presented in section 2.4. The
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Figure 3: (a–c) Example of reconstruction. Only some selected markers are shown; different colors
correspond to different markers. (d) Corresponding simulator’s output at gait cycle from 0% to 100%.
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Figure 4: Example of style transfer of gait cadence. In
both plots, right hip flexion angle within a gait cycle is
displayed. The thick lines are the average of each case.
Best viewed in color. (Top) Angle inferred in the simulator
of the proposed model, with c′ set to be values in slow
or fast ranges. (Bottom) Angle directly computed from
some training samples with inverse kinematics, with slow
cadence or fast cadence. In both plots, the minimum angle
comes earlier in fast gait than in slow gait. Meanwhile, the
generated signals lack the variance.

value of c′ is randomly drawn from a slow cadence range (40 ≤ c′ ≤ 66 [step/min]) or a fast cadence
range (144 ≤ c′ ≤ 170 [step/min]). Figure 4a shows the right hip flexion angle computed by the
simulator with the altered c′ given to the model. In figure 4b, for comparison, we show the angle of
the same joint inferred with inverse kinematics from some training samples with similar ranges of
c. Note that such angles computed with inverse kinematics are never used as input to the proposed
model. Comparing the two plots of figure 4, we can find that the generated signals successfully mimic
the tendency that the minimum value of the angle comes at earlier gait cycle in fast gait. Meanwhile,
the generated signal show relatively small variability (especially at initial condition) partly because
the test data contain a much smaller number of subjects than that of training data.

4 Conclusion

We proposed a deep generative model with a differentiable physics engine for modeling human gait,
which can produce physically-consistent signals by construction. We presented an example of the
application to style transfer of gait cadence. The presented work is preliminary, and we are working
on a number of extensions, model variants, and applications. They include the use of some muscle
models, style transfer based on physical / biological models instead of unstable disentanglement, and
learning on large scale data of both healthy and pathological gait.

Acknowledgments and Disclosure of Funding

This work was supported by the Swiss National Science Foundation Sinergia project Modeling
pathological gait resulting from motor impairments (CRSII5_177179).

5



References

[1] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z. Kolter. Differentiable convex optimization
layers. In Advances in Neural Information Processing Systems 32, pages 9562–9574, 2019.

[2] M. A. Aragon-Calvo and J. C. Carvajal. Self-supervised learning with physics-aware neural networks – I.
Galaxy model fitting. Monthly Notices of the Royal Astronomical Society, 498(3):3713–3719, 2020.

[3] M. A. Brubaker, D. J. Fleet, and A. Hertzmann. Physics-based person tracking using the anthropomorphic
walker. International Journal of Computer Vision, 87(1-2):140–155, 2010.

[4] J. A. Candido Ramos, L. Blondé, S. Armand, and A. Kalousis. Conditional neural relational inference
for interacting systems. In Machine Learning and Knowledge Discovery in Databases, number 12979 in
Lecture Notes in Computer Science, pages 182–197. 2021.

[5] J. Carpentier and N. Mansard. Analytical derivatives of rigid body dynamics algorithms. In Robotics:
Science and Systems XIV, 2018.

[6] J. Collins, R. Brown, J. Leitner, and D. Howard. Follow the gradient: Crossing the reality gap using
differentiable physics (RealityGrad). arXiv:2109.04674, 2021.

[7] F. de A. Belbute-Peres, K. A. Smith, K. R. Allen, J. B. Tenenbaum, and J. Z. Kolter. End-to-end
differentiable physics for learning and control. In Advances in Neural Information Processing Systems 31,
pages 7178–7189, 2018.

[8] F. de Avila Belbute-Peres, T. D. Economon, and J. Z. Kolter. Combining differentiable PDE solvers and
graph neural networks for fluid flow prediction. In Proceedings of the 37th International Conference on
Machine Learning, pages 2402–2411, 2020.

[9] J. Degrave, M. Hermans, J. Dambre, and F. wyffels. A differentiable physics engine for deep learning in
robotics. Frontiers in Neurorobotics, 13:6, 2019.

[10] A. Falisse, G. Serrancolí, C. L. Dembia, J. Gillis, and F. De Groote. Algorithmic differentiation improves
the computational efficiency of OpenSim-based trajectory optimization of human movement. PLOS ONE,
14(10):e0217730, 2019.

[11] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem. Brax – A differentiable
physics engine for large scale rigid body simulation. arXiv:2106.13281, 2021.

[12] M. Geilinger, D. Hahn, J. Zehnder, M. Bächer, B. Thomaszewski, and S. Coros. ADD: Analytically
differentiable dynamics for multi-body systems with frictional contact. ACM Transactions on Graphics, 39
(6):190, 2020.

[13] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring statistical dependence with Hilbert-
Schmidt norms. In Algorithmic Learning Theory, number 3734 in Lecture Notes in Artificial Intelligence,
pages 63–77. 2005.

[14] E. Heiden, D. Millard, E. Coumans, Y. Sheng, and G. S. Sukhatme. NeuralSim: Augmenting differentiable
simulators with neural networks. arXiv:2011.04217, 2020.

[15] P. Holl, V. Koltun, and N. Thuerey. Learning to control PDEs with differentiable physics. In Proceedings
of the 8th International Conference on Learning Representations, page 2020, 2020.

[16] Y. Hu, J. Liu, A. Spielberg, J. B. Tenenbaum, W. T. Freeman, J. Wu, D. Rus, and W. Matusik. Chain-
Queen: A real-time differentiable physical simulator for soft robotics. In Proceedings of the 2019 IEEE
International Conference on Robotics and Automation, pages 6265–6271, 2019.

[17] Y. Hu, L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-Kelley, and F. Durand. DiffTaichi: Differentiable
programming for physical simulation. In Proceedings of the 8th International Conference on Learning
Representations, 2020.

[18] Z. Huang, Y. Hu, T. Du, S. Zhou, H. Su, J. B. Tenenbaum, and C. Gan. PlasticineLab: A soft-body
manipulation benchmark with differentiable physics. In Proceedings of the 9th International Conference
on Learning Representations, 2021.

[19] J. Ingraham, A. Riesselman, C. Sander, and D. Marks. Learning protein structure with a differentiable
simulator. In Proceedings of the 7th International Conference on Learning Representations, 2019.

[20] M. Jaques, M. Burke, and T. Hospedales. Physics-as-inverse-graphics: Unsupervised physical parameter
estimation from video. In Proceedings of the 8th International Conference on Learning Representations,
2020.

[21] K. M. Jatavallabhula, M. Macklin, F. Golemo, V. Voleti, M. Weiss, B. Considine, J. Parent-Lévesque,
K. Xie, L. Paull, F. Shkurti, D. Nowrouzezahrai, and S. Fidler. ∇Sim: Differentiable simulation for system
identification and visuomotor control. In Proceedings of the 9th International Conference on Learning
Representations, 2021.

6



[22] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In Proceedings of the 2nd International
Conference on Learning Representations, 2014.

[23] S. Lee, M. Park, K. Lee, and J. Lee. Scalable muscle-actuated human simulation and control. ACM
Transactions on Graphics, 38(4):73, 2019.

[24] T. Lencioni, I. Carpinella, M. Rabuffetti, A. Marzegan, and M. Ferrarin. Human kinematic, kinetic and
EMG data during different walking and stair ascending and descending tasks. Scientific Data, 6(1):309,
2019.

[25] J. Liang, M. Lin, and V. Koltun. Differentiable cloth simulation for inverse problems. In Advances in
Neural Information Processing Systems 32, pages 771–780, 2019.

[26] R. Lopez, J. Regier, M. I. Jordan, and N. Yosef. Information constraints on auto-encoding variational
Bayes. In Advances in Neural Information Processing Systems 31, pages 6117–6128, 2018.

[27] Y.-L. Qiao, J. Liang, V. Koltun, and M. C. Lin. Scalable differentiable physics for learning and control. In
Proceedings of the 37th International Conference on Machine Learning, pages 7847–7856, 2020.

[28] Y.-L. Qiao, J. Liang, V. Koltun, and M. C. Lin. Efficient differentiable simulation of articulated bodies. In
Proceedings of the 38th International Conference on Machine Learning, pages 8661–8671, 2021.

[29] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in
deep generative models. In Proceedings of the 31st International Conference on Machine Learning, pages
1278–1286, 2014.

[30] G. Roeder, Y. Wu, and D. Duvenaud. Sticking the landing: simple, lower-variance gradient estimators for
variational inference. In Advances in Neural Information Processing Systems 30, pages 6928–6937, 2017.

[31] C. Schenck and D. Fox. SPNets: Differentiable fluid dynamics for deep neural networks. In Proceedings
of the 2nd Conference on Robot Learning, pages 317–335, 2018.

[32] S. S. Schoenholz and E. D. Cubuk. JAX MD: A framework for differentiable physics. In Advances in
Neural Information Processing Systems 33, pages 11428–11441, 2020.

[33] C. Song and A. Boularias. Identifying mechanical models through differentiable simulations. In Proceed-
ings of the 2nd Conference on Learning for Dynamics and Control, pages 749–760, 2020.

[34] C. Song and A. Boularias. Learning to slide unknown objects with differentiable physics simulations. In
Robotics: Science and Systems XVI, 2020.

[35] N. Takeishi and A. Kalousis. Physics-integrated variational autoencoders for robust and interpretable
generative modeling. arXiv:2102.13156, 2021.

[36] N. Takeishi and Y. Kawahara. Knowledge-based regularization in generative modeling. In Proceedings of
the 29th International Joint Conference on Artificial Intelligence, pages 2390–2396, 2020.

[37] K. Um, R. Brand, Y. R. Fei, P. Holl, and N. Therey. Solver-in-the-Loop: Learning from differentiable
physics to interact with iterative PDE-Solvers. In Advances in Neural Information Processing Systems 33,
pages 6111–6122, 2020.

[38] K. Wang, M. Aanjaneya, and K. Bekris. A first principles approach for data-efficient system identification
of spring-rod systems via differentiable physics engines. In Proceedings of the 2nd Conference on Learning
for Dynamics and Control, pages 651–665, 2020.

[39] K. Werling, D. Omens, J. Lee, I. Exarchos, and C. K. Liu. Fast and feature-complete differentiable physics
for articulated rigid bodies with contact. arXiv:2103.16021, 2021.

[40] D. A. Winter. Biomechanics and Motor Control of Human Movement. John Wiley & Sons, Ltd., 4th
edition, 2009.

[41] Y. Yin, V. Le Guen, J. Dona, E. de Bézenac, I. Ayed, N. Thome, and P. Gallinari. Augmenting physical
models with deep networks for complex dynamics forecasting. In Proceedings of the 9th International
Conference on Learning Representations, 2021.

[42] M. Zamora, M. Peychev, S. Ha, M. Vechev, and S. Coros. PODS: Policy optimization via differentiable
simulation. In Proceedings of the 38th International Conference on Machine Learning, pages 7805–7817,
2021.

7


	Introduction
	VAE with physics engine for gait
	Target measurements
	Model architecture
	Learning
	Incorporating conditional variable for style transfer

	Preliminary experiment
	Configuration
	Result

	Conclusion

